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et al., 1995; Greicius et al., 2003; Fox et al., 2005) and data-driven 

analyses (e.g., independent component analysis; McKeown et al., 

1998; Kiviniemi et al., 2003; Beckmann et al., 2005). These patterns 

have been variously termed ‘intrinsic connectivity networks’ (Seeley 

et al., 2007), or ‘resting-state networks’ (RSNs; Greicius et al., 2003; 

Beckmann et al., 2005; De Luca et al., 2006). They are purported to 

refl ect the intrinsic energy demands of neuron populations that, 

via fi ring together with a common functional purpose, have subse-

quently wired together through synaptic plasticity (e.g., Saini et al., 

2004; Lewis et al., 2009). RSNs can be reliably and reproducibly 

detected at individual subject and group levels across a range of 

analysis techniques (Greicius et al., 2004; Damoiseaux et al., 2006; 

Shehzad et al., 2009; Zuo et al., 2010b).

A characteristic set of co-activating functional systems is found 

consistently across subjects (Beckmann et al., 2005; Damoiseaux 

et al., 2006; De Luca et al., 2006; Fox and Raichle, 2007; Smith et al., 

2009), stages of cognitive development (Fair et al., 2007; Fransson 

et al., 2007), degrees of consciousness (Boly et al., 2008; Greicius 

et al., 2008) and even (to some extent) across species (Vincent et al., 

2007). Moreover, individual networks have been shown to be herit-

able (Glahn et al., 2010) and altered resting (and stimulus-guided) 

functioning of large-scale networks has been found in correlation 

with individual differences in behavioural performance (Fox et al., 

2007; Kelly et al., 2008), as well as in disease (Greicius et al., 2004; 

Castellanos et al., 2008; Di Martino et al., 2009; Seeley et al., 2009) 

and under pharmacological manipulation (Anand et al., 2005; Hong 

et al., 2009; Kelly et al., 2009). Therefore there is compelling evi-

dence for RSNs as core functional networks in the mammalian brain. 

INTRODUCTION

Spontaneous, or ‘resting-state’, fl uctuations in the blood  oxygenation 

level-dependent (BOLD) signal, as measured by functional mag-

netic resonance imaging (FMRI), may present a valuable data 

resource for delineating the human neural functional architec-

ture. Consistent, large-scale spatial patterns of coherent signal have 

been identifi ed in the human brain using both FMRI (Biswal et al., 

1995; Lowe et al., 1998) and positron emission tomography (PET; 

Shulman et al., 1997; Raichle et al., 2001). Techniques assessing 

functional connectivity, originally applied to BOLD FMRI data 

alongside studies of model-driven, task-evoked activation, have also 

proven useful for resting-state research and have greatly supported 

and contributed to increasing scientifi c interest in the spontane-

ous, or ‘default’ neural activity of the brain at baseline (Gusnard 

and Raichle, 2001; Raichle et al., 2001; Fox and Raichle, 2007). As 

outlined in this article, these methods provide useful conceptual 

complements to the inferences made from task-FMRI data, and 

hence are increasingly being applied across multiple fi elds of neu-

roscience, to further inform our understanding of the fundamental 

organisation of processing systems in the human brain.

The majority of approaches to analysing resting-state FMRI 

data have thus far been spatially model-driven, with strong a priori 

hypotheses regarding the functional connectivity of a small number 

of brain regions of interest (ROIs) or individual voxel locations 

of interest. Recently, however, a great deal of attention has been 

focused on the patterns of connectivity between multiple ROIs 

within spatially distributed, large-scale networks, characterised via 

both model-driven (e.g., seed-based correlation analysis; Biswal 
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Accordingly, the increase in resting-state research has resulted in the 

development of a rich array of signal processing techniques. The fol-

lowing is a summary and review of the most widely applied methods, 

focussing primarily, but not exclusively, on seed-based correlation 

analysis (SCA) and independent component analysis (ICA). We 

discuss the commonalities, differences and potential interpretative 

pitfalls of these and other techniques, but begin by recapitulating the 

key characteristics and pre-processing requirements of the data.

RESTING-STATE NETWORK ACTIVITY

SPATIOTEMPORAL CHARACTERISTICS

RSNs are localised to grey matter regions (Beckmann et al., 2005; De 

Luca et al., 2006), and it is now accepted by many that they refl ect 

functional systems supporting core perceptual and cognitive proc-

esses. Figure 1 (reproduced from Beckmann et al., 2005) displays 

eight RSN maps commonly identifi ed using ICA. These patterns of 

intrinsic functional connectivity are consistent with stimulus-evoked 

co-activation patterns in e.g., sensory and motor cortices, language 

and memory systems and higher cognitive  control networks (Biswal 

et al., 1995; Lowe et al., 1998; Cordes et al., 2000; Hampson et al., 

2002; Beckmann et al., 2005; Seeley et al., 2007; Smith et al., 2009). 

Indeed, in some instances, subsets of RSNs appear to be either up-

regulated or down-regulated during specifi c cognitive tasks. Thus 

they may be described as either ‘task-positive’ or (in the case of 

the DMN) ‘task-negative,’ in terms of the direction of correlation 

between the mean network activity and the event timings during 

the task (Shulman et al., 1997; Gusnard and Raichle, 2001; Greicius 

et al., 2003; Fox et al., 2005; Kelly et al., 2008).

RSNs display reliable and consistent functional connectivity 

patterns with specifi c thalamic (Zhang et al., 2008) and cerebellar 

nuclei (Habas et al., 2009; Krienen and Buckner, 2009; O’Reilly et al., 

2009). Studies of RSNs may therefore enable investigations of both 

cortico-cerebellar and cortico-subcortical connectivity associations, 

potentially in greater detail than previously achieved with structural 

connectivity measures. In particular, due to anatomical constraints 

(resolution limitations), the relationship of the cerebellum with the 

rest of the brain is currently more measurable with functional con-

nectivity parcellation approaches than, for example, diffusion tensor 

FIGURE 1 | Eight of the most common and consistent RSNs identifi ed by 

ICA. (A) RSN located in primary visual cortex; (B) extrastriate visual cortex; 

(C) auditory and other sensory association cortices; (D) the somatomotor 

cortex; (E) the ‘default mode’ network (DMN), deactivated during demanding 

cognitive tasks and involved in episodic memory processes and self-referential 

mental representations; (F) a network implicated in executive control and 

salience processing; and (G,H) two right- and left-lateralised fronto-parietal RSNs 

spatially similar to the bilateral dorsal attention network and implicated in 

working memory and cognitive attentional processes (for further details, see 

Beckmann et al., 2005).
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relevant, spontaneous BOLD oscillations in the lower frequency 

ranges (0.01–0.08 Hz), separable from respiratory (0.1–0.5 Hz) 

and cardiovascular (0.6–1.2 Hz) signal frequencies. Additionally, 

more recent FMRI evidence suggests that, while it is true that the 

predominant spectral power of RSNs appears in practice at low fre-

quencies, the signal contributions that extend into higher frequen-

cies do so with equal consistency (Niazy et al., 2008). Specifi cally, 

it has been shown that fi ltering RSN signals to account for the 

frequency content of their haemodynamic response function ‘fl at-

tens’ their power distribution from 0.01 Hz up to 0.15 Hz, instead 

of being biased towards the lower-frequency end of the spectrum 

(Smith et al., 2008). This suggests that the low peak power char-

acteristics of BOLD FMRI-derived RSNs are largely induced by 

the haemodynamics and that underlying RSN ‘neural’ dynamics 

may be more ‘broadband’ than previously thought. Note that many 

artefactual signals have spectral peaks that are either truly within 

similar low frequency ranges seen with RSNs, or are aliased by the 

FMRI temporal sampling into these ranges (e.g., Birn et al., 2008); 

however it has also been shown that some methods such as ICA and 

RETROICOR can be used to signifi cantly reduce or even remove 

these confounds (see below).

RSNs AND ELECTROPHYSIOLOGICAL RECORDINGS

Some groups have acquired simultaneous FMRI and electroen-

cephalography (EEG) resting data, and report evidence of associa-

tions between RSN network activity and specifi c power profi les 

imaging. Functional connectivity FMRI measures also provide com-

plementary information to that gained from other imaging modalities 

and structural connectivity metrics, helping to further map and quan-

tify the neural substrates of systems-level function and dysfunction 

(e.g., Buckner et al., 2005; Greicius et al., 2009; Seeley et al., 2009).

Importantly, the occurrence of these various observations and 

the networks involved depend on the nature of neural processes 

being evoked or induced by the paradigm in question, or even 

the surrounding context of the resting-state scan. Furthermore, 

subtle changes in analytic approach to resting data, for example 

using slightly different spatial seeds in SCA (see Figure 2 and also 

Buckner et al., 2008; Hayasaka and Laurienti, 2009), or altering the 

model order dimensionality estimation in ICA (Kiviniemi et al., 

2009; Smith et al., 2009), can have a signifi cant impact on the spatial 

characteristics of the RSNs identifi ed. For both biological and statis-

tical reasons, sub-regions or ‘nodes’ of a given RSN may share ‘non-

 stationary’ (i.e., time-varying) connectivity relationships within that 

network or with other identifi ed RSNs (Chang and Glover, 2010; 

Cole et al., under review). Inferred characteristic RSN patterns can 

thereby be affected by multiple factors, in terms of the resultant 

connectivity relationships within and between networks.

SPECTRAL CHARACTERISTICS

RSNs are consistently referred to in the literature as ‘low-frequency,’ 

in terms of their spectral power distributions. Early frequency 

characterisation (Cordes et al., 2000, 2001) localised functionally 

FIGURE 2 | Comparison of SCA-derived versions of the DMN using three 

different seed voxel locations proposed in the literature (A: Fox et al., 2005 in 

red; B: Singh and Fawcett, 2008 in green; C: Greicius et al., 2003, in dark blue). 

The results of SCA analysis using these seeds are displayed (i) as maximum 

intensity projections (searching up to 12 voxels below the surface or slice on 3-D 

renderings of a single subject’s high-resolution MRI; RH = right hemisphere, 

mid = midline, LH = left hemisphere), and (ii) as binarised thresholded Z-statistic 

images on selected slices in the space of the subject’s high resolution MRI 

(cluster-corrected z = 2.3, p < 0.05). It is clear from the extent of primary 

(non-overlapping) colours visible (largely red and green), particularly in prefrontal, 

occipital lobes and subcortical regions, that variations inherent in the seed-

selection process can result in a large amount of variability into SCA analysis and 

subsequent interpretations. (iii) ICA-derived DMN map (Colour bar shows 

Z-statistic values).
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within broader EEG frequency spectra (e.g., Laufs et al., 2003; 

Mantini et al., 2007). With respect to questions regarding the 

 frequency-specifi city of resting FMRI data, and their somewhat 

indirect relationship with broadband EEG spectra, it remains 

unclear if low-frequency BOLD oscillations can be interpreted as 

relating directly to the oscillatory activity of neuronal assemblies. 

Valuable multimodal research with BOLD FMRI and direct elec-

trophysiological recordings, for example in the primary sensory 

cortices of non-human primates (Logothetis et al., 2001; Goense 

and Logothetis, 2008), encourages inferred associations between 

activity in these two data types, despite their characteristic dif-

ferences in terms of temporal resolution and underlying neuro-

physiological causes. Indeed, it may be the case that straightforward 

comparisons can be made across imaging modalities, providing 

representations of basic sensory or perceptual processes that can 

validly be interpreted as being analogous. However, given that neu-

ral activity across a broad range of oscillatory frequencies is believed 

to contribute to multi-faceted cognitive functioning (Varela et al., 

2001; Buzsaki and Draguhn, 2004), drawing similar conclusions 

about possible interactions between low-frequency oscillations 

measured by FMRI and higher frequency neuronal oscillatory 

activity, for example measurable via EEG, is considerably more 

complex (e.g., Laufs, 2008).

ACQUISITION AND PRE-PROCESSING OF RESTING-STATE 

BOLD FMRI DATA

It has been shown that a wide range of sampling rates and a rela-

tively small number of datapoints, compared to the rate and number 

of samples acquired during the majority of task-FMRI studies, can 

be used to measure suffi cient BOLD activity for identifying RSNs. 

Typical resting experiments therefore are of the order of 5–10 min, 

though the identifi cation of an optimal duration of a resting FMRI 

session (and the possible need for multiple sessions) is an open issue. 

Van Dijk et al. (2010) suggest that 5 min of recording time is near-

asymptotic with regard to correlation map stability. It is unlikely, 

however, that this generalises to cases where a more detailed parcel-

lation of functional connectivity patterns is sought, e.g., by means 

of a higher-dimensional ICA decomposition (Kiviniemi et al., 2009; 

Smith et al., 2009), as in these cases the degree of partial tempo-

ral correlation between sub-systems increases, reducing the abil-

ity to easily delineate them. Additionally, no consensus exists as to 

whether there is a signifi cant impact of the precise experimental 

setting, e.g., whether data is taken while subjects are asleep or awake 

(Horovitz et al., 2008), and with eyes open or closed (Marx et al., 

2004; Bianciardi et al., 2009a). Several recent studies of the stability 

of RSN patterns through various sleep states (Fukunaga et al., 2006; 

Horovitz et al., 2009) indicate that the correlation patterns are rela-

tively stable, except for weakening in deep sleep.

Resting BOLD data benefi t from the majority of pre-processing 

steps routinely applied to ‘traditional’ task-related BOLD FMRI 

data (Beckmann et al., 2005; Birn et al., 2006). However, there are 

a number of subtle differences worth noting. For example, high 

pass temporal fi ltering applied to task-FMRI data may be overly 

aggressive with respect to removing some of the relevant RSN 

frequency information (though see Spectral characteristics), and a 

more conservative approach is required in order to preserve pow-

ers at low frequency.

Importantly, a substantial portion of the FMRI signal  obtainable 

during rest can be attributed to spontaneous BOLD activity, com-

pared to that attributable to scanner and phsyiological artefacts, 

even at high fi eld strengths (Bianciardi et al., 2009b); a fi nding 

which is presumably replicable in tasks with low cognitive load. 

However, it has been shown that non-neuronal physiological 

signals may interfere with end interpretations of resting BOLD 

data (Birn et al., 2006). Removal of confounding signals, such as 

respiratory, pulsatile or cardiovascular noise is shown to improve 

the quality of data attributed to neural activity (Birn et al., 2006, 

2008; Van Dijk et al., 2010). It has therefore become common prac-

tice in FMRI research (particularly resting-state) to monitor such 

signals, with specifi c software packages accordingly developed, to 

retrospectively correct for their confounding effects post-acquisi-

tion (e.g., RETROICOR; Glover et al., 2000) and it can be argued 

that such noise removal is of particular importance for functional 

connectivity studies, given the data-driven nature of the analysis, 

where spurious correlations induced by the presence of structured 

noise may severely increase the number of false-positive detections. 

Similarly, other sources of regionally-specifi c noise such as white-

matter and cerebrospinal fl uid signals should be accounted for 

in the analysis (e.g., Fox et al., 2005), as optimal BOLD signal to 

noise ratio in these regions is far more susceptible to artefact than 

in cortical grey matter (Tohka et al., 2008). A range of approaches 

can be employed here, either by (i) restricting the functional data 

analysis with binary grey matter masks thresholded at an arbitrary 

level (ii) by including time series from these tissues as nuisance 

covariates (as in Figure 2), or (iii) by employing probabilistic grey 

matter covariates in inferential analysis stages; i.e., by using addi-

tional confound regressors at the between-subject analysis stage 

which, for any given voxel, encode the relative proportion of grey 

matter for each subject.

Although concerns about the confounding infl uence of physi-

ological noise and other structured artefacts in FMRI datasets are 

clearly warranted, in most cases it has been shown that session-level 

ICA methods can reliably identify and account for the artefactual 

infl uence of non-grey matter, respiratory and cardiovascular signal 

fl uctuation on RSNs (Kiviniemi et al., 2003, 2009; Beckmann et al., 

2005; De Luca et al., 2006; Birn et al., 2008). Note, however, that 

potential diffi culties arise when attempting to separate physiologi-

cal noise components from ‘true’ neural components using ICA 

[see Independent component analysis (ICA)]. Attempts to create 

automated artefact classifi cation algorithms for components identi-

fi ed by ICA have generated mixed results, often with relatively high 

levels of misclassifi cation (e.g., rates of between 0.2 and 0.3; Tohka 

et al., 2008). At the group level (see Group-ICA), ICA methods can 

potentially lose some of the power of single-session data cleanup, 

so group-ICA approaches may benefi t from further (ICA-based 

or other) cleanup at the pre-processing stage (Biswal et al., 2010). 

Additionally, it is apparent that some artefactual components share 

a large degree of spatial and spectral overlap with RSNs, and at low 

dimensionalities even ‘mix’ and form parts of the same component 

in the end decomposition (Birn et al., 2008). However, in most 

cases the spatial overlap of, for example, the ‘default mode net-

work’ (DMN; Figures 1E and 2) and artefactual respiratory com-

ponents is relatively minimal, both in the majority of single-subject 

cases and at the group-ICA level, with peak DMN  parietal nodes 
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many possible ‘networks’ to be derived as there are possible seeds, so 

discussing and interpreting one resulting spatial map as a distinct 

and meaningful neurobiological system is an under-representation 

of the data, as all but one possible ‘network’ in the data are being 

ignored. Biologically, the choice of seed may bias connectivity fi nd-

ings towards specifi c, smaller or overlapping sub-systems, rather 

than larger, distinct networks (e.g., Buckner et al., 2008). Finally, 

these issues are all contingent on investigator-specifi c (seed size or 

location) and subject-specifi c (spatial normalisation or functional 

localisation) choices potentially resulting from the method of a pri-

ori seed-selection employed (see Figure 2). As a caveat, however, we 

must not underplay the importance to the current fi eld of subjective 

expertise in carefully selecting seed regions, as well as in identifying 

and classifying RSNs, both of which have played a major role in 

shaping our current understanding of these effects.

To illustrate the issue of potential biases attached to seed-

 selection in SCA, Figure 2 presents a number of SCA-derived 

versions of the DMN, alongside the same RSN estimated by ICA 

(also see Buckner et al., 2008). The DMN seed locations in MNI 

standard space were selected from three papers in the resting-state 

FMRI literature: A: Fox et al. (2005, red); B: Singh and Fawcett 

(2008, green) and C: Greicius et al. (2003, dark blue). Results of 

SCA using these seeds were calculated using white-matter, CSF 

and motion confounds, and are displayed as maximum intensity 

projections (Figure 2i), and as binarised statistical maps on selected 

slices in the space of the subject’s high resolution structural MRI 

(Figure 2ii, cluster-corrected z = 2.3, p < 0.05). Though there is sig-

nifi cant overlap in the extent of the inferred networks independent 

of the seed voxel location (white), it is clear from the extent of 

primary (non-overlapping) colours visible (largely red and green), 

particularly in prefrontal, occipital lobes and subcortical regions, 

that biases inherent in the seed- selection process can result in a large 

amount of variability into the results and subsequent interpreta-

tions. In order to validly discuss SCA results in terms of networks, 

some form of consensus mapping is required, where the different 

versions of a network are combined in order to generate a single 

consistent representation (e.g., using information theoretic prin-

ciples such as clustering or principal component analysis (PCA) 

across the different maps). Figure 2iii, for comparison, shows the 

ICA-derived DMN map from the same data (where the model 

order, i.e., the number of components, was estimated from the 

data; see Beckmann and Smith, 2004, for details). Amongst the set 

of four spatial maps this component map has highest mean spatial 

correlation with the other three estimates of the DMN. The ICA 

approach, more fully discussed in the next section, therefore can 

be viewed as one possible way of generating such consensus maps, 

eliminating the need to specify explicit seed locations, though at 

the expense of losing specifi city in relation to a single well-defi ned 

seed of interest. Note, however, that other aspects of the analysis 

(such as the choice of the model order in ICA, see below, or the 

number and nature of confound regressors in a SCA) are likely to 

introduce other types of variability in the fi nal outputs.

It is important to note here that ‘validating’ network connectiv-

ity maps by simply highlighting visual similarities with a network 

identifi ed by ICA, a practice adopted increasingly frequently in 

SCA studies, is not necessarily optimal for comparator selection 

or useful in terms of inference, without detailed quantifi cation of 

being markedly distant from occipital regions strongly affected 

by  respiratory fl uctuation (Birn et al., 2008). Additionally, it has 

recently been demonstrated that separating these signals post-

acquisition by manually increasing the dimensionality of the ICA 

model order, rather than having to collect and utilise physiological 

data, may more easily account for these confounding effects (Starck 

et al., 2010). Finally, of topical importance and discussed in detail 

below, recent evidence suggests that one specifi c pre-processing 

procedure commonly applied in connectivity analyses, that of 

subtracting the global mean signal, may induce spurious negative 

correlations between RSNs and thereby may do more harm than 

good (Murphy et al., 2009).

METHODS OF RSN IDENTIFICATION

SEED-BASED CORRELATION ANALYSIS (SCA)

Biswal and colleagues fi rst identifi ed low-frequency coherent, spon-

taneous BOLD fl uctuations bilaterally in the somatomotor cortical 

regions using a seed-based approach to derive time course models of 

functional connectivity (Biswal et al., 1995). This method requires 

the a priori selection of a voxel, cluster or atlas region –  perhaps 

based on previous literature or functional activation maps from a 

localiser experiment – from which to extract time series data. These 

data are then used as a regressor in a linear correlation analysis or 

– when augmenting the model with confound regressors of no 

interest – in a general linear model (GLM) analysis, in order to cal-

culate whole-brain, voxel-wise functional connectivity maps of co-

variance with the seed region. This is termed univariate because the 

data in each voxel is regressed against the ‘model’ separately from 

every other voxel. The SCA technique has proven useful in reveal-

ing the connectivity properties of many seed areas, and has been 

applied in the literature by many groups (e.g., Greicius et al., 2003; 

Fox et al., 2005; Margulies et al., 2007). The primary advantage of 

SCA over other methods is that the approach provides a direct 

answer to a direct question – it shows the network of regions most 

strongly functionally connected with the seed voxel or ROI). This 

straightforward interpretability, relative to other methods, makes 

SCA an attractive approach for many researchers. Recent assess-

ment of the test-retest reliability of these methods has indicated 

that RSN connectivity relationships can be identifi ed by SCA with 

moderate to high reliability (Shehzad et al., 2009).

One potential weakness of SCA methods concerns the infl u-

ence of structured spatial confounds, such as other RSNs (than the 

one under consideration) or structured noise, e.g., residual head 

motion effects or scanner-induced artefacts. Some of these effects 

may be partially removed by incorporating specifi c pre-processing 

such as temporal fi ltering, but the presence of residual confounds 

in the SCA reference time course can negatively infl uence SCA 

correlation maps in that estimated ‘networks’ also include voxels 

which describe the spatial extent of the artefact. More generally, 

the univariate approach of correlating the time series of a single 

voxel with those of each other voxel in a brain image disregards 

the richness of information available within the statistical relation-

ships between multiple data points. Prior selection of the time 

series of one sub-region to correlate with and inform the activity 

of the network as a whole imposes anatomical restrictions on the 

measurement of network connectivity, and consequently on inter-

pretations of systems-level hypotheses. Fundamentally there are as 



Frontiers in Systems Neuroscience www.frontiersin.org April 2010 | Volume 4 | Article 8 | 6

Cole et al. Analysis and interpretation of RSNs

this similarity. Importantly, for the above-demonstrated reasons, 

a large number of researchers are beginning to additionally adopt 

multivariate methods such as ICA in their standard approaches to 

analysing spontaneous BOLD fl uctuations. Such approaches avoid 

many of these problems and thereby have complementary advan-

tages to those of SCA methods. Finally, we should re-emphasise the 

main advantage, with SCA, of being able to ask a straightforward 

question about connectivity, and receiving a direct answer (within 

the limit of being able to formulate the original question by means 

of a well-defi ned seed).

INDEPENDENT COMPONENT ANALYSIS (ICA)

Initially recognised within neuroscience as a valuable method of 

separating multiple, uncorrelated signal waveforms in EEG data, 

ICA was fi rst applied to FMRI data collected during an experimen-

tal task (McKeown et al., 1998). Later the same techniques were 

applied to resting-state FMRI data (Kiviniemi et al., 2003). ICA 

works by decomposing a two-dimensional data matrix into the 

time courses and associated spatial maps of the underlying ‘hid-

den’ signal sources. Although a number of differing approaches to 

ICA are used in neuroimaging (implemented as separate software 

packages), common concepts and core methods underlie their 

application. One common approach is to estimate maximally sta-

tistically independent, non-Gaussian components from FMRI data, 

by optimising a measure of non-Gaussianity in the estimated maps. 

Although ICA estimates component maps of maximal spatial inde-

pendence (from each other), this does not preclude spatial overlap 

between components (see Beckmann et al., 2005 for details) The 

ICA method of exploratory FMRI analysis is regarded as prefer-

able to that of PCA, as the spatial independence enforced upon 

components by (spatial) ICA dictates only that their time courses 

not be highly co-linear, resulting in a more biologically plausi-

ble systems model than that obtained from a PCA decomposition 

where the analysis enforces orthogonality between time courses, 

precluding the detection of signals which partially correlate in the 

temporal domain. Note that while temporal ICA can be carried 

out as an alternative to spatial ICA (component time courses are 

orthogonalised but spatial maps are not), it suffers from the same 

orthogonality issue as PCA and is more susceptible to noise due 

to the typically smaller number of observations available to drive 

the estimation.

Importantly, as with SCA, use of the ICA approach has identi-

fi ed networks of spontaneous coherence comparable to known 

sensory and cognitive processing systems (e.g., Figure 1). 

Persuasively, these include the somatomotor cortical connectiv-

ity network found in the fi rst resting connectivity experiments 

(Biswal et al., 1995), sensory systems in visual and auditory 

cortices, and, of particular interest to those applying imaging 

to neuropsychiatric populations, networks apparently refl ecting 

higher-level cognitive processes (e.g., the DMN). In this compara-

tively unrestricted way, ICA has been used to generate a ‘complete’ 

(if simple) picture of the functional hierarchy of integrative and 

dissociative relationships making up the spontaneous and evoked 

activity of the human brain (Kiviniemi et al., 2009; Smith et al., 

2009). RSNs identifi ed by ICA can be less prone to artefactual 

effects from noise (including fl uctuations in the mean global sig-

nal) than those from SCA (see Acquisition and pre-processing 

of resting-state BOLD FMRI data; also Birn et al., 2008; Murphy 

et al., 2009), due to the ability of the method to account for the 

existence of such structured noise effects within additional (non-

RSN) ICA components.

Despite some advantages over SCA approaches in terms of 

avoiding prior spatial assumptions and noise attached to the seed, 

and the ability to simultaneously compare the coherence of activity 

in multiple distributed voxels, ICA is not without its challenges. 

First, unlike PCA, an ICA decomposition is obtained by means of 

iterative optimisation. This stochastic nature induces a degree of 

run-to-run variability, so results obtained from such an analysis 

can differ between analysis runs on even the same data. This type 

of variability can be reduced when selecting more stringent con-

vergence criteria and software now exists that enables ICA repeat-

ability testing (e.g., ICASSO; Himberg et al., 2004), which can be 

used to investigate the degree of variability, and estimate ‘average’ 

decompositions from across multiple ICA repeats.

Secondly, the processes of dimensionality reduction and model 

order selection are somewhat arbitrary (i.e., one has to tell ICA 

how many components to estimate). While approaches exist to 

optimally select the number of independent components for a given 

dataset according to statistical criteria (for recent reliability testing 

of multiple models see Zuo et al., 2010b), it must be recognised 

that there can be no single, ‘best’ dimensionality or model order for 

the underlying neurophysiology of multiple distributed systems. 

There will always be multiple valid solutions for characterising 

the hierarchical complexity of RSN functional neurobiology. This 

level of ambiguity simply mirrors the general ambiguity in char-

acterising the brain’s functional organisation: while we may validly 

conceptualise the existence of a visual, auditory, sensory-motor 

or language system, a more fi ne-grained characterisation might 

separate this into specifi c areas such as the hand knob, visual word 

form area, fusiform face area etc. Each one of these different types 

of characterisation is valid at a particular level of complexity. In the 

case of ICA decompositions, higher dimensionalities of the model 

have recently been advocated (Kiviniemi et al., 2009; Smith et al., 

2009), although the robustness of a given level of decomposition 

relies on being supported by data quality (e.g. one cannot expect a 

robust 100-dimensional ICA decomposition from a typical 5-min 

single FMRI session).

Finally, whereas SCA guarantees a result in terms of iden-

tifying the brain regions most associated, or functionally con-

nected, with the selected seed (presumed to closely correspond 

to the associated RSN), ICA results may be ‘split’ into a number 

of sub-networks, depending on the parameters of the analysis 

(e.g., at high model order dimensionalities). This can result in 

the estimation of a large number of components, which may be 

diffi cult to identify and classify (Tohka et al., 2008). Further, one 

ICA decomposition of a given dataset may hide the fact that any 

given brain region may, over time, share varying connectivity 

patterns with multiple networks. This variability, or ambiguity, of 

regional co- activations between network nodes can be referred to 

as the ‘nonstationarity’ of a given area in terms of its connectiv-

ity with one or more RSNs, and equally affects multiple analy-

sis approaches (for specifi c investigation of this, see Chang and 

Glover, 2010, and, with respect to nonstationarity at the neural 

level, see Popa et al., 2009).
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FREQUENCY-DOMAIN ANALYSES

Since Cordes and colleagues originally characterised a number of 

functional networks of interest as low-frequency BOLD fl uctua-

tions, interest in understanding the frequency-specifi c charac-

teristics of RSNs has developed in parallel to correlation-based 

methods (Cordes et al., 2000). Specifi c techniques that have 

emerged to investigate these aspects of RSN phenomena include 

‘amplitude of low frequency fl uctuations’ (ALFF) indices (Zang 

et al., 2007). The ALFF index is calculated by averaging the square 

root of the power spectrum of a given low-frequency BOLD time 

course across the frequencies fi ltered, then standardising the value 

relative to the global mean ALFF value. The assumption that all 

relevant neuronal information contributing to resting-state BOLD 

fl uctuations can be represented by a single fi gure, calculated only 

from information inherent in the frequency domain, runs into 

problems when considering the argument for a greater level of 

broadband content in neural RSN oscillations than previously 

thought. This raises the possibility that potentially interesting 

information is being removed from the analysis by these math-

ematical procedures. Additionally, some work has suggested that 

low-frequency measures of resting data may be rather susceptible 

to cerebral vascular and respiratory artefacts (Zuo et al., 2010a). 

Indeed, some aspects of the spatial maps derived from these 

techniques can appear, at least under qualitative examination, to 

resemble patterns queried as artefactual by experimenters using 

other techniques, particularly in midline brain regions (e.g., Birn 

et al., 2006, 2008).

With these issues in mind the ALFF approach has been more 

recently refi ned to account for ‘fractional’ inclusion of informa-

tion in frequencies outside of the normal range (fALFF; Zou et al., 

2008). This is accomplished by calculating ‘the ratio of the power 

at each frequency to the integrated power of the entire frequency 

range’ (i.e., summing the oscillatory amplitudes across the ‘typical’ 

0.01–0.08 Hz range, then dividing by the amplitude sum across a 

more inclusive range of 0–0.25 Hz). Additionally and optimally, 

this amended approach involves no bandpass fi ltering. Although 

questions may remain over the susceptibility of these techniques to 

physiological noise, recent independent testing reveals both ALFF 

and fALFF to have moderate to high levels of reliability and consist-

ency in terms of the (primarily midline) spatial patterns generated 

(Zuo et al., 2010a). Furthermore, useful diagnostic information 

about neural processes may be present in the oscillatory amplitude 

envelopes (e.g., Zang et al., 2007; Zuo et al., 2010a). Such techniques 

may thereby provide a useful complement to approaches such as 

SCA and ICA investigating, for example, inter-regional coheren-

cies between multiple BOLD signals (e.g., as applied by Anand 

et al., 2005).

A number of other frequency-dependent and time-series 

statistical approaches exist that can be applied to the analysis of 

spontaneous oscillatory activity in BOLD data. These include 

linear or nonlinear comparison of fractal dynamics (Wink 

et al., 2008), measures of frequency-specifi c mutual information 

(Salvador et al., 2007), and graph theoretic investigation of such 

networks in the context of their ‘small-world’ characteristics by 

multivariate partial correlation of spectral information from pre-

defi ned ROIs (Salvador et al., 2005; Achard et al., 2006; Stam and 

Reijneveld, 2007).

REGIONAL HOMOGENEITY

The regional homogeneity (ReHo) method (Zang et al., 2004) is 

based on ‘Kendall’s coeffi cient of concordance’. This technique is 

sensitive to the ‘purity’ of clusters identifi ed as expressing high 

functional connectivity with a model time series within a given 

cluster. By virtue of the assumption that neighbouring voxels are 

temporally similar, clusters identifi ed as strongly connected during 

task or rest can be tested for their inner homogeneity and the degree 

to which this is modulated by a given paradigm or differs between 

groups (e.g., Liu et al., 2006; Paakki et al., 2010). The temporal 

variability within a cluster is refl ected in the assigned homogeneity 

score. Advantages of the ReHo technique over, e.g., SCA, include 

its relative insensitivity to possible region-to-region and/or trial-

to-trial variability of the haemodynamic response function. Also, 

unlike with ICA, no assumptions are made regarding the spatial 

independence of identifi ed maps, and extensions to group analy-

sis are relatively straightforward (Zang et al., 2004). However, this 

approach is fundamentally local in nature and therefore exhibits 

a high degree of sensitivity to different levels of spatial smooth-

ing. Also, the insensitivity to shape differences between clusters 

does preclude drawing inferences on the degree of correspondence 

between spatially remote regions, making it diffi cult to characterise 

the distributed nature of RSNs (Zang et al., 2004).

GROUP ANALYSIS OF RSNs

The majority of techniques for multi-subject analysis of resting-

state functional connectivity are not yet as well developed as at the 

single-subject level. Hence we here discuss only the fundamental 

principles, and recent advances relating to the two methodologies 

applied most widely: SCA and ICA. Most of the above-outlined pros 

and cons of both of these approaches still apply at the group level, 

along with additional caveats common to all attempts to combine 

functional neuroimaging datasets in this way, e.g., issues related to 

co-registration of data into a common space. The gross variabil-

ity in cortical thickness, folding and, often, functional localisation 

between separate individuals or subject populations may cause 

problems for group level inferences. Such variability may instil 

a registration bias in the location of group analysis inputs (seed-

ROIs) or outputs (one or more functionally connected nodes) 

towards one group or other, or towards a specifi c subjective char-

acteristic. Similarly, the potential for mis-registration of individual 

session FMRI data following spatial normalisation may result in 

functionally segregated, but proximal, regions being assigned the 

same neuroanatomical label across subjects, marring valid infer-

ence. These sources of variability are local in nature and therefore 

their impact on inferred connectivity patterns is more prominent 

in voxel-based SCA. In cases of a region-based SCA or ICA such 

variability typically results in blurring of the estimated spatial pat-

terns (see e.g., Figure 1).

One recent study suggests that the network properties of systems, 

in terms of ‘small-world’ characteristics inherent in connectivity 

relationships between nodes, are better approximated by using 

single voxel seeds rather than larger ROI seeds (Hayasaka and 

Laurienti, 2009). However, it seems possible that this may be true 

of a-priori ROIs (such as derived from a standard space template), 

but that data-derived ROIs (in analogy to ICA spatial maps) would 

result in seed regions with better performance.
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The caveats listed above must inform any assumptions made 

when extending these fi ndings to robust, effi cient and unambiguous 

group-level interpretations of alterations in biologically plausible 

networks and their relevance to behaviour.

GROUP-LEVEL SCA

Approaches to SCA, while widely applied and sharing common basic 

principles, are not universally standardised in terms of group analysis 

methods. Specifi cally, methodologies can vary in terms of the precise 

information brought forward from single-subject analyses to the 

higher level. In practice, most SCA group studies carry forward voxel-

wise regression coeffi cients (e.g., Greicius et al., 2003) or correlation 

coeffi cients (e.g., Fox et al., 2005). These values are identifi ed from 

an initial, whole-brain analysis of the functional connectivity with 

the time series extracted from a given seed region. At the higher level, 

these values are then converted to Z-statistics and averaged across 

subjects in a standard GLM, followed by standard hypothesis testing. 

The latter may or may not take into account between-subject variabil-

ity, i.e., be a mixed-effects or fi xed-effects cross-subject analysis).

GROUP-ICA

Although interest in RSN analysis has grown heavily over the past 

few years, it is only fairly recently that coherent methods have been 

proposed and validated for comparing such broad, systems-level 

activity patterns across subjects and/or sessions within an ICA-based 

framework. One immediate problem when running separate ICA 

decompositions in separate subjects is that of having to identify the 

correspondence between estimated spatial components, i.e., select-

ing which components to carry up to a between-subject analysis. 

Considering the possible existence of multiple different solutions 

even within the same subject’s data, there might not be any con-

sistent one-to-one mapping between estimated sets of component 

maps when compared across different subjects. Early efforts advo-

cated running single-session ICA, separately for each subject, then 

attempting to fi nd the ‘best-fi t’ component to an a priori RSN tem-

plate at the individual level, to carry forward to group comparison 

stages (e.g., Greicius et al., 2003; Esposito et al., 2005; De Luca et al., 

2006). The self-organising, hierarchical clustering of independent 

components method (Esposito et al., 2005), for example, involves 

carrying out single-session ICA prior to group analysis with multiple 

runs (for repeatability testing). However, these approaches are sus-

ceptible to the effects of multiple sources of gross variability inherent 

to unconstrained resting-state FMRI data. Although we know RSNs 

to be largely consistent across healthy individuals (Damoiseaux et al., 

2006), there are no guarantees of exact correspondence of identifi ed 

component maps, including RSNs, across subjects. As mentioned 

above, at a given ICA dimensionality, one RSN could be poten-

tially split into two sub-networks in some subjects, and appear as 

a single component in others. Such problems may even be driven 

purely by a difference in the amount of structured noise in certain 

subjects. This can lead to misinterpretation of apparent subject 

differences. Similarly, some researchers have advocated the use of 

separate ‘group-ICA’ runs per group or experimental condition to 

be compared prior to further GLM comparison (e.g., Harrison et al., 

2008a,b). However, this approach may also be sub-optimal, as it 

biases towards false-positive fi ndings of group or between-session 

differences (Calhoun et al., 2001; Beckmann and Smith, 2005).

Further, single-subject ICA followed by group-level matching 

of components across subjects fails to take advantage of the addi-

tional effective signal-to-noise present when all subjects are analysed 

simultaneously (for example, by the group-ICA methods described 

below). It is for this reason that group-level ICA can generally support 

a much higher-dimensional (and therefore more fi nely-detailed) 

decomposition than single-session ICA. On the other hand, single-

subject ICA has much greater power to model/ignore session-level 

structured noise than group-level ICA approaches.

Working from the ‘top down’ by starting with a group-level ICA, 

and generating subject-specifi c versions of the resulting group maps 

solves the problem of between-subject RSN correspondence inher-

ent in the process of combining single-session ICA data.

The fi rst group-ICA model to emerge for FMRI was applied to 

task data (Calhoun et al., 2001). In the fi rst step of this procedure, 

data from all subjects are spatially normalised and dimensionality-

reduced via PCA (separately for each subject). These reduced datasets 

are then assumed to contain the most important source signals that 

have been ‘mixed’ into the measurements. All reduced datasets are 

temporally concatenated prior to the application of group-ICA. This 

identifi es voxels that share common temporal patterns of response 

within and between subjects. By means of temporal concatenation of 

multiple datasets (Figure 3; also see Calhoun et al., 2001), group-ICA 

can thereby estimate group-level independent components, includ-

ing RSNs (Beckmann et al., 2005). Due to the unconstrained nature 

of original BOLD signals in resting data across sessions and subjects 

such a concatenation approach is more suitable than an alternative 

tensor ICA method (Beckmann and Smith, 2005).

In order to enable voxel-wise between-subject comparisons 

Calhoun and colleagues propose to create individual subject com-

ponents from the group-decomposition via PCA back- projection/

reconstruction (Calhoun et al., 2001). Further extensions of this 

approach enable the testing of within-network (Calhoun et al., 2004a) 

and between-network (Jafri et al., 2008) connectivity relationships 

across different task conditions or subject groups. The back-pro-

jection method estimates, at the subject level, temporal and spatial 

information associated with each group component, by projecting 

the original single-subject data onto projection matrices which com-

bine the group-level unmixing matrix and the subject-level PCA-

derived matrices used for dimensionality reduction. Because these 

PCA matrices are calculated separately for each subject there is no 

guarantee that, in the reduced data space, consistent (across sub-

jects) information is retained. Hence this approach can suffer from 

similar issues to those described above as problematic for combining 

single-session ICA datasets prior to group analysis. The dependence 

on subject-specifi c PCA reduction raises the probability of session-

 specifi c noise contributions sub-optimally infl uencing further analy-

ses, thereby confounding any fi nal cross-subject RSN comparisons.

A more recent approach (Beckmann et al., 2009; Filippini et al., 

2009) estimates subject-specifi c RSNs from information contained 

within the original functional data via a ‘dual regression’ technique. 

This approach differs from back-reconstruction by using regres-

sion of the group-ICA spatial maps against the original, individual 

session, functional datasets. The spatial maps from a group-ICA 

decomposition are fi rst used as a set of GLM (spatial) regressors in 

a multiple regression analysis. This process generates individualised, 

session-specifi c time courses for each independent component in 
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each subject’s functional dataset (also see Calhoun et al., 2004b). 

These time courses, rather than matrices calculated as part of back-

projection, are then normalised and used as GLM (temporal) regres-

sors in a second multiple linear regression against the functional 

datasets. This generates individualised spatial maps for each original 

group-level component. The analysis is carried out in a standard 

coordinate space, so that cross-subject voxel-wise non-parametric 

statistical testing of RSNs can be carried out. Estimated time series 

and spatial maps form unbiased least-squares approximations to 

the original ICA maps at the individual subject level. Note, however, 

that because the original ICA maps (as well as the subject-specifi c 

dual regression estimates) are derived in a data-driven fashion we 

can not use simple parametric tests in the between-subject analysis 

and therefore need to resort to non-parametric statistical assess-

ments. This approach has been validated in terms of its ability to 

estimate session-level RSNs from group-level ICA spatial maps, con-

sistently and more reliably than single-session template-matching 

approaches (Zuo et al., 2010b).

CONTROVERSIES

It is of course interesting to discuss the most cutting-edge meth-

odological and conceptual advances in current and future  resting-

state FMRI research. However, it is equally important to note 

some methodological and conceptual limitations, which it is 

necessary to be mindful of when conducting and interpreting 

such research.

ANTI-CORRELATED NETWORKS

A number of studies identifying inverse temporal relationships 

between systems referred to, for example, as task-positive and 

task-negative networks, in both the presence and absence of overt 

cognitive stimulation, have proposed that this coupling may be 

functionally relevant (Fox et al., 2005; Fransson, 2005; Castellanos 

et al., 2008; Kelly et al., 2008; Zuo et al., 2010b). Specifi cally, this 

phenomenon is thought to hold functional signifi cance in domains 

of attention, higher cognitive control and even consciousness, by 

refl ecting the effi ciency of neural resource allocation between 

competing and interacting systems, and ultimately the effi ciency 

of global cognitive processing (Fox et al., 2005; Kelly et al., 2008). 

Similarly this issue may be central to disorders associated with 

cognitive impairment (Wang et al., 2007; Castellanos et al., 2008). 

However, there has been vigorous debate about the true ‘negativity’ 

of such between-network relationships. Principally, it is apparent 

that global mean signal regression, a pre-processing procedure 

routinely carried out in many SCA studies in order to correct for 

the infl uence of global, non-neuronal physiological noise, will bias 

towards fi nding such an effect of negative coupling, or ‘anti-correla-

tion,’ between RSN time series (Murphy et al., 2009). This fi nding 

may have important implications regarding the validity of a large 

portion of prior interpretations, primarily between the so-called 

task-negative DMN and task-positive attentional/cognitive control 

RSNs. However, whether these procedures actually create such an 

effect, or rather artifi cially enhance ‘true’ negative relationships 

existing between cognitive control RSNs, remains contentious, as 

multiple studies have not reached identical conclusions on this issue 

(Chang and Glover, 2009; Fox et al., 2009; Weissenbacher et al., 

2009; Van Dijk et al., 2010).

An illustration of the simple mathematical steps underlying 

the removal of the global mean signal from any given data pool 

is given in Figure 4. The removal of the global mean signal inevi-

tably maps existing correlations into the full correlation range 

-1 to 1. This does indeed maximise the ability to delineate RSNs 

from each other, but at the expense of rendering the numerical 

value (and sign) of the correlation uninterpretable. Note that 

pair-wise correlations are altered systematically and dramati-

cally without changes to the existence, structure or consistency 

of individual networks.

Despite outstanding questions regarding the methodological 

implications of artifi cially induced negative correlations between 

time series, their potential relevance to function should not be 

categorically disregarded (see e.g., Popa et al., 2009). Indeed, the 

one critical fi nding on this issue may be precisely that of the great 

FIGURE 3 | Schematic for temporal concatenation group-ICA.
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variability in the degree (and direction) of observed correlations 

between the DMN and multiple, inconsistently identifi ed task-

positive networks at rest. This seems to hold true in comparisons 

across individuals, and even over time within the same subject; 

whether between different scanning sessions or within a single ses-

sion (Chang and Glover, 2010). Based on this, it is important to 

investigate which factors (e.g., see Applications and extensions) 

contribute to changing the nature or strength of this relationship, 

as measured by correlations, with external expressions of  behaviour 

or experimental manipulations. For example, in a recent study test-

ing subjects across different conditions of pharmacotherapy, we 

overcame these methodological issues in two ways (Cole et al., 

under review). First, we employed multivariate, probabilistic ICA 

methods that do not involve global mean signal regression as a pre-

processing step, and can account for non-neuronal physiological 

noise, thereby allowing the independent assessment of correlative 

relationships between RSNs previously identifi ed as anti-corre-

lated in the literature. Second, we characterise network relationships 

by means of examining the dynamic changes in the correlation 

between networks, identifi ed by repeat measures between con-

ditions within-subjects (see Figure 5). As a method of assessing 

changes in the correlation between RSNs, such an approach may be 

complementary, even preferable, to between-group comparisons of 

RSN spatial maps generated by ICA or a priori seed region correla-

tion. By focussing not just on differences between assumed ‘static’ 

RSN spatial maps, but also the time-varying, condition-specifi c 

characteristics of dynamically fl uctuating systems, we avoid making 

restrictive anatomical assumptions that could limit the interpret-

ability of between-network functional connectivity fi ndings.

NETWORKS WITHIN-NETWORKS

Further to inconsistencies in connectivity relationships identi-

fi ed between networks, it is evident that such relationships can 

also vary within RSNs. For example, prior studies have proposed 

that distinct patterns of functional connectivity exist, which share 

some spatial overlap in their foci, but underlie different aspects 

of cognitive control (Dosenbach et al., 2007; Seeley et al., 2007). 

With an ICA-based approach one relevant point to consider here is 

the potential for ‘splitting’ of networks identifi ed by increasing the 

number of components. Seeley et al. (2007) identifi ed such a split in 

FIGURE 4 | The vector-space illustration of global mean regression. (A) The 

characteristic time series for network A can be described as a single point in a 

high-dimensional vector space. Relative to 0 (the zero time series, black dot) the 

orthogonal plane (dotted line in this example) separates the vector space into an 

area of positive correlation (r
A 

> 0) and a subspace of time series negatively 

correlated with A. The correlation between A and any other point is defi ned by 

the (cosine of) the inner angle: all points within ± 90° are positively correlated 

with A, whereas all other points are negatively correlated with A; 

(B) when regressing out the mean of two network-specifi c time series A and B, 

the 0 reference point is moved half-way between the two points and the original 

time series get projected onto the subspace perpendicular to this mean, thereby 

inducing perfect anti-correlation between A and B as the new characteristic 

vectors are now aligned at 180°; (C) in the more general case of multiple 

networks (grey dots) the range of possible differences in pair-wise correlations is 

again determined by the maximum range of the inner angles α: if α is small, pair-

wise correlations differ by only a small amount and delineation of different 

networks becomes diffi cult, in this example all pair-wise correlations are 

positive; (D) the global mean necessarily lies within the convex hull spanned by 

all the individual characteristic time series. Global time-series regression moves 

the 0 reference point somewhere into the convex hull, thereby inevitably 

inducing spurious negative correlations between the characteristic time series 

associated with different RSNs. Global mean regression does increase the 

maximum inner angle between pairs of time courses and therefore facilitates 

delineation of networks from each other; the resulting correlation scores (and 

signs thereof), however, are no longer interpretable and reference to these 

should be avoided.
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or fi ne-tuning of, cognitive performance (Singh and Fawcett, 2008). 

Further study is required to establish fully the range and nature of 

such relationships over varying periods of time.

CORRELATION AND CAUSALITY

As is typically the case in task-FMRI studies, the majority of applied 

resting-state research also presents the results of statistical analy-

ses (of spatiotemporal, neurophysiological information assumed 

to refl ect neuronal processes), in conjunction with interpretations 

suggestive of cognitive and behavioural meaning. While strong cor-

relations (e.g., between strength of a network such as the DMN at 

rest, and a behaviour measure such as reaction time or accuracy in a 

task) encourage conclusions of said RSNs being relevant to cognitive 

function, clinical presentation or treatment responsiveness, we can 

only speculate about the precise order of events and causal relation-

ships between the nodes in this dynamic processing stream.

Dynamical Causal Modelling (DCM, Friston et al., 2003), a 

popular approach for estimating effective connectivity between 

brain regions, relies on bilinear neural state equations where sys-

tem dynamics are induced by external driving inputs, representing 

experimental manipulations or changes in experimental condi-

tions. As such, DCM is currently ill-suited for the investigation of 

effective connectivity in resting FMRI data. In other work, attempts 

to estimate causal relationships between brain regions using lag-

based methods such as Granger Causality Analysis (GCA, Goebel 

et al., 2003) are also problematic. Haemodynamic “blurring” of the 

neural processes underlying the FMRI signal swamps any causal 

lag in the neural dynamics (typically of the order of a few mil-

liseconds), and, further, variations in haemodynamic delay across 

brain regions (potentially of the order of seconds) will cause over-

whelming bias in any attempt to estimate causality, thus render-

ing any causal inference unsafe (David, 2008). Even the original 

proponents of GCA for FMRI state that “...one should rule out the 

possibility that infl uence found from one area to another based 

on temporal difference in signal variation is due to a systematic 

difference in the hemodynamic lag at the two areas.’’ (Roebroeck 

et al., 2005). Unfortunately, in FMRI, we have in general no con-

trol over haemodynamic variabilities, and so cannot expect to use 

such analysis methodologies to estimate causality. Finally, how-

ever, there is the potential for more sophisticated network analysis 

methodology (such as Bayesian Network modelling) to infer causal 

connections, at least for networks with a limited numbers of nodes, 

but much work remains to be done to develop and validate these 

approaches for resting FMRI data; see Ramsey et al. (2010) for 

pioneering work in this direction.

When analysing the relationship between different networks, 

questions that remain include whether or not specifi c RSNs of 

interest have an optimal degree of coupling with others. It could, 

for example, be that the activity in the DMN is suppressing activ-

ity and/or synchronicity in one or more task-positive networks 

during rest, and vice versa during task performance. Is this due 

to incidental network-specifi c over- or under-activity, or due to 

‘true’ between-network dependencies? Are non-stationary shifts 

in between-network dynamics interpretable in terms of causal 

factors? Further study is required in order to address such ques-

tions, and that of which specifi c RSN nodes are involved in main-

taining optimal relationships of within- and between-network 

a network suggested to be involved in executive function, revealing 

separate purported ‘control’ and ‘salience’ networks, an effect which 

has since been replicated (Sridharan et al., 2008; Kiviniemi et al., 

2009) and further bolstered by functional and structural evidence 

from multiple neurological disorders (Seeley et al., 2009). In stud-

ies attempting to fully parcellate the complex functional hierarchy 

of neural sub-systems, the use of high-dimensionality ICA is an 

important and useful tool (Abou-Elseoud et al., 2010). However, it 

is important to distinguish between the value of varying the model 

order to prove a technical methodological point (i.e., demonstrate 

that systems can be made to split into sub-systems, potentially unre-

lated to the ability to assign biologically meaningful interpretations 

to such splits), and the value of concentrating on interpreting the 

results of a testable systems-level hypothesis in larger networks 

identifi ed at lower model orders.

RECIPROCAL TASK-REST INTERACTIONS

Many authors, including those of the current article, are guilty of 

referring to the signals identifi ed by various methods as RSNs (or 

similar terminology), when measurements have not per se been 

collected in the ‘resting-state’. Studies incorporating passive visual 

stimulation, instructed or self-initiated changes in mental state or 

focus, or occurring immediately following some other experimen-

tal manipulation, cannot be described as occurring during true, 

 stimulus-unguided rest. However, a mass of novel data is rapidly 

rendering such dichotomous distinctions between experimental 

and resting-states as conceptually unhelpful (Fox and Raichle, 2007; 

Poldrack et al., 2009; Van Dijk et al., 2010). Firstly, it has been estab-

lished that the same functional networks are cohesively active during 

a multitude of tasks as well as at rest (Smith et al., 2009). Secondly, 

several recent studies have demonstrated direct evidence of the infl u-

ence exerted by task-related activity and performance over network 

activity in resting periods, and vice versa. The existence and strength 

of two-way interactions between task and ‘RSN’ activity has been 

linked to adaptive learning (Albert et al., 2009; Lewis et al., 2009), 

response to or recovery from high cognitive load (Pyka et al., 2009; 

Van Dijk et al., 2010), and individual differences in (Fox et al., 2007; 

Hesselmann et al., 2008; Hasson et al., 2009; Sadaghiani et al., 2009), 

FIGURE 5 | Variability in the strength of inverse coupling between two 

RSNs (the DMN and a putative executive control network sharing spatial 

similarity with a combination of regions overlapping with RSN maps from 

Figures 1F,G,H) associated with individual differences in therapeutic 

behavioural changes following nicotine pharmacotherapy, compared to 

placebo. These data are taken from a single subject within a group of smokers 

tested using resting-state FMRI with repeat measures in a double-blind, placebo-

controlled, crossover design (reproduced from Cole et al., under review).
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Beckmann, C. F., DeLuca, M., Devlin, J. T., 

and Smith, S. M. (2005). Investigations 

into resting-state connectivity using 

independent component analysis. 

Philos. Trans. R. Soc. Lond., B, Biol. 

Sci. 360, 1001–1013.

Beckmann, C. F., Mackay, C. E., Filippini, 

N., and Smith, S. M. (2009). Group 

comparison of resting-state FMRI 

data using multi-subject ICA and dual 

changes in neurophysiology or behaviour are already apparent, for 

example in fi elds of learning (Albert et al., 2009; Lewis et al., 2009) 

and pharmacological intervention (Figure 5; Anand et al., 2005). 

Additionally, preliminary evidence exists for RSN-related metrics 

as potential screening devices, for example in Alzheimer’s disease 

(Rombouts et al., 2005; Fleisher et al., 2009).

The study of RSNs has revealed, and will continue to reveal, many 

interesting observations of the way in which spontaneous connectiv-

ity patterns alter under different conditions, though the concrete 

meaning of these inherent processes, seemingly fundamental to the 

human neural functional architecture, remains elusive. Task-based 

FMRI studies have provided the opportunity to test strict hypotheses 

regarding the discrete activity of a small number of regions in a 

given derived task model, albeit without necessarily explaining the 

true distributed nature and complexity of human brain function. 

One is led to expect that RSN activity measured with the exclusion 

of artifi cial, experimentally guided regional BOLD changes may 

provide a better approximation to the ‘baseline’ of brain function. 

However, the unrestricted nature of this data obviously engenders 

something of an interpretative minefi eld.

In order to use RSNs to generate a comprehensive neurocogni-

tive functional ontology, it may therefore be benefi cial to adopt an 

approach combining both task- and resting-FMRI. Whereas the 

majority of resting-state FMRI research has progressed with a view 

to the potential for results to ‘complement’ the fi ndings of task-

FMRI, one way of addressing questions of functional specialisations 

and interactions with RSNs may be to turn the system on its head, 

and adapt task-based approaches in order to complement and bolster 

the interpretations garnered from studies of spontaneous activity 

patterns, or RSNs. Due to the historic tendency for prior FMRI 

studies to avoid reporting or discussing task-related deactivations, 

this approach may particularly complement existing meta-analytic 

research comparing resting-state and task-activation studies. Hints 

at how such a groundbreaking approach might progress are start-

ing to emerge in the literature, either via meta-analytic approaches 

(Smith et al., 2009) or augmentation of the experimental method 

(Poldrack et al., 2009). Future extensions should enable a more 

direct comparison of ‘mental state’ and resting-state network activ-

ity, enabling more defi nitive classifi cation and diagnostic application 

of the latter, and thereby ultimately contributing to the thorough 

characterisation of the human neural functional architecture.
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 connectivity (e.g., Sridharan et al., 2008). Indeed, FMRI alone 

may be unsuitable for attributing causality in this way (Ramsey 

et al., 2010), so multimodal approaches are required to provide 

further insight into such questions, for example via combining 

resting-state and task-FMRI with EEG or transcranial magnetic 

stimulation methods.

APPLICATIONS AND EXTENSIONS

The methods presented here are now being widely applied by many 

imaging researchers worldwide, to probe specifi c questions relevant 

to brain function. Notable applications include those investigating 

individual differences, disease, development, neuroplasticity and 

treatment effi cacy.

In the fi eld of genetics, for example, specifi c allele variants 

implicated in neurodegeneration (Filippini et al., 2009), neurode-

velopment (Thomason et al., 2009) and cognitive function (Liu 

et al., 2010) have been associated with RSN functional connectivity 

phenotypes. Further, identifi cation of these neural connectivity pat-

terns extends into domains of actual clinical presentation, for exam-

ple in Alzheimer’s disease (Greicius et al., 2004; Wang et al., 2007) 

and other neurodegenerative diseases (Seeley et al., 2009), normal 

aging (Andrews-Hanna et al., 2007; Damoiseaux et al., 2008), as 

well as multiple neuropsychiatric (Liu et al., 2006; Greicius et al., 

2007; Salvador et al., 2007; Jafri et al., 2008) and neurodevelopmen-

tal disorders (Zang et al., 2007; Castellanos et al., 2008; Di Martino 

et al., 2009; Paakki et al., 2010). Of particular importance is the fact 

that, relative to task-FMRI, such resting-state investigations require 

minimal task compliance and therefore allow for the study of dif-

ferences in brain dynamics in non-normal populations, such as 

infants, sedated subjects or subjects with severe cognitive or physical 

impairments. Functional connectivity within and between distinct 

RSNs can be implicated in a very diverse range of behaviours and 

neuropsychiatric disorders. In particular,  studies have identifi ed a 

plethora of such relationships involving the DMN (for reviews see 

Buckner et al., 2008; Greicius, 2008; Broyd et al., 2009). Existing 

results are promising, suggesting RSNs may be used to character-

ise patterns of neural activity and coherence approximating func-

tional variability across multiple application domains. However, 

large ‘proof-of-concept’ studies with high statistical power (see e.g., 

Biswal et al., 2010), as well as ongoing meta-analytic research, will 

make a valuable contribution to the fi eld in years to come.

As noted before (Greicius, 2008), applications of these correla-

tive relationships (typically derived and signifi cance-tested for 

proof of concept at the group level) to providing clinical diagnos-

tics at the single-subject level are currently far from fully realised. 

Despite such concerns, pseudo-diagnostic information associating 

RSN function with within-subject dynamic, intervention-related 
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