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Abstract This paper presents synthetically the most recent
models for description of the anisotropic plastic behavior.
The first section gives an overview of the classical models.
Further, the discussion is focused on the anisotropic
formulations developed on the basis of the theories of
linear transformations and tensor representations, respec-
tively. Those models are applied to different types of
materials: body centered, faced centered and hexagonal-
close packed metals. A brief review of the experimental
methods used for characterizing and modeling the aniso-
tropic plastic behavior of metallic sheets and tubes under
biaxial loading is presented together with the models and
methods developed for predicting and establishing the limit

strains. The capabilities of some commercial programs
specially designed for the computation of forming limit
curves (FLC) are also analyzed.

Keywords Anisotropy . Yield criteria . Strain rate
potentials . Biaxial tensile tests . Forming limit diagrams

Introduction

Given the current trends of globalization and active
competition on the world market, especially for automotive
one, the reduction of the lead time can be decisive. Virtual
manufacturing using finite element analyses may contribute
to this reduction. Finite element analysis has been applied
extensively to compare design options, understand the
influence of process conditions on both formability and
structural performance and to reduce the trial and error in
the development of tools for optimum performance. Key in
improving the accuracy of these analyses is the use of
appropriate constitutive and formability models.

Anisotropic plastic stress potentials

Aspects of the constitutive models for metal forming
applications were discussed by Barlat [42, 45]. A number
of reviews concerning plastic yielding in metals can be
found in the literature [14, 41, 311, 317, 318] and this sec-
tion is only a brief summary from the author’s perspective.

Classical anisotropic yield functions

The most popular isotropic yield conditions, verified for
many metals, were proposed by Tresca and von Mises
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and may be expressed in terms of the principal values
of the stress (σi) or the deviatoric stress (Sj) tensors as
[117]

f ¼ s1 � s2j ja þ s2 � s3j ja þ s3 � s1j ja

¼ S1 � S2j ja þ S2 � S3j ja þ S3 � S1j ja ¼ 2sa ð1Þ
where s defines the effective stress. For an exponent a=2
or a=4, Eq. (1) reduces to von Mises, whereas for a=1
and in the limiting case a→∞, it leads to Tresca yield
condition. Its main advantage is that it provides a good
approximation of yield loci computed using the Bishop-
Hill crystal plasticity model by setting a=6 for BCC and
a=8 for FCC materials, respectively (see [117, 200]).

For isotropic materials, yield criteria have the same
form in any reference frame. For anisotropic materials,
yielding properties are directional, thus the expression of
the yield criterion depends on the reference frame. The
simplest form of the yield criterion is with respect to a
coordinate system associated with the axes of symmetry
of the material. For instance, due to the symmetry of
their thermo-mechanical processing history, sheet metals
exhibit orthotropic symmetry characterized by three
mutually orthogonal planes of symmetry. These are
denoted x, y and z and correspond to the rolling,
transverse and normal directions of the sheet, respectively.
Hill [118] proposed an extension of the isotropic Mises
criterion to orthotropic materials

f ¼ F syy � szz

� �2 þ G szz � sxxð Þ2 þ H sxx � syy

� �2
þ 2 Ls2

yz þMs2
zx þ Ns2

xy

� �
¼ s2

ð2Þ

In this equation, F, G, H, L, M and N are material
constants. The validity of this yield function has been
explored in numerous experiments, the consensus being
that it is well suited to specific metals and textures,
especially steel [122, 214]. Hill [120] proposed a non-
quadratic yield criterion to describe materials other than
steel and derived four special cases from the general form.
The general expression of Hill’s [120] criterion accounts for
planar anisotropy, provided that the directions of the
principal stresses are superimposed with the anisotropy
axes. The most widely used expression of this yield
criterion is the so-called “Special Case IV,” which applies
to materials exhibiting planar isotropy (with an average
Lankford coefficient r) for plane stress states

f ¼ s1 þ s2j ja þ 1þ 2rð Þ s1 � s2j ja ¼ 2 1þ rð Þsa ð3Þ

Hill proposed other non-quadratic plane stress yield
criteria [122, 123]. Independently from Hill, Hosford [137]
used Hershey’s isotropic criterion [117], given by Eq. 1, to
describe crystal plasticity results and proposed the follow-

ing generalization [138] for materials exhibiting orthotropic
symmetry

f ¼ F syy � szz

�� ��a þ G szz � sxxj ja þ H sxx � syy

�� ��a ¼ sa

ð4Þ
An important drawback of this as well as of Hill’s

[120] criteria is that they do not involve shear stresses.
Thus, these criteria cannot account for the continuous
variation of plastic properties between the sheet’s x and
y axes. Barlat and Lian [35] successfully extended
Hosford’s [138] criterion to capture the influence of the
shear stress

f ¼ c k1 þ k2j ja þ c k1 � k2j ja þ 2� cð Þ 2k2j ja ¼ 2sa ð5Þ
where a, c, h, and p are material coefficients and

k1 ¼ sxx þ hsyy

2
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sxx � hsyy

2

� 	2

þ p2s2
xy

s
ð6Þ

Barlat et al. [36] proposed an yield criterion for a general
stress state, denoted Yld91, which extends the isotropic
Hershey’s criterion, Eq. 1, to orthotropic symmetry as well.
Anisotropy is introduced by replacing the principal values
of the stress tensor by those of a stress tensor modified with
weighting coefficients. Karafillis and Boyce [159] proposed
the following generalization of Hershey’s criterion,

f ¼ 1� cð Þ S1 � S2j ja þ S2 � S3j ja þ S3 � S1j jað Þ

þ 3ac

2a�1 þ 1
S1j ja þ S2j ja þ S3j jað Þ ¼ 2sa

ð7Þ

where c is a constant, and extended it to orthotropic
materials, thus generalizing Yld91.

General methods to describe anisotropy: linear
transformations and tensor representations

For pressure independent plasticity, the procedure used by
Barlat et al. [36] and Karafillis and Boyce [159] to
introduce anisotropy is equivalent with the application of
a fourth order linear transformation operator on the stress
tensor i.e. es ¼ Ls or on the stress deviator es ¼ eLs. Thus,
an anisotropic yield function is obtained from an isotropic
function by substituting the principal value of the stress
tensor (or deviator) by the principal value of es or es. The
coefficients characterizing anisotropy are the components
of the fourth order tensor L or eL. Similar to the stiffness or
compliance tensor in elastic anisotropy, the symmetry of a
material is reflected by the symmetry of the tensor L or eL.
The advantage of this theory is that if the isotropic yield
function is convex in the principal stresses space, a property
that is relatively easy to check in this space, then the
anisotropic extension is automatically convex. This proper-
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ty ensures stability in numerical simulations where the
anisotropic potential is used.

Some authors realized that the approaches that describe
anisotropic behavior proposed thus far did not contain
enough coefficients to provide a good description of plastic
anisotropy, even in the case of uniaxial tension (e.g., Barlat
et al. [38, 39]; Plunkett et al. [233]). Therefore, two or
multiple (n) linear transformations were proposed in order
to increase the number of anisotropy coefficients, e.g., for
n=2 and pressure independent plasticity

es 0 ¼ C 0s; es 00 ¼ C 00s ð8Þ
where C¶¶ and C¶¶ are the two tensors containing the
anisotropy coefficients (see Barlat et al. [46]). Examples
of such yield functions are given in the next section.

An alternate approach to extend any isotropic yield
criterion such as to describe any type of material symmetry
was proposed by Cazacu and Barlat [71, 72]. Within the
framework of the theory of representation of tensor
functions, they developed generalizations of the stress
deviator invariants J2 and J3. These generalized invariants
were required (a) to be homogeneous functions of degree
two and three in stresses, respectively, (b) to reduce to J2 and
J3 for isotropic conditions, (c) to be insensitive to pressure,
and (d) to be invariant to any transformation belonging to the
symmetry group of the material. The anisotropic yield
criterion is obtained by substituting in the expression of the
isotropic criterion the invariants of the stress deviator by their
respective anisotropic generalizations. Example of such
anisotropic yield functions are given in the next section.

Advanced anisotropic yield criteria for body and faced
centered metals

These advanced anisotropic yield criteria include more
coefficients and are able to describe with accuracy the
anisotropy of the tensile properties (both in yield stresses
and Lankford coefficients). BCC and FCC materials deform
plastically by dislocation glide on certain slip planes and
directions. Because glide can occur indifferently in a
direction or its reverse, tension and compression flow
stresses are identical at the same amount of deformation.
Therefore, the yield function must exhibit inversion
symmetry, i.e. f s ij

� � ¼ f �s ij

� �
. Moreover, the associated

isotropic function must be a good approximation of the
crystal plasticity response for an aggregate containing a
random distribution of grain orientations.

For plane stress, the anisotropic Yld2000-2d yield
function � was defined as [40]

f ¼ eS01 � eS02��� ���a þ 2eS002 þ eS001��� ���a þ 2eS001 þ eS002��� ���a ¼ 2sa

ð9Þ

In the above equation, eS01; eS02 and eS001; eS002 are the
principal values of es 0 and es 00, respectively. It can be shown
that eight independent coefficients are available in
Yld2000-2d, i.e., three C0

ij and five C00
kl.

Independently, Banabic and collaborators, based on the
Barlat criterion [35], developed since 2000 (see for example
[13]) the so-called BBC family criteria [18, 22]. The last
version, BBC2005 criterion, was defined as

a Γþ<j ja þ a Γ�<j ja þ 1� að Þ 2Λj ja ¼ sa

where Γ, < and Λ are expressions of the three plane stress
components and anisotropy coefficients. It was shown that
this yield function contains eight independent coefficients
and that, in fact, it was the same as Yld2000-2d only
written in a different form (see [46]).

For a pressure-independent material under a general
stress state, Bron and Besson [57] extended Karafillis and
Boyce [159] yield function by considering two linear
transformations thus obtaining a formulation containing
12 anisotropy coefficients. Under the same general stress
state conditions, Barlat et al. [44] proposed the yield
function Yld2004-18p, which extends Eq. (9)

f sab
� � ¼ Φ eS0i; eS00j� �

¼
X1;3
i;j

eS0i � eS00j��� ���a ¼ 4sa ð10Þ

The two transformed stress deviators es 0 and es 00 can be
written in a matrix form as

es �
esxxesyyeszzesyzeszxesxy

2
6666664

3
7777775
¼

0 �c12 �c13 0 0 0
�c21 0 �c23 0 0 0
�c31 �c32 0 0 0 0
0 0 0 c44 0 0
0 0 0 0 c55 0
0 0 0 0 0 c66

2
6666664

3
7777775

sxx
syy
szz
syz
szx
sxy

2
6666664

3
7777775

with the appropriate symbols (prime and double prime) for
each transformation, i.e., C0

ij for es0 and C00
ij for es00. Note that,

in this formulation, cij is different from cji. Thus, 18
parameters (nine per linear transformation) are available to
characterize anisotropy.

As explained above, using the generalized invariants,
any isotropic yield criterion can be extended to describe
anisotropic materials. In Cazacu and Barlat [71], this
approach was used to extend Drucker’s isotropic yield
criterion [86], which provides a yield surface that is
intermediate between the von Mises and Tresca bounds.
The proposed orthotropic criterion [71] is

f ¼ Jo2
� �3 � c Jo3

� �2 ¼ k2 ð11Þ

where Jo2 and Jo3 are the orthotropic generalizations of the
principal stress tensor invariants. For full 3-D stress
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conditions, the orthotropic criterion (11) involves 18
anisotropy coefficients.

Anisotropic yield criteria for hexagonal-close packed
metals

Metals with hexagonal close packed (HCP) crystal structure
deform plastically by slip and twinning. As opposed to slip,
twinning is a directional shear mechanism: shear in one
direction can produce twinning while shear in the opposite
direction cannot. For example, in magnesium alloys sheets
twinning is not active in tension along any direction in the plane
of the sheet, but is easily activated in compression. As a result,
the average in-plane compressive yield stress is about half the
average in-plane tensile yield stress (e.g. see Lou et al. [201]).
Thus, the yield surfaces are not symmetric with respect to the
stress free condition (SD effect). Since hcp metal sheets
exhibit strong basal textures (c-axis oriented predominantly
perpendicular to the thickness direction), a pronounced
anisotropy in yielding is observed. To account for both
strength differential (SD) effects and the anisotropy displayed
by HCP metals, Hosford [136] proposed the following
modification of Hill’s orthotropic yield criterion [118]:

Asxx þ Bsyy � Aþ Bð Þszz þ F syy � szz

� �2 þ G szz � sxxð Þ2

þ H sxx � syy

� �2 ¼ 1:

ð12Þ

where A, B, F, G, H are material coefficients and x, y, z
are normal to the mutually orthogonal planes of symmetry
of the material. Since the criterion does not involve shear
stresses, it cannot account for the continuous variation
of the plastic properties between the material axes of
symmetry. Liu et al. [199] have proposed an extension of
Hill [118] yield criterion in the form which involves shear
terms but, as in Eq. 12, SD effects are due to pressure
(first invariant of stress) and not to shear mechanisms.

The rigorous methods proposed to account for initial
plastic anisotropy or to describe an average material
response over a certain deformation range (see section
General methods to describe anisotropy: linear trans-
formations and tensor representations) can also be used
for modeling anisotropy in hexagonal materials. The
major difficulty encountered in formulating analytic
expressions for the yield functions of HCP metals is
related to the description of the tension-compression
asymmetry associated to twinning. Recently, yield func-
tions in the three-dimensional stress space that describe
both the tension-compression asymmetry and the aniso-
tropic behavior of HCP metals have been developed. To
describe yielding asymmetry that results either from
twinning or from non-Schmid effects at single crystal

level, Cazacu and Barlat [73] have proposed an isotropic
criterion expressed in terms of all invariants of the stress
deviator.

f � J2ð Þ32 � c J3 ¼ t3Y ; ð13Þ

where Cy is the yield stress in pure shear and c is a material
constant expressible solely in terms of the uniaxial yield
stresses in tension and compression, respectively. For
equal yield stresses in tension and compression c=0,
hence the proposed criterion reduces to the von Mises
yield criterion. It was shown that this isotropic yield
criterion describes with great accuracy the crystal plastic-
ity simulation results of Hosford and Allen [140] and of
Vitek et al [286] for randomly oriented polycrystals (for
more details, see Cazacu and Barlat [75]).

The isotropic criterion (13) was further extended such as
to incorporate anisotropy using the generalized invariants
approach i.e. in the expression of the isotropic yield
criterion (13) the invariants of the stress deviator were
replaced with the generalized invariants Jo2 and Jo3 ,
respectively. Comparison between this orthotropic criterion
and data on magnesium and its alloys (see Graff et al.
[108]) and titanium alloys (see Cazacu and Barlat [73])
show that this anisotropic model accurately describes both
anisotropy and tension-compression asymmetry in yield-
ing of these materials. Note that for general stress states
(3D conditions), the orthotropic extension of the criterion
(13): f � Jo2

� �3
2 � c Jo3 involves 18 anisotropy coefficients.

These coefficients can be determined based on Lankford
coefficients measured in tension and compression along at
least 3 orientations in the plane of the sheet, uniaxial
tensile and compressive flow stresses along the same
orientations and in the normal direction. However, for
hexagonal materials data on r-values anisotropy in either
tension or compression is generally scarce. The mechan-
ical data that is reported consist mainly of uniaxial and
compression flow stresses in the rolling, transverse, and
normal directions, respectively. If data is limited for a
given material, it is recommended to use the recently
developed orthotropic criterion by Nixon et al [226].
This criterion is an extension of the isotropic yield
function (13) obtained using one linear transformation
on the Cauchy stress tensor es ¼ Ls. As an example,
Fig. 1 shows comparison between theoretical yield
surfaces according to this criterion and experimental data
corresponding to fixed values of equivalent plastic strain.
Note that for strains below 10%, the predicted yield loci
have an elliptical type shape, which is typical for slip
dominated plastic deformation. Beyond this strain level,
the model predicts that the yield loci have a “triangular
shape” and that the tension-compression asymmetry is
very pronounced. It is worth noting that this change in
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shape occurs at the experimentally determined strain level
associated with twin activation in the rolling direction (see
Nixon et al., [226]).

Cazacu et al [74] developed another isotropic pressure-
insensitive yield criterion that accounts for yielding
asymmetry between tension and compression associated
with deformation twinning. This isotropic criterion involves
all principal values of the stress deviator and is defined as

f ¼ S1j j � kS1j ja þ S2j j � kS2j ja þ S3j j � kS3j ja ð14Þ
where k is a strength differential parameter while a is the
degree of homogeneity. Note that for k=0 and a=2, this
criterion reduces to the von Mises yield criterion. To
capture simultaneously anisotropy and tension/compression
asymmetry, this isotropic yield criterion was extended to
orthotropy by applying a fourth-order linear operator C on
the stress deviator s. The anisotropic yield criterion
(denoted CPB06) is of the form:

F ¼ Σ1j j � kΣ1ð Þa þ Σ2j j � kΣ2ð Þa þ Σ3j j � kΣ3ð Þa
ð15Þ

with Σ1;Σ2;Σ3 the principal values of the transformed
stress tensor Σ ¼ Cs. Thus, for full 3-D stress states, 9
anisotropy coefficients are involved in the criterion. The
orthotropic yield criterion of Eq. 15 was shown to exhibit
accuracy in describing the yield loci of magnesium [74] and
titanium alloys [74, 163]. Additional linear transformations
can be incorporated into the isotropic criterion (14) for an
improved representation of the anisotropy (see Plunkett et
al. [233] and Fig. 2).

Strain rate potentials

In classical flow theory of plasticity, the yield function serves
as a potential for the plastic strain rates (increments), i.e.,

�
"pij ¼ �

l@f @s ij


 ð16Þ
where σ is the Cauchy stress tensor,

�
"p denotes the plastic

strain rate tensor, and
�
l � 0 stands for the plastic multiplier.

The yield surface is defined as f sð Þ ¼ sT , where sT is the
uniaxial yield stress in tension. Using the plastic work
equivalence principle, Ziegler [316] proved that a strain rate
potential < can be associated to any convex stress potential
f. This potential is defined (see [121, 316]) as

yð �"pÞ ¼ �l ð17Þ
and the stress is given by the gradient of this potential

s ¼ sT
@y

@
�
"
p ð18Þ

Hence, a strain rate potential can be also used instead of the
classical stress potential to describe the plastic response of the
material. Note that, in crystal plasticity, it is easier to
numerically obtain the strain rate potential than to compute
the yield surface. Further, the crystallographic strain rate
potential can be approximated with analytic expressions. Such
an approach was applied to single crystals (e.g. Fortunier [97])
and polycrystals with cubic crystal structure (e.g. Arminjon
et al. [7]; Van Bael and Van Houtte [274]; Rabahallah et al.
[237], etc.). These strain rate potentials have also been used
in finite element simulations of forming operations for both
FCC and BCC polycrystals (e.g. Yoon et al. [302] etc.). It is
worth noting that analytic expressions of the exact strain rate
potentials associated to macroscopic stress potentials are
known only for classical yield criteria such as von Mises,
Tresca, Drucker-Prager, and the anisotropic Hill [118]. For
non-quadratic stress potentials, obtaining an analytic expres-
sion for the exact dual is very challenging, if not impossible.
However, it is possible to develop strain rate potentials that
describe the material anisotropy as an independent definition
of the material behavior. This is formally identical to
developing phenomenological yield functions. Barlat and
co-workers have proposed several analytic non-quadratic
orthotropic strain rate potentials (see [37, 40, 165]). The
strain rate potential proposed by Barlat and Chung [37] has a
structure similar to the stress potential Yld91 but in strain
rate space. Recently, Barlat and Chung [43] and Kim et al.
[165] developed a strain rate potential, called Srp2004-18p,

y ¼ eE0
1

�� ��b þ eE0
2

�� ��b þ eE0
3

�� ��b þ eE00
2 þ eE00

3

�� ��b þ eE00
3 þ eE00

1

�� ��b
þ eE00

1 þ eE00
2

�� ��b ¼ ð22�b þ 2Þ �"b
ð19Þ

Fig. 1 Theoretical yield surfaces according to Nixon et al. [226]
criterion in comparison to experimental data on high purity alpha
titanium corresponding to fixed levels of accumulated plastic strain
(after Nixon et al. [226]). Principal stresses σ1 and σ2 are in MPa
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where
�
" is the corresponding effective plastic strain rate and

b is an exponent recommended to be 3/2 for BCC and 4/3
for FCC materials, respectively. eE0

i and eE00 are the principal

values of two tensors e�"0 and e�"00 resulting from two linear
transformations of the strain rate tensor

�
"

e�"0 ¼ B0T �
"; e�"00 ¼ B00T �

"

The two 4th order tensors B’ and B” contain the
anisotropy coefficients while the 4th order tensor T is
necessary to ensure that the gradient of the strain rate
potential is deviatoric (T is the 4th order symmetric
deviatoric unit tensor, see Kim et al. [165]). Although this
strain rate potential is not strictly dual (conjugate) of the
respective non-quadratic stress potential Yld 2004-18p, it
was shown that it leads to a description of the plastic
anisotropy of FCC metals of comparable accuracy to that
obtained by the stress potential (see Fig. 3 after Rabahallah
et al. [237]).

In general, strain rate potentials are more suitable for
process design, especially for the optimization of the initial
blank shape for the purpose of reducing the earing

percentage in cup drawing (see Chung et al. [81]). Strain
rate potentials are useful for rigid plasticity finite elements
(FE) analysis and design codes. Very recently, numerical
algorithms for elastic/plastic finite element simulations
using this strain-rate potential have been developed (Kim
et al [165]; Rabahallah et al. [237]). Stress and strain rate
potentials can be used with equal degree of success (e.g., Li
et al. [196]) for simulation of forming processes but stress
potentials have received more attention in the literature. In
summary, the strain rate potentials presented so far (either
phenomenological or texture-based) are applicable only to
the description of the plastic behavior of materials with
cubic crystal structure (BCC or FCC).

Very recently, Cazacu et al [76] have developed an
anisotropic strain rate potential applicable to HCP metals.
This strain rate potential is the exact dual of the quadratic
form of the anisotropic CPB06 stress potential (Eq. (15)
with a=2). The approach used for deriving this strain-rate
potential consisted in first developing an exact dual for the
isotropic form of the CPB06 potential. The exact dual of
the isotropic form of the CPB06 potential (Eq. (14) with
a=2) is:

y ¼

1

m 1� kð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
"
2
1þ �

"
2
2þ

3k2 � 10k þ 3

3k2 þ 2k þ 3

� � �
"
2
3

s
; if

�
"3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

"
2
1þ �

"
2
2þ �

"
2
3

q � � 3k2 þ 2k þ 3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

1

m 1þ kð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
"
2
1þ �

"
2
2þ

3k2 þ 10k þ 3

3k2 � 2k þ 3

� �
�
"
2
3

s
; if

�
"3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

"
2
1þ �

"
2
2þ �

"
2
3

q � 3k2 � 2k þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

1

m 1� kð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
"
2
2þ �

"
2
3þ

3k2 � 10k þ 3

3k2 þ 2k þ 3

� � �
"
2
1

s
; if

�
"1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

"
2
1þ �

"
2
2þ �

"
2
3

q � � 3k2 þ 2k þ 3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

1

m 1þ kð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
"
2
2þ �

"
2
3þ

3k2 þ 10k þ 3

3k2 � 2k þ 3

� �
�
"
2
1

s
; if

�
"1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

"
2
1þ �

"
2
2þ �

"
2
3

q � 3k2 � 2k þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

1

m 1� kð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
"
2
3þ �

"
2
1þ

3k2 � 10k þ 3

3k2 þ 2k þ 3

� � �
"
2
2

s
; if

�
"2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

"
2
1þ �

"
2
2þ �

"
2
3

q � � 3k2 þ 2k þ 3ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

1

m 1þ kð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
"
2
3þ �

"
2
1þ

3k2 þ 10k þ 3

3k2 � 2k þ 3

� � �
"
2
2

s
; if

�
"2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�

"
2
1þ �

"
2
2þ �

"
2
3

q � 3k2 � 2k þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 k2 þ 3ð Þ 3k2 þ 1ð Þp

:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð20Þ

with m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9
2 3k2�2kþ3ð Þ

q
. Note that if there is no difference

between the response in tension and compression k=0, then
the proposed isotropic strain rate potential (20) reduces

to y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3

�
"
2
1þ �

"
2
2þ �

"
2
3

� �r
, which is the dual of the von

Mises stress potential (i.e. the equivalent plastic strain). As
an example, in Fig. 4 is shown the representation in the

octahedral plane of the developed strain rate potential
(Eq. 20) for k = -0.4 sT sC= ¼ 0:79ð Þ and k = 0.4
sT sC= ¼ 1:26ð Þ along with the von Mises effective
strain rate (k=0 or sT sC= ¼ 1), respectively. Note
a clear difference in shape between the strain-rate
potential (Eq. 20) and the dual of the von Mises strain
rate potential (circle). This strong difference is a result
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of the tension-compression asymmetry of the plastic
flow.

It was rigorously proved that the anisotropic extension of
this strain rate potential can be obtained by simply
substituting in the expression (20) the plastic strain rate
tensor

�
" by the modified strain rate tensor B = H:

�e , where
H is a fourth-order orthotropic tensor and the constant m by
the constant m given by:

m ¼ 1

Φ1j j � kΦ1ð Þ2 þ Φ2j j � kΦ2ð Þ2 þ Φ3j j � kΦ3ð Þ2
" #1

2

ð21Þ
where Φ1¼ 2

3 C11� 1
3 C12� 1

3 C13;Φ2¼ 2
3 C12� 1

3 C22� 1
3 C23;

Φ3¼ 2
3 C13� 1

3 C23� 1
3 C33 and Cij are the components of

the 4th order plastic anisotropy tensor C involved in the
expression of the stress potential CPB06 (see Eq. 15).
Furthermore, the tensor H is the inverse of the tensor L=
CT, where T is the 4th order symmetric deviatoric unit
tensor. Since the anisotropic strain rate potential y B;mð Þ,
with < given by (Eq. 20) and m given by (Eq. 21) is an
exact dual of the CPB06 stress potential, the anisotropy
coefficients are the same as for the stress potential. Thus,
the anisotropy coefficients can be determined using either
the stress-based formulation or the strain-based formulation
in conjunction with mechanical data. Note that for isotropic
materials, for which C reduces to the fourth-order symmet-
ric unit tensor, the anisotropic strain rate potential
y B;mð Þreduces to the isotropic strain rate potential
(Eq. 20). If the material does not display tension-
compression asymmetry (yield in tension is equal to the
yield in compression), the parameter k associated with
strength differential effects is automatically zero and the
anisotropic strain rate potential reduces to Hill’s [121]
orthotropic strain rate potential.

Discussion

In the past, until the late 1980’s yield functions were
generic for anisotropic materials. Therefore, they were
seldom accurate enough. They did not contain enough
anisotropy coefficients and could not describe the aniso-
tropies of the Lankford coefficient and yield stress in
uniaxial tension simultaneously. The inversion symmetry
was always assumed. To the exception of Hill’s [118], the
yield functions were applicable to restricted stress cases, for
instance formulated with normal stress components only, in
order to avoid a number of formulation issues [139].
Therefore, they were not suitable for implementation in
finite element codes.

At present, yield functions (or strain rate potentials) are
developed for specific materials, FCC, BCC or HCP, and
take into account the distinctive features of the response of

Fig. 3 Finite-element simulations of earing cup profiles for aluminum
alloy AA 2090-T3 using the Yld 2004-18p stress potential and
Srp2004-18p strain rate potential in comparison with data (after
Rabahallah et al. [237])
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these materials. For instance, for HCP materials, the
inversion symmetry is not imposed anymore. Because of
the higher number of anisotropy coefficients, they are more
accurate than the yield functions used in the past. In
particular, they are able to capture the anisotropy of
uniaxial properties (Lankford coefficients and yield stress)
simultaneously. The formulations are developed for either
plane stress or general stress states without restrictions and
can be implemented in finite element codes with relative
ease (e.g., Yoon et al. [303–305]; Plunkett et al. [235]).
Some efforts are now initiated to formulate macroscopic
level models that account for the evolution of anisotropy
due to evolving texture. Such macroscopic models were
proposed for hexagonal metals by Plunkett et al [232, 235],
Nixon et al. [226]. To model the change in shape of the
yield locus due to twinning reorientation of the lattice,
evolution laws for the anisotropic coefficients involved in
the expression of the respective yield function were
developed using a multi-scale procedure based on crystal
plasticity calculations of flow stresses with the self-
consistent viscoplastic model (VPSC) model [190] and
macroscopic scale interpolation techniques. Experimental
crystallographic textures and stress-strain curves were used
as input. This approach was successfully applied to the
description of the behavior of zirconium and titanium at
room temperature when subjected to quasi-static deforma-
tion [226, 232] or dynamic loading [233–235].

In the future, the evolution of yield function coefficients
will be self-contained in the formulation for any linear or
non-linear loading. Therefore, as in the case of crystal
plasticity, it will be possible to describe the evolution of
anisotropy as deformation proceeds. However, the compu-
tation time will be much lower than what is required for
calculations when crystal plasticity models are directly
linked to finite element (FE) codes.

Experimental validation of the anisotropic models

In sheet or tube forming processes, materials are generally
subjected to multiaxial loads. Therefore, multiaxial loading
experiments are highly desirable for validating the plasticity
models to be used in simulations. Servo-controlled testing

machines are necessary for such experiments. This section
is a brief review of experimental methods for measuring
and modeling the anisotropic plastic behavior of metal
sheets and tubes under biaxial loading. The reader is also
referred to the excellent reviews of earlier work on
experimental plasticity by Michno and Findley [217],
Hecker [116], Ikegami [147], Bell [48], Phillips [231],
Szczepiński [266], Stout and Kocks [257], McDowell [212]
and Kuwabara [185].

Hydraulic bulge test

The hydraulic bulging test is widely used in determining
the work hardening characteristics of sheet materials up to
plastic strains greater than those which can be achieved in
simple tension [215]. Several improvements, including a
biaxial extensometer [157] and automated hydraulic bulge
testers [106, 301] have simplified the experiment some-
what. For an accurate measurement of biaxial stress-strain
curves, the geometry of the bulge must be taken into
consideration and the strain rate must be constant during
bulging [241]. A system for measuring the biaxial yield
curve using an optical on-line strain measurement system
has been developed [162]. The major limitations of the
hydraulic bulging test is the restricted range of stress states,
usually from plane strain to balanced biaxial tension,
because of the geometry of the die opening, conventionally
circular or elliptical.

Biaxial compression test

Biaxial compression tests are effective in observing
yielding behavior in the π-plane [191, 204, 272]. One of
the disadvantages of the biaxial compression test is the
difficulty in obtaining accurate stress-strain relations be-
cause of friction between the specimen and tool. Moreover,
when the plastic deformation mechanism of the material is
influenced by the hydrostatic component of stress [202],
[256], the yield locus shapes obtained from the biaxial
compression experiment may differ from those obtained
from the biaxial tension test [202].

Biaxial tension test using a cruciform specimen

Figure 5 shows a variety of cruciform specimens for biaxial
tension experiments on metal sheets proposed in the
literature. Cruciform specimens are suitable for observing
the behavior of sheet metals in small plastic strain ranges of
less than several percent. The Type A specimens [173, 221,
251] can be made of as-received sheet materials. However,
they do not have slits in the arms; therefore, it is difficult to
identifying an effective cross sectional area for determining
biaxial stress components accurately. The Type B speci-

Fig. 4 Representation in
the octahedral π plane of the
isotropic strain rate potential
(Eq. 20) corresponding to
k=-0.4, 0.4; k=0 (Mises
effective strain rate),
respectively
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mens [50, 84, 94, 127, 203] have a gauge section thinner
than the periphery; therefore, the thick periphery may prohibit
uniform deformation of the gauge section. Moreover, it is not
easy to create this geometry using as-received metal sheets a
few mm thick, common thickness in sheet forming industry.
The Type C specimens [52, 128, 178, 222] can be made of
as-received sheet materials, although (C1) type specimens
[52, 128] require welding for fixing thin strips (arms) to the
gauge section. The merit of the Type C specimens is that it is
simple to determine biaxial stress components in the gauge
section by virtue of slits in the arms or welded thin strips.
The number of slits or welded thin strips and its length are
important parameters for accurate stress measurement and
should be optimized using FEM.

An optimal cruciform specimen geometry for making the
stress distribution in the central region uniform and large
enough up to fracture was discussed [220, 312].

The reader is also referred to an excellent review of
biaxial tensile test devices and cruciform specimen design
by Hannon and Tiernan [113].

Figure 6 shows examples of the work contours of sheet
metals in the stress space measured using cruciform
specimen (c2). Also depicted in the figure are the calculated
yield loci based on conventional yield functions and the
Taylor-Bishop-Hill (TBH) model. The level of plastic work
W per unit volume is represented by the corresponding
uniaxial plastic strain "p0 measured for the uniaxial tension
test in the rolling direction of the material. In Fig. 6a, b and
d a group of stress points sx; sy

� �
comprising a contour of

plastic work for a specific value of "p0 are normalized by the
uniaxial tensile flow stress s0 corresponding to the "p0. It is
noted that the shape of the work contours for pure titanium
(Fig. 6d) significantly change with increasing "p0, showing
significant differential work hardening.

Fig. 5 Cruciform specimens for
biaxial tension experiments
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Combined tension-compression test

A new testing device for applying in-plane combined
tension-compression stresses to a sheet specimen is devel-
oped using comb-shaped dies installed into a biaxial testing
machine [186]. Figure 7 shows the measured work contours
for a 440 MPa steel alloy and theoretical yield loci
calculated using the Yld2000-2d yield function [40] with
exponent of six. The yield loci and the directions of plastic
strain rates calculated using the Yld2000-2d yield function
are in good agreement with the measured work contours for
all linear stress paths.

Combined tension-simple shear test

A new experimental technique has been developed for the
tension-shear testing of sheet metal [219, 280, 283]. One of
the merits of this testing method is that one can obtain
stress-strain curves up to large strain range. On the other
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hand, the rotation of the principal axes of stress relative to
those of material anisotropy may make it difficult to
analyze and formulate the work hardening behavior of the
test material.

Biaxial tension test on metal tubes

Multiaxial testing of thin-walled tubular specimens loaded
in combined tension-torsion or tension-internal pressure
modes is suitable for measuring the behavior of metals
subjected to large plastic strain. Anisotropic plastic defor-
mation behavior of brass tube [124], aluminum tube [171,
184], steel tube [310] and pure titanium tube [149] (see
Fig. 6d) was observed up to fracture and formulated on the
basis of work contours. A yield vertex was successfully
observed at the point of loading [179, 182], using the
abrupt strain path change method proposed by Kuroda and
Tvergaard [174].

Stress reversal test on sheet metals

Stress reversal tests are effective in observing the Baushinger
effect of sheet metals: cyclic bending-unbending (Weinmann
et al. [292]; Yoshida et al. [306]); cyclic simple shearing
(G’sell et al. [110]; Miyauchi [218]; Hu et al. [143]); and
in-plane tension/compression stress reversals tests (Iwata et
al. [151]; Kuwabara et al. [180, 186, 187]; Yoshida et al.
[307], Boger et al. [51], Cao [69]).

Direct stress measurement system

A new experimental approach for determining the local
strains and associated stress along multi-axial paths with
increasing levels of deformation has been proposed by
combining in situ X-ray diffraction (XRD) and a non-
contacting commercial 3-D digital image correlation (DIC)
[96, 146].

Discussion

In the past, hydraulic bulging tests or biaxial compression
tests were widely used. The major limitations are the
difficulties in observing accurate stress strain curves in
small plastic strain ranges less than several percent and
changing stress/strain path during loading.

At present, biaxial tension tests using cruciform speci-
mens are becoming popular for observing the yield locus in
the first quadrant of the stress space. If one wishes to
observe the anisotropic plastic deformation behavior of
sheet metals for large plastic strain ranges up to fracture,
one can make thin-walled tubular specimens from a flat
sheet and test them using combined tension-torsion or
tension-internal pressure testing machines [149, 310].

According to biaxial tension experiments under linear and
bilinear stress paths,it has been found that phenomenolog-
ical plasticity models based on the isotropic hardening
assumption, in conjunction with an appropriate anisotropic
yield function, are still useful for describing anisotropic
plastic deformation behaviors of metal sheets and tubes
[185]. If stress reversal plays a dominant roll in a forming
operation, such as bending-unbending, the Bauschinger
effect must be measured accurately using a stress reversal
test (see Biaxial tension test on metal tubes) and formulated
to make more sophisticated material models.

In the future, material testing based on non-linear
loading and multistage loading will be of importance in
aid of checking the validity of material models for such
loading conditions as those occurring in real forming
processes. Measurement and formulation of the non-linear
stress-strain relations of prestrained sheet metals subjected
to biaxial unloading will be necessary from the viewpoint
of improving the accuracy of springback simulations of
three dimensional sheet metal parts, such as automotive
body panels.

Formability of metallic materials

Formability describes the capability of a sheet metal to
undergo plastic deformation in order to get some shape
without defects. During the last decades different assess-
ment methods of metals sheets formability have been
developed. The most useful tool used to assess formability
is the forming limit diagram (FLD). This method meets
both manufacturer and user’s requirements and is widely
used in factory and research laboratories. One of the major
advantages of the FLD concept is that the plastic instability
can also be described by theoretical models. A detailed
presentation of this method can be found in the literature
[16, 27, 30, 132, 291, 299].

Prediction of the FLC

Various theoretical models have been developed for the
calculation of forming limit curves (FLC).

The first ones were proposed by Swift [265] and Hill
[119] assuming homogeneous sheet metals (the so-called
models of diffuse necking and localized necking), respec-
tively). The Swift model has been developed later by Hora
(so-called Modified Maximum Force Criterion–MMFC)
[130, 131]. Marciniak and Kuczynski (MK model) [205]
proposed a model taking into account that sheet metals are
non-homogeneous from both the geometrical and the
microstructural point of view. Stören and Rice [262] have
been developed a model based on the bifurcation theory see
also ref. [114]). Dudzinski and Molinari [87] used the
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method of linear perturbations for analyzing the strain
localization and computing the limit strains. Bressan and
Williams [56] have introduced so-called “Through Thick-
ness Shear Instability Criterion” in order to take into
account the shear fracture mode. Based on the analysis of
the influence of the stress distribution through the thickness
on the mode of failure, Stoughton [261] has proposed a
generalized failure criterion. Since the theoretical models
are rather complex and need a profound knowledge of
continuum mechanics and mathematics while their results
are not always in agreement with experiments, some semi-
empirical models have been developed in recent years. The
models used for FLC prediction are presented in detail
(formulation of the model, solving methods, numerical
aspects, advantages and limitations) in [30].

At present, the most widely used models for the
computation of the limit strains are those proposed by
Marciniak and Kuczynski [205] and Hora [130, 131],
respectively. As a consequence, the models previously
mentioned will be briefly discussed in the following (see
also [16]). The Forming Limit Stress Diagram (FLSD)
proposed by Arrieux et al. [8] has been also intensively
studied during the last decade.

On the basis of experimental investigations concerning
strain localization of specimens subjected to hydraulic
bulging or punch stretching, it was concluded that necking
is usually initiated by a geometrical or structural non-
homogeneity of the material [205]. This non-homogeneity
may be associated to a variation of the sheet thickness
(geometrical non-homogeneity) or some defects in the
microstructure (structural non-homogeneity).The analysis
of the necking process have been performed assuming a
geometrical non-homogeneity in the form of a thickness
variation. This variation is usually due to some defects in
the technological procedure used to obtain the sheet metal.
The thickness variation is generally gentle. However, the
theoretical model assumes a sudden variation in order to
simplify the calculations (Fig. 8a). The theoretical model
proposed by Marciniak assumes that the specimen has two
regions: region “a” having a uniform thickness t0

a, and
region “b” having the thickness t0

b. The initial geometrical
non-homogeneity of the specimen is described by the so-
called “coefficient of geometrical non-homogeneity”, f,
expressed as the ratio of the thickness in the two regions:
f ¼ tbo tao



. In the MK model, the strain and stress states in

the two regions are analyzed and the principal strain ε1
b in

region “b” in relation with the principal strain ε1
a in region

“a” is monitored. When the ratio of these strains ε1
b/ ε1

a

becomes too large (infinitely large in theory, but greater
than 10 in practice), one may consider that the entire
straining of the specimen is localized in region “b”. The
shape and position of the curve ε1

a–ε1
b depend on the value

of the f-coefficient. If f=1 (geometrically homogeneous

sheet), the curve becomes coincident with the first bisector.
Thus this theory cannot model the strain localization for
geometrically homogeneous sheets. The value of the
principal strain ε1

a in region “a” corresponding to non-
significant straining of this region as compared to region
“b” (the straining being localized in region “b”) represents
the limit strain ε1

a*. This strain together with the second
principal strain ε2

a* in region “a” define a point belonging
to the FLC. Assuming different strain ratios ρ=dε2/dε1, one
obtains different points on the FLC. Spanning the range
0<ρ<1, one gets the FLC for biaxial tension (ε1>0, ε2>0).
In this domain, the orientation of the geometrical non-
homogeneity with respect to the principal directions is
assumed to be the same during the entire forming process.
A detailed analysis of the Marciniak-Kuckzynski model
(formulation, solving methods, influence on the localiza-
tion of the deformations etc.) is presented in Chapter 3
of [30].

The ‘Modified Maximum Force Criterion’ (MMFC) for
diffuse necking proposed by Hora et al. [130] is based on
Considère’s maximum force criterion. The idea behind the
MMFC-model is to factor in an additional increase in
hardening, which is triggered by the deviation from the
initial, homogeneous stress condition—e.g. uniaxial
tension—to the stress condition of local necking and with
this to the point of plane strain (Fig. 8b) [131]. In order to
take into account the influence of the thickness and the
strain rate sensitivity index on the limit strains, an
enhanced MMFC (eMMFC) has been proposed by Hora
et al. [131] and by Brunet [58, 62], respectively. The
advantage of the MMFC criteria can be found in their
independence of the inhomogeneity assumption. This
criterion could be used to calculate FLC for non-linear
strain path. A drawback of the MMFC models is the fact
that it contains a singularity that emerges if the yield locus
contains straight line segments [5, 23, 24, 29] (see the left
side of the diagram in the Fig. 9a). To overcome this
shortcoming, Comsa and Banabic [82] developed a new

a b

Fig. 8 a Geometrical model of the MK theory; b basic principle of
the MMFC criterion
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version of the MMFC model. Besides eliminating the
shortcoming of the MMFC model regarding the possibility
of implementing yield loci described by higher order
polynomial functions (Fig. 9a), the new model also has the
advantage of a better prediction than the classical MMFC
model (Fig. 9b).

During the last decade the research in the field of the
forming limits prediction have been focused mainly on the
following aspects:

Implementation of new constitutive equations in the models
used for the computation of the limit strains

The results of the FLC prediction depend crucially on the
constitutive equation of the material analyzed. The effect of
the shape of the yield locus on the limit strains has been
analyzed in detail by Barlat et al. [35]. As we have
emphasized in Anisotropic plastic stress potentials, a lot of

new yield criteria have been developed during the last
decade. Many of those criteria have been already imple-
mented in the computational models of the limit strains, in
order to improve the predictive capabilities. Banabic et al.
have implemented various yield criteria in the MK model
(Hill’93 [12, 17], BBC yield criteria [19, 20, 228] and
Cazacu-Barlat [21, 227, 228]. In Fig. 10a is presented the
theoretical FLC predicted using BBC2003 criterion versus
experimental data for AA5182-0 aluminium alloy [20].
Mattiasson and Sigvant have analyzed in a intensive
program the influence of the yield locus shape on necking
prediction [208, 210, 211]. Butuc et al. have used the Barlat
’97 [64, 66, 67] and BBC2000 [64] yield criteria. Cao [68,
300] used the Karafillis and Boyce [159] yield criterion in
the MK model to analyze the effect of changing strain-paths
on the FLC. Kuroda and Tvergaard [175] used four
different yield criteria to fit a set of experimental data.
The Yld 2000 [40] formulation has been included by Aretz
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[6] in the MK model for studying the influence of the
biaxial coefficient of plastic anisotropy on the FLCs. Kim et
al. [166] used the Yld2000 [40] criterion to analyze the
formability of a sandwich sheets. FLD for multi-layered
sandwich sheets considering the material properties of each
layer has been formulated with assumption of the visco-
rigid plastic material based on the modified MK model
[167]. The anisotropic strain-rate potential was utilized for
the plastic behavior of each layer. Vegter et al. have
implemented their own yield criterion [282–284] in the
MK model. Ganjiani and Assempour [100–102] have
improved the analytical approach for determination of
FLC considering the effects of yield functions (Hosford
[138], Karafillis-Boyce [159] and BBC2000 [18]). The
Teodosiu hardening model [270] associated with different
yield criteria has been implemented by Butuc et al. [65] and
Haddag et al. [111] in a MK theory for studying the
influence of the loading path change on the limit strains.
The effect of BBC2003 yield surface on the prediction of
FLCs and the number of experimental anisotropy parame-
ters on the accuracy of yield functions are studied by
Ahmadi et al. [2]. The polynomial yield function developed
by Soare [253] has been implemented in the MK model
[254] and has been used to analyze the sensitivity of the
MK model to the shape of the yield surface [255].

Implementation of the polycrystalline models

The adaptability of the texture based models to the MK
theory of the strain localisation has been proved in the
1980’s by Bate [47], Assaro [11], Barlat [33, 34] and later
by Van Houtte [275] and Neale [148, 243, 293–295, 297,
315] teams. Later on, Viatkina et al. [285] have used such
models for the computation of FLCs. The texture-based
yield criterion developed by Van Houtte et al. [276] has
been implemented in FLC models, the results being
compared both with those provided by phenomenological
models and with experimental data [21]. Van Houtte model
[276] coupled with a dislocation based hardening model
[270] have been implemented by Hiwatashi et al. [126,
278] in order to predict the forming limits corresponding to
change strain paths. A microstructural model developed for
the description of the aluminium alloy hardening
(ALFLOW) has been used by Berstad et al. [49] to predict
the forming limits of the AA3103-0 alloy. Boudeau [53, 54]
used the linear stability analysis combined with a polycrys-
talline model to predict and to analyze the influences on the
FLC. A polycristal plasticity model has been used by
McGinty [213] to conduct parametric studies of FLC.
Knockaert et al. [169] have used a rate-independent
polycrystalline plasticity to predict the limit strains. The
influence of the texture on the FLCs has been studied by
Kuroda [177] and Fjedbo et al. [95]. More recently,

Signorelly et al [247, 248], John Neil and Agnew [156]
have analyzed the forming-limit strains using a rate-
dependent plasticity, polycrystal, self-consistent (VPSC)
model, in conjunction with the Marciniak–Kuczynski
(M–K) approach.

Implementation of the ductile damage models

Several types of ductile damage models have been
developed during the time, e.g. Gurson, Kachanov,
Chaboche, Gologanu (see details in [193]). Those models
have been frequently used during the last decade for the
computation of the limit strains. Brunet et al. have used the
Gologanu model [105] for calculating such limit strains
[59–61]. The effects of texture and damage evolution on the
limit strains have been studied by Hu et al. [144]. Chow et
al. have developed a ductile damage model and imple-
mented it into the MK theory both for linear [78] and
complex load paths [79, 80]. An anisotropic model of
Gurson type have been used by Huang et al. [145] for the
computation of the FLCs. Ragab et al., [240] use a new
model to predict the FLC for kinematically hardened
voided sheet metals. Han and Kim [112] used an original
ductile fracture criterion to calculate the FLC. Lemaitre’s
ductile damage model has been also implemented by
Teixeira [269]. Parsa et al. [229] have determined the
Forming Limit Curves for of sandwich sheet using the
Gurson damage model.

Enhancing the existing models to take into account new
material or process parameters

The influence of different parameters on the limit strains
has been analyzed since the end of the 1960’s. More
recently, several new introduced parameters have been
included in the MK and MMFC models: the shape of the
yield locus [17], the forming temperature [1, 133, 172, 313]
and the coefficient of biaxial anisotropy [6]. The influences
of the different effects on the limit strains have been
studied: the effect of the surface defects [125], the effect of
the void growth [239], the effect of grain size [244], the
effect of the curvature and thickness [134]. Brunet and
Clerc [62] have extended Hora’s model by including the
strain rate sensitivity exponent and used it for studying the
influence of that parameter on the limit strains. Chan [77]
has developed a model of forming limits prediction for the
superplastic forming. Predictive models of localized neck-
ing for strain-rate-dependent sheet metals have been
developed by Mattiasson et al. [209, 210], Zhang et al.
[313], Jie et al. [155]. The effect of the normal pressure on
the formability of sheet metals is well known and has
already been used in industry for a long time [161]. An
analysis of sheet failure under normal pressure without
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assuming ductile damage has been done in the last period.
Such an analysis was performed by using Swift-Hill models
by Gotoh [107], Smith [252] and Matin [207]. Recently,
Banabic and Soare [28], Wu et al. [298] and Alwood and
Shouler [4] have analyzed independently the influence of
the normal pressure on the Forming Limit Curve using an
enhanced MK model. The experimental researches of the
Single Point Incremental Forming (SPIF) [3, 154, 230, 246]
showed that the formability of the sheet in this process
increases (the FLC is beyond the traditional FLC). Alwood
[3] and Jackson [152] have suggested that Through
Thickness Shear influences formability in SPIF process.
Based on these observations, Eyckens extend the MK
model to analyze the influence of the Through Thickness
Shear on the FLC [90, 91].

Extending the FLC models for non-linear strain-paths

During the sheet metal forming processes, the material is
usually subjected to complex strain patterns. Nakazima
[223] has proved that complex loads modify the shape and
position of the FLC’s. This fact imposes the determination
of the limit strains for complex strain-paths. The develop-
ment of the computational models for complex strain-paths
in the frame of the MK theory has become an active
research field in the early 1980’s (see Barata et al. [31, 32]
and also [291]). The refinement of those models has been
intensively approached only during the last period. Butuc
[63, 65–67] has developed a general computer code for the
FLC computation in the case of complex load paths using
various hardening models (both phenomenological—Swift,
Voce, and miocrostructural ones—Teodosiu-Hu). Rajarajan
et al. [238] have validated the CRACH model for the case
of complex strain-paths. Cao [68, 300] analyzed the
influence of the changing strain paths on the limit strains.
Hiwatashi et al. [126] have used Teodosiu’s model for
studying the influence on the strain-path change on FLCs.
Kuroda and Tvergaard [176] have studied the effect of the
strain-path change on the limit strains using four anisotrop-
ic models.

Using advanced numerical methods for the solution
of the limit strain models

Wagoner and his co-workers have used the finite element
method for the numerical determination of the limit strains in
the frame of the MK theory [225, 314]. Later on, FEM has
been also used by Horstemayer [135], Tai and Lee [267],
Nandedkar [224], Gänser et al. [103], Evangelista [89], Van
der Boogaard [273], Lademo [188, 189], Berstad [49],
Brunet [61], Paraianu [227], Teixeira [269], Hopperstad
[129]. The results reported by the researchers previously
mentioned are promising.

Modeling the Forming Limit Band concept

The first results on the influence of the variability of the
material parameters on the Forming Limit Curves have
been reported by van Minh et al. [279]. Karthik et al. [160]
have studied the coil-to-coil, test-to-test and laboratoty-to-
laboratory variability of sheet formability using OSU
formability test. On the basis of the variability of the limit
strains established by experiments [70, 242], Janssens et al.
[153] introduced the Forming Limit Band concept. This is a
strip containing almost all of the limit strain states. The
concept has been extended by Strano and Colosimo [263,
264]. Asuming the variability of the mechanical parameters
of the sheet metal, Banabic and Vos [26], [290] have
developed a computational method of the Forming Limit
Band. In the Fig. 10b is presented the predicted Forming
Limit Band versus experimental data for AA6111-T43
aluminium alloy. A new model based on the assumption of
the thickness variations of the sheet (modeled by use of
random fields) to predict the Forming Limit Band has been
proposed by Fyllingen et al. [99]. An approach to statistically
evaluate the forming limit in hydroforming processes when
taking into account the variations in the material parameters
has been reported recently by Kim et al. [168].

Forming Limit Stress Diagram (FLSD)

The concept of Forming Limit Stress Diagram (FLSD)
proposed by Arrieux et al. [8] has been intensively studied
recently. The FLSD is reportedly independent of strain paths
[8–10, 109, 259-261, 296, 309]. Biaxial stress experiments
on aluminum alloy tube [308] and steel tube [310] for many
linear and bilinear stress paths revealed that forming limit
stresses are effectively path independent, provided that
unloading is included between the loading paths and that
the material work hardens isotropically. The FLSD concept
therefore appears to be useful, particularly in multistage
forming, for predicting the failure of metal tubes and sheets.

In order to extend the application of stress limit curves to
a 3-D stress state (presence of through-thickness compo-
nents of compressive stress), Simha et al. [249] has
introduced a new concept, namely Extended Stress-Based
Limit Curve (XSFLC). The XSFLC represents the equiv-
alent stress and mean stress at the onset of necking during
in-plane loading. Figure 11 shows the three formulations of
the Forming Limit Curve concept, namely: strain-based
FLC (εFLC), stress-based FLC (σFLC) and Extended
Stress-Based FLC (XSFLC), respectively. Figure 11 also
presents the loading paths for the three cases: uniaxial
stress, plane strain and biaxial stress. A thorough analysis
of the conditions for the use of the XSFLC as a Formability
Limit Curve under three-dimensional loading is presented
in [250].
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Developing commercial codes for FLC computation
(see Commercial programs)

Advanced methods to determine the FLC

Since the proposal of the FLC concept, many researchers
have been actively involved in the development of experi-
mental methods for the accurate and objective determination
of the limit strains. These experimental aspects have been
the most important obstacles limiting the practical use of the
FLC’s. During the last years, the digital processing of the
images has allowed the development of refined methods for
the experimental measurement of the limit strains. These
methods aim to remove the subjective perturbations induced
by the human operator in the process of image analysis.
More precisely, new algorithms for the detection of the
defect occurrence on the formed part have been developed.
They have contributed to the increased accuracy of the limit
strain measurement and to the reduction of the discrepancy
between the experimental data obtained in different labora-
tories. In the following, we shall present some of these
methods. Further details related to this problem can be found
in [15, 16, 30, 132].

Takashina and his co-workers [268] first proposed a simple
method to determine the limit strains (so-called “three circle
method”). The method has been improved by Veerman
[281]. Bragard [55] developed in 1972 a more precise

method of determining the limit strains based on interpola-
tion. This method is later improved by D’Haeyer and
Bragard [85] using the name of “the double profile method”.
In 1972 Hecker [115] proposed a method based on the
determination of three types of ellipses around the fracture:
fractured, necked and acceptable. The method consists in
determining the major and minor strains of the different types
of ellipses in the neighborhood of the fracture on the deformed
piece and transposing them on FLD. The limit curve is traced
between the point corresponding to the ellipses affected by
necking and the acceptable ones. The method has been used
on a large scale because of simplicity. Kobayashi [170] defines
the limit strain based on the accelerated increase of the
roughness in the necking area. The Zürich meeting in 1973
of the IDDRG workgroup, following an analysis of several
versions of limit strain determination, recommends using an
improved version of the Bragard method. This is known as
the “Zürich Nr.5 method” [216]. A review of these methods
can be found in References [15] and [30].

Together with the development “of online” video strain
measuring methods, new methods of determining the limit
strains have been proposed in the last years. A new criterion
based on the evolution of the strain rate as a function of time
during the forming process has been proposed by the
SOLLAC team [206]. The method is based on the observa-
tion than the beginning of the necking is accompanied by a
considerable increase of the strain rate (see Fig. 12a).

Fig. 11 Schematic of the strain-
based forming limit curve
(εFLC), the stress-based form-
ing limit curve (σFLC) and the
extended stress-based forming
limit curve (XSFLC) [250]

Fig. 12 Methods to determine the limit strains: a Strain-rate versus time; b IDDRG method
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According to this method the start necking point
corresponds to the dramatic change in the strain-rate versus
time variation (characteristic point). This point could be
determined by the intersection of the two straight lines
corresponding to the first and the last sector of the curve.
The strain—rate evolutions are automatically determined by
images analysis. The strain-rate method has been used
recently by Volk [287]. He used the idea to identify a
regular grid for the optical measurement as a typical mesh
of a finite element method. Leppin et al. [194] proposed a
method to correct the effect of non-proportional strain paths
on Nakajima test based Forming Limit Curves.

The Nakajima workgroup of the IDDRG has developed
a new method [141], the so-called “in-process measure-
ment” method (see Fig. 12b). A guideline for the
determination of FLC based on this method is presented
in the papers [142] and [197]. The method is similar to that
of Bragard. Using a video camera system, a film of the
forming process is made. Based on the film of the forming
process, the development of the strain distribution starting
from the onset of necking and finally up to the fracture is
analyzed. The method is very robust and leads to a good
repeatability of the results. Base of this achievements, the
expert group of Nakajima workgroup proposed a revision
of the ISO 12004 standard “Metallic materials-sheet and
strip-Determination of the forming limit curves” [150].
Recently, the formability of a wide range of materials was
assessed using traditional Nakajima FLD testing at different
labs and compared with results obtained using the analysis
method in the revised ISO/DIS 12004-2 standard, for
position dependent testing after fracture [271].

Based on the video camera measurement some systems
have been developed by the commercial company to
determine automatically the FLC. CAMSYS company has
developed the first automatically system (ASAME—
Automated Strain Analysis and Measurement Environment)
used on the large scale, both in research laboratory and
industry [195]. The INSA Lyon developed a FLC determi-
nation system (IcaForm) based on the spray of a random
pattern of paint at the surface of the sample to determine
strain distribution [58]. An opto-mechanical device adapt-
able allows determining easily the FLC. An objective
criterion to identify the start of local necking automatically
has been proposed recently [245]. The “Autogrid“ system
developed by Vialux company offer the possibility to
determine the limit strains automatically and independent
of any operator. The methodology used to define the limit
strain is presented in details in the papers [92] and [93].
GOM Company has developed for the FLC determination
so-called ARAMIS system [98]. The methodology used is
according with the Nakajima workgroup recommendation
[141]. For an FLC, five different geometries are used, for
each geometry three specimens and for each specimen three

to five parallel sections. The FLC determination procedure
can be done automatically. Eberle [88] has proposed a fully
automatic and time-dependent method of determining the
beginning of the plastic instability based on physical
effects. The regular grid of the optical measurement is
treated as a mesh of a finite element calculation. The new
method has been used successful for the FLC experimental
determinations in the Benchamrk 1 “Virtual Forming Limit
Curves” of the NUMISHEET 2008 Conference [288, 289].

Commercial programs

In the last decade, more commercial programs for the limit
strains prediction have been developed. In this section the
most significant ones are presented.

Based on a Marciniak-Kuczynski model [205], Jurco and
Banabic [25, 158] have developed so-called FORM-CERT
commercial code. The BBC 2003 yield criterion [22] is
implemented in this model. This yield criterion can be
reduced to simpler formulations (Hill’48, Hill’79, Barlat’89,
etc). In this way, the yield criterion can be also used in the
situations when only 2, 4, 5, 6, or 7 mechanical constants are
available. The program consists in four modules: a graphical
interface for input, a module for the identification and
visualization of the yield surfaces, of the strain hardening
laws and a module for calculating and visualizing the
forming limit curves. The numerical results can be compared
with experimental data, using the import/export facilities
included in the program. The FORM-CERT code can be
directly coupled with the finite element codes.

Hora and his co-workers [132] have developed MAT-
FORM code based on the MMFC model. This code is able
to calculate and plot the limit strains and also the
visualization of the strain hardening curve and yield loci
using Hill’48, Hill’79, Hill’90 and Barlat’89 criteria. The
program is useful for evaluation of most common experi-
ments like tensile, bulge, Miyauchi, torsion dilatometer and
tube hydroforming tests. The program is very well
documented and is able to export the constitutive models
in FEM specific form for the application in the mostly
spread FEM-codes like Autoform or PamStamp.

Using the CRACH algorithm (based on the Marciniak-
Kuczynski model), Gese and Dell [104] have developed
two software: CrachLAB, a product for prediction of the
initial FLC and CrachFEM a product for coupling with the
FEM codes. Criteria for ductile and shear fracture have
been included in CrachFEM to cover the whole variety of
fracture modes for sheet materials. The material model used
to calculate instability describes: the initial anisotropy
(using Hill’48 and Dell models), the combined isotropic-
kinematic hardening and the strain rate sensitivity [83].
CrachFEM is now included in the FEM codes PamStamp
and PamCrash of ESI Group.
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Discussion

In the past, the FLC models provided an approximate
description of the experimental results. Such models were
used especially for obtaining qualitative information
concerning the necking/tearing phenomena.

At present, the FLC models allow a sufficiently accurate
prediction of the limit strains, but each model suffers from
its own limitations (see Prediction of the FLC). There is no
model that can be applied to any sort of sheet metal, any
type of crystallographic structure, any strain-path or any
variation range of the process parameters (strain rate,
temperature, pressure, etc.).

The future research will be focused on a more profound
analysis of the phenomena accompanying the necking and
fracture of the sheet metals. On the basis of the analysis,
more realistic models will be developed in order to obtain
better predictions of the limit strains. New models will be
developed for prediction of the limit strains for special sheet
metal forming processes: superplastic forming, forming at
very high pressure, incremental forming etc. Commercial
codes allowing the quick and accurate calculation of the
FLC’s both for linear and complex strain-paths will be
developed. The texture models will be also implemented in
such commercial programs. The FLC computation will be
included in the finite element codes used for the simulation
of the sheet metal forming processes. The aim is to develop
automatic decision tools (based on artificial intelligence
methods) useful in the technological design departments.
The stochastic modeling of the FLC’s will be developed in
order to increase the robustness of the sheet metal forming
simulation programs. More refined, accurate and objective
experimental methods for the experimental determination of
the limit strains (e.g. methods based on thermal or acoustic
effects) will be also developed.
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