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Abstract

New underwater passive sonar techniques are developed for enhancing target local-

ization capabilities in shallow ocean environments. The ocean surface and the seabed

act as acoustic mirrors that reflect sound created by boats or subsurface vehicles,

which gives rise to echoes that can be heard by hydrophone receivers (underwater

microphones). The goal of this work is to leverage this “multipath” phenomenon

in new ways to determine the origin of the sound, and thus the location of the tar-

get. However, this is difficult for propeller driven vehicles because the noise they

produce is both random and continuous in time, which complicates its measurement

and analysis. Further, autonomous underwater vehicles (AUVs) pose additional chal-

lenges because very little is known about the sound they generate, and its similarity

to that of boats. Existing methods for localizing propeller noise using multiple hy-

drophones have approached the problem either purely theoretically, or empirically

such as by analyzing the interference patterns between multipath arrivals at differ-

ent frequencies, however little has been published on building localization techniques

that directly measure and utilize the time delays between multipath arrivals while

simultaneously accounting for relevant environmental parameters. This research de-

velops such techniques through a combination of array beamforming and advanced

ray-based modeling that account for variations in bathymetry (seabed topography)

as well as variations of the sound speed of the water. The basis for these advances

come from several at-sea experiments in which different configurations of passive sonar

systems recorded sounds emitted by different types of targets, including small boats

and an autonomous underwater vehicle. Ultimately, these contributions may reduce

the complexity and cost of passive systems that need to be deployed close to shore,

such as for harbor security applications. Further, they also create new possibilities
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for applying passive sonar in remote ocean regions for tasks such as detecting illegal

fishing activity.

This dissertation makes three key contributions:

1. Analysis of the aspect-dependent acoustic radiation patterns of an underway

autonomous underwater vehicle (AUV) through full-field wave modeling.

2. A two-hydrophone cross-correlation technique that leverages multipath as well

as bathymetric variations to estimate the range and bearing of a small boat,

supported by a mathematically rigorous performance analysis.

3. A multi-target localization technique based on directly measuring multipath

from multiple small surface vessels using a small hydrophone array mounted to

the nose of an AUV, which operates by cross-correlating two elevation beams

on a single bearing.
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Chapter 1

Introduction

This dissertation is about using underwater passive sonar to localize targets in the

ocean.1 Simply put, this involves listening for sound waves created by surface or

underwater vehicles, and then analyzing this information to estimate where the waves

originate from. A passive system is one that operates only by listening. This is in

contrast to an active system that listens for the echoes of sound waves that it emits.

For example, human hearing is largely a passive process (Sutter, 2011). However,

some mammals have evolved to use active sonar. Two notable examples are bats and

whales that use echolocation to forage for food by making sounds and listening for

echoes from prey.

Why use sonar in the ocean? For one, electromagnetic waves, such as radio waves or

microwaves, can travel only very short distances in water before being absorbed by

the water itself. This makes them essentially useless for detecting or communicating

with submerged objects. A notable exception are extremely low frequency (ELF)

band radio signals that have been used to send messages to submarines, but this

technology lacks other applications due to the extreme cost and complexity (National

1In this work, the term target is used as a general-purpose descriptor for an object of interest,
and does not necessarily imply hostility.
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Research Council (U.S.), 1997). Much like radio waves in the atmosphere, sound

waves can travel great distances in water. The deep sound channel in the ocean can

carry sounds from ships and marine mammals thousands of kilometers across the

oceans (Whitman, 2005). The use of sonar underwater can be dated back to 1490,

when Leonardo da Vinci wrote “If you cause your ship to stop, and place the head

of a long tube in the water and place the outer extremity to your ear, you will hear

ships at a great distance from you” (National Defense Research Committee, 1946).

Naval warfare over the past century has been a driving force behind research and

development of sonar (Urick, 1967), and while this is still true today, interest has

extended into other sectors such as civilian law enforcement, research, and industry.

This growth has not been without controversy. The Navy’s use of mid-frequency ac-

tive (MFA) sonar has been suspected as the cause of various marine mammal beach-

ings (Carrington, 2013), and was even the subject of a recent Supreme Court case

(Supreme Court, 2008). The challenge with MFA is it overlaps with the same fre-

quency band that many mammals use potentially damaging their acoustic senses,

thus “blinding” them. Another source of noise comes from the oil and gas indus-

try, who regularly use seismic air guns for oil exploration (Bernstein, 2014). These

systems work by making loud explosive-like sounds in the water and recording the

echoes from sub-seabed geological layers. Beyond deliberate creation of sound, the

increase in international trade has led to an increase in the number and frequency

of cargo ships traversing the oceans (Li et al., 2010). Large ships can be very loud

due to diesel engine noise coupling into the water through the hull, or the propeller

blades cutting through the water (Arveson and Vendittis, 2000). The ocean is surely

a noisy place.
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Passive sonar does not add to these problems because no sound is produced during

operation, thus greatly reducing its environmental impact. However, there is another

advantage to not creating sound, in that a passive system is much less prone to counter

detection. This makes it a vital tool for situations in which stealth is needed (Towle

et al., 2007). It is no coincidence that tactical sonar systems on modern submarines

make extensive use of passive sonar (Moreavek and Brudner, 1999).

The focus of this work is the application of passive sonar to shallow ocean environ-

ments. Why shallow water? Continental shelves can extend hundreds of kilometers

from shore, meaning that coastal waters are generally quite shallow relative to the

rest of the ocean. Underwater mountain ranges and sea mounts can also create shal-

low regions farther from shore, and can be host to unique ecosystems and significant

biodiversity. Both coastal and remote regions are under constant assault from illegal

fishing. In response, the U.S. Government, along with other governments around the

world, have created Marine Protected Areas (MPAs) that define areas within coastal

waters in which commercial fishing vessels and certain recreational vessels are not

allowed (Wenzel et al., 2011). According to a recent study (Toropova et al., 2010),

1.17% of the marine area in the world is designated as protected, which equates to

4.2 million km2. Unfortunately, enforcement of these laws is hindered by technical

challenges and limited resources, which are needed to monitor and respond to vi-

olations (Bacher, 2010). These illegal fishing activities often take place in remote

areas that are difficult to monitor with conventional methods (e.g., radar). In addi-

tion to governments, non-government agencies such as The Nature Conservancy are

currently investigating how to monitor and patrol marine protected areas for illegal

fishing boats (Lotz et al., 2007, Zurk et al., 2006, Cos, 2014).
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Harbor security has become another concern for shallow water environments, espe-

cially in light of recent terrorist activity. The events on the morning of October 12,

2000 are a harrowing example. The USS Cole, a United States Navy guided-missile

destroyer had tied up to a refueling dock earlier that morning (Burns and Myers,

2000). As the crew was lining up for lunch in the ship’s galley, a small boat laden

with explosives maneuvered up along the port side (National September 11 Memorial

& Museum, 2014). The two occupants of the small boat made friendly gestures to

the crew, then detonated their weapon, killing 17 US sailors and injuring at least 40

(Kean et al., 2004). Another example of harbor security being breached took place

in 2001 at the Faslane naval base in Scotland. An anti-nuclear activist swam into the

harbor, climbed aboard a nuclear submarine, and spray painted graffiti on the side.

This was a major breach of security since it was later confirmed that the submarine

was carrying nuclear-tipped Trident SLBMs (Staples, 2001). The concern over harbor

security is not limited to terrorism. Narcotics smugglers are known to use so-called

“go-fast boats” in an attempt to outrun Coast Guard ships. They have also been

known to use small submarines, called “narco-subs” (Schmidt and Shanker, 2012) to

avoid detection.

Current methods of monitoring harbors for suspicious activity typically involve the

use of equipment mounted on the shore. RADAR, infrared imaging, and closed-circuit

video are examples. The disadvantage of these devices is that they have a fixed range,

so their coverage area is generally limited to a relatively short distance from the shore.

They are also affected by inclement weather, such as precipitation, choppy surface

conditions, or fog. However, underwater targets pose an entirely different challenge

that these methods do not address. One method of detecting underwater targets is

with LIDAR. This technology is currently used by the military for submerged mine

4



detection. LIDAR is a laser-frequency radar, and in this application is aimed directly

at the water from an aircraft (Steele et al., 2005). It can penetrate on the order of

10’s of meters in certain conditions (Churnside, 2012). However, the cost and limited

coverage area of such systems make them impractical for continuous monitoring of

large areas. In contrast to electromagnetic-based methods, underwater acoustics is

less sensitive to weather and can be deployed in fixed locations far from shore.

In recent years, autonomous underwater vehicles (AUVs) have quickly gained preva-

lence, and have become essential tools in commerical (Wilkinson and Wadhams, 2008,

Fernandes et al., 2003), military, (Hagen et al., 2003), and research sectors (Iwakami

et al., 2002). The confluence of a number of technologies concurrently reaching a

sufficient level of maturity has facilitated and fueled their evolution, increasing their

capabilities and subsequent popularity. This includes, but is not limited to, battery

life, navigational sensors, low power computational capabilities, data fusion algo-

rithms, and underwater communications. These vehicles have a variety of practical

applications, from oceanography to monitoring fisheries to inspecting hulls of ships.

However, there is also growing awareness that AUVs also add a new kind of threat

to harbor security (Kessel and Hollett, 2006). Similar types of threats in the past

have come from manned underwater vehicles, semi-submersible vehicles, and divers.

These threats have been identified by defense and security organizations such as the

Coast Guard, Department of Homeland Security, the Navy, and other Department of

Defense agencies (CBS News, 2013). Among the dangers are deploying chemicals in

sensitive areas, delivery of explosives, deploying mines, smuggling contraband, and

adversarial intelligence collection.

Using active sonar for detection of surface or subsurface vessels can be possible, but
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the challenge with doing this in shallow water is clutter. When active systems emit

a sound, it may reflect not only off the target, but also the seabed, ocean surface,

and objects in the water (fish, coral, bubbles, etc.). All these reflections come back

to the hydrophone receiver and can drown out the echo from the true target. Passive

acoustics does not have this complication, and in fact reflections of the noise emitted

by a target from the surface and seabed is positively utilized in this work to help

locate the target. The flip side of not having to worry about clutter is that the

sound emitted by the target is not something that is under the control of the passive

system. Rather, the system must adapt to the radiation characteristics of the target,

or even be designed with specific types of targets in mind. In any case, a key aspect

of designing a passive sonar system is knowledge of an acoustic signature of potential

targets.

While acoustic characterizations have been done for various kinds of boats (Ogden

et al., 2011), AUVs are a new class of vehicle that are relatively unstudied from the

standpoint of their acoustic characteristics. As such, the first part of this dissertation

provides an aspect-dependent characterization of an underway autonomous under-

water vehicle. Aspect-dependence refers to the direction relative to the vehicle itself

in which sound is radiated. “Underway” is a term that describes a vehicle moving

through the water under its own power. This is in contrast to a bollard condition, in

which a vehicle is tethered to a fixed object and the propulsion system engaged. An

example would be tethering a tugboat to the shore through a force meter in order

to measure its tow capacity. However, there are differences in the hydrodynamics of

the two conditions that likely affect the radiated acoustics. Ultimately, this analysis

lays important groundwork for designing future passive acoustic detection methods

for AUVs.
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Beyond needing to understand and characterize the different types of threats that

are found in shallow ocean environments, there is also a need to determine the most

appropriate measurements and data processing methods of passively detecting these

targets. If passive sonar is to achieve widespread adoption as a means of monitoring

shallow waters, it needs to be practical to use and be able to operate in varied

environments. The question that needs to be answered is how should a passive system

be designed so that it meets the basic technical objective of effectively localizing

targets of interest under different conditions while simultaneously minimizing cost

and deployment complexity? Unfortunately, the characteristics of the sound radiated

by different types of targets plays a significant role in its design, so a one-size-fits-

all approach is impractical. For example, determining the direction of a narrow

band signal requires the use of a hydrophone array with a spacing of one half the

wavelength. In contrast, broadband signals can be processed using a technique called

pulse compression, and can operate with fewer hydrophones that are spaced farther

apart. In second part of this work, the latter method is used to locate small boats

using only two hydrophones, thus minimizing cost and deployment complexity. It

makes use of multipath and the natural contours of the seabed to improve localization

accuracy. This is an improvement over existing methods that require additional

hydrophones and treat multipath as a nuisance factor (Sutin et al., 2010).

For detecting small boat targets in remote locations for which power resources are

limited, a passive sonar system must be designed to operate on a tight power budget.

For example, recent designs consist of a hydrophone (an underwater microphone) at-

tached to a battery-powered recording device containing an embedded computer and

data storage (Sorensen et al., 2010). Advances in low-power computing capabilities

have made new design possibilities such as these possible. Low power sonars are also
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now being mounted to AUVs, which themselves have a limited power budget. For

example, in one design, an array is towed behind a REMUS-100 AUV (Holmes and

Kukulya, 2006). However, it is an open question as to what designs are most ad-

vantageous for different applications. The third part of this dissertation focuses on

localizing small boats using a small metal-framed hydrophone array mounted to the

nose of an AUV. The unique aspect about this array is it is volumetric, meaning that

its hydrophones are not confined to a line or a plane, but are distributed in three

spatial dimensions.

This volumetric array work essentially builds on earlier work in the related field of

geoacoustic inversion (Siderius et al., 2006). It was discovered that beamforming

and cross-correlation could be combined so that a drifting vertical line array could

essentially “see” the seabed using only noise generated at the surface. As wind or

breaking waves at the surface create noise, these waves travel down towards the

seabed, then bounce off the seabed and travel back up towards the surface. The

vertical line array is able to isolate the signals contained in each of these waves, and

through cross-correlation, measure the travel time to the seabed. The formulation

for this turned out to be fairly straightforward, and in this work a similar idea is

applied to boat noise with a volumetric array. The major difference is that the boat

could be far away from the array, so the algorithm is substantially altered to focus

the beamformer at the boat. This overall method provides a way for an AUV to

localize targets in remote areas, without needing to stay near shore. Many AUVs use

satellite communications, such as Iridium, when at the surface to send data back to

an operator. Thus, a combination of these capabilities implies a new ability to patrol

shallow waters anywhere in the world while providing actionable information in near

real time.

8



It should be noted that the basic idea of using multipath for localization in shal-

low water has been previously investigated. The novel contributions of this study

are centered on methodology and signal processing. Until fairly recently estimating

the range of a target using its received multipath (often referred to as “multipath

ranging”), focused on the interference pattern created by the multipath arrivals (We-

ston and Stevens, 1972). This made sense because the broadband noise of a boat

can be approximated as a random process, but between multipath arrivals there is

coherence, or predictability. This shares some similarity to the way that laser light

(which is highly self-coherent) is used to record an interference pattern between two

beams on a film to create a hologram. Since the frequency dependent interference

pattern changes with target range, this implies that by measuring the interference

pattern, an estimate of the range can be obtained (Kapolka, 2008). The key point

is that these interference patterns are created by multipath. The methods presented

in this work take a different approach by directly measuring the physical directions

and time delays between multipath arrivals, as opposed to the interference pattern.

A discussion is included that relates the two by showing that the same information

is being utilized, but the problem is being approached from a different perspective.

This work has a significant experimental component. Data collected from several

deployments in Hawai‘i and Italy form the basis for validating the presented meth-

ods. It is an important point that this work not only puts forward new methods

and techniques, but provides a proof of concept for them. In other words, they are

demonstrated to work. Simulations are used as tools to aid in developing an under-

standing of the expected behavior, but methodologically, a stand-alone simulation is

insufficient evidence to support a claim that an algorithm will work in a real situation.

This is mainly because simulators make assumptions about the phenomenon being
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simulated, and it is non-trivial to accurately predict which assumptions will have an

appreciable affect on the performance of a given algorithm. As such, much of what

is presented here are based on measurements from experiments that were conducted

during the course of this research. Simulations are included throughout this analysis,

but mainly for the purpose of improving the understanding the underlying principals

of operation.

The remainder of this dissertation is organized into chapters as follows. Chapter 2

reviews the current state of the literature. The first topic is on radiated noise from

AUVs, including the methods for making underway measurements along with the

published results. Target localization using fixed hydrophone systems and associ-

ated data processing methods is the next topic. The passive fathometer constitutes

a method for time delay estimation of noise, and it forms the basis for the volumet-

ric array processing algorithm described later in this dissertation, so it is described

next. Since this has much in common with manifestations of multipath coherence

commonly observed in spectrograms, literature pertaining to the principles of waveg-

uide invariance are then discussed. Chapter 3 develops the mathematical framework

around which the new techniques in this dissertation are based. Chapters 4, 5, and 6

describes each of these, analyzes the performance, and provides experimental results.

Lastly, Ch. 7 provides a summary of these contributions and outlines possible future

directions for this work.
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Chapter 2

Background

This chapter reviews the state-of-the-art of passive sonar. Moreover, it identifies out-

standing research questions that this dissertation aims to fill. This dissertation does

not address all types of targets, all types of equipment, and all environments. Rather,

it is focused on targets that are of particular concern for modern law enforcement

agencies. Algorithmically, it brings together several processing techniques including

the use of multipath for localization, cross-correlation and cross-beam processing.

An application area for the work in this dissertation is that of harbor security. Since

this is an important potential use of the techniques developed in this dissertation,

specific harbor security threats are identified and discussed in Sec. 2.1. While many

types of threats exist, autonomous underwater vehicles (AUVs) are of particular inter-

est because they represent a new type of threat. The open literature does not contain

much information on the acoustic signatures of AUVs. This is surprising given that

above-water systems are limited for these targets. Further, this information is nec-

essary for developing detection and localization schemes using passive sonar. The

first contribution of this dissertation is an analysis of radiated noise from AUVs, and

Sec. 2.2 gives background on previous studies.
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The use of passive sonar in shallow water is well established, yet many existing meth-

ods do not take advantage of all the information carried by the acoustic signal and

contributed by the environment. Further, the explosion in computing power over the

past decades has opened the door to new processing modalities that were once consid-

ered impractical. Traditional methods of passive target localization are discussed in

Sec. 2.3. This begins with the category of methods that rely on the principle of time

differences of arrival (TDOA), discussed in Sec. 2.3.1. New systems currently being

developed for harbors are based on this principle (Sutin et al., 2010). Later algo-

rithms expanded on this by incorporating multipath, which is discussed in Sec. 2.3.2

focusing mainly on recent work done with marine mammals.

The last contribution of this dissertation is on using small, low-power passive systems

that can be attached to mobile platforms. The basis for this new technique comes

from another technique known as the passive fathometer. In that formulation, an

array is used to analyze a noise field instead of a single target. This foundational

work is discussed in Sec. 2.4. The passive fathometer itself is discussed in Sec. 2.4.2.

Using multipath to determine target range using arrays is an idea that was stud-

ied extensively using a concept called matched field processing (MFP), discussed in

Sec. 2.4.1. A closely related concept that utilizes multipath, and can be leveraged for

localization, is waveguide invariance, which is discussed in Sec. 2.5.
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2.1 Harbor Security Threats

Harbor security has been a technology driver for systems and methods aimed at

detecting and tracking shallow water vehicles. Since the October 2000 bombing of

the USS Cole (Burns and Myers, 2000), the concern over untracked small boats has

increased. However, overt hostile action is generally less likely than other more mun-

dane illegal activities. Small boats and small submarines have also been used by drug

traffickers and smugglers of elicit or illegal goods in an effort to evade law enforce-

ment. Divers also present threats in both scenarios. In 2001, an anti-nuclear activist

swam into Faslane naval base in Scotland and spray painted graffiti on the side of a

nuclear submarine carrying trident SLBMs (Staples, 2001).

Harbors face a variety of threats, and correspondingly a variety of remote sensing

modalities have been applied to confront these threats, such as shore-based RADAR,

LIDAR, optical, and thermal imaging. Major defense contractors spend considerable

resources building integrated surveillance and monitoring systems based on these

tools (Nor, 2011). Bruno et al. (2010) has investigated fusing above-ground with

below-surface systems in an attempt to create an integrated detection system. The

drawback of above-water methods is their limited range, and degraded performance

in inclement weather For example, Steele et al. (2005) put forward the idea of using a

RADAR-LIDAR as a detection methodology for divers, but the range of these systems

is limited (Waldron and Mullen, 2009). They also have high overall cost per distance

of coverage and the continuous need for an operator (i.e. personnel watching a video

feed).

Active sonar has the disadvantage that high intensity acoustic signals may make it
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relatively easy for intruders to detect the presence and location of any active acoustic

security systems, and find ways to subvert them. Multipath propagation, sound ab-

sorption at high frequencies and interference from benign objects with similar acoustic

scattering characteristics further limit their range and robustness. There is also the

problem of a high false alarm rate, in which any object with similar target scattering

properties, such as a large fish or seal mistaken as a diver, will trigger the system.

Furthermore, effects on marine life from anthropogenic noise are not fully understood,

and is an active area of research. These limitations have driven an interest in passive

acoustic solutions.

The challenge with using passive acoustics is that each class of target can have signifi-

cantly different acoustic signatures. As such, it is unlikely that a single one-size-fits-all

processing approach will suffice. For example, boats and divers radiate broadband

noise, and while both have high source levels, this is especially true of boats due

to noise from the propeller (Vagle and Burch, 2005) and wake (Magliozzi et al.,

1992). Engine noise couples into the water through the hull and propeller producing

harmonically-spaced narrowband features (Ogden et al., 2011), that are not radiated

from a diver. A detailed reference on the mechanics of boat-generated noise can be

found in Ross (1976). Remotely operated vehicles (ROVs) and autonomous underwa-

ter vehicles (AUVs) mostly use motor driven propulsion systems, and move at much

slower speeds. As such, the source levels are lower, with some vehicles having mainly

tonal elements with few harmonics, and others producing broadband noise (Griffiths

et al., 2001).

Several researchers at the Maritime Security Laboratory at the Stevens Institute

of Technology (Hoboken, NJ) have studied technical solutions to harbor security,
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including passive sonar. Borowski et al. (2008) investigated the detection distance

of divers in terms of source level, transmission loss of acoustic signals, and ambient

noise. In that study, they apply the passive sonar equation to estimate range to

target. Stolkin et al. (2006) used used a similar approach with a single hydrophone

to detect and classify divers and small boats.

Stevens has also deployed multiple hydrophone systems. Bunin et al. (2008) used

cross-correlation of boat noise to obtain bearing estimates that were then fed to a

data fusion system consisting of several different types of sensors. They also studied

diver detection in an experiment involving a diver with a hand-held source. More

recent studies have investigated small boat localization in the context of more complex

tracking algorithms (Ou et al., 2011, Sherpa, 2012).

Only a few years ago, Sutin et al. (2010) described a system they designed called the

Stevens Passive Acoustic Detection System (SPADES). This is a four-hydrophone

system in a hub-and-spoke configuration that is deployed on the seabed with the

hydrophones on the end of each spoke, and an electronics pod at the hub. A similar

three-hydrophone system was described in Sutin et al. (2013). They used cross-

correlation with pre-whitening to obtain bearings to a small boat target. By using two

pairs of phones, the hyperbolic ambiguity from a single pair was resolved into a single

absolute bearing. The spacing between the hydrophones was on the order of 10’s of

meters, and each hydrophone was attached using a flexible cable. This presented the

problem of the hydrophones not being well localized as they most likely move during

lowering to the seabed due to current or swell moving the boat. To compensate

for this, they used an acoustic positioning system which involved broadcasting a

waveforms from a boat-deployed source while capturing GPS coordinate data. They
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then used a optimizer based on a least-mean-square-root metric to minimize the

deviation of measured time delays with coordinate-derived ones. This sensitivity to

potential errors in the array geometry and subsequent deployment complexity reduces

the overall utility of such an approach. Specifically, the planar geometry of the array

requires a rigid frame to maintain the relative spacing between hydrophones. However,

a rigid frame of this size can be difficult to deploy. Further, any deformities in the

frame that may occur during deployment will affect the measured time delays and

will therefore have an impact on the localization performance.

Fillinger et al. (2010) outlined a joint effort betweenn the Netherlands Organization

for Applied Scientific Research (TNO), and Stevens Institute of Technology to com-

pare technologies for harbor security. Their aim was to compare SPADES (Stevens’

system) to Delphinus (TNO’s system), which is a passive towed line array. The inter-

esting take-away from that paper was a technique they designed in which they drove a

beamformer beyond the design frequency resulting in aliasing. Using cross-correlation

of two phones on the array, they were able to disambiguate between aliases.

Stevens has also used the SPADES system to look at the detection of envelope modu-

lation on noise (DEMON) spectrum for small boat classification (Chung et al., 2011).

The DEMON spectrum has advantages for analyzing ship signatures, and is computed

by taking the Fourier transform of the envelope of a band-pass filtered signal. In that

paper, they computed the DEMON spectrum from cross-correlations of hydrophones

at an offset corresponding to the vessel of interest.

All these studies involving cross-correlation of boat or diver noise only resolve target

bearing. The studies that do consider target range only measure received level, using

educated guesses for the various terms of the passive sonar equation. Also, none
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of them discuss multipath propagation, or consider its geometric implications. In

fact, as will be discussed later in this dissertation, multipath propagation can add

additional features to the correlogram which complicate the TDOA measurements.
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2.2 Radiated Noise from AUVs

Detection of AUVs poses a different detection challenge than boats or divers since

no part of their hull extends above water and no surface wake is generated. Passive

acoustic localization methods may be more practical than active methods in terms of

cost and impact on the environment, but they require an accurate characterization of

radiated noise from the target in terms of spectral content as well as aspect-dependent

source levels.

The literature survey in this section outlines the work that has been done by others in

the field in terms of reporting the radiated noise of AUVs. Most AUVs are driven by

electromagnetic propulsion systems, which can be the largest contributor of radiated

noise. Several studies have been performed involving the collection of acoustic data

generated from AUVs and analyzed the spectral content of their acoustic signatures.

Part of the contributions made in this dissertation are comprised of work done on

characterizing the emissions from a REMUS-100 AUV (Gebbie et al., 2012b, 2011a,b).

AUVs come in all shapes and sizes. Fernandes et al. (2003) gave a list of them (circa

2003) showing 15 models in a certain size class and analyzed their applications to

fisheries, for tasks such as fish stock assessment, as well as broader ecological studies.

That number has undoubtedly grown since then.

Since so may AUVs exist, their acoustic signatures are also varied. Most AUVs are

electrically powered, so as a class of vessel, they will differ in the overall structure

of their signature from small boats. Although they travel underwater, their methods

of locomotion will cause them to have a significantly different signature than divers.
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However, AUVs can be further broken into several categories, based on the nature

of their propulsion systems. Gliders do not require a propeller. Their method of

propulsion is based a ballast pump which causes the vehicle to rise and fall in the

water. Hydrodynamic elements of its design give it horizontal motion as it rises and

falls.

Propeller-driven platforms also have several subcategories. Open-blade propellers are

the most common, which are found on most recreational small boats. Pump-jets

are another design that operate by placing the propeller inside of vehicle (in this

configuration it is called an impeller). Examples are personal water craft (PWCs),

which have gained popularity in recent years. In this design, water is drawn through

an inlet, passes through the impeller, and is expelled through a jet creating thrust.

Pump-jets have been observed to be quieter underwater despite being louder above

water (Erbe, 2013). They are also more efficient, but only at higher engine speeds. It

is perhaps for this reason that many entry-level battery-driven AUVs use open-bladed

propellers in lieu of pump jets.

In the literature, a few studies have been conducted on AUV signatures. In 2003

Cuschieri and Frandsen (2003) gave a presentation on acoustic signature of an Ocean

Explorer AUV using data collected in an open-water environment. They compared

this to measurements in a test tank. In 2009, Carey et al. (2009), presented on the

applicability of a small autonomous vehicle towed array system to ocean acoustic

measurements and signal processing. Some acoustic measurements of self noise of

the AUV were recorded, but this was limited by flow noise. A similar experiment

using a towed array a was also outlined in Holmes and Kukulya (2006). Zimmerman

et al. (2005) performed an analysis of different methods of reducing self noise of an
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Odyssey IIb AUV. This vehicle used a ducted fan design for its propulsion. Changing

the motor gear ratios, and trapezoidal drive with a sine drive ended up reducing

noise levels by 20-50 dB. Griffiths et al. (2001) analyzed the acoustic emissions of an

Autosub AUV and found that it produced such low source levels that it was only

detectable to within a few meters of their passive sonar equipment. In one instance,

the AUV drove straight into the hydrophone, but the hydrophone didn’t pick anything

up until the moment of impact. It was also hypothesized that propeller cavitation

was the primary noise producer of this AUV since broadband emissions were detected

up to roughly 4 kHz, with most acoustic energy concentrated in the lower band up to

roughly 400 Hz. However, the Autosub may have been an anomalously quiet vehicle

since other studies have since reported that higher source levels due to motor-borne

vibrations. Also, the lack of ground truth measurements of the actual location of the

AUV precluded calculation of source levels and beam patterns.

In contrast with broadband cavitation noise, these motor vibrations have narrow-

band characteristics. This was reported by Holmes et al. (2010). This study gave an

extensive noise audit of REMUS-100 AUV. In it, several AUVs were compared based

on data available in the literature, including the potentially anomalous data reported

by Griffiths et al. (2001). Most levels concentrated in the 100-120 dB range above

250 Hz. In Holmes’s dissertation, (Holmes, 2007), a detailed analysis was given for

sources of radiated noise. Radiation from wetted portions of an AUV’s motor stator,

and Helmholtz resonance of the fluid connection gap between the rotor and stator

can lead to monopole radiation patterns, whereas alternating thrust (caused by non-

sinusoidal motor currents, for example) can produce hull vibrations that radiate in a

dipole manner.
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Several studies have taken a more rigorous approach to measuring source levels and

beam patterns by placing a REMUS-100 AUV in a bollard condition inside a tank

(Holmes and Kukulya, 2006, Holmes et al., 2005). A bollard condition is an arrange-

ment in which the vehicle under test is tethered in place and its propulsion system

activated. This differs from an “underway” condition in which the vehicle is moving

through the water. The hydrodynamics and engine torque of each are different, and

this likely has an effect on the radiated emissions. However, aside from the references

mentioned earlier, limited published information exists on radiated noise characteris-

tics of AUVs in this condition.
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2.3 Time Delay Localization

This section discusses work that has been done on localization of various targets.

Early localization methods, both in electromagnetics as well as acoustics, employed a

principal called time-difference of arrivals (TDOA). Essentially, if two receivers detect

the same signal but at different times, that time delay limits the source to a set of

physical locations that has the shape of a hyperbola. This class of “hyperbolic fixing”

algorithms is described in Sec. 2.3.1.

In its simplest form, multipath effects are largely ignored by hyperbolic fixing, and

in fact are often treated as a nuisance factor. In shallow water, multipath is often a

stable phenomenon that depends on the target location. That is, multipath is pri-

marily a function of the relative positions of the source and receiver within the ocean

waveguide. Section 2.3.2 discusses the work that has been done in marine mammal

localization, which is heavily based on the use of multipath. Certain species of marine

mammals use signals that are impulsive in nature (Nosal and Frazer, 2006). Never-

theless, the principles behind how the multipath is processed for this kind of target

shares some similarity to this work, but a different approach is taken to processing

the data.

In contrast to impulsive whale noises, boat noise is is continuous in time. Section 2.3.3

describes the work that has been done in localizing broadband noise sources.
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2.3.1 Hyperbolic Fixing / Multilateration

Hyperbolic fixing is a localization technique that uses signal timing to estimate po-

sition. The idea requires two or more known points and one unknown point. The

goal is to estimate the location of the unknown point relative to the known points.

Waves are passed between known points and the unknown point, but due to physical

constraints, the quantity that is measured are the time delays between pairs of known

points and the unknown point. If only two known points exist, a single time delay will

be measured. Considering 2-D space to begin with, we can conclude that the unknown

point lies somewhere on a hyperbola for which the two known points are the foci. In

3-D space, this locus of points is a hyperboloid. Note this rests on the assumption

that waves travel at the same speed everywhere in space. Including additional known

points creates additional pairs of known points, each of which will trace out its own

hyperboloid. The unknown point lies on the surface of all the hyperboloids, so the

“solution” corresponds to the point or points in which all the hyperboloids intersect.

Hyperbolic fixing is a general approach to a general problem, and is often referred to

as time difference of arrival, or TDOA. In the passive sonar problems discussed here,

the known points are the receiver elements, and the unknown point is the target.

When hyperbolic fixing is used for navigation, it is often referred to as multilat-

eration. One of the earliest examples of multilateration was the GEE and LORAN

systems (Launer, 2009). The latter was developed during World War II by the United

States so that naval ships could determine their location (Staff, 1946). These systems

consisted of fixed broadcast stations distributed along the coast (see Fig. 2.1 for an

historical LORAN-C navigation chart). Each station emits a unique radio pulse that

is picked up by a receiver on a vessel. The receiver then measures the time-differences
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Figure 2.1: A LORAN nautical chart of New York Harbor (source: Wikimedia
Commons, freely licensed media)

between pulses originating from different stations. These time-differences correspond

to hyperbolic location lines, on which the receiver must lie.

Recently, in the context of localizing marine mammals acoustically, Spiesberger and

Wahlberg (2002) introduced the term “isodiachron” using the Greek words “iso” for

same, “dia” for difference, and “chron” for time. This defines any surface that would

conceptually be formed in two or three dimensions that satisfy a given TDOA mea-

surement between two fixed points. Inhomogeneity in the sound speed, or boundary

reflections cause isodiachrons to have non-regular shape (Spiesberger, 2004).

The efficiency of hyperbolic localization has been studied for the better part of a

century. For example, Marchand (1964) developed a mathematical model for the error

distribution of the best estimate position of a vehicle determined form a set of TDOA
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measurements. Schmidt (1972) expanded the hyperbolic ambiguity to generalized

lines, when measurements are made on the surface of a sphere. This naturally had

significance for navigation purposes since a non-negligible amount of earth curvature

may exist between a ship and ground stations. Lee (1975) developed a procedure

for determining the accuracy of hyperbolic multilateration systems. This expanded

on an earlier methodology called the geometric dilution of precision (GDOP). This

was later reframed using a Cramér-Rao lower bounds (CRLB) methodology by Chan

and Ho (1994) which placed mathematical limits on the lowest possible error for a

given system. Efforts have been made to improve accuracy, as well as quantify errors.

Location errors due to insufficient numbers of fixed points was studied by Spiesberger

(2001) in the context of marine mammal localization.

In the context of passive sonar, multilateration techniques are also based on measur-

ing TDOAs. This often involves estimating the time-lag between two hydrophones,

or possibly delayed replicas of a signal from a single hydrophone (i.e. multipath

“echoes”). The topic of estimating time-delays from signals has been extensively

covered by Carter (1993), who has compiled an anthology of works on the topic.

2.3.2 Marine Mammal Localization

In 2008, the US Supreme Court heard a case in which the Natural Resources Defense

Council sued the US Navy over the latter’s use of mid-frequency active (MFA) sonar

during anti-submarine warfare exercises (Supreme Court, 2008). At issue was the

assertion that high source levels harm marine mammals. There have been several

instances over the past few decades in which use the of the MFA has correlated with

beachings of marine mammals, however no concrete linkage has been made. The

25



Supreme Court ruled in favor of the US Navy partly based on this fact, and partly

based on the judgement that the potential harm to marine mammals is outweighed

by national security interests.

Research into behaviors of marine mammal is an active area of research, partly from a

basic science point-of-view on the part of the marine biology community, but also from

a public policy point-of-view in an effort to determine the extent to which anthro-

pogenic noise actually affects these animals. Nevertheless, understanding behavioral

patterns relates to tracking their movements. As such, passive sonar has been studied

extensively in this area as a means to ascertain animal movements. The work that has

been done to support these capabilities shares many principals with the techniques

presented in this dissertation, which is why marine mammal localization is discussed

here.

Marine mammals in the biological order cetacea (specifically odontocetes) use active

sonar. They emit broadband clicks for echolocation while performing different kinds

of behaviors such as foraging, hunting, and communication (Wood and Evans, 1980).

Whale clicks are short duration acoustic events that pack a significant amount of

acoustic energy into a short time span. In signal processing, these kinds of events are

described as “impulsive.” This is important because much of signal processing is built

on the concept of a delta function, which can be thought of as an idealized impulse.

The waveform of a delta function spans an infinitely short interval, is infinitely tall,

and is zero everywhere else. It has important mathematical properties in that it

can be used to characterize the propagation of waves between a source and receiver

through a specific environment. It is for this reason that a whale’s delta-function-

like waveform has significant implications for method used to localize it, particularly
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methods that employ multipath. The remainder of this section discusses different

methods that have been utilized to localize marine mammals that make broadband

clicks.

Humans inherently know that the closer a sound source is, the louder it will be

perceived. This intuition is formalized in the passive sonar equation, which relates

incoherent received levels. For a single receiver, a simplified sonar equation might

look like

RL “ SL ´ TL (2.1)

in which SL is the source level, TL is the transmission loss, and RL is the received

level. All levels are in decibels (dB). The received level is measured, the source level

is estimated, and modeling tools predict the transmission loss at different ranges.

Humans can actually perform all these functions cognitively to estimate the range. A

computer approaches the problem by adjusting the range in order to satisfy the equa-

tion, thus yielding the answer. The challenge with using the passive sonar equation

for whale ranging is it requires guesswork for the source level; and errors in estimating

this parameter translate to errors in range (Cummings and Holliday, 1987, Watkins

et al., 1987).

In parallel with source-level ranging, using time-differences between arrivals (TDOA)

on multiple hydrophones was employed to estimate bearing. That means determining

the direction in which a whale is located, without necessarily knowing anything about

its range. Conceptually, this is same principle as multilateration described in the

previous section. An early work that employed a four-element volumetric hydrophone

array was done by Watkins and Schevill (1972). Magyar et al. (1978) applied this to
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entire grids of hydrophones.

In recent years, the marine mammal community began drawing more heavily on the

body of work developed for using multipath to localize other kinds of underwater

targets. An early comparison of the source-level method with multipath ranging was

given by Cato (1998). Later, in a study on Hawai‘ian spinner dolphins, Aubauer

et al. (2000) used multipath ranging from both surface and bottom bounces on a sin-

gle hydrophone for range and depth localization. They point out that one advantage

of this is that only a simple environmental model is needed, consisting of the depth

of the bottom and hydrophone. Thode (2004) analyzed multipath data from two

hydrophones towed behind a boat at different ranges and depths. By plotting spec-

trograms of the two phones side-by-side, time differences between multipath arrivals

for each hydrophone, and across hydrophones, could be manually read off. Skarsoulis

et al. (2004) considered the effects of a stratified seabed and refractive sound speed

profile (SSP) using a simulation. It was determined that adding separation between

hydrophones increases accuracy. Laplanche et al. (2005) showed that as a sperm

whale changed its geometric pitch (i.e. whether the animal was facing the surface or

seabed), so would the different multipath arrivals from the surface and seabed change

intensity. From this, they used a single hydrophone to localize the whale and esti-

mate its pitch by looking at the multipath energy distribution. It is known that many

whales have focused beam patterns, which is the principal behind this approach. La-

planche (2007) later expanded on that work to only require multipath arrivals from

the sea surface.

For multiple hydrophone depoloyments, Nosal and Frazer (2006) used multipath rang-

ing from five widely distributed hydrophones to obtain the full 3-D location of the
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animal. This worked by finding intersections of rings of ambiguity from each hy-

drophone. Nosal and Frazer (2007) then applied the same method, except they used

a model beam pattern of the whale to predict its orientation based on source level

differences between phones. Miller and Dawson (2009) used several time-synced and

coordinate-tracked drifting buoys to record whale sounds. By fusing the TDOA be-

tween each pair, as well as the multipath-with-direct TDOAs on each hydrophone,

they were able to obtain a 3-D position estimate of the animal.

Perhaps the closest related work to the one presented in this dissertation for small

boat localization was put forward by Tiemann et al. (2006). They demonstrated that

only a single hydrophone was needed to produce a full 3-D localization of a sperm

whale by comparing measured and modeled time differences between multipath ar-

rivals using a raytracer. In that work, multipath arrivals were determined directly

from the received time-series (after some filtering) by time-gating each whale click and

stacking the resulting snapshots with the direct arrivals vertically aligned. Viewed in

this manner, all arrivals appeared as a time-evolving striation lines with multipath

striations curving over time as the animal maneuvered relative to the hydrophone.

Variations in bathymetry were opportunistically utilized to provide range, depth,

and azimuthal discrimination by leveraging the fact that the relative arrival time

of bottom-interacting multipath rays are functionally dependent on the bathymetry

along each azimuthal radial. Similar work was done by Mouy et al. (2012) for local-

izing walruses.

There are a few key differences between Tiemann et al. (2006) and the work pre-

sented in this dissertation. Multipath arrivals were determined directly from the

received time-series (after some filtering) by time-gating each whale click and stack-
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ing the resulting snapshots with the direct arrivals vertically aligned. Viewed in

this manner, all arrivals appeared as a time-evolving striation lines with multipath

striations curving over time as the animal maneuvered relative to the hydrophone.

Variations in bathymetry were opportunistically utilized to provide range, depth,

and azimuthal discrimination by leveraging the fact that the relative arrival time

of bottom-interacting multipath rays are functionally dependent on the bathymetry

along each azimuthal radial. Whale clicks are impulsive acoustic events which allows

for clean separation of mulitpath arrivals in the received time-series. As such, this

technique does not hold for continuous broadband noise sources, such as that pro-

duced by a small boat. Further, the surface reflection of a whale click can be exploited

(typically the strongest reflected multipath arrival) which is not the case for surface

ships. Also, the inversion approach adopted by Tiemann et al. (2006) was based on a

scoring mechanism whereby each click event was assigned to a range-depth-azimuth

coordinate bin. Each assignment was done in a a winner-takes-all scheme, and pat-

terns in the data were realized by aggregating over several click events. The approach

taken in this dissertation is to apply a functional projection into the entire spatial

domain producing an ambiguity surface for each snapshot.

2.3.3 Noise Source Localization

Unlike the whale species that produce clicks, propeller-driven vehicles produce contin-

uous noise. In a shallow water waveguide that supports strong multipath characteris-

tics, a whale click will show up in the received waveform as a series of impulses having

offsets corresponding to the travel time of each multipath ray. For a noise-producing

source, such as a boat, looking at the waveform is useless for discerning anything
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about the multipath structure. Noise, by definition, is a sequence of random num-

bers, or samples. In other words, the value at any given time is a random variable. If

the source produces a random sequence of samples, then the received waveform will

be the sum of delayed copies of this sequence. To be precise, the delayed sequence

may not exactly match the original sequence due to propagation effects, but the de-

layed sequence will be “coherent” with respect to the source. In other words, there is

a nonzero degree of predictability between them. Even though the received waveform

is the sum of coherent versions of the same sequence, it still appears as a random

sequence of samples.

The correlation operation is a very useful tool for analyzing this kind of sequence.

Auto-correlation is applied to a single channel, whereas cross-correlation is applied

to two different channels. The auto-correlation can thus be thought of as a spe-

cialization of the cross-correlation in which the same channel is used both times.

Cross-correlation is applied not to absolute points in time, but rather to relative

spans of time. In the case of boat noise for which a direct arrival and a sequence of

multipath arrivals are being recorded, the cross-correlation operation can expose the

coherence between each pair of arrivals. This operates by “compressing” the broad-

band noise into a broadband impulse, hence the name “pulse compression.” This will

be described in greater detail in the next chapter. However, it is important to point

out that this is the underlying mechanism that is used extensively for localization of

noise-type sources. Pulse compression, as it is used here, is formally based on the

generalized correlation algorithm from Carter and Knapp (1976). Knapp and Carter

(1976) showed that the Cramér-Rao lower bound on time delay estimation is reached

by the generalized cross correlation algorithm.
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The advantages of using the correlations of multipath versus only the correlation of

direct arrivals have been studied extensively over the past several decades. These

investigations have mostly been formulated by deriving the optimal theoretical accu-

racy of source location using the Cramér-Rao lower bound (CRLB) as a metric. The

CRLB is the lowest achievable variance of an unbiased estimator, and works by con-

sidering how much information about the unknown parameters (i.e. source location)

is contained in the measured data (i.e. recorded source noise including multipath).

These bounds hold under certain conditions such as no relative target motion, stochas-

tic Gaussian signals, and additive uncorrelated Gaussian noise (Rendas and Moura,

1991). It also assumes that all parameters (i.e. depth of seabed reflections, sound

speeds of the medium) are fixed and known a priori.

There has been a multitude of work in this area. Target localization using multipath

obtained from an autocorrelator has been studied by Ianniello (1986). For multiple

hydrophones, the CRLB of the target’s range and depth based on pulse compression of

radiated noise from the target was given by Friedlander (1988). Two paths (one direct

and one reflected) from each of two vertically aligned receivers to a submerged source

were considered. Bandwidth and signal-to-noise ratio (SNR) determined the CRLB

for target location. A similar study was conducted by Rendas and Moura (1991).

Abel and Lashkari (1987) investigated using multipath information from multiple

hydrophones in different orientations. Yuan and Salt (1993) and Yuan et al. (2000)

used simulations to try to characterize the maximum possible efficiency from pre-

extracted time delay measurements between vertical line array elements. Lee et al.

(2002) used bearing angles and time-difference of arrival between two multipaths on

a bottom-mounted array to perform underwater source localization. Cramér-Rao

analysis has also been applied to matched field processing by Hursky et al. (2004).
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In 1968, Van Trees (2001a) expanded the CRLB to include non-deterministic param-

eters, in a formulation that is often referred to as the Bayesian CRLB. The term

“Bayesian” is used to indicate that prior information about the parameters are be-

ing accounted for. This was the basis for the study by Hamilton and Schultheiss

(1993) that examined the performance impact of having imperfect knowledge of the

bathymetry by treating the depth of the seabed reflections as normally-distributed

random variables. Later studies have expanded on this by applying the CRLB or

Bayesian CRLB to gauge the performance limits of trackers that reduce location es-

timation variance by modeling the Markov chain nature of measurements observed

from moving targets (Dauwels, 2005, Lehmann and Williamson, 2007).

Refraction is a difficult phenomenon to model with the CRLB analysis due to the need

to obtain partial derivatives of the cross spectrum with respect to parameters that

define the refraction (i.e. sound speed profile slope). Franchi and Jacobson (1972)

and Rendas and Moura (1990)are two studies that have examined this issue.
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2.4 Beamforming and Multipath

The previous section discussed multipath arrivals at individual hydrophones. This

section shifts focus onto work that has been done using array beamforming to ana-

lyze multipath. Why use arrays? Most single hydrophone elements are reasonably

approximated as being omnidirectional, meaning they are equally sensitive to noise

arriving from any direction. Hydrophone arrays comprised of omnidirectional sensors

can increase sensitivity in some directions while decreasing it in others. This is called

spatial filtering. Vector sensors are single elements that measure particle velocity

on three independent axes. However, the focus of this work is on omnidirectional

hydrophones since they are more common, simpler in design, and less costly in gen-

eral. For localization built on time delays, the basic instrument of measurement is

a single omnidirectional hydrophone which provides no directionality. In the array

beamforming context, the basic instrument is a set of synchronized omnidirectional

hydrophones that work together to provide directional information.

Array beamforming operates on the idea that closely spaced receivers will observe

the acoustic field very similarly, but from slightly different vantage points. These

slight differences are utilized to determine the direction in which waves are arriving.

The concept is built on the assumption that a source located somewhere in space

will produce coherent responses on the individual elements of the array. Coherency

is an abstract idea but has a concrete definition [see Carter (1993)]. Two signals are

coherent with respect to one another if some information from one signal is shared with

the other signal. In other words, if by observing one signal it is possible to perfectly

predict the waveform of other signal through a deterministic function, then the signals

are perfectly coherent. Note that the two signals need not be identical, they just need
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to be deterministically related. Coherency is a measure of the predictability between

two signals, and varies from zero (totally unpredictable) to one (totally predictable).

Two signals that share no information, and thus do not have any shared predictability,

are called incoherent. Pairs of multipath arrivals at a single hydrophone are mostly

coherent. Also considering that two closely spaced hydrophones in a field share a

high degree of spatial coherence, what methods exist for leveraging this property for

processing element-level data from an array? Two such methods are discussed here:

matched field processing and the passive fathometer.

Matched field processing (MFP) uses array beamforming to exploit the spatial coher-

ence between hydrophones while simultaneously leveraging the coherence that exists

between multipath arrivals. It is typically used for localizing underwater targets, and

is described in Sec. 2.4.1. One advantage of it is it can operate on narrow-band data.

A disadvantage, however, is that it requires modeling the full field, which can be

sensitive to environmental parameters. This is because by modeling the full field, it

is effectively modeling the coherent sum of all multipath arrivals.

The passive fathometer was borne out of the field of geoacoustic inversion, and also

uses array beamforming to analyze coherence between multipath arrivals. Geoacoustic

inversion is the study of the seabed using sound. The passive fathometer is a recently

developed method that uses ocean ambient noise as a sound source. The way in

which it works represents a new method of exploiting coherence between multipath.

Whereas MFP focuses the beamformer on all multipath arrivals simultaneously, the

passive fathometer used beamforming to isolate and cross-correlate beams containing

individual arrivals. This is a fundamentally different processing modality than MFP,

and is described in Sec. 2.4.2. The third contribution of this dissertation is based
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on applying the same basic processing modality to noise data that originates from

a distant source using a three dimensional array, thus applying principals from both

modalities.

2.4.1 Matched Field Processing

As described in Sec. 2.4, Matched field processing (MFP) attempts to utilize the

coherence between multipath for estimating the location of a source. It is inherently

a narrowband technique, meaning that it can be used to localize sources that only

emit distinct tones. The field measured at a receiver depends on several factors: the

water, the seabed, and the geometry. MFP takes the approach of directly modeling

the field, and so it can be used not only to estimate the source location, but the

environmental parameters as well. In the source localization context, usually some

model of the environment is assumed, so the only “unknown” is the source location.

The challenge comes when the model chosen for the environment does not sufficiently

represent the actual acoustic propagation through the waveguide.

The hypothesized source location is called a replica, and the model of the acoustic

field from that point is called a forward model. For multiple receivers, the modeled

pressure values for a given replica are called a replica vector. Note that the modeled

pressure values consist of the coherent sum of all multipath arrivals. The replica

vector is then matched against the measured pressure field values, much in same way

that a manifold vector from a beamformer is used to match the measured pressure

field values. This involves conjugating the replica vector, multiplying it to the spectral

pressure values, and then summing the results. As the replica position approaches the

true source position, and provided the waveguide is accurately modeled, the output
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of the matched field beamformer will reach a maxima. This was first noted by Clay

(1966) for a general waveguide. It was later applied to an underwater acoustics

context with real ocean propagation considerations by Bucker (1976) and later by

Heitmeyer et al. (1985) and is generally referred to today as “conventional MFP.”

Following the success of adaptive beamforming, the same principles were later applied

to matched field replica vectors by Fizell and Wales (1985) and Lee et al. (1999). In a

related work, source motion compensation was studied by Zurk et al. (1999) and Zurk

et al. (2003). One of the challenges to applying MFP is its sensitivity to environmental

mismatch (Huang et al., 2006). Recently, Bayesian methdologies have been applied

in an attempt to shore up the robustness of MFP by Huang et al. (2006) and Dosso

and Dettmer (2011). A good summary of matched field processing is found in works

Tolstoy (1993), Baggeroer et al. (1993), Porter and Tolstoy (1994), Mecklenbrauker

(2001). A comparison of using time-delays of multipath arrivals with narrowband

matched field techniques was done by Blanc-Benon (1995) and Shaoyin and Yudong

(1998). MFP has also been adapted for use with broadband signals (Soares and

Jesus, 2003, Michalopoulou and Porter, 1996). Another variation was developed in

two separate papers (Yang and Yates, 1998, Yang et al., 1998) in which MFP was

applied in beam space.

MFP has documented shortcomings in the underwater acoustics community in recent

years due to sensitivity to environmental modeling errors. More recent works have in-

stead focused on methods that have less sensitivity. An example from the geoacoustic

community is the passive fathometer, which is described in the next section.
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2.4.2 Passive Fathometer

The ambient noise field in the ocean has increasingly become an object of study in

recent years. This field is created mainly by wind and breaking waves at the surface.

A hydrophone observes this spatially-distributed noise in addition to reflections of

this noise from the seabed. It is this interaction with the seabed that has fueled

much recent interest, such as Siderius and Harrison (2004), Siderius et al. (2013),

Muzi and Siderius (2013), Quijano et al. (2013), Walker (2012), Quijano et al. (2012).

When noise is generated at the surface, it radiates a random signal in all directions.

The waves that arrive at the seabed are distributed over a wide range of incidence

angles and a wide band of frequencies. The reflections of these waves thus contain

information about the reflection coefficient of the seabed. The reflection coefficient

is a useful quantity to know since it helps describe acoustic propagation through the

waveguide.

An interesting feature of the ambient noise field is that for most common ocean

environments for which the bathymetry is roughly flat, it is azimuthally symmetric in

power. If it were possible to measure the power of the noise field as a function of all

possible 3-D directions, the measured power would be the same along all azimuthal

angles for a single elevation angle. This is because the waveguide is essentially the

same along each radial direction (starting at the hydrophone and going out in range).

This azimuthal symmetry is efficiently measured with a vertical line array, which has

a conical beam pattern. By measuring the power arriving at different elevation angles,

it is possible to estimate the amount of energy lost in reflections from the seabed.

This, in turn, gives an estimate of the magnitude of the reflection coefficient as a
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function of frequency and grazing angle, as described by Harrison and Simons (2002).

It is important to note that by comparing the energy arriving at different elevation

angles does not consider coherence between multipath. In fact, by only considering

beam power, much of the coherence information is purposely lost.

In 2006, an algorithm dubbed the “passive fathometer” was introduced by Siderius

et al. (2006) for extracting the multipath coherence from the ambient noise field

using a vertical line array. This technique was later refined by Gerstoft et al. (2008),

Harrison and Siderius (2008), and Means and Siderius (2009). In this formulation,

the two-way travel time from the array to the seabed was measured by beamforming

at the end fire directions of the vertical line array to isolate the downward traveling

noise and the multipath reflection from the seabed. Later, Siderius et al. (2010)

showed that switching to adaptive beam forming (Capon, 1969) improved time delay

estimated by reducing interference from non-vertically-traveling waves. Additional

modeling work was done by Traer et al. (2011), and in Traer and Gerstoft (2011)

described a method of reducing the averaging times. Some details surrounding an

anomalous sign was examined in Harrison (2009) and Traer et al. (2009). Other

related work showed improvement similar to using adaptive beamforming through

the use of “super gain” (Siderius, 2012). Super gain refers to driving an array just

past its endfire look directions.

The passive fathometer is a methodology of finding coherent echoes from the seabed.

However, coherent echoes of downward traveling noise should also come from any

objects directly under the array. Harrison (2008) demonstrated this was indeed the

case. Leroy et al. (2012) has also examined extraction of coherent wavefronts using

array processing techniques.
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2.5 Multipath Coherence and Waveguide Invariance

The passive fathometer described in the previous section is a method for exposing

the inherent coherence between multipath arrivals. However, this technique was in-

troduced relatively recently, and was designed to operate on surface-generated noise.

An older class of techniques that operate on broadband noise from distant, more

point-like, sources have centered around a phenomenon known as waveguide invari-

ance. Waveguide invariance is relevant to this work since waveguide invariance is

essentially a manifestation of multipath coherence.

The following example describes the concept of waveguide invariance. Take a noise-

producing source, such as a boat, or underwater vehicle, that is moving past a hy-

drophone. Both are in a waveguide that supports multipath, and the noise is detected

by the hydrophone through multiple arrivals. In this situation, the spectrogram from

the hydrophone will show striations curves in the noise. These appear as oscillations

of intensity along the frequency axis. The centers of each intensity peak changes over

time as the source range decreases, then increases. The principle of waveguide invari-

ance says (loosely) that the collective slope of these striations is “invariant” to the

specific parameters of the waveguide. This is a powerful idea, since the environmental

parameters of the waveguide are known to significantly impact acoustic propagation.

Measuring something that depends on the target range but not the environmental pa-

rameters implies it can be used for target ranging while simultaneously being robust

to environmental parameters.

The waveguide invariant concept was originally introduced and formalized by Chuprov

(1982), in which he showed that the slope of striations in frequency-range space can
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be described by the formula

Bω

Br
“ β

ω

r
. (2.2)

The parameter β describes the slope of the striations, and its value does not vary

much to environmental parameters. This parameter thus provides a link between

the source range and the measured acoustic data, while having minimal dependence

on environmental parameters. Recent work by Oesterlein et al. (2010) showed that

striation slopes are easily extracted from spectrograms thus providing an estimate of

the left hand side of Eq. 2.2.

The modal regime has traditionally been used to describe the waveguide invariant

phenomenon D’Spain and Kuperman (1999). Modal decomposition of the pressure

field results in a weighted orthogonal basis set of conical waves. An individual mul-

tipath arrival can thus be distributed across several modes. While analysis has tra-

ditionally been formulated in a modal regime by describing interfering interactions

between modes, Harrison (2011) showed that the relative eigenray travel times give

the striations their shape, and computed β for several analytic sound speed profiles.

The use of the ray regime has some advantages, in that it provides a somewhat more

intuitive picture of what gives rise to the striations. Each of the multipath eigenrays

between a source and receiver will have a different travel time. Each will also have a

unique set of phase and amplitude changes as a result of boundary reflections. Since

noise has a short correlation time, then at a given moment in time, the hydrophone

receiver will simultaneously observe all the arrivals as multiple incoherent sources.

However, spectrograms are computed with a snapshot that is typically longer than

the majority of the time delays between multipath arrivals. Within the time span
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of a snapshot the hydrophone will observe the arrivals as multiple delayed copies of

the same noise signal. So, in other words, the hydrophone observes the multipath

coherence if the snapshot length is long enough. An auto-correlation of the received

waveform produces several delayed pulses on the time delay axis. Some pulses are

stronger than others depending on the amplitude of the arrivals, and the amount

of signal common to the arrivals within the snapshot. The power spectrum is the

Fourier transform of the auto-correlation. Hence, the time-domain pulses in the auto-

correlation correspond to sinusoidal patterns in the frequency domain, which give rise

to the oscillating pattern in the power spectrum along the frequency axis. As the

target range changes, so do the position of the pulses on the time axis, which affect

the frequency of the sinusoids in the power spectrum thus manifesting as continuously

varying striations in the spectrogram.

The principals of waveguide invariance have been shown to be useful for passive

determination of range and radial velocity from sources (Rakotonarivo and Kuper-

man, 2012, Kapolka, 2008). These are single hydrophone applications, which mean

they can be utilized with relatively little deployment complexity. However, recently

waveguide invariance has been applied to more complex receiver configurations. For

example, it has been utilized by a modified conventional beamformer to increase array

gain by (Rouseff and Zurk, 2011). It has also been shown to improve active sonar

beamforming by (Zurk and Rouseff, 2012).
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Chapter 3

Theory

This chapter gives the necessary technical background forming the basis for the tech-

niques presented in this dissertation. The discussion begins with the foundation of

classical sonar processing: the sonar equation (Sec. 3.1). Sec. 3.2 then delves into some

fundamental signal processing tools needed to process raw time-series data. Sec. 3.3

presents the acoustic wave equation that links the signal processing to fundamental

physical laws. Sec. 3.4 then extends this to describe the Helmholtz equation and

Green’s functions. It goes into several theoretical regimes for modeling propagation

of acoustic waves through the ocean, all of which are based on the wave equation.

Returning to signal processing, the concept of beamforming, also known as spatial

filtering, is then discussed in Sec. 3.5. This begins with the simplest algorithm, the

conventional beamformer, and then proceeds to more sophisticated algorithms that

have the ability to adapt to the data being measured. Matched field processing

(MFP) is another technique that uses formulations related to beamforming but is

built around physical waveguide models. The techniques of this dissertation are not

based on MFP, but it is enlightening to examine how the a similar problem is solved

in a different way.
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3.1 Signal Intensity Detection and Ranging

Traditionally, passive sonar detection has been framed in the context of measurement

and analysis of incoherent signal intensity (Urick, 1962). Much of this has been out-

lined in the seminal text Urick (1967), and is captured in a set of equations, commonly

referred as “the sonar equations.” This material has recently been reformulated using

a generalized source model in Ainslie (2010).

The sonar equations define the relationships between the equipment, the medium, and

the target. In this detection modality, only the intensity of each quantity is considered.

The passive sonar equation, as it is defined by Urick (1967), is

SL ´ TL “ NL ´ DI ` DT (3.1)

in which SL is the source level, TL is the transmission loss, NL is the noise level, DI is

the receiving directivity index, and DT is the detection threshold, and each is specified

in decibels. For a single hydrophone, array gain (AG) is not needed. For an array,

it can be combined with DI by treating the beamformed receiver array as a unified

receiver system with a given directivity pattern. Reverberation level (RL) is also not a

factor in the passive sonar equation, so is omitted. An abundant amount of complexity

underlies each variable in Eq. 3.1. Considering TL, for example, propagation of

an acoustic wave through a waveguide can be affected by numerous environmental

factors, some of which are time-varying, such as the sea surface. Much effort has been

spent modeling propagation using a variety of mathematical approaches, as outlined in

the seminal work by Jensen et al. (2011a). The sonar equation also does not consider

many temporal features of a waveform. An impulse, such as might be produced by an
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explosion, will have distinct arrivals in certain waveguides, each of which undergoes

a different amount of transmission loss. The sonar equation is nevertheless a useful

conceptual framework since it places clear bounds on overall system performance.

This intensity framework can also be used for target ranging. To illustrate, the passive

sonar equation is rewritten as

SL ´ TLpRq ` DI “ X a NL. (3.2)

TL is parameterized with range, R, and represents the modeled propagation loss at

range R. DI is the amount of array gain, which amplifies SL. The last term, X, is

the intensity recorded by the receivers. The a operator is subtraction in linear space

(both arguments are converted to linear space from log space, subtracted there, and

the result transferred back to log space). The source level is reduced in amplitude by

some amount (TL) when it gets to the receiver, at which point it is amplified by the

receiver (DI). The received intensity (X) is the sum of the signal plus noise, so if the

intensity of the noise is subtracted off, what remains is the signal level. By varying

the parameter, R to satisfy this equation, an estimate of range is obtained.
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3.2 Signal Processing

This section provides some context for signal processing in underwater acoustics, and

defines the mathematical constructs used in this study. One of the main themes of

this dissertation is measuring time-lags between noise recorded on two hydrophones.

Finding this lag is generally accomplished by cross-correlation, and is usually imple-

mented in the frequency domain. These sections define what the frequency domain is,

what cross-correlation is in the signal processing context, and how it is implemented

in the frequency domain.

In general, a signal is an ordered sequence of measurements of a time-varying quantity.

In underwater acoustics, the most common type of signal is the type that is recorded

by a hydrophone, which measures slight pressure fluctuations and converts them

to voltages. These voltages are then digitally sampled using an A2D (analog-to-

digital) converter. The rate at which samples are recorded is called the “sample

rate,” often denoted fs. The amount of voltage change for every unit of pressure

change is captured in a metric called sensitivity that is different for each hydrophone.

The units convention for pressure in underwater acoustics is micro-Pascals, or µPa.

Sensitivities are therefore in units of µPa/V, but are usually expressed as decibels,

which is a log scale. The result of A2D conversion is a digital signal of amplitudes of

the form

xrns, (3.3)

in which n is the sample number that monotonically increases. Underlying the sam-
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pled process is a continuous process

xptq. (3.4)

3.2.1 Fourier Analysis

The Fourier transform is based on the idea that any real-valued signal can be decom-

posed into an infinite sum of sin’s and cos’s. These sums are called the Fourier series

expansion of a signal. The Fourier series can also be created using complex exponen-

tials, which are a generalization of the trigonometric functions. This relationship is

captured in Euler’s famous formula1

eiθ “ cospθq ` i sinpθq. (3.5)

The forward and inverse Fourier transform pair are defined as

Xpωq “ F rxptqs
∆
“

ż 8

´8

xptqe´iωt dt (3.6)

xptq “ F´1 rXpωqs
∆
“

1

2π

ż 8

´8

Xpωqe`iωt dω. (3.7)

The Fourier transform also exists in discrete time, and is known as the discrete Fourier

1The importance of this formula was eloquently noted by the late physicist Richard Feynman.
“In our study of oscillating systems, we shall have occasion to use one of the most remarkable,
almost astounding, formulas in all of mathematics. From the physicists’ point of view, we could
bring forth this formula in two minutes or so and be done with it. But science is as much for
intellectual enjoyment as for practical utility, so instead of just spending a few minutes, we shall
surround the jewel by its proper setting in the grand design of that branch of mathematics called
elementary algebra. ” –Richard Feynman, in “The Feynman lectures on physics” (Feynman et al.,
2011)
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transform (DFT). These pair of transform equations are defined as

Xrks “
N´1
ÿ

n“0

xrnse´2πi kn
N (3.8)

xrns “
1

N

N´1
ÿ

k“0

Xrkse2πi
kn
N (3.9)

where xrns is the input time-domain signal of length N and Xrks is the corresponding

frequency domain signal also of length N .

In discrete space, the DFT takes the place of the continuous Fourier transform. The

DFT is almost always computed using the Fast Fourier Transform (FFT) algorithm.

The reason for this is evident from their respective runtimes. The DFT is an Opn2q

algorithm, and the FFT is Opn log nq. The FFT makes use of Opn log nq memory in

order to store intermediate calculations, whereas the DFT only requires Opnq mem-

ory. This trade-off may be relevant only in the most tightly constrained embedded

environments, but on modern hardware the additional memory utilization is negligi-

ble.

3.2.2 Cross-Correlation

Correlation processing has been studied for the better part of a century (Faran and

Hills, 1952). The concept of correlation is that of a statistical measure of the amount

of shared information between two data streams. In classical statistics, correlation is

defined as a normalized covariance, in which the correlation coefficient is

ρX,Y “
E rpX ´ µXq pY ´ µY qs

σXσY
. (3.10)
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The variablesX, and Y are two random variables, µ is the mean, and σ is the standard

deviation.

In signal processing, the correlation between signals is often defined as the conjugate

operation of convolution. Convolution of two signals x1ptq and x2ptq is

x1ptq ˚ x2ptq
∆
“

ż 8

´8

x1pτq ¨ x2pt ´ τq dτ (3.11)

whereas cross-correlation is defined as

Γx1,x2
ptq “ x1ptq b x2ptq

∆
“

ż 8

´8

x1pτq ¨ x2pt ` τq dτ . (3.12)

Note that both of Eq. 3.11 and Eq. 3.12 do not use the normalization found in classical

statistics (i.e. the denominator of Eq. 3.10). The variable τ shifts x2 on the time axis.

At each value of τ , the integral is computed over the entire time axis. If x1ptq and

x2pt ` τq are statistically similar, the result will be a value with a large magnitude.

In terms of notation, the cross-correlation function Γ is sometimes specified in terms

of τ , such as Γx1,x2
pτq. However, this does not change its meaning, but is rather a

useful way to clearly distinguish the cross-correlation time axis from absolute time t,

which are fundamentally different.

Cross-correlation in the time-domain is equivalent to conjugate-multiplication in the

frequency domain. This fact can be leveraged to compute cross-correlations in the
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frequency domain as

Γx1,x2
ptq “ x1ptq b x2ptq (3.13)

“ F´1 tSx1,x2
pωqu (3.14)

“ F´1
 

F rx1ptqsF rx2ptqs˚( (3.15)

in which ˚ is the complex conjugation operation, ω is the angular frequency, and Sx1,x2

is the cross-spectrum of x1 and x2.

One important consideration when computing the cross-correlation in the frequency

domain is the circular convolution behavior of this method. The DFT is computed

over a finite-length snapshot of data, F tx1rnsu for which n P 1 . . . N . Samples outside

of r1, N s on the time axis are not used in the computation. However, according to

Eq. 3.9, if xrns is computed outside of r1, N s, the exponential term will “wrap” causing

xrns to repeat. In other words,

xrns “ xrn ´ qN s (3.16)

for integer q. This implies that when x1rns is cross-correlated with x2rns using

Eq. 3.15, that in actuality it is a correlation of the repeated pattern of each process.

This effectively implies that as one process slides on the time axis, it is conceptu-

ally “wrapping” into the other side of the snapshot window. For many time-delay

problems, this is not desirable. The solution is to zero-pad each snapshot prior to

computing the DFT. The zero-pad should be exactly the length of the snapshot. This

way, the part of the snapshot that wraps is all zeros.
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3.2.3 Random Processes and Stationarity

Noise is typically thought of as the part of any measurement that is not related to

the signal, or the waveform of interest. In this way, it serves to corrupt the signal

making its measurement more difficult. However, signals of interest are not necessarily

deterministic, and can be characterized as a random process.

What is a random process? A random process, a.k.a. a stochastic process, extends

the concept of a random variable to a time-series. A single random variable is defined

by its probability distribution function (PDF). A random process can be thought of

as a set of random variables defined on the time axis. In discrete time, each sample

would be a separate random variable. Note that each sample may depend on the

other samples in the time series. This means that the process is fully characterized

by the joint PDF across all samples.

A single realization of a random variable would be to draw a single value from that

PDF. An infinite number of realizations together would converge to the PDF. Like-

wise, a single realization of a random process is a draw from the joint PDF. Note

that the joint PDF is a multivariate function with dimension equal to the number of

samples, which can possibly be infinite. A Gaussian process is one in which the joint

PDF is a multivariate normal distribution. This is defined in Kay (1998) as

ppxq “
1

p2πqn{2 det1{2pCq
exp

„

´
1

2
px ´ µqTC´1px ´ µq



(3.17)

in which C is the covariance matrix, n is the dimensionality of the PDF, µ is a vector

of means, det is the determinant operator, and T is the transpose operator.
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A stationary process is a specialization of a random process in which the joint PDF

does not vary with time. It is important to note this is a theoretical construct. In

practice, the random processes encountered in passive acoustic localization are never

truly stationary, but within a very short snapshot of time, it is assumed to be.

A “white” process is a process for which each sample is independent and identically

distributed (IID). A common representation of noise emitted from a propeller is zero-

mean white Gaussian noise, such that each sample is drawn from a normal distribution

centered at the origin with a given variance. The variance determines the source level,

and is the only parameter needed to fully characterize the process, making it easy

to work with. Note that in a waveguide, noise emitted by a source may reflect from

several boundaries before arriving at a receiver. This received waveform now contains

several delayed copies of the original white Gaussian process. Hence, the received

waveform is no longer white since there exist time delays for which the samples are

correlated (i.e. not independent).

The whiteness of a process is defined as each sample being drawn from IID random

variables. This implies that the spectral levels of the process are flat across frequency.

Purely white noise is a theoretical construct, mainly because a process that is defined

as having the same level over all frequencies out to infinity, and will have infinite

energy. As with stationarity, a real sonar noise process are sometimes approximated

as being white, but more commonly are approximated as having a flat spectrum

within a specific frequency band. Hence, analytically, a white Gaussian process is

often used, but algorithmically, a flat-spectrum band-limited Gaussian process is more

appropriate.
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3.2.4 Pre-Whitening

The last section discussed band-limited white Gaussian processes, which are useful

for modeling noise emitted from a propeller-driven vehicle. However, vehicles that

use combustion engines to drive their propellers often emit other sounds from the

different components of the drive train. These components are “narrowband” in that

the acoustic energy is concentrated at specific frequencies instead of smeared out over

a wider band. An example would be the crankshaft of an engine, which turns at a

certain RPM. This RPM rate is proportional to the rate of firing of the pistons, also

the rate of the camshafts, as well as the turn rate propeller itself. Most propellers

have multiple blades, so the blade-rate is a multiple of the propeller RPM. The base

crankshaft RPM and the various components that turn at constant proportions to it

will typically impart strong vibrational energy into the water that show up as “tonal”

components at a receiver. These superimpose with the noise produced by cavitation

from the propeller. In that case, both signatures show up in the received wave-

form. The problem is that these tonal components show up in the cross-correlation

(Eq. 3.15), which hinder time delay estimation.

This can be described with an example. Assume xptq is a white Gaussian process

but contains an unwanted strong signal component of the form B cospω1tq, in which

ω1 is any single frequency. This is detected at receiver 1 after a time delay of t1, and

receiver 2 after a time delay of t2. The superimposed signals are

y1pωq “ xpt ´ t1q ` B cosrω1pt ´ t1qs (3.18)

y2pωq “ xpt ´ t2q ` B cosrω1pt ´ t2qs. (3.19)
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In the frequency domain,

Y1pωq “ Xpωqe´iωt1 ` Bδp˘ω1qe´iωt1 (3.20)

Y2pωq “ Xpωqe´iωt2 ` Bδp˘ω1qe´iωt2 . (3.21)

The cross-correlation of receivers 1 and 2 is

SX1,X2
pωq “ Y1pωqY ˚

2 pωq (3.22)

“ |X|2e´iωpt1´t2q (3.23)

` XB˚e´iωpt1´t2qδp˘ω1q (3.24)

` X˚Be`iωpt1´t2qδp˘ω1q (3.25)

` |B|2e´iωpt1´t2qδp˘ω1q. (3.26)

Let ∆ “ t1 ´ t2, then in the time domain,

Γx1,x2
pτq “ |X|2δpτ ´ ∆q (3.27)

` XB˚ cosrω1pτ ´ ∆qs (3.28)

` X˚B cosrω1pτ ` ∆qs (3.29)

` |B|2 cosrω1pτ ´ ∆qs. (3.30)

If B is large enough, the last term dominates and adds a significant amount of sinu-

soidal corruption to Γpτq that has the same frequency as the unwanted tonal signal

component. Time delay estimation is tantamount to finding the offset peak associated

with the first term, so sinusoidal corruption will make this difficult.

One solution is called the “phase transform”, or PHAT, and is often referred to the
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“pre-whitening” (Knapp and Carter, 1976). It is one method of compensating for

noise that is not initially spectrally flat and involves forcibly whitening the received

signal in a finite band as

Ŷ pωq “
Y pωq

|Y pωq|
. (3.31)

Pre-whitening reduces strong tonal components, while amplifying weak spectral val-

ues. Essentially, after the operation is complete, all the information is contained in

the phase, since all amplitudes are one. This is usually done using discrete time-series

with finite bandwidth. For signals that are constrained to a finite band, pre-whitening

is applied only to that band while suppressing (setting to zero) spectral values outside

of the band. This is critical because if parts of the frequency axis in which no signal

exists are pre-whitened, this has the effect of amplifying those spectral components,

which shows up as additional noise in the output time-series. In the example above, if

the band consists of N discrete bins and the tonal corruption occupies one bin, then

B is reduced to |X|{N , regardless of its true level, which may be much greater than

X.

3.2.5 Time Delay Estimation

As was demonstrated in the last section in the context of pre-whitening, noise recorded

at two receivers will manifest as a single pulse in the cross-correlation output. This

process is called pulse-compression. Noise is broadband, but so are short-duration

time-domain pulses. Pulse compression is thus a method to compress the broadband

energy of noise into a short-duration pulse.
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Similar to the definition in Eqs. 3.18 and 3.19, two receivers record a white Gaussian

noise process xptq in the presence of additive white Gaussian noise nptq,

y1pωq “ xpt ´ t1q ` n1ptq (3.32)

y2pωq “ xpt ´ t2q ` n2ptq. (3.33)

The additive noise processes are separate IID processes unique to each receiver.

The cross-correlation of receivers 1 and 2 is

SX1,X2
pωq “ Y1pωqY ˚

2 pωq (3.34)

“ |X|2e´iωpt1´t2q (3.35)

` XN˚
2 e

´iωt1 (3.36)

` X˚N1e
`iωt2 (3.37)

` N1N
˚
2 . (3.38)

This is often computed by averaging the cross-correlation of multiple snapshots to-

gether. The rationale for doing this is based on the fact that nptq is uncorre-

lated with xptq. Averaging thus reduces the relative magnitude of the cross-terms,

Eqs. 3.36 and 3.37. It is useful to consider the ensemble average,

SX1,X2
pωq « E rY1pωqY ˚

2 pωqs “ |X|2e´iωpt1´t2q, (3.39)

in which E is the expected value operator. This form eliminates any terms that

are comprised of the product of two uncorrelated spectra. Transforming to the time
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domain,

Γx1,x2
pτq “ |X|2δrτ ´ pt1 ´ t2qs (3.40)

for which t1 ´ t2 is the time delay. This method can thus be used to estimate the

time-delay of broadband noise between two hydrophones by measuring the offset of

the delta function in Eq. 3.40. Carter (1993) has compiled an anthology of papers on

this subject of using cross-correlation for time-lag estimation.
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3.3 The Wave Equation

The acoustic wave equation is derived in this section. The material presented here

borrows heavily from Richard Feynman’s lectures on physics [Volume 1, Chapter 47

of Feynman et al. (2011)].

The wave equation follows from three physical phenomena.

I As the fluid2 moves, it changes density.

II The change in fluid density causes a change in pressure.

III The pressure gradient causes acceleration.

The following sections derive the wave equation for a plane wave traveling along the

x-axis. Initially, however, a definition is needed. At equilibrium, a fluid has a constant

pressure p0 and density ρ0. Waves are carried by small fluctuations in pressure pe and

density ρe whose magnitude is significantly less than equilibrium. The total pressure

and density are then

p “ p0 ` pe ρ “ ρ0 ` ρe. (3.41)

3.3.1 Continuity Equation (I)

The continuity equation is essentially a restatement of the law of the conservation

of mass. It basically says that as the volume expands, the density decreases. The

2Here, fluids are considered to be compressive or weakly compressive, which gives rise to linear
acoustics.
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displacement, or movement, of the fluid located at position x and at time t is χpx, tq.

The new position is then

χpx, tq ` x. (3.42)

Now considering a nearby point a small distance away x ` ∆x, the displacement of

that point is χpx ` ∆x, tq making its new position

χpx ` ∆x, tq ` x ` ∆x. (3.43)

The mass of the air, per unit area, that is moved is between the first and second point

initially is

ρ0px ` ∆x ´ xq. (3.44)

After displacement, the volume expands so the mass is

ρrχpx ` ∆x, tq ` x ` ∆x ´ χpx, tq ´ xs (3.45)

in which ρ is the new density. The masses must be equal,

ρ0∆x “ ρrχpx ` ∆x, tq ´ χpx, tq ` ∆xs. (3.46)

Since ∆x is small,

χpx ` ∆x, tq ´ χpx, tq “
Bχ

Bx
∆x. (3.47)
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Therefore,

ρ0∆x “ ρ

ˆ

Bχ

Bx
∆x ` ∆x

˙

(3.48)

“ pρ0 ` ρeq

ˆ

Bχ

Bx
∆x ` ∆x

˙

. (3.49)

Since

ρe ! ρ0, (3.50)

this now becomes

ρ0∆x “ ρ0
Bχ

Bx
∆x ` ρ0∆x ` ρe∆x. (3.51)

Which yields

ρe “ ´ρ0
Bχ

Bx
. (3.52)

3.3.2 Equation of State (II)

The equation of state describes the behavior of the fluid, or its “state” in a chemistry

sense, in response to changes in pressure, volume, density, and temperature. In

general, the pressure is some function of the density, such that

p “ fpρq (3.53)
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so

p0 ` pe “ fpρ0 ` ρeq. (3.54)

Since

ρe ! ρ0, (3.55)

this allows for the first-order approximation

p0 ` pe “ fpρ0q ` ρef
1pρ0q (3.56)

where f 1pρ0q is the derivative of f evaluated at ρ0. Since p0 “ fpρ0q,

pe “ ρef
1pρ0q (3.57)

f 1pρ0q “
pe

ρe
“

ˆ

Bp

Bρ

˙

0

“ B (3.58)

which is the derivative of pressure with respect to density evaluated at equilibrium.

The equation of state is thus defined as,

pe “ Bρe. (3.59)

The product Bρ0 is known as the bulk modulus, and is based on the properties of

the fluid.
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An adiabatic process is defined in Kinsler et al. (1999) as

p

p0
“

ˆ

ρ

ρ0

˙γ

. (3.60)

For an ideal gas, γ “ 1. Compression of a gas causes it to rise in temperature.

Through diffusion, excess heat in one volume will migrate to an adjacent volume of

lower temperature. However, if the distance between crests of the wave (i.e. the

wavelength) are much greater than the separation between the elementary particles

of the fluid, this heat flow will be much slower than the movement of the wave. This

allows for the approximation to be made that no energy is lost to the movement of

heat, hence the term adiabatic. In ocean water, some acoustic energy is lost due to

heat, which gives rise to an attenuation constant that increases with frequency. The

attenuation constant is fairly small, and is commonly approximated as zero if waves

are propagating over short distances, or if losses due to other factors outweigh it.

3.3.3 Equation of Motion (III)

The equation of motion is essentially a restatement of Newton’s second law. For a

free body this is

F “ ma (3.61)

in which F is the force, m is the mass, and a is the acceleration. For a small volume

of fluid, the net pressure in the positive and negative x direction corresponds to a net

force per unit area. A pressure gradient will therefore lead to an acceleration of the
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small volume. The mass per unit area of the fluid having thickness ∆x is

ρ0∆x. (3.62)

The acceleration is simply the second derivative of its position,

B2χ

Bt2
. (3.63)

The pressure at x in the positive x direction is ppx, tq and at a nearby point the

pressure in the negative x direction is ppx ` ∆x, tq so the net force per unit area in

the positive x direction is is

ppx, tq ´ ppx ` ∆x, tq. (3.64)

This can be specified as

ppx, tq ´ ppx ` ∆x, tq “ ´
Bp

Bx
∆x “ ´

Bpe
Bx

∆x (3.65)

since the derivative of p0 with respect to x is zero. The negative sign makes sense

since if the pressure decreases between x and x`∆x, the net pressure will be positive.

Lastly, since force equals mass times acceleration,

ρ0∆x
B2χ

Bt2
“ ´

Bpe
Bx

∆x (3.66)

ρ0
B2χ

Bt2
“ ´

Bpe
Bx

(3.67)

which is the equation of motion.
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3.3.4 The Wave Equation

To summarize so far,

ρe “ ´ρ0
Bχ

Bx
continuity (3.68)

pe “ Bρe state (3.69)

ρ0
B2χ

Bt2
“ ´

Bpe
Bx

motion. (3.70)

Substituting Eq. 3.69 into Eq. 3.68,

1

B
pe “ ´ρ0

Bχ

Bx
. (3.71)

Taking the derivative with respect to x,

Bpe
Bx

“ ´ρ0B
B2χ

Bx2
. (3.72)

Substituting in Eq. 3.70,

´ρ0
B2χ

Bt2
“ ´ρ0B

B2χ

Bx2
. (3.73)

Rearranging and canceling,

B2χ

Bx2
´

1

B

B2χ

Bt2
“ 0. (3.74)

The multiplier is

1

B
“

1

c2
(3.75)
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in which c is the speed of the wave. So,

B2χ

Bx2
´

1

c2
B2χ

Bt2
“ 0 (3.76)

which is the wave equation in terms of displacement, χ. Taking the derivative again

with respect to x,

B2 Bχ
Bx

Bx2
´

1

c2
B2 Bχ

Bx

Bt2
“ 0. (3.77)

From Eq. 3.71,

´
ρ0

B
pe “

Bχ

Bx
. (3.78)

Substituting this into Eq. 3.77, canceling the extra constants, and redefining the

excess pressure

p
∆
“ pe, (3.79)

yields

B2p

Bx2
´

1

c2
B2p

Bt2
“ 0 (3.80)

which is the wave equation in terms of (excess) pressure.

In three dimensions, the pressure wave equation in a homogeneous medium is defined

by taking spatial derivatives along each cartesian axis as

∇2p ´
1

c2
B2p

Bt2
“ 0. (3.81)
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The symbol ∇2 is the Laplacian operator defined as

∇2 “
B2

Bx2
`

B2

By2
`

B2

Bz2
(3.82)

in cartesian coordinates. Equation 3.81 is a second-order homogeneous differential

equation and describes how the pressure within an infinitely small volume of space

behaves. Equation 3.81 relates the Laplacian of the pressure field with the second

derivative of the same pressure field. The Laplacian can be conceptualized as the

curvature of the field in space, whereas the second derivative is the acceleration of

the pressure. The wave equation states that these quantities are equal. As the

curvature of the pressure field increases, so does the acceleration of the pressure.
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3.4 Propagation Modeling

The wave equation describes the rules that govern a pressure field. It is based on

fundamental laws of physics and holds at every point for which the assumptions are

valid. By itself, the wave equation is of limited use since it describes the behavior of

a fluid within an infinitesimally small volume. More often, the object of study is how

waves, whose behavior is governed by this equation, propagate between points. In

the ocean, the surface and seabed act as boundaries that reflect water-borne acoustic

waves, thus creating a “waveguide.” Typically, something in the water or on a bound-

ary is creating waves, which is called a “source.” These waves “propagate” through

the waveguide to some other point in which they are observed with a “receiver,” such

as a hydrophone. The goal is to solve the wave equation in such a way as to capture

the essential characteristics of this propagation, while remaining agnostic with respect

to the specific signals being generated by the source. The formal way to describe the

field at a receiver point with respect to a source point within a specific environment is

called a Green’s function. A propagation model is a method of estimating a Green’s

function.

The following sections describe the Helmholtz equation (Sec. 3.4.1) that describe how

the wave equation is modified to accommodate a source point. An overview of several

popular propagation models are given in Sec. 3.4.2. Lastly, Sec. 3.4.3 and Sec. 3.4.4

describe wavenumber integration and ray tracing models that are used later.
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3.4.1 The Helmholtz Equation

Much of this discussion closely follows the derivation described in [Chapter 2 of Jensen

et al. (2011a)].

Taking the Fourier transform of Eq. 3.81 allows the time derivative to be replaced

with a constant. This reveals the a homogeneous Helmholtz equation,

“

∇2 ` k2
‰

ppr, kq “ 0 (3.83)

in which k is the wavenumber defined as

k
∆
“
ω

c
(3.84)

and r is the position in space defined as

r
∆
“ px, y, zq. (3.85)

The plane-wave solution to Eq. 3.83 in a homogeneous medium is

pprq “

$

’

&

’

%

Aeik¨r

Be´ik¨r
(3.86)

where k is the wavenumber vector and A and B are arbitrary wave amplitudes.

These represent outward and inward propagating waves, respectively. Only outward

propagating waves are of interest, so we discard the Be´ik¨r solution.

If a point source is placed in a medium that is infinite and homogeneous, only the
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distance from the source matters. In spherical coordinates, Eq. 3.83 can be written

as

„

1

r2
B

Br
r2

B

Br
` k2



ppr, kq “ 0 (3.87)

in which r is the distance from the source. This has solutions

pprq “

$

’

&

’

%

A
r
eikr

B
r
e´ikr

. (3.88)

As with Eq. 3.86, these correspond to outgoing and incoming spherical waves, so the

latter is omitted. The r in the denominator indicates that the amplitude of the wave

decays with 1
r
. This also implies that the intensity decays with 1

r2
.

A point source in an infinite homogeneous medium is modeled as a small sphere with

radius a whose volume oscillates. It is assumed the change in radius is much less than

the wavelength, such that

ka ! 1. (3.89)

The surface displacement is

upt, rq “ Uptq (3.90)

which is the boundary condition for the sphere. The term u can be defined in terms

of the displacement potential,

upt, aq “
Bψpr, tq

Br
. (3.91)
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In the frequency domain, the boundary condition is

upω, rq “ Upωq. (3.92)

The displacement potential, like pressure, is another variable that obeys the wave

equation, so by Eq. 3.87 and Eq. 3.88,

ψprq “ A
eirk

r
(3.93)

for outgoing spherical waves. The displacement is found through Eq. 3.91 as

uprq “ Aeikr
ˆ

ik

r
´

1

r2

˙

. (3.94)

By the assumption in Eq. 3.89,

upω, aq « ´
A

a2
(3.95)

for which

A “ ´a2Upωq. (3.96)

The source strength is defined as

Sω
∆
“ 4πa2Upωq, (3.97)
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so

ψprq “ ´Sω

eikr

4πr
. (3.98)

This basically says that the field at range r is the product of the source spectrum

and a linearly decaying complex exponential. This latter part is called the Green’s

function,

gωpr, 0q “
eikr

4πr
. (3.99)

For a source located at an arbitrary point r0 and observed at point r,

gωpr, r0q “
eik|r´r0|

4π|r ´ r0|
. (3.100)

It is a simple matter to see that the Green’s function satisfies the inhomogeneous

Helmholtz equation

“

∇2 ` k2
‰

gωpr, r0q “ ´δpr ´ r0q. (3.101)

The principle of reciprocity follows from Eq. 3.101 which is defined as

gωpr, r0q “ gωpr0, rq. (3.102)

The full inhomogeneous Helmholtz equation follows from Eq. 3.101 and Eq. 3.98,

“

∇2 ` k2
‰

ψpω, rq “ Sωδpr ´ r0q. (3.103)

For a source that is distributed in space according to fprq, the Helmholtz equation
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becomes

“

∇2 ` k2
‰

ψpω, rq “ fprq. (3.104)

In the presence of boundaries, the Green’s function takes on a new form, called the

general Green’s function,

Gωpr, r0q “ gωpr, r0q ` Hωprq (3.105)

in which Hωprq is any solution to the homogeneous Helmholtz equation,

“

∇2 ` k2
‰

Hωprq “ 0, (3.106)

and Gωpr, r0q solves the inhomogeneous Helmholtz equation,

“

∇2 ` k2
‰

Gωpr, r0q “ ´δpr ´ r0q. (3.107)

There is no general closed-form expression for Gωpr, r0q as it requires integrating

around the boundaries. However, under certain conditions, this can be solved using

different methods, some of which are listed in the next section.

While the derivation for the general Green’s function and inhomogeneous Helmholtz

equation is performed with respect to the displacement potential, the same equations

hold for pressure. In signal processing terms, the Green’s function can be considered

the transfer function between a source and a receiver. This is a useful abstraction,

since it allows propagation modeling tools to solve for the Green’s function which

can be then be utilized to predict how a particular source signal will manifest at the
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receiver.

3.4.2 Overview of Common Models

Propagation models are techniques of predicting the Green’s function, either as a

whole, or in constituent pieces. Several methods exist to solve Eq. 3.107. What does

it mean to “solve” this equation? Solving means determining a value for Gωpr, r0q at

r and r0 in a waveguide having a particular set of parameters, such as water depth,

sound speed gradient, attenuation constants, etc.

The popular methods of solving Eq. 3.107 are

• finite-difference

• normal mode

• parabolic equation

• wavenumber integration

• ray tracing

Only the latter two are used in this dissertation, and they will be described in the

following sections.

3.4.3 Wavenumber Integration

The derivation in this section draws heavily from Section 2.4.1 of Jensen et al. (2011a).

A common approximation to the ocean is that of an axisymmetric environment. That
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means that with respect to a single point, the 2-D range-depth slice of the environment

is the same regardless of the chosen azimuth angle. This symmetry can be used to

simplify the Helmholtz equation, Eq. 3.104. This is done with the Hankel transform

pair,

fpr, zq “

ż 8

0

fpkr, zqJ0pkrrqkr dkr (3.108)

fpkr, zq “

ż 8

0

fpr, zqJ0pkrrqr dr (3.109)

which produces the depth-separated wave equation

„

d2

dz2
` pk2 ´ k2rq



ψpkr, zq “ Sω

δpz ´ zsq

2π
(3.110)

such that

k “
a

k2r ` k2z . (3.111)

Equation 3.110 is a second order partial differential equation of one variable, and is

a much simpler form than Eq. 3.104. However, it comes at the cost of having to

evaluate the infinite integral of the Hankel transform to obtain the frequency-domain

solution. Hence the name wavenumber integration.

The subject of applying wavenumber integration to environments of different types

is somewhat tangential to this work. The salient aspects that pertain here are that

wavenumber integration is an exact solution to the wave equation, under the stated

assumptions (axisymmetric and range independent). OASES (Schmidt, 2004) is an

implementation of this method that requires a range-independent environment.
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3.4.4 Ray Tracing

Acoustical ray tracing is similar to optical ray tracing. In optics, rays travel in

straight lines through space until they intersect a boundary that causes them to

reflect or refract. In computer graphics, ray tracing involves following the path of ray

from each screen pixel through the environment to determine the surfaces it interacts

with, which ultimately determines the color of the pixel. Acoustic ray tracing in

the ocean is similar in principle, but there are some important differences. The first

thing to note is that optical wavelengths are on the order of the size of atoms, whereas

acoustic wavelengths commonly found in the ocean can be on the order of meters to

even hundreds of meters long. The other big difference is that the ocean water itself

can cause refraction due to sound speed changes over depth. An example of this

in optics would be observing an object through rising hot gasses. For example, this

causes the shimmer the horizon above pavement on a hot day, or the flutter of objects

located on the other side of the gasses rising from a flame. Slight variations in the

temperature and density of the air cause the speed of light to vary as well. This

causes bending of optical rays. In computer graphics, this is generally a minor effect,

but it can be much more significant in ocean acoustics.

The mathematical derivation in this section draws heavily from Section 3.3 of Jensen

et al. (2011a). Like wavenumber integration, acoustic ray methods start with the

Helmholtz equation, but the sound speed is now a function of depth. This is,

∇2p `
ω2

c2pxq
p “ ´δpx ´ x0q, (3.112)

in which cpxq is the sound speed at point x. The ray solution is assumed to take the
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form

ppxq “ eiωτpxq
8
ÿ

j“0

Ajpxq

piωqj
. (3.113)

Substituting Eq. 3.113 into Eq. 3.112, the following set of equations emerge:

Opω2q : |∇τ |2 “ 1
c2pxq

Opωq : 2∇τ ¨ ∇A0 ` p∇2τqA0 “ 0

Opω1´jq : 2∇τ ¨ ∇Aj ` p∇2τqA0j “ ´∇2Aj´1, j “ 1, 2, . . .

(3.114)

The first equation, Eq. 3.114, is called the eikonal equation. Solving only this equation

is equivalent to making a high-frequency approximation, in which the wavelength is

essentially zero. The other equations are called the transport equations.

The eikonal equation in two dimension (range and depth) can be decomposed into

Br

Bs
“ cξpsq,

Bξ

Bs
“ ´

1

c2
Bc

Br
(3.115)

Bz

Bs
“ cζpsq,

Bζ

Bs
“ ´

1

c2
Bc

Bz
(3.116)

in which rrpsq, zpsqs is the ray trajectory in range and depth. Inclusion of the first

transport equation results conceptually transforms the ray from a line to a tube of

rays such that the acoustic energy carried in the tube obeys the conservation of energy

law. Interested readers are referred to Section 3.3.2 of Jensen et al. (2011a).

BELLHOP (Porter and Bucker, 1987) is a popular ray tracing tool for analyzing acoustic

propagation between two points in an ocean waveguide. It is based on Gaussian ray

tracing, and can operate on depth-varying and range-varying environments. Besides

estimating the Green’s function between two points, it can also provide information
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for each individual arrival. An important concept here is the eigenray. BELLHOP works

by casting a ray “fan” into the water column. Pairs of adjacent rays that pass near the

receiver are used to define a unique path, or eigenray, between the source and receiver.

Depending on the environment, multiple eigenrays may exist. The advantage of this

approach is it is relatively fast compared to wavenumber integration. However, it is an

approximate solution to the wave equation which is valid only at higher frequencies.
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3.5 Spatial Filtering

In the field of signal processing, the concept of filtering plays a central role. A filter can

be thought of as a processing unit that takes an input signal, applies some function to

it, and produces a “filtered” output signal. A commonly used filter is a finite impulse-

response (FIR) filter that is used to amplify or suppress certain frequencies through

linear combinations of sequential samples. However, in multichannel hydrophone

systems, filtering can also be applied in the spatial domain. This is based on the

idea that a set of two or more receivers may observe a source differently if it were

located in different positions relative to the receivers. In a similar manner to a FIR

filter, spatial filters work to isolate waves traveling in a particular direction while

suppressing waves traveling in other directions. Spatial filtering is commonly referred

to as beamforming.

As a matter of terminology, a beam is the primary direction that is being amplified, a

side-lobe is a different direction that is being amplified unintentionally, and a null is a

direction that is being suppressed. There exist methods to control the position side-

lobes and nulls directly, but the first-order method ignores that and only considers

the primary beam. This is called conventional beamforming, and is described in

Sec. 3.5.1. The next class of algorithms that are discussed in Sec. 3.5.2 automatically

adapt the side-lobes and nulls to the data being processed, hence the name adaptive

beamforming. Lastly, the relationship of this to Matched Field Processing is given

in Sec. 3.5.3, in which complex propagation models that account for multipath are

used directly with beamforming. This is presented since it is an alternative to the

new multipath processing methodology described in Sec. 6.
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3.5.1 Conventional Beamforming

The plane-wave response on an array of arbitrary geometry is

vpuq “ e´ikaTu, (3.117)

in which k is the wavenumber, a is the array manifold that specifies the position

of each element, and u is a unit vector indicating the direction of wave propagation

(Van Trees, 2002a). Note that this bears striking similarity to the plane-wave Green’s

function in free space Eq. 3.86, but uses a different sign convention. The array

response, v, is also called the array manifold, and that the terminology adopted

here3. This is an important quantity as describes what the expected response on the

array should be. The parameters of the model is often specified in the parenthesis (i.e.

vpuq for a plane-wave). It can take on more complex forms, such as incorporating

wavefront curvature, or even pressure field simulations akin to those used in Matched

Field Processing (MFP). In those examples, the parameter space can be much larger.

A conventional beamformer conceptually operates by delaying the signals from indi-

vidual channels differently such that waves coming from the primary beam direction

are aligned perfectly in time. Then, summing the delayed signals produces a coherent

gain in the primary beam direction. In the frequency domain, time delays correspond

to phase changes based on frequency. So, delay-and-sum can be implemented as a

single inner vector product, as will be shown next.

3“Steering vector” is another commonly used term, but there is some ambiguity whether u is the
steering vector or v, so to avoid confusion that nomenclature is not used
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The conventional frequency-domain phase-and-sum beamformer is defined as

b “ wHp, (3.118)

in which w is the weight vector, p is the received spectral value, and H denotes the

Hermitian transpose operation. In the conventional beamforming context, the weight

vector w is proportional to the manifold

w “
1

N
vpuq, (3.119)

such that it satisfies the “distortionless” constraint

wHv “ 1. (3.120)

The vector u is the direction of wave travel,

u “

»

—

—

—

—

–

ux

uy

uz

fi

ffi

ffi

ffi

ffi

fl

. (3.121)

The power output of an arbitrary beamformer with weights w can be derived as

B “
ˇ

ˇwHp
ˇ

ˇ

2
(3.122)

“
`

wHp
˘ `

wHp
˘H

(3.123)

“ wH
`

ppH
˘

w. (3.124)

The term in parenthesis is the outer product of the received pressure spectral values.
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To improve estimates, of the beamformer output, several snapshots are averaged as

R
∆
“

1

M

M
ÿ

m“1

pmp
H
m, (3.125)

in which pm is the mth snapshot, often containing some amount of overlap from the

previous snapshot. Thus, the improved estimate of B is

B “ wHRw. (3.126)

In the limit as the number of snapshots goes to infinity,

K
∆
“ E

“

ppH
‰

(3.127)

in which Er s is the expected value operator. The matrix R is referred to as the

sample-averaged cross-spectral density matrix, and K is the ensemble cross-spectral

density matrix. Cross-spectral density matrix is sometimes abbreviated CSDM, or

CSD.

3.5.2 Adaptive Beamforming

While conventional beamforming places side-lobes in set places, this can have adverse

affects in situations in which loud, unwanted signals overlap with the side-lobes. The

distortionless constraint, Eq. 3.120 uses one degree of freedom. For an array of N

elements, that leaves N ´ 1 degrees of freedom that can be used to place the side-

lobes and nulls. Ideally, if there are N ´ 1 interferers, then each would get assigned

its own null. In a sense, a perfect beamformer would automatically “adapt” to the
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data and put these nulls where the interferers are. This is the subject of adaptive

beamforming. The challenge with beamforming constraints is intuitively summed up

as the “bubble under the carpet.”4 The basic idea is to automatically place the nulls

to remove the interference while steering the side-lobes in quiet directions. What

follows is mathematical description of the algorithm.

The derivation in this section is based on the method outlined in Antenna-Theory.com

for an arbitrary array of N elements. The signal of interest signal spectra spωq. It

is carried by a plane wave traveling in direction us, a unit vector. This is called the

wave propagation vector and has cartesian components

us
∆
“

»

—

—

—

—

–

us,x

us,y

us,z

fi

ffi

ffi

ffi

ffi

fl

. (3.128)

The geometry of the array specifies the coordinates of each element as

an
∆
“

»

—

—

—

—

–

an,x

an,y

an,z

fi

ffi

ffi

ffi

ffi

fl

. (3.129)

The medium is assumed to have a constant wave speed, c so the wave number is

k “
ω

c
. (3.130)

4If you step on it, it just pops up somewhere else.
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The array manifold for a particular geometry is therefore

vpuq “

»

—

—

—

—

—

—

—

–

e´iku¨a1

e´iku¨a2

...

e´iku¨aN

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.131)

The noise response on the array consists of uncorrelated noise signals on each channel,

Npωq “

»

—

—

—

—

—

—

—

–

n1pωq

n2pωq

...

nNpωq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.132)

In addition to noise, there are G interfering sources having signals Iapωq with wave

propagation vectors ua. The total received spectra is then

Xpωq “ spωqvpusq ` Npωq `
G
ÿ

a“1

Iapωqvpuaq. (3.133)

The desired output of the beamformer is simply the signal of interest

Ydpωq “ spωq. (3.134)

The beamformer is implemented as a weighted sum of the received signals, so the

actual output of the beamformer is

Y pωq “ WHpωqXpωq. (3.135)
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Henceforth, the explicit dependence on ω is omitted in the notation.

The error between the actual and desired output is

ǫ “ Y ´ Yd. (3.136)

The mean-squared error is then

E rǫǫ˚s (3.137)

in which Er s is the expected value operator. Substituting,

E rǫǫ˚s “ E
“

pY ´ Ydq pY ´ Ydq˚‰ (3.138)

“ E
”

`

WHX ´ s
˘ `

WHX ´ s
˘˚
ı

(3.139)

“ E
“

WHXXHW ´ WHXs˚ ´ XHWs ` ss˚
‰

(3.140)

“ E
“

WHXXHW
‰

´ E
“

WHXs˚
‰

´ E
“

XHWs
‰

` E rss˚s . (3.141)

The weights are independent of X, so they can be pulled outside of the expected

value operator,

E
“

WHXXHW
‰

“ WHE
“

XXH
‰

W. (3.142)

The quantity E
“

XXH
‰

is the ensemble cross-spectral density matrix,

K
∆
“ E

“

XXH
‰

, (3.143)
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and

E rss˚s (3.144)

is the mean signal power, σ2
s .

Define the correlation of the signal with the received spectral values from each element

as

Λ
∆
“ E rXs˚s (3.145)

so

E
“

WHXs˚
‰

“ WHΛ. (3.146)

Similarly,

E
“

XHWs
‰

“ ΛHW. (3.147)

So, the mean square error is

E rǫǫ˚s “ WHKW ´ WHΛ ´ ΛHW ` σ2
s . (3.148)

To minimize the mean square error, first the derivative with respect to the conjugate

weight vector is taken. Since this is a multi-variate function, the gradient operator is

used

∇E rǫǫ˚s “ KW ´ Λ. (3.149)
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Setting to zero and solving,

W “ K´1Λ. (3.150)

Substituting Eq. 3.146 into Eq. 3.133,

Λ “ E

«˜

Xpωq “ spωqvpusq ` Npωq `
G
ÿ

a“1

Iapωqvpuaq

¸

s˚

ff

(3.151)

“ σ2
avpusq (3.152)

so

WMSE “ σ2
aK

´1vpusq. (3.153)

The distortionless constraint is then applied such that

WH
MSE

vpusq “ 1, (3.154)

which produces the minimum variance distortionless response (MVDR) weight vector

WMVDR “
K´1vpusq

vHpusqK´1vpusq
. (3.155)

Capon (1969) is credited for initially coming up with this methodology.

Using almost the same formula, minimum power distortionless response (MPDR)

adaptive beamformer is defined as

wMPDR “
R´1vpusq

vHpusqR´1vpusq
(3.156)
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which uses R instead of K. This is a least-squares solution to

min
`

wH
MPDR

p
˘

constrained by wH
MPDR

vpusq “ 1. (3.157)

Mathematically, the matrix inversion can be applied to ensemble CSD matrices for

just the noise, or noise plus interference. In those cases, the beamformer is called

the minimum variance distortionless response (MVDR) beamformer. However, if

the signal itself is present in all relevant snapshot data, then the CSD matrix will

contain noise plus interference plus signal, and if that is the matrix being inverted,

the quantity being minimized is power. Hence the name difference. This is made

explicit in Van Trees (2002a).

The degree of adaptivity can be a controlled using a technique called diagonal loading.

This involves adding a constant value to the diagonal elements of the CSD matrix.

This is also the same thing as artificially increasing the white noise gain (WNG).

Diagonal elements of the CSD correspond to auto-correlations of each channel, so

larger values along the diagonal in the noise covariance matrix correspond to greater

amounts of uncorrelated white noise. The weight vector can be parameterized with

WNG, ǫ, as

wMPDR+WNG “

´

R ` ǫ
trpRq
N

I
¯´1

vpusq

vHpusq
´

R ` ǫ
trpRq
N

I
¯´1

vpusq
. (3.158)

A value of ǫ “ 0 implies pure MPDR, and ǫ “ 8 implies pure conventional beam-

forming. This technique can be used to stabilize a rank deficient R for inversion, or

to compensate for mismatch errors in element location. Cox et al. (1987) defined a

framework for determining ǫ in an optimal way. That technique is often referred to
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as the white noise gain constraint (WNGC) beamformer.

3.5.3 Matched Field Processing

Conventional MFP is formulated in the same beamforming context as Eq. 3.118 and

Eq. 3.120. The primary exceptions are that v is computed using a propagation model,

and instead of using beam-angle replicas, the replicas span a range-depth grid. The

nth element of vpxq is vnpxq, which corresponds to a single element in the array at

position, an, and is the Green’s function between a replica at position x and an.

Computing the Green’s function in an ocean waveguide can be done using a vari-

ety of tools, such as those outlined in Jensen et al. (2011a). The Green’s function

depends on environmental characteristics, such as ocean depth, bathymetry, ocean

sediment type and layering, surface roughness, etc. To be explicit, it may actually be

appropriate in situations in which the true environment is poorly described to use a

fully parameterized model, vnpx,Ξq, in which Ξ contains all the parameters for the

environment.

One reason why MFP is attractive is because it is not limited by the “design fre-

quency” of an array in the same way that a conventional plane wave beamformer is.

Rather, it is limited by modeling error, which can take several forms in the MFP

modality, and is often called “mismatch.” There is array mismatch, environmental

mismatch error, and statistical errors (Baggeroer et al., 1993). An example of array

mismatch is any perturbation of an array element from it’s modeled position. It can

also be improperly calibrated, leading to corruption of recorded spectral values. En-

vironmental mismatch errors is a bit more open ended given the complexity that can
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exist in a given waveguide. The seabed may consist of a different number of layers

than the model, and each layer may have different acoustic impedances. The sound

speed profile may also deviate from the model, particularly in areas of strong current

in which the profile may be varying on a time-scale that is on the same order as

the data collection period. Undetected internal waves would also cause unmodeled

refraction. Rough surface scattering from the seabed may also modify the multipath

characteristics. The surface is a time-varying rough surface, which needs to be accu-

rately captured in a model. The seabed and its layers are also not flat in many areas

of the ocean, so bathymetric variations must be taken into account. An example of

statistical errors is a rank-deficient CSD matrix.
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Chapter 4

Line Array Processing

This chapter discusses the use of line arrays for target localization. Line arrays

have proved to be useful tools mainly for narrowband underwater target detection

and tracking. These types of arrays are typically used for the submarine detection

problem, and often the arrays are towed from a moving platform such as a ship. One

of the unknowns regarding detecting autonomous underwater vehicles is the target

signature. That is, the spectral levels and aspect dependency. Therefore, the first

step in developing any detection scheme for a given underwater target using passive

sonar is to characterize its radiated noise. Are the signatures narrowband or is there

broadband content, and what are the source levels and aspect dependencies? These

are critical questions and define the parameters needed to design a detection and

tracking system.

AUVs are relatively new devices, and little work has been done on what sounds they

make in an “underway” condition. In this chapter, the source signature is determined

for a REMUS-100 AUV using measurements from a horizontal line array. Developing

this underway characterization of the AUV, and providing an analysis of possible

methods that could be used to detect and track the AUV has implications for law
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enforcement. Agencies tasked with harbor and littoral security can leverage this

work in guiding technical and policy-based decisions. This work has been published

in Gebbie et al. (2012b). It was also the subject of an invited talk at the Acoustical

Society of America Meeting in May 2014 in Providence, RI (Gebbie et al., 2014a).

Initial work on processing the acoustic data for different types of targets was published

in the Marine Technology Society Journal (Gebbie et al., 2011a).

The organization of this chapter is as follows. Sec. 4.1 gives an overview of the Hawai‘i

2010 experiment in which the AUV was deployed. Sec. 4.2 discusses the research that

was conducted into characterizing the aspect-dependent source levels emitted by an

AUV using the line array.

4.1 Hawai‘i 2010 Experiment

The AUV experiments were conducted in July 2010 at the Kilo Nalu Nearshore Reef

Observatory (University of Hawai‘i-Manoa) near Honolulu Harbor, Honolulu, HI. This

work was done in collaboration with the University of Hawai‘i. A map of this region

is shown in Fig. 4.1. The observatory had several underwater electronics nodes, which

supplied power and ethernet connectivity to scientific equipment. One node was at

a fixed site about 0.4 km from shore in roughly 12 m of water. Honolulu Harbor

was located 1 km to the northwest of this node, which served as a port for large

commercial vessels. In addition, the nearby areas were popular sites for recreational

fishing, boating, and SCUBA diving. There was also a significant amount of biological

noise primarily from snapping shrimp, which created loud, broadband clicking noise

(Lammers et al., 2008).
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Figure 4.1: Map of the Kilo Nalu deployment site. Reproduced from Kilo Nalu
Nearshore Reef Observatory (2011) website (Kilo Nalu Study Area) with permission.

4.1.1 POEMS-A Hydrophone Arrays

Two hydrophone arrays (HTI-92-WB, with hydrophone sensitivities of -160 dB re

1V{µPa) were connected to the node for a two-week period. The arrays were manu-

factured by High Tech, Inc. based in Gulfport, Mississippi, and are shown in Fig. 4.2.

The model name of each array is POEMS-A, so the array is sometimes referred to by

that name. One of the array systems was owned by the University of Hawai‘i, and

the other by Portland State University.

The arrays were configured in a vertical and horizontal configuration, with the latter

stretched out along the seafloor. This is shown in a sketch in Fig. 4.3, and in a photo

taken with an underwater camera in Fig. 4.4. The horizontal orientation provided
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Figure 4.2: Photo of the pressure vessels containing the acquisition systems for both
POEMS-A arrays in the Hawai‘i 2010 experiment. Also visible is the coiled horizontal
line array. The black material between array elements is “hair fairing,” which adds
drag when the cable is stretched taught while in a current. This reduces strumming,
which can corrupt acquisition of the desired field-borne acoustic data.
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Figure 4.3: Sketch of the POEMS-A arrays with one in a horizontal configuration
and the other in a vertical configuration (Gebbie et al., 2011a).

azimuthal beam resolution facilitating direction-of-arrival (DOA) estimation of radi-

ated noise from targets. The vertical array enabled discrimination between multipath

arrivals arriving at different elevation angles. Each had a total of 24 elements, with

the vertical array evenly spaced at 0.25 m, and the horizontal evenly spaced at 0.5 m.

The sample rate was 102.4 kHz with a dynamic range of 24 bits. The arrays used a

high-pass filter to suppress frequencies below 300 Hz and a 110 dB anti-aliasing filter

giving a usable acoustic band from 300 Hz to 46.4 kHz.

The first channel of each array was connected together with a synchronization device

that generated a known electrical signal. The waveform is shown in Fig. 4.5. The

synchronization signal was developed specifically as part of this research to time-align

the CPUs so that both arrays could be used together as one large array. A photo of

the synchronizer device is shown in Fig. 4.6. The reason for using the synchronizer was

94



Figure 4.4: Underwater photo of the POEMS-A arrays with one in a horizontal
configuration and the other in a vertical configuration.
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Figure 4.5: Waveform of POMES-A synchronizer.

that each array was connected to its own recording unit. The recording units were each

closed systems consisting of a separate CPU and clock, so there was no way to time-

synchronize their clocks directly without making major modifications to the vendor’s

design. The waveform being sent to the first channel by the synchronizer consisted

of a broadband pulse and a tonal, which facilitated accurate time-synchronization

during post-processing.

4.1.2 REMUS-100 AUV

During the deployment, a REMUS-100 AUV was operated using programmed tracks

at the deployment site of the arrays. Photos of this AUV are shown in Fig. 4.7 and

Fig. 4.8. The REMUS-100 was powered by a battery that can last up to 22 hours,

and driven by a direct-drive DC brushless motor, which turned an open three-blade

propeller. It was 160 cm in length, 19 cm in diameter, and weighed 37 kg. It had a
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Figure 4.6: Photo of the synchronizer that fed a known electrical waveform to the first
channel of each array, allowing the arrays to be time synchronized in post-processing.
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Figure 4.7: Photo of the REMUS-100 AUV as it is deployed from the small boat.
Bubbles are likely due to air entrainment at the surface.

Figure 4.8: Photo of the REMUS-100 AUV as it moves several meters below the
surface. Despite the lack of clarity in this photo, note the lack of bubbles behind
the propeller. This suggests that the propeller is not cavitating in these conditions,
which affects the amount of broadband radiated noise.
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maximum water speed of 2.6 m/s and a maximum depth of 100 m. Onboard naviga-

tional sensors estimated its location via several methods. At the surface, satellite GPS

was used to obtain a coordinate fix. An acoustic doppler current profiler (ADCP) was

used to measure its velocity over the seabed after submerging. Long baseline nav-

igation was also used, which involved acoustic interrogation of separately deployed

transponders. When both of these data streams were unavailable, the AUV defaulted

to dead reckoning. Depth measurements were obtained from a pressure depth sen-

sor. The AUV logged these navigational records in the form of downloadable, time

stamped 3-D coordinates. An onboard acoustic modem, which operated in the 20-30

kHz band, was used to send data back to the operator in the boat. The modem served

as a broadband source that proved useful for cross-correlation based DOA estimation.

The track for the pre-programmed mission is shown in Fig. 4.9. This plot is annotated

with the location of the acoustic array. Only a small portion of the overall AUV track

is actually shown, as the full track extends to a maximum distance of almost 500 m.

This is shown in Fig. 4.10.

The AUV was deployed from a boat that motored a short distance away from the

programmed AUV track. The boat engine was on for a few minutes and subsequently

turned off. The modem transponder continued to transmit from the stationary boat.

The AUV moved slowly at the surface for about 30 seconds before diving and acceler-

ating to about 2.25 m/s. It followed a programmed track of several turns and course

reversals passing the end of the array three times. On one turn, it reached a maxi-

mum distance of 100 meters from the array. The AUV’s acoustic modem broadcasted

information to the boat every 30 seconds.
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Figure 4.9: Track of AUV showing its position relative to the array. Navigation
records taken from the AUV were used to generate the track line.
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Figure 4.10: Full Track of AUV over four hours.
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4.2 Source Level Estimation Method

This section outlines a technique for characterizing the source levels and beam pat-

terns of a REMUS-100 AUV in an underway condition by fusing navigational records

from the AUV with acoustic data collected on POEMS-A, a passive, bottom-mounted

HLA. The AUV’s navigational records are used to identify which signature compo-

nents are originating from the its propulsion system using beamforming. Using a basic

characterization of the environment, propagation modeling tools produce an estimate

of transmission loss (TL) between each position of the AUV and each hydrophone.

Directivity index (DI) or array gain (AG) are not considered since each hydrophone

is processed separately. Source levels are then computed with the passive sonar equa-

tion using the received levels and TL. The AUV’s aspect with respect to the HLA is

then derived from the AUV’s position and heading at each time step, facilitating the

calculation of the beam pattern.

4.3 Spectrograms

Acoustic data from the northernmost element of the array during the first four minutes

of the mission was used for the spectrograms shown in Fig. 4.11. In Fig. 4.11(a) the

modem transmits data in the 20-30 kHz band in five second bursts every 30 seconds.

Fig. 4.11(b) illustrates various tones from the AUV propulsion system, which are

visible upon magnification of the frequency axis to 300 Hz - 3 kHz. The strongest

tone was centered at about 1065 Hz, a weaker one at 1284 Hz, and a very faint one

at 1369 Hz. The 1065 Hz tone was by far the strongest, and so was used for this

study. Further magnification (Fig. 4.11(c)) reveals that this tone wandered within
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a 10 Hz band. The tone faded toward the end of the first minute and again at the

beginning of the third minute. This corresponds to times during which the AUV

turned 180˝. The gap at the beginning of the dataset was most likely due to the AUV

slowly moving at the surface. The 1700 Hz tone originated from a CPU fan inside

the array electronics pressure vessel. The source level of the modem was sufficiently

high that when within a few meters of the array it overcame the 110 dB anti-aliasing

filter in the array and leaked energy into the lower frequency bands. This is most

apparent at the time offsets of 1.3, 2.7, 3.2, and 3.5 minutes.

4.4 Cross-correlation of Broadband Modem Noise

The broadband modem noise was the highest SNR signal emanating from the AUV,

as seen in Fig. 4.11(a). This was used, along with the propagation delay of sound in

water, to estimate the direction of the signal relative to the orientation of the array.

With two hydrophones, the time-of-arrival difference was easily measured by cross-

correlating their signals. The phones at opposite ends of the array were chosen because

they had the maximum separation distance. Cross-correlating time series data from

each phone produced another time series in which the time-axis corresponded to

time-of-arrival differences. For a sufficiently coherent broadband signal, such as that

of the modem, a peak appeared at an offset corresponding to the delay of that signal

between the two hydrophones. This was computed in the frequency domain with a

pre-whitening filter. Pre-whitening preserves the phase information while forcing the

power spectrum to be white. This technique improves results for source signals which

are not initially spectrally-white (see Sec. 3.2.4 for details).

Each peak in the cross-correlation output produced an isodiachron, a hyperboloid
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surface in 3-D space (assuming an isospeed), corresponding to all possible target

locations having the same time-of-arrival differences. In the far field, this was ap-

proximated using the asymptotes of the hyperboloid, which trace out a cone. In 2-D,

this reduced to a single direction-of-arrival (DOA) with the angle measured from the

broadside and originating from the center of the array.

Fig. 4.12(a) shows a bearing-time-record (BTR) plot in which the cross-correlation

time series was converted to DOA angles and plotted along the horizontal axis. The

data was divided into short time windows, and DOA angles from each are plotted

on the vertical axis. The dashed line shows the DOA angle based on navigational

records downloaded from the AUV after the mission. The boat track is visible during

the first two minutes but disappeared after its engine was shut off. Strong peaks

in the BTR correspond to the modem, but vanish during the time intervals when

the modem is not transmitting. A good agreement exists between the navigational

records and the cross-correlation analysis during the “on” periods and for sufficient

angular separation from the nearby boat.

4.5 Genetic Algorithm for Array Element Localization

A genetic algorithm was used to find the “best set” of coordinates and orientation for

the array, where “best set” is defined by that which minimizes an objective function

computed as the sum square difference between DOA angles determined from the

cross-correlation of modem noise with DOA angles derived from the AUV coordinate

data. The DOA angles from cross-correlation were found over an entire four minute

dataset when the AUV was near the array. The position and orientation of the

array were the adjustable parameters manipulated by the genetic algorithm. From
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each array position, the DOA to each fixed GPS coordinate could be computed. So,

the optimization minimized the distances between DOA’s while moving and rotating

the array to find the best fit. The optimum array location was about 7.6 meters

northwest from its initial estimated location, and its orientation rotated about 4

degrees counter clockwise. This was a reasonable amount of correction based on the

amount of navigational precision used during deployment.

The Optimization Toolbox in MATLAB (MATLAB, 2010) was used as a framework

for running the genetic algorithm. It was configured with a population size of 100.

The objective function was defined as

fpxq “
ÿ

@n

rθn,data ´ θn,modelpxqs2 , (4.1)

in which x is the parameter vector for the array location and orientation, θ is the

DOA, n is the index of each DOA, of which there are a fixed number in the four-minute

period.

4.6 Bearing-Time-Record (BTR) of Narrowband Emissions

In Fig. 4.11(b), several tones can be attributed to the propulsion noise with the

strongest centered about 1065 Hz. Given the extremely narrowband nature of this

source, a conventional (delay-and-sum) beamformer computed in the frequency do-

main at the bin corresponding to this specific frequency tracked the DOA angle

accurately, as shown in Fig. 4.12(b). A Hann window was applied to individual,

overlapping snapshots in the time domain during averaging, and a Taylor window

was multiplied to the steering vector for additional side lobe suppression (i.e. array
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shading). The maximum achievable gain (in terms of signal power) for an unshaded

conventional beamformer on a N element array is

10 log10

„

N

1 ` pn ´ 1qρ



, (4.2)

where ρ is the correlation coefficient of noise (Urick, 1967). For this 23-element array,

the array gain was estimated at 11.7 dB, with a standard deviation of 2.6 dB, and

a ρ of 0.04. Decibels for array gain are in reference to a unit-less quantity. The

correlation coefficient, ρ, is also unit-less.

The cross-correlation BTR in Fig. 4.12(a) localizes targets having broadband signa-

tures, whereas the beamforming BTR in Fig. 4.12(b) is specific to targets producing

energy in a very narrow band. However, broadband sources that overlap the nar-

row band gap were also detected by the beamformer. Hence the boat track, which

produced broadband energy from a few Hz to roughly 6 kHz, appears in both the

cross-correlation BTR as well as the beamforming BTR („1065 Hz). Notably, a

continuous track for the AUV is visible using beamforming (Fig. 4.12(b)), but only

appears in limited segments using cross-correlation (Fig. 4.12(a)).

4.7 Tonal Peak Following

One challenge of this AUV was the wandering nature of the tone seen in Fig. 4.11(c).

A simple peak following algorithm was created in an attempt to keep the beamformer

locked onto the frequency of the tone. In each row of the spectrogram, the tallest peak

was chosen inside of a narrow band centered at 1065 Hz. These data were smoothed

using a low pass filter to obtain the curve shown in Fig. 4.11(c). It was expected that
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improvement from peak following could be more substantial for data collected over a

longer period of time. At the end of the four-hour AUV mission the 1065 Hz tone had

drifted to about 1000 Hz, possibly caused by a lower current draw from the battery.

4.8 Propagation Modeling of Narrowband Emissions

For further verification of the AUV track (Fig. 4.12(b)), the AUV’s navigational

records were passed into the OASES software for simulated snapshots of data at every

position. OASES is a full-wave propagation model based on a numerical wavenumber

integration solution to the acoustic wave equation (Schmidt, 2004). The simulation

was configured with a pressure release surface, flat half-space seabed, and isovelocity

water with parameters c “ 1500 m{s. The seabed parameters, based on a compo-

sition of medium/coarse sand that were consistent with grab samples taken at the

deployment site, were c “ 1836 m{s, α “ 0.88 dB{λ, and ρ “ 2.151 g{cm3 (Ainslie,

2010). The results of this simulated data using the same beamformer are shown in

Fig. 4.12(c). There is excellent agreement between the experimental data and the

simulated results indicating that the 1065 Hz tone was indeed emitted by the AUV.

4.9 Aspect-Dependent Source Level Measurements

Source level (SL) measurements of the AUV’s propulsive emissions were computed

by adding the received level (RL) to an estimate of the transmission loss (TL). OASES

was used to estimate TL between the AUV source and different elements of the ar-

ray. The AUV’s heading was computed by taking the time-derivative of the AUV’s

position vector. Ocean currents measured by the observatory were on the order of
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Figure 4.13: Estimated source level (SL) of the REMUS-100 primary propulsion tone
as a function of aspect. The mean is represented by the dark line, and the shaded
region denotes the interquartile range. The front of the vehicle points towards zero
degrees and is viewed top-down, as shown in the image on the right. Units are in dB
re 1 µPa2{Hz at 1 m.
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2-3 cm/s, so deviation between the AUV’s heading and course were negligible. Com-

bining the AUV position and heading with coordinate estimates of array elements

allowed the AUV’s aspect relative to each element to be computed. For this study, a

subarray of 8 equally-spaced elements from the array were selected and the SL was

computed as a function of aspect independently for each element. Since the 1065

Hz tone disappeared when the AUV maneuvered, this had the potential to bias the

SL estimate. To avoid this, only time segments corresponding to constant speed,

heading, and depth of the AUV were considered. The SL of the propulsive tone as

a function of aspect is shown in Fig. 4.13. The dark line represents the mean, and

the shaded region denotes the interquartile range. Using multiple elements spread

out over the entire array allowed for greater aspect coverage than would have for a

single element. An additional 37 minutes of acoustic data was added to this part of

the analysis, which included additional AUV passes by the HLA. The mean SL nor-

malized over the full 360˝ aspect range for the 1065 Hz propulsion tone was 104.8 dB

re 1 µPa2{Hz at 1 m, with a standard deviation of 8.4 dB re 1 µPa2{Hz at 1 m. The

levels reported here are slightly lower than, but consistent with, the values measured

using tank experiments reported by Holmes et al. (2010), Holmes (2007). Ambient

noise received level (RL) was measured at 60.9 dB re 1 µPa2{Hz, with a standard

deviation of 6.0 dB re 1 µPa2{Hz. When the AUV was between 10 and 50 meters

from the hydrophones, the mean signal to interference plus noise ratio was 19.4 dB

with a standard deviation of 7.6 dB. All decibel calculations were consistent with the

methods used by Ainslie (2010). Variations of SLs between snapshots were partly

attributed to mismatch between actual and modeled environmental parameters. Ad-

ditionally, localized obstructions, such as coral reefs extending a few meters above

the seabed in some areas, might have impeded propagation. Unmodeled factors such

as bathymetric variations and surface scattering might also have contributed to the
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observed variability.

4.10 Scissorgrams

The SL analysis of the previous section treated each hydrophone as an independent

receiver element. In this section, the time-synchronous nature of all the hydrophones

in the array is utilized to further analyze the spectral signature of the REMUS-100.

The method employed is a scissorgram. A scissorgram is essentially the output of a

beamformer steered at a target as it maneuvers. This is shown in Fig. 4.14 in for

the initial four minutes of the AUV’s track. Figure 4.14(a) is a single-hydrophone

spectrogram that shows the two tones being emitted by the AUV. Figure 4.14(c) is

a BTR for the strongest tone, and the red overlay shows the bearing of the vehicle

based on its navigational records. Figure 4.14(b) is the scissorgram for the red line

using a conventional, plane-wave beamformer. It can be seen that the boat noise is

greatly reduced as it maneuvers away into a separate beam. The secondary tonal

at „1280 Hz is also enhanced, and it is evident that it is highly correlated with the

primary tonal, which suggests that the respective sources are derived from the same

mechanism within the propulsion system.

A similar analysis conducted for a later segment of data in which the AUV is mak-

ing a maneuver close to the array reveals the directionality if the propulsion tones.

Figure 4.15(d) shows the track, in which the AUV is initially traveling away from

the array. It makes a left turn bringing the port side in view of the array. Next, it

turns to the right. The aspects of the AUV thus are exposited to the array in the

following order: stern, port, stern, starboard, and bow. In the BTR of Fig. 4.15(c),

strong received levels can clearly be observed initially, which then drop, elevate, drop
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again, and finally elevate again. The two drops correspond to the port and starboard

aspects. In the scissorgram of Fig. 4.15(b), both tones are clearly evident. An in-

teresting feature occurs around time 330 in which the tone jumps a few Hz before

settling. What is likely happening here is this is the point at which the first maneuver

is initiated. To turn, the rudder is actuated to one side, which causes additional drag

and slows the vehicle slightly. The reduced torque on the propeller causes the motor

to increase speed briefly. Each maneuver causes a similar “wobble” in the tones.

The tones emitted by the AUV are a promising sound source that can be used for

detection. Experimentally, what are the ranges at which these tones can be heard?

Figure 4.16 shows another segment of data in which the AUV is at the far end of its

track, out to a distance of a little over 400 meters. First, the AUV is traveling away

from the array. It makes a sharp turn to starboard, exposing that aspect to the array.

Then, it turns again to starboard, exposing the bow to the array. It is evident in the

scissorgram of Fig. 4.16(b) when the starboard aspect is exposed to the array, as the

tone disappears into the background noise. The secondary tone is not detectable at

this range. Another useful feature of the scissorgram is the fact that it is performing a

spatial filter. In the spectrogram, there are several additional tones that are evident,

but these do not show in the scissorgram indicating they are arriving on a separate

bearing.

4.11 Chapter Summary

This work quantifies, for the first time, the acoustic source levels as a function of

aspect of the strongest propulsion-system-borne tone emitted from an underway

REMUS-100 AUV by fusing acoustic data from a fixed HLA with the AUV’s navi-
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gation records. The directionality of the tone and the broadband modem signal with

respect to the HLA are consistent with the navigational records, thus validating that

these signals were indeed emitted by the AUV. Propagation analysis was performed

using OASES in which the time-varying TL was calculated between the maneuver-

ing AUV and the array. A complementary simulation of the radiated tone is also

performed with OASES enabling discrimination between the AUV target and a boat

interferer. These results are published in the Journal of the Acoustical Society of

America Express Letters (Gebbie et al., 2012b). An additional contribution to this

dissertation is the scissorgram analysis of the radiated noise from the AUV show-

ing the spatial filtering capability of the array and showing detectability out to over

400 m. These results were included in an invited talk at the Acoustical Society of

America Meeting in May 2014 in Providence, RI (Gebbie et al., 2014a).
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Chapter 5

Two-Hydrophone Processing

Passive acoustic localization has been the subject of recent work in the field of ma-

rine mammal bioacoustics. It has been shown that certain species of whales, which

use broadband clicks for echolocation, can be localized by measuring the time delay

between the direct and bottom or surface-reflected multipaths to estimate range and

depth (Aubauer et al., 2000, Nosal and Frazer, 2006). Multipath arrivals are the

sequence of echoes of a target’s radiated sound as the waves reflect from the surface

and seabed in different sequences before reaching the receiver.

Since whale clicks are generally loud and have a short duration (Weirathmueller et al.,

2013), the delay between the direct and multipath arrivals can be discerned directly

from the received time series (Thode, 2004). Tiemann et al. (2006) showed that by

using bathymetry to pre-compute expected arrival times, full 3-D localization could be

performed from a single hydrophone. Each arrival corresponds to an eigenray, which

is a unique acoustic path between a source and a receiver. For natural variations in

bathymetry, if the animal is at a certain range and depth along one bearing, then the

relative travel times of the eigenrays differ from those that would be observed if the

animal were at the same range and depth along another bearing.
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Unlike whale clicks, boat noise is distributed continuously in time, so the same mea-

surement methodology does not directly apply. With boat noise, multipath arrivals

overlap in time obscuring individual arrivals and their relative arrival times. Pulse

compression is a method of gathering the energy in broadband noise and compressing

it into a single broadband pulse, and based on the generalized correlation algorithm

from Carter and Knapp (1976). The difficulty that arises with using pulse compres-

sion is that it produces peaks for all combinations of multipath arrivals. The problem

becomes more tractable if the relative delays between the multipath arrivals are large,

which can be realized by placing the hydrophones directly on the seabed.

In Gebbie et al. (2013a), it was shown that two bottom-mounted hydrophones consti-

tute a simple yet favorable geometry for small boat localization, in that bathymetric

variations can be leveraged to improve range localization and array side discrimina-

tion. Much of that work was presented at the European Conference of Underwater

Acoustics in 2012 in Edinburgh, Scotland (Gebbie et al., 2012a). However, beyond

giving a description of the algorithm along with experimental validation, it remained

an open question as to what the performance limits of the algorithm were, and also

what factors gave rise to the array side discrimination capability.

Over the past decades, many studies have been conducted into the performance limits

of algorithms for localizing noise-producing targets. This has mainly been done by

deriving and calculating the Cramér-Rao lower bound (CRLB). The CRLB represents

the lowest achievable variance of an unbiased estimator, and conceptually operates

by computing the amount of information passed from a set of hidden variables (i.e.

the source location) to the set of observed variables (i.e. received waveforms). These

bounds hold under the assumption that only the hidden variables are random, and
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all other parameters are deterministic. Friedlander (1988) used this to compute the

range and depth accuracy of a submerged source from two vertically aligned receivers

using the direct arrival and a single multipath arrival.

Van Trees (2001b) expanded on the CRLB to also handle non-deterministic parame-

ters, in a formulation often referred to as the Bayesian CRLB. The term “Bayesian” is

used to indicate that prior information about these random parameters is being used.

This was the basis for the study by Hamilton and Schultheiss (1993) that examined

the performance impact of having imperfect knowledge of the bathymetry by treating

the depth of reflections from the seabed as normally-distributed random variables.

This chapter describes the localization algorithm and demonstrates its operation ex-

perimentally. However, to ascertain the theoretical performance of this algorithm, the

CRLB of target range and bearing for different hydrophone spacings is derived. A

two-hydrophone geometry is adopted, similar to Friedlander (1988), but the Bayesian

CRLB approach of Hamilton and Schultheiss (1993) is applied while treating sev-

eral additional parameters as non-deterministic. This more accurately represents the

imperfect knowledge typically available in a real deployment scenario. Bathymetric

variations also support an ability to discriminate which side of the array the target is

on. This capability is based on slight differences in the first two eigenrays along each

leg of the hyperbolic ambiguity. One important question this chapter aims to answer

is what kind of bathymetric variations are necessary to support this capability, and

what is the probability of localizing the target on the correct side of the array?

A full-length manuscript was recently submitted to the Journal of the Acoustical

Society of America (Gebbie et al., 2014b) that expands on Gebbie et al. (2013a) by

providing a rigorous performance analysis of the capabilities based on an improved
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ambiguity surface function. Additional experimental data was employed to test dif-

ferent hydrophone separation distances, and to validate performance analysis results.

Also, the manual processing of correlogram striations was replaced with an automated

particle filter design, without any loss of overall algorithm generality.

The rest of this chapter is organized in the following manner. Ray-based models of

the multipath structure in shallow water are described (Sec. 5.1), and the processing

algorithm is presented (Sec. 5.2). Theory and simulation pertaining to the Bayesian

CRLB on range (Sec. 5.3) and factors affecting array side discrimination (Sec. 5.4)

are then discussed. The experimental design is reported in Sec. 5.5. The design of a

particle filter for extracting correlogram striations is in Sec. 5.6. Experimental results

are given in Sec. 5.7.

5.1 Multipath Structure in Shallow Water

This section outlines how boat noise propagation through a shallow water waveg-

uide produces the passive acoustic observations. The geometry of this problem is

illustrated in Fig. 5.1(a) and (b). It shows two bottom-mounted hydrophones and a

source (target) on the surface. The top two diagrammatic plots in Fig. 5.2 show the

received time series, r1ptq and r2ptq. The bottom plot shows their cross-correlation,

Γ1,2pτq. The source waveform is represented as a single pulse for illustration pur-

poses, but for a small boat it would consist of continuous broadband noise. This

would result in the r1ptq and r2ptq signals appearing as noise, obscuring the clean

separation between multipath arrivals. However, this does not affect Γ1,2pτq because

the noise is pulse compressed through the cross-correlation operation. Environmental

factors such as bottom loss and rough-surface scattering serve to decorrelate high-
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Figure 5.1: (a) A top-down view of the geometry. (b) A side view of the geometry.
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Figure 5.2: Diagrammatic plots of the relative multipath arrival times in Fig. 5.1.
The top two plots are the time series at each receiver, and the bottom is their cross-
correlation. If the source was continuous boat noise (instead of the pulse in this
illustration) the rnptq would appear to be solely noise, but the Γpτq would still have
the peaks due to pulse compression.

order eigenrays, whereas low-order eigenrays often retain enough coherence to appear

as stable features in Γpτq; therefore, only the first-order multipath arrival is used.

Since receiver 1 is farther from the source than receiver 2, both peaks in r1ptq are

shifted later in time to account for the additional travel time. The term τ0 denotes the

time delay between direct arrivals, and τ˘ are the delays between the direct arrival at

one receiver with the multipath arrival at the other receiver. In Γ1,2pτq, the strongest

peak is in the center, with an absolute offset at τ0, and is used to constrain the

ambiguity surface to a hyperbola on the surface. A correlation peak between just

the multipath arrivals is not shown in Γ1,2pτq because it shows up on the time axis

close to τ0, and is often hidden by the direct correlation. This makes measuring that

time delay difficult, but information contained in the multipath-only correlation is

included in the Bayesian CRLB calculation, described later. As the target initially
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moves into the far field of the hydrophone pair, τ´ and τ` start to converge but are

sufficiently large that the flanking peaks are distinct from the center peak, but this

separation eventually vanishes in the distant far field. Bathymetric variations affect

only τ` and τ´ because the length of reflected eigenrays depend on the depth at the

location of the bottom reflection.

Let tn,d and tn,m be the travel times along each eigenray to the nth receiver for direct

and multipath rays respectively. The absolute time delays are defined as

τ0 “ t1,d ´ t2,d (5.1)

τ` “ t1,m ´ t2,d (5.2)

τ´ “ t1,d ´ t2,m. (5.3)

Assuming a constant sound speed, the ray travel times can be written as

tn,d “

a

R2
n ` D2

n

c
(5.4)

tn,m “

a

R2
n ` pDn ` 2Bnq2

c
(5.5)

in which the law of cosines yields

R1 “
a

R2 ` pL{2q2 ` RL sin θ (5.6)

R2 “
a

R2 ` pL{2q2 ´ RL sin θ. (5.7)
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5.1.1 Cross-Correlation and Cross-Spectrum

The time delays between arrivals contain the information needed for target localiza-

tion, but these quantities are only observable in the second order statistics of the

received signals. While time delay information is contained in both the auto- and

cross-spectra, only the cross-spectra is used as an observation since it contains the

time delay of the direct arrivals, which is strongly informative of bearing. However,

both auto- and cross- spectra are used in Sec. 5.3 to compute the Bayesian CRLB.

The received time series at each receiver is modeled with two arrivals and additive

uncorrelated Gaussian noise, nptq. The source waveform is also Gaussian noise rep-

resented by sptq. The received waveforms are thus defined as

r1ptq “ spt ´ t1,dq ` γspt ´ t1,mq ` n1ptq (5.8)

r2ptq “ spt ´ t2,dq ` γspt ´ t2,mq ` n2ptq, (5.9)

in which γ represents the additional amount of propagation loss relative to the

first arrival, and is real-valued in the range p´1, 1q. The same γ is used in both

Eqs. 5.8 and 5.9 based on the assumptions that the hydrophone spacing is small

relative to the target range implying that the ray grazing angles on the seabed are

similar, and that the composition of the seabed is locally homogeneous in the vicinity

of the two reflection points. Phase changes due to boundary reflections are not mod-

eled as this information is later discarded using the envelope operation. The Fourier
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transform of the spectra at each receiver is

R1pωq “ Spωqe´iωt1,d ` γSpωqe´iωt1,m ` N1pωq (5.10)

R2pωq “ Spωqe´iωt2,d ` γSpωqe´iωt2,m ` N2pωq (5.11)

Henceforth, we drop the explicit dependence on ω.

Cross-correlation consists of holding one signal constant while sliding the other signal

on the time axis, multiplying, and integrating. The fixed signal is referred to here

as the “correlated” signal, and the sliding signal as the “reference” signal. Let r1 be

the correlated signal and r2 be the reference signal. The cross-spectrum is computed

by multiplying the correlated spectrum by the complex conjugate of the reference

spectrum,

K1,2 “ ErR1R
˚
2s (5.12)

“ |S|2e´iωpt1,d´t2,dq ` |S|2γ2e´iωpt1,m´t2,mq

` |S|2γe´iωpt1,m´t2,dq ` |S|2γe´iωpt1,d´t2,mq (5.13)

in which Er s is the expected value operator, and ˚ denotes complex conjugation.

The second term in Eq. 5.13 is the correlation of multipath arrivals on each receiver,

and it is effectively hidden by the correlation of direct arrivals (first term). This is

because both will roughly have the same time delay but the second term has a lower

amplitude due to γ2.

For a finite bandwidth signal with a flat spectrum, each exponential term will manifest

in the time domain as a sinc function. For a baseband signal of bandwidth b, the sinc

function is defined as sinp2πbq{p2πbq. If γ were complex and had a constant phase
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with respect to frequency, as might be the case with sub-critical bottom reflections

from a single-layer seabed, this would cause skewing of the sinc function such that the

maximal value would not align exactly with the time delay. The envelope operation

is thus applied to produce positive valued peaks having a maximal value at the time

delay, which simplifies time delay estimation. The envelope of an arbitrary signal

xptq is computed by |xptq ` Hrxptqs|, in which H is the Hilbert transform. This is

equivalent to computing the inverse Fourier transform of only the positive frequencies,

followed by taking an absolute value and multiplying by a factor of two.

A Gaussian is a suitable approximation to the envelope of a sinc function, and is used

here to model the time domain pulses. It is defined a

gpx, a, σq
∆
“ e´ 1

2px´a
σ q

2

. (5.14)

Neglecting the γ2 term in Eq. 5.13, the cross correlation time series is then

Γ1,2pτq « gpτ, τ0, σq ` γgpτ, τ´, σq ` γgpτ, τ`, σq (5.15)

in which the time axis is x “ τ , and the pulse offsets occur at a P tτ0, τ´, τ`u.

The width of the pulse depends on the signal bandwidth b, and since the variable σ

specifies the half-width of the Gaussian, it is defined as

σ
∆
“

1

2b
. (5.16)

127



The auto-spectrum for each receiver is defined as

K1,1 “ ErR1R
˚
1s (5.17)

“ |S|2 ` |S|2|γ|2 ` |S|2γe´iωpt1,m´t1,dq ` |S|2γ˚e´iωpt1,d´t1,mq ` |Nn|2 (5.18)

“ |S|2t1 ` |γ|2 ` 2|γ| cosrωpt1,m ´ t1,dqsu ` |N1|
2 (5.19)

with a similar definition for K2,2. This is required later in the calculation of the

range CRLB in Sec. 5.3. Note that unlike the cross spectrum, the auto spectrum

includes the noise term. The next section describes the methodology for processing

the acoustic data into a localization.

5.2 Localization Algorithm

This section describes the localization algorithm. It consists of the following parts: the

extraction of multipath time delays, the ray model, and the ambiguity function. The

first step processes the acoustic data, the second step runs the model at discretized

points on the surface, and the third step combines them into an ambiguity surface

that yields the localization.

5.2.1 Acoustic Processing

The measured cross-correlation function, Γpτq, is obtained from raw data by the fol-

lowing procedure. A snapshot of data is obtained from the channels; the time span of

this data constitutes the total averaging time and should be short enough so that the

effects of target motion are negligible. Overlapping segments are formed within the
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snapshot using the weighted overlapping segment averaging method (Carter et al.,

1980). Segments are windowed using a Hann function, then zero-padded to twice the

original length to avoid wrapping effects of the discrete Fourier transform (DFT).

Time windowing provides better spectral estimates at the expense of a small amount

of frequency resolution. The cross-spectrum is computed for each segment by multi-

plying one channel with the complex-conjugate of the result, followed by a bandpass

filter. The average for the snapshot is computed across all segments. The result-

ing cross-spectrum is pre-whitened. Pre-whitening preserves phase information while

enforcing a flat power spectrum and is defined as Xpωq{|Xpωq| for an input spec-

trum Xpωq, and is based on the phase transform (PHAT) algorithm (Knapp and

Carter, 1976). This prevents loud tonal components that may stand out in the tar-

get’s acoustic signature from corrupting Γpτq. Lastly, this is transformed back into

the time domain with the inverse DFT while simultaneously taking the envelope.

A correlogram is then formed by stacking Γpτq from each snapshot vertically. Viewed

in this manner, striation lines appeared that correspond to the correlations of indi-

vidual arrivals as they evolve over time. The center striation, which has an offset of

τ0 at a given snapshot, is often the strongest as it corresponds to correlations of the

direct arrivals on each hydrophone. The nearest flanking striations are the multipath

arrival at one hydrophone correlating with the direct arrival at the other hydrophone,

and have offsets τ˘ for a given snapshot.

A sequential importance resampling (SIR) particle filter (Ristic et al., 2004) is then

used to extract the striation offsets from the correlogram. The output of the tracker

are the measured values τ0, τ´, and τ` at each snapshot. The details of the tracker

construction are given in Sec. 5.6.
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5.2.2 Ray Model Processing

In the second stage of processing, predictions of eigenray propagation-time differences,

τ̄0pxq, τ̄´pxq, and τ̄`pxq, are computed for each possible pEasting, Westingq target

position, x. A ray tracer, such as described in Jensen et al. (2011b), can be used

to compute the travel time of the direct and bottom-surface eigenrays between each

receiver and each point x on the surface. An eigenray between a point on the surface

and a receiver on the seabed in a region of varying bathymetry could involve a path

that is not confined to a vertical plane due to three dimensional seabed variations.

While this could be done in three dimensions, a simpler N-by-2D approach is used

here. A N-by-2D ray model invokes a 2D ray tracer separately along N radial lines

for at each receiver, and the bathymetry is interpolated along each radial line. This

flattens the problem to two dimensions, range and depth, and a single ray fan starting

at the receiver can be used to determine the eigenrays for all points along the radial

which greatly reduces computational complexity. The τ̄0pxq, τ̄´pxq, and τ̄`pxq at each

radial point can then be gridded using a technique such as Delaunay triangulation

(de Berg, 2008). A constant water sound speed profile (SSP) is adopted in this

analysis, but the technique can be readily applied to environments having a varying

SSP. The choice of constant SSP is based on the experiment described in Sec. 5.5,

which was close to isovelocity.

5.2.3 Ambiguity Surface for Target Location

In the last stage of processing, the measured time delays are matched against modeled

time delays computed at regular points on the surface. An ideal ambiguity function
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would be a delta function at the true target location, but in practice the aim is to

maximize the value at the true target location relative to all other locations. At the

true target location, the error between the predicted time delays and the measured

time delays will be minimized, provided the model is sufficiently accurate. It is

important to point out that all three delay errors that are minimized together at this

point: |τ0 ´ τ̄0pxq|, |τ` ´ τ̄`pxq|, and |τ´ ´ τ̄´pxq|. When |τ0 ´ τ̄0pxq| is at a minimum,

this corresponds to a hyperbola on the x plane. When the other two are also at a

minimum, this corresponds to a range at some distance down one leg of the hyperbola.

However, since the hyperbola has two legs, this also corresponds to a “false” target

position on the other leg. The false target position may retain a greater amount of

overall error due to bathymetric variations.

Thus, in order to constrain the ambiguity function to produce a large value at the true

target position, it is constructed as the product of three Gaussians. Using Eq. 5.14,

Φpxq
∆
“ grτ0, τ̄0pxq, σs ˆ grτ`, τ̄`pxq, σs ˆ grτ´, τ̄´pxq, σs. (5.20)

The first term constrains the target location to the hyperbola determined by the direct

arrivals. The latter two terms are maximized at the true target range, and possibly

the false target range. Values of Φpxq are in the range p0, 1s and are interpreted as

yielding information about the relative certainty of the target being at a particular

location, x, on the water surface.
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5.3 Cramér-Rao Lower Bound on Range

This section examines the theoretical limits on how accurately the target range can

be determined. Localization is an estimation problem that uses a set of observed

quantities (i.e. acoustic data) to estimate the value of a set of hidden parameters

that cannot be directly observed (i.e. the location of the target). Different algo-

rithms may estimate the hidden parameters with different degrees of variance, but

the question that naturally arises is what is the best (lowest) possible variance that

can be achieved? The CRLB gives a theoretical lower bound on the variance of an

unbiased estimator. This operates by considering the amount of information about

the hidden parameters that is contained in the observed quantities. As the amount

of information about a hidden parameter increases, the variance with which it can

be estimated decreases, and vice-versa. In fact, the definition of the CRLB is that

it is the inverse of the Fisher information matrix. The i, j element of the Fisher

information matrix is defined as

JDi,j
“ E

„

B log ppy|ξiq

Bξi

B log ppy|ξjq

Bξj



, (5.21)

in which ppy|ξq is the conditional probability density function of an observed quantity

y given a hidden parameter ξ.

The basis for this analysis starts with an article by Friedlander (1988), in which

the target range and depth CRLB were derived. In that scenario, Gaussian noise is

emitted by a submerged source and travels along two paths to a pair of vertically

arranged receivers. One path is direct and the other reflected. Propagation delays

are specified as a function of source range and depth, and are considered the hidden
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parameters. Instead of applying Eq. 5.21 directly, Whittle’s theorem [Whittle (1953),

Theorem 9] is invoked to compute the Fisher information matrix by integrating a

kernel based on the cross spectral density matrix and its derivatives over a band of

frequencies. In that formulation, the i, j element of the Fisher information matrix is

JDi,j
“

N

2πfs

ż ωmax

ωmin

tr

„

BK

Bξi
K´1BK

Bξj
K´1



dω, (5.22)

in which tr is the trace operator, rωmin, ωmaxs is the signal frequency band, ξi and

ξj are parameters (e.g. range, bearing), N is the number of samples, and fs is the

sample rate. The term K is the cross spectral density matrix for which K1,1 and K2,2

are described by Eq. 5.19, and K1,2 is defined by Eq. 5.13. Note that K2,1 “ K˚
1,2. All

the parameters (the ξ’s) are assumed to be hidden. Parameters that are deterministic

are simply used in the calculation of K and the derivatives of K with respect to the

hidden parameters. In Friedlander (1988), the environment is deterministic, and the

only hidden parameters are the target range and depth.

The Fisher information divides parameters into two categories: those for which no

prior information is available and those that are known exactly. Obviously, not

all problems can be defined in this way. However, Van Trees (2001b) proposed a

“Bayesian” version of the CRLB, often referred to simply as the Bayesian CRLB,

that allowed a hidden parameter to have some (but not necessarily perfect) prior

information. Hamilton and Schultheiss (1993) used this formulation to determine the

CRLB for a target’s range, but treated the depth of the multipath reflection from the

seabed as a hidden parameter having a finite prior variance.

The Bayesian “prior” information about the variances of the parameters is specified
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in the matrix

JP “ diagrvarpξ1q´1, varpξ2q
´1, . . . , varpξNq´1s, (5.23)

in which diag puts the elements on the diagonal of a matrix with zeros off the diagonal,

and varpξq is the variance of ξ. The total Fisher information matrix is then

JT “ JD ` JP , (5.24)

and the lower bounds on the variances of the individual parameters fall on the main

diagonal of

Bayesian CRLB “ J´1
T . (5.25)

At the extremes, an infinite prior variance implies no prior information about that

parameter exists, which drives that element of JP to zero thus increasing the CRLB.

Conversely, a small variance for the prior implies accurate knowledge of a parameter,

thus increasing the value in JP and decreasing the CRLB. Intuitively, as more prior

information about a parameter is included (corresponding to a larger value somewhere

on the diagonal of JP ), that parameter, and potentially other parameters as well, can

be estimated with a smaller variance corresponding to an overall smaller CRLB.

Whittle’s theorem, Eq. 5.22, requires second-order derivatives of the cross spectral

density matrix with respect to the parameters. For this reason, constant sound speeds

are assumed throughout much of the literature since relationships between the water

sound velocity profile and the observed relative ray travel times are difficult to de-

termine analytically. For simplicity, a constant sound velocity profile is adopted here
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Parameter (ξ) Value (µξ) Bayesian prior (σξ)

R 100-1500 m 8
θ 45˝ 8
L 11, 2 m 0.02 m
D1 120 m 2 m
D2 120 m 2 m
B1 120 m 10 m
B2 120 m 10 m
γ -0.9 0.01
c 1530 m/s 5 m/s

Table 5.1: Hidden Parameters for CRLB Calculation

and used to show what affect treating other parameters as uncertain has on range

localization accuracy. The derivatives of K are taken for all pairs of the parameters

R, θ, L, D1, D2, B1, B2, γ, and c, such that JD is a 9 ˆ 9 matrix. These derivatives

are computed analytically using a symbolic math engine (MathWorks, 2013) and used

directly in the simulation described in the next section. The individual equations that

make up JD are large, and the details are not particularly germane so are omitted

here. Many other works have presented explicit derivations [e.g. Friedlander (1988),

Hamilton and Schultheiss (1993)], and the method presented here follows essentially

the same procedure.

5.3.1 Simulation

In this simulation, the Bayesian CRLB for range (specified as σR) and bearing (spec-

ified as σθ) are computed as a function of the true target range. This is done for

long and short hydrophone separation distances in order to examine what effect this

has. The hydrophone separation is also modeled to have a small amount of error.

The seabed is assumed to be roughly flat with some variations, and the depth of

the receivers also has a slight amount of error. The water has a constant sound
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speed, but there is some uncertainty in the exact speed. In Eq. 5.22, N “ 4096,

fs “ 102.4 kHz, rωmin, ωmaxs “ 2πr0, 3000s. The source level emits 130 dB and the

noise level is 60 dB. As the target range increases, the signal to noise ratio (SNR)

at the receiver decreases. The parameter values (µξ) for the simulation are given in

Table 5.1, along with the Bayesian priors (σξ). Range (R) and bearing (θ) are the

parameters under investigation, and so their infinite priors cause their entries in JP

to be zero.

The Bayesian CRLB for range (R) and bearing (θ) are shown in Fig. 5.3(a) and (b),

respectively, for both hydrophone separations (L). As the target moves farther from

the array, the lower bound on range estimation variance increases, which corresponds

to the direct and multipath eigenray travel times converging, and therefore containing

less information about the target range. The lines for the 2 m and 11 m hydrophone

separations essentially overlap, indicating that hydrophone separation does not affect

the lower bound on range variance. However, it does have a significant impact on the

bearing estimation, σθ, shown in Fig. 5.3(b), as expected. The increase in bearing

CRLB at closer ranges are due to the uncertainty in the receiver depths.

5.4 Array Side Discrimination

An interesting feature of the ambiguity surface defined in Eq. 5.20 is that in addition

to estimating the target range and bearing, it can also predict (with some uncertainty)

which “side” of the array the target is on. This predictive capability is manifest as a

taller peak in the ambiguity surface on the “true” side of the array (the side of the

array where the target is actually located). This section examines what aspects of the

ambiguity surface construction give rise to this capability, and explores the factors
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that support it through simulation.

Consider a single snapshot of acoustic data that is short enough to safely neglect target

motion. The bathymetry is varied such that depths on one side of the array differ

from the corresponding “mirror” points on the other side of the array. This difference

affects propagation which causes the multipath travel times to differ. Equation 5.20

will now produce an ambiguity surface with two peaks, one on “true” side and one

on the “false” side. The height of these peaks depend on error between modeled

and measured time delays for each pair of arrivals on each side. These errors are

random variables based on the inherent uncertainty in measuring time delays with the

generalized cross correlator (Carter and Knapp, 1976). Errors due to environmental

uncertainty are ignored and the environment is assumed to be perfectly characterized.

On the true side, there exists a possible target position on the surface for which

these random variables will be normally distributed with zero mean, i.e. the true

target position. However, such a position does not necessarily exist on the false side,

implying that some of the means will deviate from zero. The first term of Eq. 5.20

constrains the ambiguity surface to a hyperbola based on the delay between direct ar-

rivals. This is oriented with a leg extending onto each side of the array. Conceptually,

sliding along the hyperbola on the true side, at some point the multipath delays will

exactly match the modeled predictions (no environmental uncertainty) at the true

target range. However, on the false side, the multipath delays may become close, but

do not perfectly match the modeled predictions at the false target range. This small

amount of error, if it exists, is amplified by Eq. 5.20 and is often sufficient to produce

a taller peak on the true side.

Let point xt be the px, yq position of the peak on the true side, and xf be the tallest
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peak on the false side. Ultimately, the question being asked is what is the probability

that the peak on the true side is taller than the peak on the false side? This quantity

is expressed as

Pt
∆
“ P rΦpxtq ą Φpxf qs . (5.26)

Let

αa
b

∆
“ rτa ´ τ̄apxbqs2 ,

a

b

P

P

t0,´,`u

tt, fu
. (5.27)

Combining the terms of Eq. 5.20, it can be shown that Eq. 5.26 is equivalent to

Pt “ P
“

α0
t ` α`

t ` α´
t ă α0

f ` α`
f ` α´

f

‰

. (5.28)

To analyze each side of this inequality, note the measured values (τa) are normally

distributed random variables. On the true side, their means equal the corresponding

predictions τ̄a, so τa ´ τ̄apxtq are zero-mean normally distributed random variables.

However, on the false side, there may be some error between the mean of τa and the

prediction τ̄a, leading to τa ´ τ̄apxf q being normally distributed random variables but

possibly having a non-zero mean.

Since each αa
t is the square of a normal random variable, they are each χ2

k distributed

with k “ 1 degrees of freedom. Added together, the three αa
t ’s, the left side of the

inequality form a χ2
k random variable with k “ 3 degrees of freedom. On the right

side, the αa
f random variables are the product of normal random variables that have

the same variance, but do not necessarily have zero mean, so these have non-central
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χ2
k,κ distributions (Zelen and Severo, 1972). Since

α0
t ` α`

t ` α´
t „ χ2

k and α0
f ` α`

f ` α´
f „ χ2

k,κ, (5.29)

then

Pt “ P rχ2
3 ă χ2

3,κs. (5.30)

The parameter κ is the non-centrality parameter defined as

κ “
ÿ

@a

ˆ

τa ´ τ̄apxf q

στa

˙2

, (5.31)

so the probability Pt depends entirely on κ. The parameter στa is the standard

deviation of τa, and depends on the accuracy with which the time delay can be mea-

sured. This relationship between central and non-central χ2 distributions is shown in

Fig. 5.4. Equation 5.30 can be rearranged as the distribution of the difference between

two random variables, which can be computed by correlating their respective distri-

bution functions, or alternatively conjugate-multiplying their characteristic functions.

When κ “ 0, the non-central χ2
k,κ converges to a central χ2

k and the probability that

one is less than the other is 0.5, which would imply there is no time delay error on

the false side. In short, Eq. 5.31 says that the accumulation of normalized squared

time delay errors on the false side determine the array side prediction performance.

This is analyzed with a simulation in the next section.
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5.4.1 Simulation

Consider an environment with a planar but not flat bathymetry. In other words, the

bottom lies in a plane but does not coincide with the z “ D plane. The plane has a

constant slope such that one side of the array is deeper than the other. Array side

discrimination is based on one side having different multipath characteristics than the

other, so the gradient vector can not be perfectly parallel to array. Rather, it is the

component of the gradient that is perpendicular to the array that is relevant. This is

important because it says that to perform side discrimination, sensors deployed on a

slope should be placed along bathymetric contours as opposed to an uphill-downhill

arrangement. With an uphill-downhill arrangement, the bathymetry along the true

and false bearings are identical, which eliminates differences in the multipath that are

critical to this capability. In this simulation, the gradient vector is perpendicular to

the array, and the sensors are on the bottom in 120 m of water. The simulation places

the target on the deeper side at 1 km range at a bearing of 45˝. The sound speed in

the water is assumed to be constant with boundary reflections that are lossless.

In this case, the environment is known perfectly so the measured time delays are

solely the result of correlating Gaussian noise signals in the presence of additive

Gaussian noise. Hahn and Tretter (1973) derived the CRLB for the variance of the

time delay in this scenario. Knapp and Carter (1976) further showed that this bound

is reached with the generalized cross correlation algorithm, which is the same method

used here. If the signal and noise have flat spectra in the band rfmin, fmaxs (using

positive frequencies only), this bound is specified as

σ2 “
3fs r1 ` 2pSNRqs

4πN pf 3
max ´ f 3

minq pSNRq2
(5.32)
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where N is the number of samples, fs is the sample rate, and the SNR (in linear units,

not decibels). The values used in the simulation are fs “ 102400 Hz, N “ 4096,

fmin “ 0 Hz, fmax “ 3000 Hz, and SNR “ 10 dB.

The simulation is based on image theory. Since the seabed is a plane, the target is

reflected over it to its image position. The receivers are then reflected over the surface

to their image positions. Multipath time delays between the source and each receiver

are computing using the distance between the image source and the image receivers.

The ambiguity surface, Eq. 5.20, is computed on the shallow side to determine the

location of false target. The false target position corresponds to a set of time delays

that are close to, but do not necessarily match those of the true target position.

These time delay errors exist for both direct-with-direct and direct-with-multipath

correlations. From these errors, Eq. 5.31 is invoked along with Eq. 5.32 to determine

κ, which maps directly to a probability value that specifies whether the peak at the

true target position will be taller. The results of this simulation are shown in Fig. 5.5

for variations in the seabed slope and receiver separation.

As the seabed becomes more sloped, the side discrimination capability increases. Con-

versely, a flat seabed eliminates the unique propagation characteristics from each side

of the array, which removes the array side discrimination capability. Consequently,

the probability of choosing the correct side becomes 0.5. The same behavior is ob-

served for the separation distance between receivers. As the receivers become closer

together, even on a sloped seabed, the multipath rays from the target to each receiver

become increasingly similar. Namely, the points on the seabed from which reflections

occur start to converge, and the relative difference between pairs of rays on each

side of the array correspondingly decrease. This quells the array side discrimination
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Figure 5.6: Arrays deployed in the Hawai‘i 2011 experiment.

capability.

5.5 Hawai‘i 2011 Experiment

The Hawai‘i 2011 experiment was conducted in August 2011 at the same site as

the Hawai‘i 2010 experiment. The latter is described in Sec. 4.1. As before, this

work was done in collaboration with the University of Hawai‘i. The Hawai‘i 2011
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experiment was similar to the Hawai‘i 2010 experiment but with differences in the

array configuration and the various targets and target tracks. Instead of one vertical

array and one horizontal array, both arrays were laid out horizontally. They were

orthogonal to each other, and were arranged in an “L” configuration on the seabed.

This is shown in Fig. 5.6, along with the location of the horizontal array in the Hawai‘i

2010 experiment.

Only two elements of the HLA, spaced 11 m apart, were used in this study. The array

was configured with a sample rate of 102.4 kHz, 24-bit dynamic range, 300 Hz low-cut

filter, and 110 dB anti-aliasing filter set at 46.4 kHz. The hydrophones (HTI-92-WB)

had a sensitivity of -160 dB re 1 V{µPa.

A rigid-hulled small boat with a single outboard engine was used as a target, and

a handheld GPS device recorded its location. Time stamps in the GPS data and

recorded acoustic data allowed for coarse-grained synchronization (on the order of 1 s)

between the two sets of data. The boat executed several different maneuvers including

driving in circles around the array deployment site. Spectral analysis indicated that

the boat radiated noise in the 0-10 kHz band with the bulk of the energy below 3

kHz.

Bathymetry information for the local area was obtained from the SHOALS LIDAR

bathymetry database at the University of Hawai‘i (University of Hawai’i at Manoa,

Costal Geoglogy Group, 2012) which was ungridded data having roughly 1 m reso-

lution. A gridding algorithm was used to convert this data to a square grid oriented

the same way the local map coordinates (i.e. Northing and Easting). Grab sam-

ples near the deployment site indicated the seabed was composed of medium/coarse

sand. The bathymetry, hydrophone locations, and track of the boat are shown in
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Fig. 5.7(a). The bathymetry and hydrophone locations were used to compute the

direct and bottom-surface eigenrays for a grid of points on the surface.

5.6 Striation Extraction Particle Filtering

This section describes the sequential Bayesian filtering methodology used to extract

striation lines from a correlogram. The striation lines correspond to correlations of

different pairs of arrivals at opposite hydrophones. As can be seen in the correlogram

in Fig. 5.7(b), a prominent center striation line is flanked by two weaker striations.

The center striation is caused by the direct arrival correlating with the direct arrival

at the opposite hydrophone, and the flanking striations are due to a direct arrival

at one hydrophone correlating with a multipath arrival at the opposite hydrophone.

The offset of all three striations on the time delay (horizontal) axis at each time step

(vertical axis) is the desired output. The extraction is divided into two trackers; the

first tracks the center striation, which is then fed to the second tracker that tracks

both flanking striations.

Given their ability to handle nonlinear problems, particle filters have been applied

previously to the problem of acoustically tracking objects in space using multipath

(Ward et al., 2003), and to directly analyze features of received data (Jain and

Michalopoulou, 2011, Michalopoulou and Jain, 2012). The approach taken here is

more akin to the latter by focusing on extracting time delays from the passive acous-

tic data. Sequential Importance Resampling (SIR) is among the simplest of the

particle filter formulations (Ristic et al., 2004). In the tracking context, a sequence of

observations are fed to the tracker to estimate hidden state variables at discrete time

steps, denoted by k. State estimates at the previous time step, k ´ 1, are used to
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refine the probability at the current time step, giving this formulation its “Bayesian”

nature.

In this context, the observations are the cross correlation at each time step, Γk “

Γkpτq (Eq. 5.15 shows a noise-free measurement), and the state variables are the

time delays, τk. Bold typeface indicates variables may be multidimensional. The

prediction of the current state’s (τk) probability distribution from a previous state’s

(τk´1) probability distribution is computed according to

ppτk|Γ1:k´1q “

ż

ppτk|τk´1qppτk´1|Γ1:k´1q dτk´1 (5.33)

in which Γ1:k´1 “ Γ1,Γ2, . . . ,Γk´1. Conceptually, this is based on a Markov state-

space model in which the probability of the next state depends only on the previous

state,

ppτk|τ1:k´1q “ ppτk|τk´1q. (5.34)

To incorporate a new measurement Γk, the state is updated as

ppτk|Γ1:kq 9 ppΓk|τkqppτk|Γ1:k´1q, (5.35)

for which the right hand side is then normalized to integrate to one. It is useful to

think of ppΓk|τkq as a function of τk that is parameterized by an actual (i.e. non-

random) observation Γk. Due to the proportionality relationship in Eq. 5.35, this

expression can be represented as a likelihood function that need not integrate to one

Lpτk|Γkq 9 ppΓk|τkq. (5.36)
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Particle filters approximate the probability distributions as a sum of weighted delta

functions,

ppτk|Γ1:kq «
N
ÿ

i“1

wiδpτk ´ τ ikq (5.37)

for which τ ik is the ith particle and wi is its weight, and N is the number of particles.

The weights collectively sum to one, and provide a means to draw samples from a

distribution other than ppτk|Γkq, for which there is often no closed form solution. This

other distribution is called the importance density, and in the SIR algorithm is defined

as the posterior probability distribution at the previous time step, ppτk´1|Γ1:k´1q.

Particle degeneracy happens when a significant portion of the particle weights become

very small. These particles are essentially lost as they do not contribute meaningfully

to the probability distribution. Resampling is used to re-draw the samples from

regions of state space having greater probability density. This method follows from

Ristic et al. (2004).

The first particle filter extracts the center striation using a random-walk state model

defined as τ0k “ τ0k´1
` v, in which v „ N p0, σ2

τ0
q. The log-likelihood function is

defined as

logLpτ0k |Γkq “

ż 8

´8

Γkpτqgpτ, τ0k , σq dτ. (5.38)

The second particle filter extracts both flanking striations based on τ0k output by the

first tracker. It uses a two-variable random walk state model, but instead of tracking

the time offsets, it tracks two auxiliary variables. The flanking striations share roughly

150



the same absolute offset from τ0k , but there will be some small deviation of these

absolute offsets on either side based on slight propagation differences. This deviation

is important because it contains the information needed for array side discrimination.

To model a varying absolute offset and a smaller deviation between sides, the state

consists of two auxiliary variables, ζ1k and ζ2k . The state update is rζnk
“ ζnk´1

`

wnsnPt1,2u, in which rwn „ N p0, σ2
ζn

qsnPt1,2u such that σ2
ζ2

ă σ2
ζ1
. The desired quantities,

τ´k
and τ`k

, are defined in terms of these auxiliary variables as

τ´k
“ τ0k ´ ζ1k , τ`k

“ τ0k ` ζ1k ` ζ2k . (5.39)

The log-likelihood function is defined as

logLpτ`k
, τ´k

|Γk, τ0,kq “

ż 8

´8

Γkpτqrgpτ, τ´k
, σq

` gpτ, τ`k
, σqs dτ. (5.40)

To obtain point estimates from each posterior probability distribution, a Gaussian

kernel smoother is applied to the particles to estimate the maximum a priori (MAP)

value. The output of the tracker after both filters are the measured values τ0k , τ´k
,

and τ`k
at each time interval k. In Sec. 5.5, the parameters were set to N “ 500,

στ0 “ 0.413 ms, σζ1 “ 0.098 ms, and σζ2 “ 0.001 ms.

5.7 Experimental Results

A correlogram is shown in Fig. 5.7(b) in which multipath effects are evident. The

strong, center striation is the correlation of direct arrivals. This is supported by the
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fact that as the target circles around the array, this striation stays between ˘11 m,

which are the limits for the correlation lag distance for the configured hydrophone

spacing of 11 m. The multipath-with-direct correlations are visible as “shadow”

striations that run adjacent to the main striation. All these striation lines were auto-

matically traced using a SIR particle filter (see Sec. 5.6) and are shown in Fig. 5.7(c).

Shadow striations from higher-order eigenrays are also faintly visible throughout the

entire run, but are not used in this processing.

A comparison of localization using only the direct arrivals (corresponding to using

just the first term of Eq. 5.20) with all three arrivals (all terms of Eq. 5.20) is shown

in Fig. 5.8(a) and (b). The effects of using a flat seabed versus actual bathymetry are

shown in Fig. 5.8(b) and (c), in which the peak near true target location is amplified

with respect to the false target location. The full ambiguity function, Φpxq, is shown

for several snapshots throughout the boat track in Fig. 5.9(a) for an 11 m spacing.

The same processing was applied to phones separated by 2 m for the same times,

and the results are shown in Fig. 5.9(b). Two things are evident with the shorter

separation: each peak is less sharply defined in bearing due to the smaller aperture,

and the false peaks on the near side are more prominent indicating a decrease in

the array side discrimination capability. Poorer bearing resolution for shorter array

lengths is consistent with a greater CRLB for bearing, described in Sec. 5.3. The

image data in Figs. 5.8 and 5.9 were post-processed with a 2-D Hann filter to aid

visualization of narrow features. Range errors at the start of the tracks Fig. 5.8(a)

and (b) correspond to the SIR particle filter locking onto the striation lines.
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5.8 Chapter Summary

This chapter presents a simple technique for localizing a small boat using multipath

arrivals recorded on two bottom-mounted hydrophones, and examines the factors

that affect its performance. Hydrophones placed on the seabed constitute a favorable

geometry for broadband target localization since it maximizes the time separation

between the first and second arrivals, which facilitate extraction from a correlogram

with a particle filter. Bathymetric variations can be exploited with ray tracing to

improve range estimates, and can also support an array side discrimination capability

for sloped seabeds. To expose this capability, array elements should be placed along

contours of the bathymetry, rather than in an uphill-downhill arrangement. The

probability of picking the correct side based on errors between predicted and actual

multipath arrival times is reported. Theoretical limits of ranging accuracy are also

given by modeling environmental and geometrical errors with the Bayesian Cramér-

Rao lower bound.

One factor that is likely to impact performance of this technique is refraction caused

by a non-constant vertical water sound speed profile. Errors in modeling this as-

pect of the environmental increase at greater ranges, which will likely increase the

Bayesian CRLB. Performance was not observed to be impacted by seabed proper-

ties, which is attributable to the behavior of the envelope operation that removes

frequency-independent phase changes. Analytic partial derivatives could be replaced

with numeric methods, but this may require substantially greater computational re-

sources. Regardless, one application for this technique might be monitoring small

boat traffic in shallow water regions with relatively minimal deployment complexity

and equipment.
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Chapter 6

Volumetric Array Processing

This chapter presents a passive multi-target localization technique that uses a com-

pact volumetric array to decompose the multipath structure arriving on a single bear-

ing enabling direct measurement of multipath time delays that support target ranging.

This differs from the two-hydrophone approach explained in Ch. 5 in that this algo-

rithm employs array processing techniques more advanced than cross-correlating two

hydrophones. The scale of the receiver arrays also differ, which is important because

it critically affects how and where these types of systems can be deployed. The length

of the POEMS-A systems used in Hawai‘i 2010 were on the order of 10’s of meters,

whereas the volumetric array discussed in this chapter spans only 0.4 m.

The hardware and the signal processing requirements needed for this technique lend

well to deployment from mobile platforms such as autonomous underwater vehicles

(AUVs). Many common ocean waveguides support several ray paths between a source

and receiver (known as eigenrays or arrivals), which are collectively referred to as the

multipath structure. Since the multipath structure changes as a function of target

range, measuring the interference pattern due to multipath can be informative of tar-

get range (Thode, 2000, Rakotonarivo and Kuperman, 2012). Multipath interference
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is the result of time delays between arrivals causing constructive and destructive in-

terference at different frequencies (Harrison, 2011). It has been the subject of much

study because the pattern often has low sensitivity to waveguide parameters (Weston

and Stevens, 1972). The technique presented in this chapter bypasses the interfer-

ence pattern and directly measures the time delays between arrivals by cross corre-

lating beams steered at multipath arrivals. It is based on a recent passive fathometry

technique that measured multipath of surface noise. To relate this to the inference

pattern, it shown that the most prominent spectrogram striations, and the waveguide

invariant parameter β (Brekhovskikh and Lysanov, 2003), can be predicted using the

measured multipath delays. While this approach is presented in the context of target

localization, it also has implications for ocean tomography and geoacoustic inversion.

In order to utilize the multipath delays for target ranging, it is important that the

delay is not so small as to preclude its accurate measurement. The approach in Ch. 5

was to place the hydrophones directly on the seabed thus maximizing the travel dis-

tance between the first and second eigenray arrivals. If it is possible to control the

transmitted waveform, one approach is to use short-duration waveforms and source-

receiver geometries that naturally separate rays (Holland and Osler, 2000). Many

marine mammals also use short-duration waveforms. For example, whale clicks are

impulsive and time delays between distinct multipath arrivals have been shown to

provide estimates of animal locations (Nosal and Frazer, 2006, Tiemann et al., 2006,

Mathias et al., 2013). The problem is less straightforward when the waveform is

broadband noise, but a class of techniques built on the concept of “pulse compres-

sion” have been shown to be an effective method of estimating time-delays. Pulse

compression is typically based on the generalized cross correlation algorithm (Carter

and Knapp, 1976). It can also be used to estimate multipath time delays, and has
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been studied extensively from a theoretical perspective for target range estimation

(Hahn, 1975, Hamilton and Schultheiss, 1992, Badriasl et al., 2011).

Arrival angles also are functionally dependent on the environment, and are used in

acoustic tomography experiments, such as Aulanier et al. (2013). This was based

on a double-beamforming measurement concept introduced by Roux et al. (2008)

involving a vertical receiver array and a vertical source array. The ambient noise field

has also been shown to provide tomographic information, as recently demonstrated

by Leroy et al. (2012) and Lani et al. (2013) extracting coherent wavefronts using

multiple vertical line arrays.

Multipath coherence gives rise to an interference pattern that depends on range. Tra-

ditionally this has been treated as a nuisance factor, but recently it has been favorably

utilized by a modified conventional beamformer to increase array gain (Rouseff and

Zurk, 2011). However, multipath coherence can negatively affect adaptive beam form-

ing algorithms that are based on eigendecomposition. A variety of methods have been

developed for breaking the coherence [see Van Trees (2002d) for a summary]. An ap-

proach taken by Koch and Knobles (2005) for geoacoustic inversion using noise from

a nearby ship of opportunity was to look for correlations between sub-apertures of a

horizontal line array, thus avoiding the coherence problem. Later work by Stotts et al.

(2010) used the same technique but to simultaneously invert for the ship location and

geoacoustic properties.

While multipath coherence can cause problems for adaptive beamforming, this feature

was exploited for geoacoustic inversion in the passive fathometer formulation that

used surface-generated noise (such as from wind and breaking waves) as a source

of opportunity. An algorithm based on conventional beamforming was introduced
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by Siderius et al. (2006) and later refined by Gerstoft et al. (2008), Harrison and

Siderius (2008); and Means and Siderius (2009). The two-way travel time from the

array to the seabed was measured by beamforming at the end fire directions of a

vertical line array to isolate the downward traveling noise and the seabed reflections.

Interestingly, switching to adaptive beam forming (Siderius et al., 2010) improved

time delay estimates by reducing interference from non-vertically-traveling waves. As

described in the next section, a similar approach is taken to measure time delays

between non-vertically traveling multipath arrivals originating from a distant surface

noise source.

The conference paper Gebbie et al. (2010) looked at how cross-beamforming could be

used to process multipath with the passive fathometer. This helped set the ground-

work for the algorithm described here. This work was presented at the 21st Inter-

national Congress on Acoustics Conference in Montreal Canada in June 2013 and

published in the Proceedings of Meetings on Acoustics (Gebbie et al., 2013c). A

similar work was also presented at the 1st International Conference & Exhibition

on Underwater Acoustics, Corfu, Greece in June 2013 (Gebbie et al., 2013b). The

multi-target capability and connection to waveguide invariance was presented at the

Acoustical Society of America conference in Providence, RI in May 2014 (Gebbie

et al., 2014d). Lastly, a full-length manuscript has been accepted for publication in

the Journal of the Acoustical Society of America (Gebbie et al., 2014c) covering all

but the waveguide invariance topic.

The rest of this chapter is organized as follows. Section 6.1 provides a description

of the cross beam correlation methodology. Section 6.5 describes the GLASS’12

experiment. Section 6.6 presents the target localization results from that experiment.
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Section 6.7 relates this work to the principles of waveguide invariance.

6.1 Problem Formulation

In the case of the passive fathometer, the vertical array was oriented in such a way

that the ends of the array naturally pointed at the source (surface noise) and the

multipath reflection (the seabed) while all other interference arrived mainly from

broadside (i.e. horizontally). The vertical line array geometry is thus well suited to

this type of distributed source, but applying it to a distant source requires forming

beams at other elevation angles to match the multipath arrivals. While this is possible

with a vertical line array, it also results in a conical beam pattern giving it ambiguity

in bearing. This means that ambient noise and multipath from multiple targets will

overlap in the beamformer output, making analysis of individual targets difficult. A

solution is to use volumetric arrays that have aperture in all three spatial dimensions

since they can form beams in any direction in bearing and elevation.

Cross beam correlation operates on two arrivals, so this discussion begins with a

simplified model of a waveguide that includes only the first two arrivals. The spectral

value at range r and frequency ω can be approximated with the first arrival normalized

to one as

S « e´iωt1 ` Re´iωt2 , (6.1)

in which tn is the time offset of the nth arrival, R “ |R|eiφR is the complex amplitude

of the second arrival relative to the first that accounts for propagation differences

(i.e. additional reflections, losses due to spreading and attenuation, etc.). Note the
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variables R and tn depend on r; and we make the approximation that R is independent

of frequency, such as would be the case for a half space seabed. Let the multipath

time delay be defined as

τ2,1
∆
“ t2 ´ t1. (6.2)

Section 6.2 reiterates adaptive beamforming, and Sec. 6.3 discusses how to directly

obtain τ2,1 from a noise-producing target by beamforming to isolate the individual

terms of Eq. 6.1, which are then cross-correlated to expose τ2,1 in the time domain.

The term φR is also measurable with cross-beam correlation, but it is ignored mainly

because it is a property of the environment and does not contain much information

about the target range.

6.2 Adaptive Beamforming

The first step is to determine the beams on which the multipaths are arriving. This

is accomplished with adaptive beamforming that filters the acoustic data in bearing,

elevation, and frequency. It results in a map showing where acoustic energy is being

received at the array, and its spectral content. Thus, adaptive beamforming provides

a means to determine the direction of a target in bearing, and its associated multipath

arrivals in elevation. Adaptivity plays an important role in that it can focus in one

direction while simultaneously rejecting noise arriving in other directions. As its name

implies, adaptive beamforming adapts the beam pattern to the data being processed

to improve overall gain in the steering direction. Conceptually, it does this by steering

side lobes and nulls in directions that are most advantageous. For example, a loud

161



interferer arriving on a distinct bearing will have a null steered at it, whereas a

relatively quiet bearing will get assigned a large side lobe.

As was described in Sec. 3.5.2, the minimum-power distortionless response (MPDR)

adaptive beamformer is defined in Van Trees (2002c) by Eq. 3.156, and repeated here

wMPDR “
R´1v

vHR´1v
. (6.3)

The term R is the sample-averaged cross-spectral density matrix (CSDM) defined in

Eq. 3.125, and repeated here

R “
1

M

M
ÿ

m“1

pmp
H
m, (6.4)

in which pm is a vector of spectral values across all channels for the mth snapshot.

A snapshot consists of contiguous time-series data across all channels that is used to

estimate spectral values. The total averaging time and snapshot length are important

and will be discussed in Sec. 6.4. To eliminate strong tonal components (such as

engine harmonics from a boat) pre-whitening is used to flatten the spectrum by

pm “ p̂m{|p̂m| where p̂m is the measured spectral value. The plane wave array

manifold is given by Eq. 3.117, and repeated here

vpuq “ e´ikaTu, (6.5)

for which a is the array geometry that specifies the position of each element in the

columns of a matrix, u is a unit vector indicating the direction of wave propagation

in a column vector, and k is the wavenumber in units of radians per meter. In

the literature, MPDR is sometimes referred to as MVDR (where the V stands for
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variance); however, strictly speaking the MVDR algorithm (Capon, 1969) requires

a priori knowledge of the noise (N) plus interference (I) covariance matrix (KN+I),

whereas MPDR operates directly on the sample-averaged CSDM, R. Equation 6.3 is

a least-squares solution to

argmin
w

wHRw, (6.6)

which minimizes the power output of the beamformer while satisfying the distortion-

less constraint

wHv “ 1. (6.7)

The formulation in Eq. 6.3 requires R to be full rank. It is often the case in practice

that R has one or more very small eigenvalues, which cause the matrix inversion

to become unstable. This can happen for a N element array with fewer than N

snapshots, and is referred to as “snapshot deficiency” (Song et al., 2003). While

techniques exist to compensate for this (Menon and Gerstoft, 2013), a common ad

hoc technique for stabilizing the matrix inversion is to add a small amount of diagonal

loading to R; in this study a small amount (´30 dB relative to the mean spectral

power across channels) is used (Van Trees, 2002b). Beyond stabilizing a rank deficient

R, diagonal loading can also increase the beamformer tolerance to mismatch errors,

such as element location errors or wavefront curvature errors.
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6.3 Cross Beam Correlation

Once multipath arrivals are spatially separated on different elevation beams, the next

step is to determine the time delay of their respective signals. The noise signal

from the source undergoes different delays based on unique ray trajectories through

the waveguide. Cross-correlation can be used to “pulse compress” these coherent

broadband noise signals into a broadband pulse in the time domain, which has an

offset corresponding to the relative time delay. This shares some conceptual similarity

to a matched filter commonly used in active sonar, but instead of a known transmitted

waveform it uses a measured waveform.

In the time domain, cross correlation is computed by sliding a “reference” signal

along the time axis while holding the “correlated” signal fixed, taking the product

at each offset, and finally integrating. In the frequency domain this corresponds to

conjugating the spectrum of the reference signal and multiplying it by the spectrum

of the correlated signal. The cross spectrum of two arbitrary beams can thus be

formulated as

Cc,r “
`

wH
c p

˘ `

wH
r p

˘˚
(6.8)

“ wH
c

`

ppH
˘

wr (6.9)

in which wc is the correlated beam and wr is the reference beam. The quantity in

parenthesis in Eq. 6.9 is the outer product of a single snapshot; if multiple snap-

shots are averaged, this is replaced with a sample-averaged CSDM, R. Cross beam
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correlation for arbitrary beams is thus defined as

Cc,r “ wH
c Rwr. (6.10)

Inverse Fourier transforming (with the operator denoted as F´1) yields

Γc,rpτq “ F´1rĈc,rpωqs. (6.11)

The envelope can then be used to eliminate constant phase offsets as

Γenv
c,r pτq “ |Γc,rpτq ` iH rΓc,rpτqs| , (6.12)

in which H is the Hilbert transform. Time delays are then obtained by finding the

offset of the largest peak as

τc,r “ argmax
τ

“

Γenv
c,r pτq

‰

for τmin ă τ. (6.13)

The term τmin is an artifact due to white noise leakage and depends on the array

geometry, the manifold origin, and the beams being correlated. It is defined as

τmin “ max
n

“

aT
n pur ´ ucq{c

‰

`
1

Bs

, (6.14)

in which Bs is the effective target bandwidth, and c is the sound speed at the array.

Equation 6.10 is a generalization of the passive fathometer that includes beams steered

in arbitrary directions for an array of arbitrary geometry. For comparison, the vertical

beams of the passive fathometer are wdown “ wr (the signal traveling down from the

surface) and wup “ wc (the signal traveling up from the seabed). It is useful to denote
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the beam having the delayed signal as the correlated beam, which renders time-delays

as positive quantities. However, this is merely a matter of convention.

6.4 Target Localization Procedure

This procedure uses array acoustic data and knowledge of the receiver position in

the waveguide to estimate target range. In this scenario, the target is assumed to

be at the surface. If additional information about the sound speed profile (SSP) of

the waveguide is available, this can be used to improve range estimates. The total

acoustic averaging time should be enough to produce a full rank R, but short enough

so the effects of target motion are minimal; this may be on the order of hundreds of

milliseconds depending on the array size.

The first step in the procedure is to use adaptive beamforming to find all arrivals from

all targets. Coherence between multipath arrivals can cause problems with adaptive

beamforming since coherent signals arriving on distinct beams are represented by a

single eigenvector. A way to mitigate this is to reduce the snapshot length in order

to break the coherence. As the snapshot length approaches the time delay between

multipath arrivals, each arrival will be increasingly mapped to distinct eigenvectors.

This has the effect of stabilizing the adaptive beamformer for coherent arrivals origi-

nating from a single target. The output of the beamformer is a full three-dimensional

map of all arrivals on all bearings and all elevations. For a single target on a single

bearing, the multipath arrivals will be distributed on the elevation axis.

The second step is to cross correlate beams steered at different elevation angles on

a single bearing to determine the time delay between arrivals. Unlike the previous
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step that attempts to eliminate multipath coherence, this step re-averages R using

snapshots that are longer than the multipath time delay, but without changing the

total averaging time. The length of the snapshot should be on the order of several

times the delay to be measured.

With a surface source in shallow water, the first arrival will usually be traveling

downward and have the highest amplitude, so a method to find the delay between

just the first two arrivals is to to steer the reference beam at the strongest arrival

traveling downward and sweep the correlated beam over all elevation angles on the

same bearing. If the correlated beam corresponds to an arrival that is delayed with

respect to the arrival in the reference beam, a peak will appear at a positive time

offset in the time series corresponding to the delay.

The third step is to use the receiver position in the waveguide, and possibly environ-

mental data as well, to estimate the target range. For a surface target, image theory

can be used to compute this time delay in a closed form (Jensen et al., 2011b). This

assumes a constant water sound speed over depth. However, if data pertaining to the

SSP or bathymetery exists, a ray model can be employed to compute the first two

eigenray travel times. This same calculation is performed at all ranges for a constant

receiver depth, and compared to the measured time delay. Ranges at which there is

agreement imply a greater likelihood the target is at that range. This is demonstrated

with experimental results in Sec. 6.6. Note that ray travel times can have varying

degrees of sensitivity to the water SSP. Recent work has been done on travel time

sensitivity kernels for range and depth dependent variations (Sarkar et al., 2011), but

in this study we assume range independence.
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Figure 6.1: This photo shows the eFolaga AUV and fixed mooring frame submerging.

6.5 GLASS’12 Experiment

This section describes the experimental design used to validate the proposed tech-

nique. The GLASS’12 experiment was conducted by the Center for Maritime Research

and Experimentation (CMRE) from the NRV Alliance in July 2012 off the coast of

northern Italy near La Spezia. The purpose was to investigate potential uses of an

autonomous underwater vehicle (AUV) affixed with a nose-mounted array.

The CMRE AUV eFOLAGA was chosen as the “autonomous” platform, and is shown

in Fig. 6.1. It is capable of both propeller-driven and glider-driven locomotion. De-

spite these capabilities, there were technical challenges to getting the AUV to have

the correct buoyancy, causing it to continually crash into the seabed. Since the pri-
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Figure 6.2: This photo shows the mooring to which the eFolaga AUV was attached.
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Figure 6.3: Experimental setup. The AUV is located on the seabed mounted on a
fixed frame, and a small boat outfitted with a GPS collection device is operating on
the surface. Noise from the boat is received by the hydrophone array mounted on the
nose of the AUV.
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Figure 6.4: Bathymetry and overview map of experiment site (Nielsen et al., 2012).
Data used in this chapter was taken at site G.

mary interest surrounded collection of data from the nose-mounted array, the entire

AUV was attached to a fixed apparatus and moored to the seabed. This apparatus

is shown in Fig. 6.2.

The experiment design is depicted in Fig. 6.3. The mooring placed the array approx-

imately 1.85 m above the seabed, and the overall water depth was approximately

22.5 m, as measured by a towed EdgeTech SB216S sub-bottom profiler. An overview

map of the deployment site and regional bathymetry is shown in Fig. 6.4. Results

presented in the paper were recorded at point G. The SSP was measured with a
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Figure 6.6: The passive acoustic array consisted of tetrahedral and line sub arrays.
This was mounted to the nose of the eFolaga AUV.

conductivity-temperture-depth (CTD) instrument, and is shown in Fig. 6.5. Portions

at the boundaries are extrapolated over depths for which no data was captured due

to limitations of the instrument. The extrapolation is explained in Sec. 6.6.3. The

local environment consisted of a primarily sandy bottom. Analysis of core samples

from the seabed indicated a mean seabed density of 1.807 g{cm3 and mean sound

speed of 1540.1 m/s. Attenuation measurements for the seabed were not available,

but a nominal value of 0.2 dB{λ was assumed.
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Figure 6.7: The RHIB boat used as a broadband target for passive acoustic local-
ization algorithms. The noise produced by this boat as it moves through the water
is recorded by the hydrophones of the hydrophone array moored to the seabed.

The array shown in Fig. 6.6 was designed and built by CMRE. It consisted of eight

elements; five in a vertical configuration, and three offset from the center element

to form a tetrahedron with the center element. The elements are mounted on a

rigid frame providing low element position error. The spacing between the vertical

elements, as well as edge lengths of the tetrahedron, was 10 cm. The array frame itself

was made of metal, so array elements were rigidly held in position giving the entire

array a very low amount of mismatch error. The sample rate of the array was 100 kHz.

The GPS coordinates of the array position were taken during the deployment.
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Figure 6.8: a) Tracks of the same boat for two passes by the array, taken from GPS
records. b) Compass bearings of the two same two tracks. A multi-target scenario
is simulated by adding the acoustic data from each track. This plot shows how they
are aligned in time.
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A small boat (the CMRE workboat) with an outboard engine outfitted with a portable

GPS data recorder maneuvered in the vicinity of the array. The boat is shown in

Fig. 6.7. The speed of the boat was roughly 3 m/s. Selected portions of the track of

the boat are shown in Fig. 6.8(a). Besides the NRV Alliance, there were few vessels

detected in the local region. To simulate a multiple target scenario, acoustic data

from two boat passes by the array were added together. The time alignment of these

two passes, showing the relative bearings of each pass are shown in Fig. 6.8(b).

6.5.1 Predicted Multipath Structure

This section describes how the multipath structure was determined from the mea-

sured environmental parameters. BELLHOP (Porter and Bucker, 1987) is a popular

ray tracing tool for analyzing acoustic propagation between two points in an ocean

waveguide. Formulating this problem in a ray context has the advantage of being

able to clearly see the contributions of each eigenray in terms of both space and time.

BELLHOP produces an estimate of the full path traversed by the eigenray. It also pro-

duces an estimate of the travel time for each eigenray, which depends on the SSP.

As a matter of terminology for this section, eigenrays are labeled according to their

sequence of boundary interactions; the direct eigenray is ‘D’, the bottom-reflected

path is ‘B’, the path reflected first from the bottom then the surface is ‘BS’, etc.

Fig. 6.9 shows a set of eigenrays computed with BELLHOP. The paths of these rays can

be understood by noting the negative gradient of SSP shown in Fig. 6.5 (i.e. the trend

shows decreasing sound speed with increasing depth). With the source placed at the

surface, the first surface bounce is omitted following the same procedure in Holland

and Osler (2000). The negative gradient causes rays to bend toward the seabed;
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Figure 6.9: Ray trace using BELLHOP. Only D, B, BS, and BSB eigenrays are shown.
Note the culling of the D and B eigenrays as the range approaches 300 m. Panel
(c) represents the maximum range of the D eigenray, which corresponds to a 0˝ ray
launch angle. Likewise, panel (e) shows the maximum range of the BS eigenray.
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an effect that is amplified as rays are launched closer to the horizontal. Note that

Fig. 6.9(c) is the last panel that shows a D and B eigenray. This corresponds to the

maximum range for which the D eigenray exists. The launch angle for the D eigenray

at that range is zero (exactly horizontal), meaning that just beyond that range the

ray must first reflect off the seabed to be received by the array, which essentially culls

the D eigenray. The same phenomenon happens for the BS ray; its limiting range is

shown in Fig. 6.9(e).

6.6 Results and Analysis

This section demonstrates the proposed technique using data from the GLASS’12

experiment, and compares this against results derived from measured environmental

and GPS data. Section 6.6.1 demonstrates how adaptive beamforming can be used to

measure both the target bearing and elevation angles of individual multipath arrivals.

Section 6.6.2 uses the beam directions with cross-beam correlation to measure time

delays between the two dominant arrivals. Section 6.6.3 aggregates time delays over

the entire boat run for single- and multi-target scenarios; and also illustrates range-

dependent multipath features. Section 6.6.4 interpolates the range from measured

time delays.

6.6.1 Beamforming to Find Multipath Arrivals

Volumetric arrays provide the capability of steering beams in any direction, which

is used here to determine target bearings as well as the multipath arrival structure

that is spread over the elevation angles. In this analysis, CSDMs are computed using
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150 ms of total averaging time, and so the target motion is assumed to be negligible.

This amount of time was chosen since it could be subdivided into enough snapshots to

provide a good CSDM estimate, while also being short enough to avoid target motion

smearing. The array shown in Fig. 6.6 is geometrically comprised of two sub arrays,

however the full eight-element array is used in this analysis. Adaptive beamformer

outputs are shown in Fig. 6.10(a) when the boat is at 58 m range and approaching

the array. Snapshot lengths are 0.53 ms, and the predicted time delay between D

and B eigenrays at this range is 0.904 ms. A Hann time window is applied to each

snapshot during averaging, and snapshots overlap by 50%. Beamformer outputs are

averaged over the 1–35 kHz frequency band. Note that the axes in Fig. 6.10(a) are

oriented according to the wave propagation vector, for which negative angles corre-

spond to downward-traveling waves and vice-versa. The expected arrival directions

are predicted with a ray tracer; and these appear near strong beamformer outputs.

Figure 6.10(b) is the adaptive beam pattern of the strongest beam traveling downward

showing nulling of other beams, including multipath arrivals.

6.6.2 Measuring Time Delays with Cross Beam Correlation

Once the direction of the strongest arrival traveling downward is determined, that

beam is then cross correlated with other elevations on the same bearing to find the

beam containing the next multipath arrival to measure its delay. This step uses 10 ms

snapshots in order to bring multipath coherence into the CSDM.

This processing follows the steps in Sec. 6.3 such that in Eq. 6.10 the reference beam is

the strongest beam traveling downward and the correlated beam is steered in different

elevation angles looking for correlations. If the correlated beam contains a delayed

180



Elev.θ(deg)

C
o
r
r
e
la

t
io

n
L
a
g
τ
(
m
s
)

(a
)

−
9

0

−
6

0

−
3

0 0

3
0

6
0

9
0

−
8

−
4

0

B
/F

 O
u

t 
(d

B
)

 

 
(b

)

0
0

.2
0

.4
0

.6
0

.8
1

−
101

C
o
r
r
e
la

t
io

n
L
a
g
τ
(
m
s
)

Corr.Mag.Γ

(c
)

c
r
o
s
s
-b

e
a
m

s
t
a
n
d
a
r
d
b
e
a
m
fo

r
m
e
r

Γ
B
S
B
,
B
S(
τ
)

Γ
e
n
v

B
S
B
,
B
S(
τ
)

r
a
y
t
r
a
c
e
r
(
B
S
&

B
S
B
)

τ
m
in

c
u
t
li
n
e
s

d
B−

6
−

4
−

2
0

F
ig
u
re

6.
11
:

C
ro
ss

b
ea
m

co
rr
el
at
io
n
of

th
e
st
ro
n
ge
st

ar
ri
va
l
tr
av
el
in
g
d
ow

n
w
ar
d
w
it
h
ot
h
er

el
ev
at
io
n
an

gl
es

al
on

g
th
e

sa
m
e
az
im

u
th
al

d
ir
ec
ti
on

.
(a
)
C
or
re
la
ti
on

p
ow

er
en
ve
lo
p
e
at

ea
ch

el
ev
at
io
n
an

gl
e
an

d
ti
m
e
d
el
ay
.
(b
)
A

ve
rt
ic
al

sl
ic
e
of

th
e
cr
os
s
b
ea
m
fo
rm

er
ta
ke
n
at

th
e
m
ea
su
re
d
m
u
lt
ip
at
h
d
el
ay

co
m
p
ar
ed

w
it
h
a
st
an

d
ar
d
ad

ap
ti
ve

b
ea
m
fo
rm

er
ou

tp
u
t.

(c
)
C
ro
ss

b
ea
m
fo
rm

er
ti
m
e
se
ri
es

ou
tp
u
t
at

th
e
m
ea
su
re
d
m
u
lt
ip
at
h
el
ev
at
io
n
an

gl
e
sh
ow

in
g
th
e
ac
tu
al

w
av
ef
or
m

an
d

it
s
en
ve
lo
p
e.

181



waveform with respect to the reference beam, the correlation delay will be positive

in Eqs. 6.11 and 6.12. This is demonstrated in Fig. 6.11(a) in which the boat is

at a distance of 797 m and is approaching the array. Each row is a separate cross-

correlation between that elevation angle and the strongest beam traveling downward,

measured at ´5.9˝. An annotation shows where the ray model predicts the BSB

arrival to be; at 9.02˝ and 0.38 ms after the BS arrival. This agrees with the data in

which a clear peak is visible on the 11.06˝ beam at a time delay offset of 0.36 ms.

Beyond validation against the ray model, the peak in Fig. 6.11(a) also matches a peak

in the standard adaptive beamformer output, further indicating it is the multipath

arrival from the seabed. This can be seen by cutting through the elevation angles at

the measured delay, as shown in Fig. 6.11(b).

Further analyzing the actual time series on the 11.06˝ beam, the cross correlation and

its envelope are shown in Fig. 6.11(c). The shape of the pulse in the non-envelope line

is not a sinc function, as might be expected from a rectangular band of frequencies,

but rather shows a significant amount of skewing. This is due to a phase change

picked up from an additional seabed reflection, and is predictable from the ray tracer

using measured environmental parameters and assuming a half space seabed. The

envelope operation eliminates this constant phase term and yields a maximal value

at the time delay between beams.

The minimum bound on time delay measurements, τmin, varies as a function of the

angular subtense between beams being cross correlated, and is computed according to

Eq. 6.14. The observed peak width in Fig. 6.11(c) corresponds to an effective signal

bandwidth of Bs “ 11.3 kHz.
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6.6.3 Time Evolution of Cross Beam Measurements

This section analyzes how measured time delays between the first two eigenray arrivals

change as the boat maneuvers. By stacking the time series [i.e. Fig. 6.11(c)] at

several steps during the boat pass, a cross beam correlogram is produced, as shown

in Fig. 6.12. Note that this differs from the more typical usage of correlograms that

are obtained by cross correlating two receivers. In contrast, this image shows the cross

correlation of two beams steered at different elevation angles on a single bearing. The

bearing corresponds to the direction of arrival of boat noise, and changes as the boat

maneuvers. To analyze the multipath originating from a single track, prior knowledge

of the boat’s bearing was used to restrict the bearing search space. Overlaid on the

plots of Fig. 6.12 is the expected time delay of different arrival pairs as estimated

from BELLHOP using the measured SSP. Note the ranges at which these lines terminate

correspond to the ranges at which the different eigenray pairs are culled in Fig. 6.9.

This also shows strong agreement with the ranges at which the correlation peaks in the

acoustic data change visibility. This is true for both the D-with-B and BS-with-BSB

correlations.

Similar results are obtained for Tracks 1 and 2 [comparing Fig. 6.12(a) and (b)]. Track

1 approaches the array from the north and Track 2 from the south. Yet, the BS-with-

BSB correlation is visible in both only on the approach, indicating a strong aspect

dependence on boat noise radiation. An artificial multi-target scenario is shown in

Fig. 6.12(c) in which acoustic data from Track 1 and Track 2 are added together.

The same processing is applied that focuses the cross beamformer on the arrivals

from Track 1, and it is seen how adaptive beamforming effectively nulls the Track 2

interferer.
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Figure 6.12: Correlograms of multipath-steered beams with overlays showing model
predictions of multipath time delays. (a,b) individual boat tracks. (c) multi-target
scenario (sum of acoustic data from both tracks) with cross-beamformer steered at
Track 1.

184



F
ig
u
re

6.
13
:

(a
-b
)
D
iff
er
en
t
S
S
P
s
u
se
d
to

co
n
fi
gu

re
th
e
ra
y
tr
ac
er
.
(c
)
C
or
re
lo
gr
am

w
it
h
ov
er
la
y
s
sh
ow

in
g
th
e
m
u
lt
ip
at
h

d
el
ay
s
re
su
lt
in
g
fr
om

ea
ch

S
S
P
.
T
h
er
e
ar
e
tw

o
li
n
es

fo
r
ea
ch

S
S
P

th
at

co
rr
es
p
on

d
to

th
e
d
el
ay
s
b
et
w
ee
n
ea
ch

of
th
e

tw
o
se
ts

of
ei
ge
n
ra
y
p
ai
rs

(D
-w

it
h
-B

an
d
B
S
-w

it
h
-B

S
B
).

N
ot
e
th
e
ra
n
ge
s
at

w
h
ic
h
ra
y
s
ar
e
cu
ll
ed

m
at
ch

w
el
l
w
it
h
th
e

m
ea
su
re
d
S
S
P
.
W

h
en

th
e
n
ea
r
su
rf
ac
e
p
ar
t
of

th
e
S
S
P

is
ch
an

ge
d
to

h
av
e
a
ve
ry

sm
al
l
gr
ad

ie
n
t,

th
e
ra
n
ge

at
w
h
ic
h

cu
ll
in
g
h
ap

p
en
s
ch
an

ge
s
si
gn

ifi
ca
n
tl
y.

185



Initially in this study, an isovelocity (constant SSP) model was adopted. This pro-

duced accurate predictions of the multipath delay out to about 100 m, but beyond

that the range delay predictions were smaller than observed. These observations be-

came explainable once a ray model was adopted and configured with the measured

SSP. The downward refracting profile causes an increase in the delay, and its effect

starts to become more pronounced at about 100 m range. This is evident by com-

paring the multipath delays computed using different SSPs to the acoustic data in

Fig. 6.13. The isovelocity model clearly diverges from the acoustic data around this

range whereas the other SSPs, which are downward-refracting, produce measurable

delays out to farther ranges. The downward refraction causes rays launched near the

surface to have steeper angles as they pass through the array depth. This implies that

there is a minimum bound on the delay between a downward-traveling ray received

at the array and the subsequent ray that bounces off the seabed. This is roughly at

0.36 ms.

The CTD data was processed using a linear fit, and is shown as the dot-dash line

in Fig. 6.13. This line tracks better with the measured delays, and shows culling

at comparable ranges. Culling happens when an eigenray path disappears due to

refraction. For example, the range at which the horizontally-launched ray passes

through the array depth corresponds to the maximum range at which the D eigenray

(and thus its correlation with the B eigenray) exists.

As seen in Fig. 6.5, CTD data was recorded over the majority of the water column, but

a few meters near the surface and seabed were not measured accurately. These sec-

tions were then populated by manually extrapolating to the boundaries using straight

lines. The slope of these lines had a significant impact on the multipath structure. In
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Fig. 6.13, the “shallow-surf” SSP uses a ´0.03 m/s per m in the top 5 m, whereas the

“slope-surf” uses a more pronounced ´0.7 m/s per m slope in the top 2 m. A lower

depth was used for the shallow-surf SSP to prevent surface ducting, as this was not a

phenomenon under investigation. Using the measured SSP causes better agreement

with the acoustic data. The main effect of flattening the profile near the surface is

increasing the distance that rays travel near the surface before being pulled down

by the steeper gradient, causing ray culling to occur at greater ranges. The value of

´0.7 m/s per m was found through manual adjustment to match the culling behavior

observed in the acoustic data. It was also observed that lowering the source depth

by up to one meter had a minimal impact. It is evident that the cross beam output

is highly sensitive to environment, and the water SSP in particular.

6.6.4 Range Estimation

The previous section demonstrated that the multipath delay is a stable measurement,

and this section shows how that can be used for target ranging. The measured SSP

indicates that the waveguide is downward refracting and that the first pair of arrivals

are culled at specific ranges. This brings up an ambiguity as it is not known solely

from the measured time delay which pair of eigenrays are being correlated. However,

modeling can help with this. Assuming the correct pair of eigenrays is chosen, the

range follows by matching the measured time delay to modeled time delays computed

over range. The assumption being made here is that time delays for a single eigenray

pair are monotonically decreasing as a function of range; and this is clearly observed

in both modeled and measured curves in Fig. 6.12. However, this assumption may

not be valid in regions with significant bathymetry variations.
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The range inversion results are shown in Fig. 6.14(a). Errors relative to the GPS

records are shown in Fig. 6.14(b). Comparing isovelocity and ray models, it can

be seen that the effects of refraction cause the isovelocity model to start to break

down between 100 and 200 m, whereas the ray model provides reasonable estimates

to over 500 m (over 22 water depths). Gaussian smoothing has been applied to the

isovelocity and ray BS & BSB curves as a visual aid to mitigate the measured and

modeled variance of τ2,1. Nevertheless, the variance of the range estimates is observed

to increase at more distant ranges. This is because the time delay measurement

becomes less sensitive to changes in range when the target is farther away. Visually,

this can be seen in Fig. 6.12 by the flattening out of both the measured and predicted

time delays at greater ranges.

6.7 Relationship to Waveguide Invariance

Multipath coherence gives rise to commonly observed striations in spectrograms, for

which the slope has been shown to depend on the waveguide characteristics and

source-receiver geometry (D’Spain and Kuperman, 1999). This has numerous uses

such as passive determination of range and radial velocity from sources (Rakotonarivo

and Kuperman, 2012, Kapolka, 2008), and improved active sonar beamforming (Zurk

and Rouseff, 2012). The waveguide invariant (Chuprov, 1982), denoted by β, is the

slope of striations in frequency-range space according to Bω
Br

“ β ω
r
. While analysis

has traditionally been formulated in a modal regime, Harrison (2011) showed that

the relative eigenray travel times give the striations their shape, and computed β for

several analytic sound speed profiles.

This section derives a simple form for both the spectrogram striations and for β in
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the general scenario in which the geometry and environment support two dominant

ray paths. First, the intensity at a receiver is obtained by multiplying out Eq. 6.1,

I “ |S|2 “ SS˚ (6.15)

“
`

e´iωt1 ` Re´iωt2
˘ `

e´iωt1 ` Re´iωt2
˘˚

(6.16)

“ 1 ` |R|2 ` 2|R| cos rωτ2,1 ´ φRs (6.17)

using Eq. 6.2 that defines τ2,1 as the difference between t2 and t1. Let θI “ ωτ2,1 ´φR.

The cosine term in Eq. 6.17 gives rise to intensity striations in range-frequency space

that follow constant θI contours. Striation peaks correspond to θI “ 2πN for N “

0, 1, 2, . . . , and occur at frequencies

ωτ2,1 ´ φR “ 2πN (6.18)

ω “
2πN ` φR

τ2,1
. (6.19)

Taking the derivative of Eq. 6.19 with respect to range and then substituting ω for

the right side of Eq. 6.19 yields

Bω

Br
“ ´

2πN ` φR

τ 22,1

Bτ2,1
Br

`
1

τ2,1

BφR

Br
(6.20)

“ ´

ˆ

2πN ` φR

τ2,1

˙

1

τ2,1

Bτ2,1
Br

`
1

τ2,1

BφR

Br
(6.21)

“ ´
ω

τ2,1

Bτ2,1
Br

`
1

τ2,1

BφR

Br
. (6.22)

Extracting an ω
r
term from the right side of Eq. 6.22, β for the N th striation can be
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defined as

Bω

Br
“

ˆ

´
r

τ2,1

Bτ2,1
Br

`
r

ωτ2,1

BφR

Br

˙

ω

r
(6.23)

β “ ´
r

τ2,1

Bτ2,1
Br

`
r

ωτ2,1

BφR

Br
(6.24)

“ ´
r

τ2,1

Bτ2,1
Br

`
r

2πN ` φR

BφR

Br
. (6.25)

Note that at higher striation numbers, or with a slowly changing φR (i.e. for reflections

above critical angle), the first term dominates.

6.7.1 Computing Striations and β from Cross Beamformer Measurements

With a priori knowledge of range and radial velocity, β can be computed with Eq. 6.25

using the following measured quantities. The mulitpath time delay τ2,1 can be ob-

tained from Γenv
c,r pτq in Eq. 6.12 using Eq. 6.13. Observing its change over time allows

Bτ2,1
Bts

to be calculated. The envelope operation in Eq. 6.12 is needed to effectively

eliminate φR that is present in Γc,rpτq (Eq. 6.11) which causes skewing of the com-

pressed pulse. Strictly speaking, the change rate of φR is needed to predict the slope

of a specific striation, however this is a secondary factor compared to the time delay.

Nevertheless, a simple method of measuring φR from Γc,rpτq under the assumption

that it does not vary with frequency is as follows.

Starting with C2,1 from Eq. 6.10, the pulse is first moved to the time origin by

Γ2,1pτ ` τ2,1q “ F´1
“

C2,1e
iωτ2,1

‰

. (6.26)

This eliminates the linear phase term e´iωτ2,1 . Next, it is time-gated to remove all
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but the correlation pulse, and then brought back into the frequency domain by

C
gate
2,1 “ F´1 rΓ2,1pτ ` τ2,1qspτqs “ |R|eiφR , (6.27)

in which spτq is a window function. The window function should be an even function

having unity support of a minimum width 1{Bs (inverse of signal bandwidth); a

Tukey window is used here. The result is an estimate of the spectra of the multipath

correlation and has spectral levels that match the correlated signal. To estimate φR,

the levels are averaged using a weighted mean over ω as

φR “ =
“ˇ

ˇC
gate
2,1

ˇ

ˇ

α
C

gate
2,1

‰

ω
, (6.28)

in which the = operator returns the phase angle of a complex number. The variable

α controls the degree of weighting which is useful to reduce corruption of the phase

estimate by frequencies for which there is no signal (and thus random phase). A value

of zero means no weighting, and a value of one weights according magnitude. The

latter is a natural choice because Eq. 6.28 is being applied to a cross-correlated signal

that already has units of intensity.

6.7.2 Experimental Prediction of Striations and β

This section demonstrates estimation of spectrogram striations and β using output

from the cross beamformer. A single hydrophone spectrogram is shown in Fig. 6.15(a)

for Track 1. Overlaid on this plot are striation lines predicted from τ2,1 and φR mea-

sured with the cross beamformer using Eq. 6.19 for N “ 1 . . . 12. Figure 6.15(b)

shows a synthetic spectrogram obtained from BELLHOP along with overlays showing
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different model predictions (also using Eq. 6.19). Striations are computed with eigen-

rays from BELLHOP, but using different SSPs. Sections of the data for which τ2,1 is

not measurable or highly variant have been removed, as these produce meaningless

output.

Using the derivatives of τ2,1 and derivatives of φR, β can be calculated according to

Eq. 6.25; this is plotted against modeled results in Fig. 6.15(c) for a fixed frequency

of 3 kHz. In order to estimate the derivatives of τ2,1 and φR, Gaussian smoothing

was used to reduce the variance of both those quantities over target range. Note that

noise in the outer lines of the ray model are likely due to floating point rounding

errors, and would otherwise be smooth lines following the same trend.

6.8 Chapter Summary

The technique presented in this chapter is a generalization of the passive fathome-

ter to non-vertically traveling waves using an array geometry other than a vertical

line. While this has been formulated in the context of target localization, the fun-

damental approach of using cross-beam correlation to process noise from a distant

source is important because it provides a new way to measure acoustic propagation

through a waveguide. Target localization is essentially a matter of interpreting mea-

sured multipath time delays and phases while properly accounting for propagation

effects. However, the propagation effects may themselves be the object of study in

future work. For example, it was observed that measurements were sensitive to the

water sound speed profile, implying this can be used for ocean acoustic tomography.

Also, the phase of the seabed reflection coefficient is a separate piece of information

contained in the output, which may serve as a useful basis for performing geoacoustic
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inversion. Note that with this technique, the sound source is noise, such as from a

passing boat.

Ray theory provides, perhaps, the most useful framework with which to understand

the output of cross-beam correlation. It estimates a set of eigenrays that accu-

rately describe and predict the measured quantities. In the experimental results,

the strongest two eigenrays were measured out to about 35 water depths, but valid

range estimates extended only to about 22 water depths. Environmental information

proved to be important for accurately estimating more distant target ranges in which

refraction effects were significant. The technique was demonstrated in a multi-target

scenario (in which the acoustic data from two tracks were added) illustrating the

ability of the compact volumetric array to handle off-bearing interference. The ray

framework is also used to explain how this technique is related to the phenomenon of

waveguide invariance. It is shown that measured time delays and phases can predict

spectrogram striations and the parameter β (if range and radial velocity are known).

The array used in this study is highly versatile and well suited for mobile platforms.

Hence, this processing technique opens new possibilities for experimental designs. For

example, AUVs that transect the water column could leverage depth-dependent envi-

ronmental measurements to enhance on-board passive target localization capabilities.
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Chapter 7

Summary and Future Directions

This dissertation makes the following contributions to the field of underwater acous-

tics.

• Characterization of emissions from the propulsion system of an underway AUV

in terms of aspect-dependent source level and spectral decomposition.

• A technique for localizing small boats in both range and unambiguous bearing

using two fixed, bottom-mounted hydrophones by exploiting regional bathymetry.

A rigorous performance analysis of target ranging and a probabilistic model for

the array side discrimination capability.

• A technique for localizing small boats using a compact, AUV-mounted, volumet-

ric hydrophone array that extends the core processing principle of the passive

fathometer to a distant target. This represents a new method of measuring mul-

tipath, and its connection to commonly observed multipath-based phenomenon

of spectrogram striations and waveguide invariance is elucidated theoretically

and demonstrated experimentally.

196



This dissertation advances the capabilities of passive sonar technology for detecting

and localizing small boats, and it lays essential groundwork that will be needed for

developing detection and localization schemes for AUVs. This work is experimentally-

driven and is offers practical information and robust solutions to pressing problems

in this field.

7.1 Future Directions

The AUV noise characterization from Ch. 4 is useful information for building a local-

ization system for a particular AUV. It is expected that different AUVs will produce

different acoustic emissions. As such, further work might focus on comparing these

emissions to see what features, if any, they have in common. While it is unlikely

that propeller cavitation was a factor for the AUV in this study, this may not be the

case for other platforms. Further analysis of the two tones that are emitted by the

REMUS-100 should focus on their correlation. Ultimately, coherence between these

tones might be exploited for improving range or depth localization.

The range localization performance of the two-hydrophone processing technique from

Ch. 5 was formulated in the context of the Bayesian Cramér-Rao lower bound. While

multiple environmental parameters were treated as “hidden,” the vertical sound ve-

locity profile was assumed to be constant. At distant target ranges, vertical gradients

will likely have a significant impact on target location estimates. One question is

how to parameterize the vertical sound velocity profile. However, a more challenging

question is how to determine the partial derivatives of the received spectrum with

respect to these parameters. A possible methodology may involve the use of Monte

Carlo techniques to approximate these derivatives individually, or to approximate the
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integral in Whittle’s theorem (see Eq. 5.22) directly.

In Ch. 6, a volumetric array was used to localize a small boat in range and bearing

using cross beamforming. To accurately estimate target ranges, it was necessary to

predict the relative arrival times of the first two eigenray arrivals. At more distant

ranges, the downward-refracting sound velocity profile increasingly affected range

estimates. This sensitivity to the water sound speed suggests that cross beamforming

may be used to study the water properties. Since cross-beamforming is a passive

technique that processes noise from a moving target for which the source waveform

need not be known, one potential use may be for passive ocean acoustic tomography

with an opportunistic source. Another aspect of the cross beamformer output is the

shape of the measured pulse. It was determined theoretically and experimentally

that this shape encodes information about the seabed properties. A method was

presented here to extract this information in order to demonstrate the relationship

to spectrogram striations. However, future work may investigate whether it can be

utilized for geoacoustic inversion.

7.2 Full List of Publications and Proceedings Related to this Research

Below is a comprehensive list of literature contributions and presentations by the

author related to this research.

7.2.1 Journal Publications

• John Gebbie, Martin Siderius, and John S. Allen. Performance bounds of pas-
sively localizing a noise-producing target from two hydrophones by exploiting
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bathymetry (submitted). The Journal of the Acoustical Society of America,
2014b

• John Gebbie, Martin Siderius, Peter L. Nielsen, and James Miller. Passive local-
ization of noise-producing targets using a compact volumetric array (accepted).
The Journal of the Acoustical Society of America, 2014c

• John Gebbie, Martin Siderius, Reid McCargar, John S. Allen, and Grant Pusey.
Localization of a noisy broadband surface target using time differences of multi-
path arrivals. The Journal of the Acoustical Society of America Express Letters,
134(1):EL77–EL83, June 2013a. doi: 10.1121/1.4809771

• John Gebbie, Martin Siderius, and John S. Allen. Aspect-dependent radiated
noise analysis of an underway autonomous underwater vehicle. The Journal of
the Acoustical Society of America Express Letters, 132(5):EL351–EL357, Octo-
ber 2012b. ISSN 0001-4966. doi: 10.1121/1.4754419

• John Gebbie, Martin Siderius, and John S. Allen. Passive acoustic array harbor
security applications. Marine Technology Society Journal, 45(3):103–110, May
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and Jennifer Giard. Small boat localization using adaptive 3-D beamforming
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low water environment using a twodimensional array. In 161st Meeting of the
Acoustical Society of America, volume 129, pages 2602+, Seattle, WA, April
2011b. doi: 10.1121/1.3588631
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