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Introduction
Diabetes mellitus is a chronic disease affecting an estimated 422 

million people worldwide in 2014 (1). Characterized by elevated 

blood sugar levels, diabetes occurs in two major forms, type 1 

(T1D) and type 2 diabetes (T2D). T1D results from autoimmune 

destruction of the insulin-producing β cells in the pancreas, while 

T2D is characterized by insulin resistance and inadequate insulin 

secretion by the β cells. Recent studies suggest that β cell dysfunc-

tion occurs early in T2D and precedes the reduction in β cell mass 

observed later during disease progression (2). Because both types 

of diabetes eventually lead to β cell loss, research has focused on 

developing β cell replacement strategies to compensate for insulin 

deficiency. Islet transplantation has proven to be a successful ther-

apy (3), but its clinical application is limited because of the shortage 

of donor cadaveric islets and the requirement for lifelong immune 

suppression. In the past decade, there have been intense efforts to 

identify alternative sources of β cells. β cell replacement strategies 

based on the in vitro differentiation of human pluripotent stem 

cells (hPSCs) toward insulin-producing cells have led to an ongoing 

human clinical trial (Figure 1). In addition, there have been exciting 

advances in in vivo regeneration approaches aimed at replenishing 

β cell mass either by converting related cell types into β cells, or 

by promoting the expansion of residual β cells in diabetic patients 

(Figure 2). In this Review, we focus on the recent progress toward 

clinically relevant therapeutic approaches for regenerating β cells.

β cell replacement by implantation  
of hPSC-derived cells
In the past decade, protocols have been developed that allow for 

the generation of pancreatic cells from hPSCs (4–7). These mul-

tistep protocols, which are based on developmental paradigms, 

use sequential stimulation or inhibition of key signaling pathways 

through small molecules and growth factors to differentiate hPSCs 

toward β cells. Early protocols support the in vitro differentiation 

of hPSCs up to the pancreatic progenitor cell stage (4, 6). Sixteen 

weeks after implantation of these progenitors into mice, they spon-

taneously differentiate into islet-like structures that contain β and 

non-β islet cell types (4, 5). When endogenous mouse β cells are 

ablated after in vivo differentiation of the hPSC-derived progeni-

tor cell grafts, the mice are protected from developing diabetes. 

These findings in mice have provided the basis for the ongoing 

human phase I/II trial for patients with T1D (ViaCyte Inc. clini-

cal trials identifier: NCT02239354). There is, however, a risk of 

immature cells having tumorigenic potential, and teratoma-like 

lesions have been observed around grafts after pancreatic progeni-

tor cell engraftment into mice (4). To mitigate this risk, as well as 

to protect the implanted cells from alloimmune and autoimmune 

attack, in the current clinical trial hPSC-derived progenitors are 

placed in an encapsulation device (Figure 1). The employed macro-

encapsulation device holds large numbers of cells and is made of a 

semipermeable membrane that allows diffusion of oxygen, nutri-

ents, and hormones while also creating a barrier against immune 

cells. In mice, encapsulated pancreatic progenitor cells are able to 

mature into functional β cells capable of reversing hyperglycemia 

(8–10). Microencapsulation technology, which uses hydrogel poly-

mers to create a semipermeable sphere around cell aggregates, has 

also been explored for implanting cells without immune suppres-

sion. While earlier microencapsulation materials evoked a foreign 

body response that led to device failure (11, 12), recent improve-

ments in the hydrogel composition mitigate this response (13). 

hPSC-derived pancreatic cells encapsulated in these new micro-

encapsulation devices survive and function for at least 6 months 

after implantation into immunocompetent mice (14). Both types of 

encapsulation methods could provide immune protection to hPSC-
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could reverse hyperglycemia more immediately, their high oxygen 

demand might also render β cells particularly prone to death early 

after implantation. While this may be mitigated by encapsulation 

in devices with an integrated oxygen reservoir (17), transplanta-

tion of progenitor cells offers distinct advantages. For one, the 

lower oxygen demand of progenitor cells could ensure improved 

graft survival in the first 8 weeks following implantation, during 

which the encapsulation device becomes vascularized. Moreover, 

the other endocrine cell types that develop alongside β cells in 

progenitor grafts could aid in optimizing blood glucose control 

in patients with diabetes. Paracrine signaling that occurs within 

islets is important for adequate regulation of hormone secretion. 

For example, insulin inhibits the release of glucagon from α cells, 

glucagon stimulates insulin release, and somatostatin from islet δ 

cells inhibits the release of both insulin and glucagon (18). These 

paracrine signaling mechanisms between endocrine cell types act 

as a feedback mechanism and help maintain glucose homeostasis 

by preventing excessive fluctuations in pancreatic hormone levels.

β cell replacement by transdifferentiation
Transdifferentiation, the direct conversion of one differentiated 

cell type into another, could provide an alternative to hPSCs as a 

source of new β cells. A large body of work suggests that develop-

mentally related cells, including other pancreatic cell types and 

derived cells in patients without the need for immunosuppression. 

Whether encapsulated pancreatic progenitor cells will differentiate 

into functional β cells in humans, as seen in mice, is still unclear 

and will emerge from ViaCyte’s ongoing trial.

Recent in vitro differentiation protocols can now also pro-

duce β-like cells from hPSCs, including from T1D patient–derived 

human induced pluripotent stem cells (hiPSCs) (7, 15, 16). Com-

pared with earlier differentiation protocols, a critical feature of the 

recent improvements was to delay the induction of endocrine cell 

differentiation until the pancreatic progenitor cell program is fully 

established. This was accomplished by first suppressing expression 

of the proendocrine transcription factor neurogenin 3 (NGN-3)  

by addition of vitamin C, and then transiently inducing NGN-3 at 

subsequent stages with thyroid hormone and specific inhibitors 

of the TGF-β signaling pathway. These alterations to the protocol 

promoted the formation of insulin-positive cells that express a full 

spectrum of β cell–specific transcription factors (15). However, 

even with these improvements, in vitro–produced β-like cells still 

exhibit an insufficient insulin secretory response to a glucose chal-

lenge (7, 15). Upon implantation, these β-like cells require a shorter 

in vivo maturation period than pancreatic progenitor cells until 

acquiring the capacity to reverse hyperglycemia in mice (7, 15). It 

is still unclear whether engrafting β-like cells will prove advanta-

geous to the engraftment of progenitor cells. Although β-like cells 

Figure 1. β cell replacement from human pluripotent stem cell sources. Currently pursued approaches include implantation of in vitro–generated pancre-

atic progenitor cells or β-like cells. In vitro–produced pancreatic progenitor cells differentiate into β cells within 16 weeks after implantation. Cell delivery in 

an encapsulation device prevents immune cells from contacting implanted cells derived from human embryonic stem cells (ESCs) or induced pluripotent 

stem cells (iPSCs), while allowing free exchange of nutrients and hormones, including oxygen, glucose, and insulin. Precursors to β cells are depicted in 

yellow and insulin-producing cells in green.
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to identify chemical inducers of PAX4 or inhibitors of ARX may 

reveal compounds that promote α-to-β-cell transdifferentiation 

and reverse diabetes.

While reprogramming of α cells has proven to restore func-

tional β cell mass and cure diabetes in animal models (19, 28, 29, 

40), it also results in a severe depletion of α cells and a correspond-

ing decrease in the production of glucagon (28, 42). Depletion of 

α cells in mice does not have overt effects on health or lifespan 

(42), and even a small number of α cells (2% of total population) is 

sufficient to maintain glucagon signaling (43). Thus, converting α 

cells into β cells could be a viable approach to treat diabetes; how-

ever, it is currently not known what effect α cell depletion will have 

in humans. It may be that glucagon deficiency due to α cell loss 

puts patients at risk for hypoglycemia. While the α cell response 

is important in recovery from insulin-induced hypoglycemia in 

humans, epinephrine can compensate for insufficient glucagon 

secretion (44). Therefore, an intact epinephrine response to hypo-

glycemia is an important prerequisite when considering α-to-β-

cell reprogramming in patients.

Owing to their abundance, pancreatic exocrine cells, which 

comprise acinar and ductal cells, have been explored as an alter-

native population for reprogramming. In contrast to α cells, acinar 

cells harbor extensive repressive histone modifications at the pro-

moters of endocrine genes, which might constitute a barrier for 

endocrine reprogramming (24). Indeed, the in vivo conversion of 

acinar cells requires the expression of not only one but three tran-

scription factors (PDX-1, NGN-3, and MAFA) that are important for 

β cell development (ref. 41 and Figure 2). More relevant for possible 

clinical translation, there is also evidence that exocrine cells can be 

converted into β-like cells without genetic manipulation through in 

vivo cytokine/growth factor treatment (21, 35, 45). When β cells are 

destroyed by injection of a β cell toxin, systemic administration of 

EGF and CNTF induces conversion of acinar cells into β cells and 

restores β cell mass and normoglycemia (21). It has been observed 

that the success of exocrine cell reprogramming may depend on 

the glycemic environment. A recent study showed that hypergly-

cemia can inhibit in vivo reprogramming of acinar cells by PDX-1, 

NGN-3, and MAFA (46). A better understanding of how glucose 

levels influence cell plasticity and the response to reprogramming 

factors will be critical to assess the strategy’s potential for future 

clinical application. One important consideration is that manipu-

lations promoting transdifferentiation could also have undesired 

effects. For example, loss of the tumor suppressor menin 1 in α cells 

triggers their transdifferentiation into insulin-expressing cells, but 

also the development of insulinomas from reprogrammed cells 

(47). Therefore, before these therapies are implemented, extensive 

studies are necessary to fully evaluate the state of maturity and sta-

bility of reprogrammed cells.

Transdifferentiation of liver and gastrointestinal cells. Repro-

gramming-based strategies to generate β cells from somatic cells 

are not limited to cells of the pancreas, but extend to other gut tube-

derived organs, such as the liver, intestine, and stomach. In the 

past decade, most studies have focused on the liver as a potential 

source of β cells. Adenoviral delivery of pancreatic transcription 

factors, including PDX-1 (22, 30) and/or NEUROD (33), NGN-3  

(37, 39), and more recently MAFA/MAFB (34), has been shown to 

induce emergence of insulin-producing cells in the liver (Figure 

cells of the liver and gastrointestinal tract, have the greatest poten-

tial to convert into β cells (refs. 19–41 and Figure 2).

Transdifferentiation of pancreatic cells. There is significant plas-

ticity among the different endocrine cell types of the pancreas. In 

particular, α and δ cells have been shown to spontaneously con-

vert into β cells after near-total β cell ablation in mice (26, 27, 38). 

Whether spontaneous transdifferentiation of non-β islet cells 

also occurs in humans in response to extreme β cell loss is still 

unknown. In patients with T1D, β cell regeneration through trans-

differentiation or other mechanisms could be masked by autoim-

mune destruction of newly generated β cells.

Reprogramming of α cells to β cells can also occur through 

manipulation of a single transcription factor, either by inactivation 

of ARX, which is important for specifying α cell fate, or by ectopic 

expression of PAX4, an essential regulator of β cell development 

(refs. 19, 28, 29, 40, and Figure 2). Because a single gene is suffi-

cient to induce α-to-β-cell transdifferentiation, it may be possible 

to identify small molecules that mimic this effect. Recent studies 

have identified compounds that can promote α-to-β-cell repro-

gramming, at least in cultured cells. Using a high-content screen 

for small-molecule inducers of insulin expression, Schreiber, 

Wagner, and colleagues identified two kinase inhibitors as com-

pounds that upregulate insulin expression in cultured α cells (31, 

32). These inhibitors, which target ribosomal S6 kinase (RSK) and 

cyclin-dependent kinase-2 (CDK2), were shown to upregulate mul-

tiple β cell markers, including PAX4, in a dose-dependent manner. 

Although these compounds have only been tested in vitro, the stud-

ies suggest that pharmacologic agents could promote pancreatic 

cell plasticity without the need for genetic modification. Screens 

Figure 2. Reprogramming approaches for generating replacement β cells. 

Cells and organs of similar developmental origin to that of pancreatic β 

cells, such as liver, stomach, intestine, or other pancreatic cell types, can 

be converted into β cells by reprogramming with transcription factors or in 

some instances by exposure to cytokines and growth factors.
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of β cells produced by reprogramming, 

immunosuppressive therapy will likely be 

necessary to achieve lasting normoglyce-

mia in T1D patients. Alternatively, ex vivo 

reprogrammed cells could be implanted in 

an encapsulation device. Despite remaining 

hurdles, the progress made in converting 

other cell types into β cells is remarkable and 

suggests avenues for clinical translation.

β cell replacement by promotion  
of β cell expansion
Another, and perhaps the therapeutically 

most tangible, method for inducing β cell 

regeneration in vivo is to target pathways 

that regulate β cell proliferation (Figure 3). 

The predominant mechanism for adapting 

β cell mass to increased metabolic demand, 

as observed during pregnancy or obesity, is 

through modulation of β cell replication (48, 

49). Thus there has been considerable inter-

est in understanding the mechanisms that 

regulate replication of β cells with the goal 

of discovering new therapeutic targets to 

promote their regeneration. This approach 

could benefit patients with T2D as well as 

T1D, as residual β cells are frequently found 

even decades after the onset of T1D (50, 51).

Aging and β cell replication. Replication 

of β cells is the predominant mechanism 

that ensures the rapid expansion of β cell 

mass early in life; however, the regenera-

tive capacity of β cells rapidly declines with 

advancing age (52–56). This age-depen-

dent decline in β cell proliferation is regu-

lated by p16Ink4a, a cyclin-dependent kinase inhibitor encoded by 

the Cdkn2a gene (57). Multiple age-dependently regulated fac-

tors, including p38MAPK and PcG/trithorax group proteins, have 

been shown to epigenetically modify the Cdkn2a locus and repress 

p16Ink4a expression (58–62). In young β cells, PDGF receptor sig-

naling increases the abundance of the PcG/trithorax group protein 

EZH2, thereby repressing p16Ink4a expression. However, in aged β 

cells, decline of PDGF receptor expression leads to p16Ink4a dere-

pression and β cell cycle arrest (58).

To more globally define age-associated changes in the β cell 

epigenome, Kaestner and colleagues carried out a genome-wide 

analysis of β cells from young and old mice and found that the pro-

liferative decline of β cells correlated with increased de novo pro-

moter methylation and decreased expression of cell cycle regula-

tors (63). This suggests that manipulation of epigenetic regulators 

could reverse β cell senescence and promote regeneration. Inter-

estingly, this group also observed upregulation of genes involved 

in β cell function and improved insulin secretory function with age 

(63). While these results contradict early studies showing a decline 

of β cell function with age (64–67), they align with more recent 

work demonstrating sustained or improved β cell secretory func-

tion in older animals (68, 69). Because β cell proliferation and β 

2). While these insulin-producing cells were to some extent able 

to correct hyperglycemia in diabetic mice, it is less clear whether 

these cells are glucose-responsive and thus function as true β cells.

Studies have demonstrated that simultaneous transgenic 

expression of PDX-1, NGN-3, and MAFA can promote rapid con-

version of gastrointestinal endocrine cells in the antral stomach 

and intestine into insulin-expressing cells in vivo (refs. 20, 25, and 

Figure 2). These reprogrammed cells exhibit ultrastructural fea-

tures of β cells, are glucose-responsive, and are able to ameliorate 

hyperglycemia in diabetic mice. Similarly, ablation of the tran-

scription factor FOXO1 in endocrine progenitors of the intestine 

results in the generation of insulin-expressing cells that are able to 

reverse hyperglycemia in mice (36). This finding has been repro-

duced in human gut organoids (23), suggesting that FOXO1 inhi-

bition in gut organoids could offer a source of insulin-producing 

cells to treat human diabetes. As human gastrointestinal tissue is 

readily accessible by noninvasive techniques, ex vivo reprogram-

ming of gastrointestinal cells could be a source of autologous  

β cells for implantation in patients with diabetes.

Recent studies in an animal model of T1D indicate that insu-

lin-producing reprogrammed liver cells are susceptible to autoim-

mune attack (37). Therefore, to prevent autoimmune destruction 

Figure 3. Select signaling pathways known to regulate β cell proliferation. Growth factors (PDGF), 

nutrients (glucose), and hormones (GLP-1 and insulin) have been shown to induce β cell proliferation 

by activating both canonical and noncanonical mitogenic pathways. Activation of their respective 

receptors induces signaling via the ERK (also called MAPK) signaling pathway either directly (in the 

case of PDGF) or via crosstalk mechanisms. Glucose, GLP-1, and insulin have been shown to activate 

mitogenic signaling via the PI3K/AKT/mTOR pathway. Glucose signals through the calcineurin/NFAT 

and ERK pathways, while signaling via GLP-1 induces cAMP synthesis to induce proliferation. Small 

molecules/compounds have been identified that target proteins in these signaling pathways, inhibit-

ing either DYRK1a or GSK3β, both of which phosphorylate NFAT, sequestering it in the cytoplasm. 

Black and gray arrows indicate canonical and noncanonical signaling, respectively. The depicted path-

ways regulating β cell proliferation are mainly based on evidence in rodents and do not represent a 

comprehensive overview of all published work. Compounds shown to induce human β cell replication 

are indicated in red. AP, aminopyrazine; 5-IT, 5-iodotubercidin; Ca2+, calcium; CN, calcineurin.
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in hyperinsulinemic humans with obesity and insulin resistance 

(94–96); however, whether proliferation is increased is less clear.

Glucose and insulin have been identified as inducers of β 

cell replication (Figure 3). Multiple studies have demonstrated 

increased proliferation of rodent and human β cells following 

glucose infusion (97–103). Glucose metabolism is required for β 

cell proliferation, as lack of glucokinase, a key enzyme in glycoly-

sis that converts glucose to glucose-6-phosphate, decreases β cell 

proliferation whereas treatment with a small-molecule glucoki-

nase activator stimulates β cell proliferation (104). However, the 

pro-proliferative effect of glucose is only observed in the short 

term, while sustained exposure of β cells to high glucose can cause 

glucotoxicity, resulting in DNA damage and apoptosis, as also 

seen in β cells from T2D patients (105). Therefore, there is a need 

to better understand where the mitogenic and DNA damage path-

ways diverge before the glucose-induced mitogenic pathway can 

be considered for therapeutic intervention.

While glucose can increase β cell replication, β cell hyperpla-

sia occurs in ob/ob and db/db mice prior to the onset of hypergly-

cemia and is also observed in mouse models of insulin resistance 

in the absence of hyperglycemia (91, 106–108). These observa-

tions suggest that factors other than glucose contribute to β cell 

mass expansion in the face of insulin resistance. Insulin levels are 

highly elevated in the insulin-resistant state, and insulin signaling 

has been shown to account for compensatory β cell growth during 

insulin resistance. Ablation of the insulin receptor in an insulin-

resistant mouse model impaired β cell proliferation and rendered 

mice prematurely diabetic (109). In contrast, deletion of the IGF 

receptor had little effect on β cell growth, suggesting that compen-

satory β cell mass expansion predominantly depends on insulin 

rather than IGF signaling.

Circulating factors and β cell replication. In recent years, signifi-

cant effort has been put forth into identifying systemic regulators 

of β cell proliferation in the context of aging, pregnancy, and meta-

bolic challenge. Circulating factors that are regulated during met-

abolic adaptation are particularly attractive therapeutic targets, 

as manipulating their activity might mitigate the risk for inducing 

tumors in other tissues. Studies have shown that circulating fac-

tors from young mice improve regeneration of aged islets. This 

has been demonstrated in the context of parabiosis experiments, 

in which a young and an old mouse are surgically joined to develop 

a shared circulatory system, or after revascularization of an islet 

graft from aged mice in a young host (68, 110). Likewise, β cell rep-

lication increases when islets from metabolically normal mice are 

grafted under the kidney capsule of insulin-resistant mice (111). 

While these experiments clearly illustrate the importance of cir-

culating factors in β cell regeneration, the specific factor or factors 

that account for the effects have remained elusive. Multiple circu-

lating factors, including glucagon-like peptide-1 (GLP-1), secreted 

by the intestinal L cells (112–114); thyroid hormone (115, 116); the 

osteoblast-derived hormone osteocalcin (117–120); liver-derived 

angiopoietin-like protein 8 (ANGPTL8, also known as betatro-

phin) (121); and recently the liver-secreted protease inhibitor SER-

PINB1 (122), have been identified as potentially pro-proliferative 

for β cells, at least in rodents (Figure 3). It is less clear whether 

these circulating factors can also stimulate human β cell growth. 

Controversial reports exist regarding effects of GLP-1 analogs on 

cell function are tightly linked (70), additional studies are needed 

to determine whether β cell proliferation can be safely increased 

without compromising function.

β cell replication in pregnancy. During pregnancy, β cell mass 

expands in order to adapt the organism to increasing insulin 

demand (71–74). Multiple factors, including lactogens, serotonin, 

and components of the EGFR signaling pathway, have been shown 

to increase β cell replication in pregnant rodents (71, 75–78). There 

is, however, controversy as to whether adaptive β cell proliferation 

during pregnancy occurs to the same extent in humans (72). More-

over, conflicting reports have been published regarding the con-

servation of molecular pathways regulating β cell mass expansion 

between pregnant rodents and humans. While one study found  

β cell proliferation to be induced by prolactin and placental lacto-

gen in two human islet samples (75), more recently, Stewart and 

colleagues were unable to induce human β cell proliferation with 

prolactin in six independent human islet samples (79). This could 

be explained, at least in part, by the lack of prolactin receptor 

expression on human β cells (79). While prolactin receptor ago-

nists may not be effective for stimulating human β cell prolifera-

tion, downstream signaling pathways may be conserved and could 

provide insight into therapeutic targets. In support of this idea, 

Vasavada and colleagues found that treatment of human islets 

with recombinant osteoprotegerin, a lactogen target, induced 

human β cell proliferation (80). Importantly, the FDA-approved 

osteoporosis drug denosumab mimicked the activity of osteopro-

tegerin and enhanced human β cell replication in vitro and after 

engraftment of human islets into mice. The pro-proliferative 

effect of denosumab suggests that there is potential for repurpos-

ing this drug for the treatment of diabetes.

With the goal of discovering novel targets for enhancing β 

cell proliferation, Ahnfelt-Rønne and colleagues took a proteomic 

approach to identify proteins that change in abundance during 

pregnancy in mice (81). The analysis not only confirmed regulation 

of targets previously shown to be controlled at the mRNA level (77, 

82–84), but also identified proteins not previously associated with 

pregnancy-induced β cell expansion. Two examples are stathmin 

1 and nuclear chloride ion channel 1, which have known roles in 

the regulation of cell proliferation and are being evaluated as drug 

targets in cancer (85–88). While follow-up studies will be neces-

sary, this study highlights the importance of global approaches to 

identify novel molecular targets for enhancing β cell proliferation.

β cell replication in hyperglycemia and insulin resistance. Apart 

from pregnancy, β cell proliferation is also regulated by diet and 

changes in metabolic state. A recent study suggests that nutrition-

al cues have immediate effects on the capacity of β cells to mount 

a regenerative response. When mice were prematurely weaned 

from fat-rich milk to carbohydrate-rich chow, the potential of β 

cells for compensatory proliferation increased (89). Although it 

remains to be studied whether a similar mechanism operates dur-

ing adulthood, this finding suggests that diet composition could 

have effects on β cell mass. Metabolic regulation of β cell prolif-

eration is also evident during a state of insulin resistance, which is 

known to trigger compensatory β cell proliferation. This has been 

demonstrated in multiple rodent models of diabetes, including  

ob/ob mice (90), db/db mice (91), and Zucker fatty rats (92), and in 

high-fat-diet feeding (93). Increased β cell mass is also observed 
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human β cell growth, with one study finding no effect (123), while 

another reports stimulation (124). Illustrating the difficulty of 

controlled studies using primary human cells, subsequent work 

showed that the age of the islet donor might be a factor contribut-

ing to responsiveness of β cells to GLP-1 analogs (125). The origi-

nal report describing ANGPTL8 as a β cell growth factor received 

much attention (121). However, further studies on ANGPTL8 have 

called its role in β cell mass expansion into question. Genetic loss- 

and gain-of-function experiments with Angptl8 revealed no effect 

on β cell mass in insulin-resistant mice (126, 127), showing that 

ANGPTL8 is not the long-sought-after liver-derived factor that 

stimulates β cell growth. Consistent with findings by Gromada and 

colleagues (127), ANGPTL8 also failed to exert a pro-proliferative 

effect on transplanted human β cells (128). More promising are 

recent findings on osteocalcin (120) and SERPINB1 (122), which 

indicate that these hormones could be effective in stimulating 

human β cell proliferation. Proliferation of β cells was increased 

after treatment of human islets with decarboxylated osteocalcin 

or small molecules mimicking SERPINB1 activity both ex vivo 

and after transplantation into mice (122). Preliminary analysis of 

mice treated with small-molecule mimics of SERPINB1 suggests 

that the effects on proliferation of extrapancreatic tissues are lim-

ited, which raises hope that it might be possible to identify growth-

stimulating agents that are selective for β cells.

Intracellular signaling pathways regulating β cell replication. 

Many groups have used high-throughput screening methods to 

discover novel molecules and pathways that could stimulate β 

cell mass expansion (129–138). Some of these screens have led 

to the discovery of novel compounds with therapeutic potential. 

For example, a high-throughput chemical screen recently iden-

tified aminopyrazine compounds, harmine, INDY, and 5-iodo-

tubercidin as pro-proliferative in rodent β cell lines, and these 

compounds were subsequently shown to also augment human β 

cell proliferation (129, 134, 137, 139). Interestingly, all 4 molecules 

inhibit the kinase DYRK1A, which blocks nuclear localization of 

NFAT, a transcription factor that activates expression of cell cycle 

genes in β cells (refs. 140, 141, and Figure 3). Aminopyrazine com-

pounds have a larger effect on β cell proliferation than harmine, 

which is explained by the additional inhibition of glycogen syn-

thase kinase-3β (GSK3β) by aminopyrazine compounds (137). Like 

DYRK1A, GSK3β prevents nuclear localization of NFAT (142) and 

inhibits β cell proliferation (143–146). Interestingly, osteoproteger-

in and SERPINB1 have both been shown to inhibit GSK3β activ-

ity (refs. 80, 122, and Figure 3), suggesting that their effect on β 

cell proliferation may, at least in part, be mediated through GSK3β 

inhibition. A significant hurdle for advancing β cell therapeutics 

for these pathways is the unclear specificity of many of the small 

molecules as well as their effects on multiple tissues.

Additional potentially druggable intracellular regulators of β 

cell proliferation have been identified through candidate approach-

es. The literature on intracellular signaling in β cell proliferation 

has recently been comprehensively reviewed (147–150), and we 

refer to these reviews for a comprehensive description of all path-

ways shown to regulate β cell proliferation. From the numerous 

studies, the MAPK and PI3K/AKT pathways have emerged as criti-

cal regulators of β cell proliferation also in humans (Figure 3). The 

MAPK pathway via ERK1/2 phosphorylation is the key mitogenic 

pathway that separates metabolic regulation of β cell function from 

the regulation of β cell proliferation, as ERK1/2 phosphorylation 

is not required for glucose-stimulated insulin secretion (151). The 

MAPK pathway mediates the β cell mitogenic effect of multiple 

growth factors, hormones, and nutrients, including PDGF, GLP-1,  

prolactin, insulin, and glucose (58, 152–159). The second major 

pathway responsible for transducing β cell proliferative signals is the 

PI3K/AKT/mTOR pathway, which is activated by insulin, GLP-1,  

and glucose (153, 159–162). AKT activation is an important com-

ponent that links growth signals to its downstream target mTOR, 

which coordinates a cell growth response directly through its effect 

on cell cycle regulators (143, 163). Numerous studies have demon-

strated a role of this pathway in promoting β cell proliferation in 

vitro and increasing β cell mass in vivo (143, 160, 163–167). Further 

illustrating its pro-proliferative role, AKT/mTOR signaling is active 

in pancreatic endocrine tumors (168). Notably, PI3K signaling can 

induce β cell proliferation not only by activating AKT, but also 

through AKT-independent PKCζ, which mediates the proliferative 

effect of glucose on human β cells (169–172).

It is important to consider that significant crosstalk exists 

between the signaling pathways. For example, high glucose and 

GLP-1 levels activate both mTOR and MAPK signaling (153, 158, 

160). A recent study nicely illustrates how the balance between 

different signaling arms determines the β cell response to insu-

lin. Knockdown of PI3K resulted in rerouting of the insulin signal 

from PI3K-mediated metabolic signaling to ERK-mediated mito-

genic signaling, which induced a switch of β cells from highly glu-

cose-responsive to proliferative (173). Extensive feedback inhibi-

tion and amplification constitute a further layer of complexity, 

exemplified by mTOR-mediated negative feedback on insulin 

signaling via IRS2 (174).

All of these intracellular signals converge to regulate the core 

G1/S cell cycle machinery (147–150). Successful targeting of β cell 

proliferation will hinge on the downregulation of cell cycle inhibitors 

and upregulation of cell cycle activators. The example of aminopyr-

azine compounds, which target DYRK1A and GSK3β, illustrates that 

targeting more than one pathway will likely have a more robust effect 

on β cell proliferation than targeting one pathway alone. Given the 

extremely low proliferation rate of human β cells (54), hitting mul-

tiple targets might be necessary to produce clinically relevant effects. 

Furthermore, as regenerative and oncogenic pathways share similar 

effector proteins, a major challenge will be to enhance β cell prolif-

eration without inducing aberrant growth of β cells or other tissues.

Challenges for therapeutic implementation
Both in vivo reprogramming approaches and the induction of β 

cell proliferation will likely require cell type–specific delivery sys-

tems for application in humans. Local delivery of reprogramming 

or regeneration factors could be achieved by ultrasound destruc-

tion of microbubbles carrying plasmid DNA administered into 

the pancreatic microcirculation (175). Tethering the molecule 

to the ligand of a β cell–specific receptor could be an alternative 

approach for delivering molecules directly to the β cell. The effi-

cacy of this approach has recently been demonstrated for GLP-1–

estrogen conjugates in β cells (176).

Perhaps the most challenging issue is protecting the newly 

generated β cells from autoimmune destruction in T1D. Similarly, 
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the autoimmune and alloimmune responses impose a hurdle for 

hPSC-based replacement therapies. hiPSC-derived β cells from 

T1D patients can serve as an autologous source for cell replace-

ment therapy that would obviate the need for systemic immune 

suppression (16); however, these cells are not protected from auto-

immune destruction in T1D patients, and likely would still need 

to be implanted within an encapsulation device. Recent studies 

suggest that gene editing strategies can be used to generate hPSCs 

that are invisible to the immune system and could escape at least 

allogenic rejection (177). Similar strategies could perhaps also 

allow the cells to evade autoimmune destruction. Overall, signifi-

cant progress has been made in the past decade, and the coming 

decade will show which strategy will hold most promise for trans-

lation into clinical therapies.
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