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Abstract

Bioconjugation is a burgeoning field of research. Novel methods for the mild and site-specific

derivatization of proteins, DNA, RNA, and carbohydrates have been developed for applications such

as ligand discovery, disease diagnosis, and high-throughput screening. These powerful methods owe

their existence to the discovery of chemoselective reactions that enable bioconjugation under

physiological conditions—a tremendous achievement of modern organic chemistry. Here, we review

recent advances in bioconjugation chemistry. Additionally, we discuss the stability of bioconjugation

linkages—an important but often overlooked aspect of the field. We anticipate that this information

will help investigators choose optimal linkages for their applications. Moreover, we hope that the

noted limitations of existing bioconjugation methods will provide inspiration to modern organic

chemists.

1. INTRODUCTION

The enormous complexity and diversity of life presents an enormous challenge to scientists

attempting to reveal its chemical basis. The discovery that genes contain the information

required to generate proteins—the molecules that orchestrate biological processes—provided

a universal axiom that enabled countless discovery-based investigations [1–3]. Deciphering

the genetic composition of various organisms was a logical next step towards understanding

biology. The ensuing whole-genome sequencing projects have yielded a wealth of information

[4,5].

The initial enthusiasm over the attainment of complete genetic information about various

organisms has, however, been tempered by the realization that the utility of this information

is nearly inactionable without knowledge of the function of the encoded proteins. Elucidation

of the functions of other biomolecules, such as RNA and carbohydrates, is likewise imperative.

“Bioconjugation”, which refers to the covalent derivatization of biomolecules, provides a

means to attain this goal [6–8]. This review focuses on modern methods for bioconjugation,

and delineates both imperatives and means for making useful bioconjugates. We restrict our

analysis to wild-type proteins composed of the 20 amino acids encoded by genetics, or close

analogues thereof. Strategies involving the addition of an exogenous domain and its subsequent

modification have been reviewed elsewhere [9–14].
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2. MOTIVATION FOR BIOCONJUGATION

2.1. Discovery of Biological Interactions

Proteins and other biopolymers regulate and perform biological functions by binding to ligands.

Accordingly, discovering and characterizing the natural ligands of biopolymers is crucial to

understanding biological processes. A promising approach for ligand discovery involves

appending biomolecules of interest with synthetic small molecules that can function as probes

that report on ligand binding [15]. Such probes include fluorescent molecules [16,17], biotin

[18,19], and NMR probes [20]. The ability to screen large numbers of potential ligands rapidly

is highly desirable. An especially promising “high-throughput” approach involves the

introduction of nonnatural functional groups into biomolecules, followed by site-specific

immobilization on surfaces via a chemoselective reaction that occurs exclusively at the nascent

appendage, as in Fig. (1). The immobilized biomolecule can be exposed subsequently to various

molecules to identify ligands. DNA microarrays [21–23] and protein microarrays [24] are

important examples of this approach.

2.2 Biochemical Assays

Small molecules appended to biomolecules can serve as probes for rigorous biochemical

analyses. For example, Förster resonance energy transfer (FRET) can be used to generate

signals that are sensitive to molecular conformational changes in the 1–10 nm range [25]. A

typical FRET experiment entails attachment of a pair of fluorescent molecules to different

regions of a biomolecule. One of these fluorophores serves as a “donor” by transferring energy

nonradiatively to the other fluorophore, which serves as an “acceptor”. Subsequently, the

acceptor emits radiation at its characteristic emission frequency, thereby reporting on the

distance between the donor and acceptor. FRET has been used to characterize protein folding

[26], RNA folding [27,28], and biochemical reactions [29,30]. Modern single-molecule

fluorescence approaches have elevated FRET-based approaches to an unprecedented level of

specificity [31,32].

Non-fluorescent small molecules are also employed as mechanistic probes. For example, biotin

has been attached to a K+-ion channel, enabling the conformational changes accompanying

channel opening to be mapped by measuring accessibility of the biotin to exogenous avidin

[33]. In another example, a nitrile group was introduced into an enzyme as a vibrational probe,

and its stretching frequency was a sensitive reporter of the electrostatic environment within

the enzymic active site [34].

2.3 Diagnostic Applications

Qualitative and quantitative detection of analytes in clinical samples is crucial for the early

diagnosis of disease. The complexity and heterogeneity of clinical samples presents a

challenging environment for the detection of individual molecules. Chromatographic

purification of analytes prior to analysis is time-consuming and labor-intensive, and hence

impractical. Accordingly, chemical and immunological methods have become favored for

medical diagnoses.

Clinical chemistry exploits an intrinsic physicochemical property of the analyte to generate a

unique signal, thus circumventing analyte purification. Examples of this approach include

spectrophotometric detection of metal ions and chromogenic and fluorogenic substrate-based

assays for characterizing enzymes of interest [35]. Clinical chemistry approaches are limited

to special cases because many analytes lack a unique signal-generating property. Moreover,

clinical chemistry approaches are often not sensitive enough to be useful in clinical regimes.
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In comparison to chemical methods, immunological approaches are often more sensitive

[36]. The high specificity of antibody–antigen interactions avoids sample purification.

Moreover, since antibodies can be generated against almost any analyte, this method is widely

applicable.

Traditional diagnostic methods require significant biochemical experimental protocols that are

time-consuming and require specialized laboratory equipment, limiting their applicability.

There is an urgent need to develop reusable biosensors for economical and rapid detection of

analytes that would be usable in locations far removed from a laboratory setting, such as in the

office of a medical doctor or in a remote geographical location. Most biosensors consist of

biomolecules attached to surfaces via robust bioconjugation linkages. For example, a

commercially available glucose sensor has been developed in which glucose oxidase is

immobilized to an electrode surface. The immobilized enzyme converts glucose into hydrogen

peroxide, which is recorded as a digital signal. This device is used to monitor glucose levels

in diabetes patients [37]. Some biosensor applications employ optical techniques such as

surface plasmon resonance (SPR) to detect binding of analytes to biomolecules immobilized

on a surface. SPR is used to measure binding of ligands, and yields accurate binding constant

values [38,39]. SPR-detection requires expensive instrumentation. A more practical and still

highly sensitive detection method based on the orientational behavior of liquid crystals on

nanostructured surfaces is demonstrating immense promise [40–43].

2.4. Imaging in Vivo

The diagnostic methods discussed above are limited to cases wherein the nature of the disease

allows for the preparation of clinical samples. In many cases, sample preparation is unfeasible,

and the diagnosis needs to be performed directly inside the body. Methods such as magnetic

resonance imaging (MRI) and radioimaging are employed in such situations.

Contrast agents are used to improve signal-sensitivity in MRI. Gd(III) complexes are effective

contrast agents [44–46]. Antibodies conjugated to Gd(III) complexes have been used for in

vivo targeting [47]. Other contrast agents such as magnetite have also been conjugated to

antibodies for similar applications [48].

Radioimaging is another powerful method for in vivo imaging. Isotopes of iodine (that

is, 123I and 131I) are commonly used radionuclides. The iodo group is especially convenient

because it can be introduced readily into the tyrosine residues of proteins [49], but the

observation of in vivo deiodination raises concerns [50]. Metal nuclides such as 99mTc

and 111In are useful alternatives, and can be attached to proteins via organic chelating agents

such as EDTA [51].

Positron emission tomography (PET) continues to grow as an imaging tool. PET is used often

in clinical oncology, as well as for the clinical diagnosis of certain diffuse brain diseases such

as those causing various types of dementias. PET is also an important research tool to map

normal human brain and heart function. PET relies on gamma rays emitted indirectly by a

positron-emitting radionuclide, usually an [18F]fluoro group attached to glucose. The

conjugation of 18F to proteins is a promising area for future development [52].

2.5. PEGylation

The conjugation of polyethyleneglycol (PEG) molecules to proteins is a well-established

technique. Commonly referred to as “PEGylation”, attachment of PEGs can endow proteins

with many desirable attributes, such as enhanced water solubility, reduced immunogenicity,

improved circulating half-life in vivo, enhanced proteolytic resistance, reduced toxicity, and
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improved thermal and mechanical stability. PEGylation has been reviewed extensively [53–

55], and will not be discussed in detail here.

2.6. Industrial Applications

Immobilized enzymes are used as industrial catalysts [56,57]. The first commercial application

of immobilized enzymes was the resolution of amino acids by an aminocyclase [58].

Applications in the food industry include use of fumarase to catalyze the isomerization of

fumaric acid to malic acid. The pharmaceutical industry employs immobilized enzymes for

the synthesis of drugs. For example, immobilized penicillin amidase is used in the preparation

of 6-aminopenicillanic acid [59]. Applications of bioconjugation are also prevalent in the

chemical industry. One prominent example is the use of immobilized nitrile hydratase for the

production of acrylamide from acrylonitrile [60].

3. BIOCONJUGATION LINKAGES

Traditional strategies for covalent bioconjugation preclude control over the regiochemistry of

reactions, producing heterogeneous reaction products, as in Fig. (1A). Poor control over the

site of modification often results in loss of the biological function of the target biomolecule

[61]. In contrast, novel methods of bioconjugation are highly site-specific and cause minimal

perturbation to the active form of the biomolecule. Moreover, biomolecules immobilized site-

specifically can possess higher ligand binding ability [62–64,41], as in Fig. (1B), and display

stronger spectral polarization [65]. Thus, site-specific bioconjugation is preferable to random

bioconjugation. Common linkages for site-specific bioconjugation rely on cysteine or lysine

residues. Newer methods target nonnatural functional groups [66], including olefins via

metathesis [67,68]. Chemical reactions that target tryptophan and tyrosine have been reviewed

elsewhere [69].

3.1. Linkages Containing Thioethers

Thiolates (though not thiols [70]) are potent nucleophiles in aqueous solutions. Accordingly,

the derivatization of proteins via the thiolate group of a cysteine residue is a popular method

of bioconjugation [71]. As cysteine is the second least common amino acid in natural proteins

[72], site-specific conjugation can often be performed at a unique cysteine residue.

Typical thiol-reactive functional groups include iodoacetamides, maleimides, and disulfides,

as in Fig. (2). Iodoacetamides (Fig. (2A)) were used in classic experiments for determining the

presence of free cysteines in proteins [73]. More recently, iodoacetamido groups have been

used extensively for labeling proteins with fluorophores, PEGylation, and protein

immobilization [6]. Chloroacetamides appear to exhibit even greater specificity than

iodoacetamides for cysteine residues [74].

Like iodoacetamides, maleimides are commonly used electrophiles for thiol-mediated

bioconjugation [6,7,75,8,74]. Thiolates undergo a Michael addition reaction with maleimides

to form succinimidyl thioethers (Fig. (2B)). An undesirable and underappreciated aspect of

maleimide conjugates is the susceptibility of their imido groups to undergo spontaneous

hydrolysis, resulting in undesirable heterogeneity. Both molybdate and chromate have been

shown to catalyze the hydrolysis of an imido group near neutral pH [76], providing a means

to decrease the heterogeneity of bioconjugates derived from maleimides.

The thiol-selectivity of iodoacetamides and maleimides is compromised at high concentrations

of the reagents, as nucleophilic side chains of amino acid residues such as histidines and lysines

can be modified covalently. In contrast, disulfide reagents react selectively with thiols, as in

Fig. (2C). Disulfides are, however, susceptible to reduction by biological reducing agents, like

glutathione. Hence, the use of disulfides is limited to in vitro applications, such as the
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crosslinking [77,78] and immobilization [79] of peptides and proteins. Thiol–disulfide

interchange is also the basis of an innovative tethering method that enables the identification

of small-molecule fragments that bind to specific regions of a target protein [80].

3.2. Linkages Containing Amide Bonds

Amide bonds have a half life of ca. 600 years in neutral solution at 25 °C [81]. This

extraordinary stability makes amide linkages highly attractive for bioconjugation. The random

introduction of amide linkages in biomolecules is trivial. For example, a protein can be treated

with a small molecule or surface displaying an activated ester (e.g., an N-hydroxysuccinimidyl

ester) to form amide bonds with the amino groups on lysine side chains and the N terminus

[82,41]. In contrast, the site-specific generation of amides is challenging. Native chemical

ligation and the Staudinger ligation are two modern approaches for generating amide linkages

at a specific site in a protein [83].

In native chemical ligation, an N-terminal cysteine residue reacts with a thioester to undergo

transthioesterification followed by a rapid S→N acyl transfer to form an amide, as in Fig. (3).

This reaction is a powerful tool for peptide ligation and hence protein synthesis [84–88].

Expressed protein ligation is an extension of native chemical ligation [89–91]. In this method,

a target protein is expressed as a fusion protein with an intein—a protein subunit that catalyzes

the formation of a thioester at the C-terminus of the target protein, as in Fig. (4). The protein–

intein fusion proteins are treated with peptides containing an N-terminal cysteine residue to

effect native chemical ligation, as in Fig. (3). Surfaces displaying cysteines were treated with

protein–intein thioesters to perform site-specific protein immobilization via amide bonds

[92]. Using a similar approach, fluorescent molecules were conjugated to specific sites in

proteins [93]. Furthermore, proteins were biotinylated using expressed protein ligation, and

then used for high-throughput proteomic analyses [94]. An undesirable aspect of native

chemical ligation and expressed protein ligation is the introduction of a residual thiol at the

site of bioconjugation, which can be a focal point for undesirable side reactions [95–97].

Chemical desulfurization approaches [98] provide a solution to the above problem, but are

obviated if the protein contains other cysteine residues. Hydrazine nucleophiles react with

protein–intein thioesters without installing a residual reactive group, and enable a functional

group [99] or surface [100] to be appended at the C terminus of a protein, as in Fig. (4).

The Staudinger ligation provides another solution to the cysteine limitation [101,83]. This

conjugation method is based on the venerable Staudinger reaction, in which an azide is reduced

to an amine by a phosphine [102,103]. Staudinger ligation employs a phosphine that also serves

as an acyl donor—the phosphorus first attacks the azide forming an iminophosphorane, which

is then acylated with the concomitant liberation of nitrogen gas to form an amidophosphonium

salt that hydrolyzes to yield the amide [104,105]. One version of the Staudinger ligation leaves

a phosphine oxide in the amide product, as in Fig. (5A) [106,107,104]. Another version—the

“traceless” Staudinger ligation—employs a phosphinothioester that yields an acyclic

amidophosphonium salt, resulting in an amide product that lacks the phosphine oxide moiety

or other residual atoms, as in Fig. (5B) [108–111,83,105,112].

The Staudinger ligation is used often for bioconjugation. The initial uses were with azido-

containing carbohydrates introduced onto cell surfaces by biosynthesis, and enabled

quantitative measurements by flow cytometry [106,113]. Subsequently, the Staudinger ligation

has been used for N-glycopeptide synthesis [114]. In addition, an azido group has been installed

into a protein by using the methionyl-tRNA synthetase of Escherichia coli activated with γ-
azidohomoalanine, and then subjected to Staudinger ligation with a peptide [115]. Azido

groups have also been installed into proteins by diazo transfer [116]. The Staudinger ligation

has been used for the rapid and site-specific immobilization of peptides and proteins [117,64,

118,100]. Water-soluble reagents for the traceless version avail new possibilities, such as
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integration with expressed protein ligation. The site-specific labeling of DNA by fluorescent

molecules has also been performed by Staudinger ligation [119]. A phosphinothiol that

mediates the traceless Staudinger ligation also reacts with S-nitrosothiols to generate bis-

conjugates [120]. Finally, a gentle phosphine-mediated means to convert an azido group into

a diazo compound—a ready precursor to a carbene—provides the potential for random

crosslinking to biomolecules, as in Fig. (5C) [121].

The special reactivity of squarates has been exploited for bioconjugation (Fig. (6)) [122–

124]. The reaction of two amino groups with a squarate results in their conjugation via two

vinylogous amides. Notable advantages of this conjugation method include the small size of

the squarate, and the greatly reduced rate of its reaction with the second amino group, limiting

the undesirable synthesis of homodimers.

3.3. Linkages Containing Carbon–Nitrogen Double Bonds

The facile synthesis of carbon–nitrogen double bonds via condensation of nitrogen bases with

aldehydes and ketones in aqueous solutions at neutral pH renders them attractive for

bioconjugation. Hydrazones (C=N–N) are generated when the nitrogen base is a hydrazine, as

in Fig. (7). Oximes (C=N–O) are formed when the nitrogen base is an alkoxyamine. Both

hydrazones and oximes are significantly more stable than are simple imines (C=N)—the

products of condensation of amines with aldehydes or ketones. Anilines are, however,

especially effective catalysts of hydrazone and oxime formation [125–128].

Carbohydrates are especially amenable to modification with carbon–nitrogen double bonds,

as their hydroxyl groups can be oxidized readily into aldehydes [129]. Alternatively, ketones

can be introduced into cell-surface carbohydrates by biosynthesis [130,131]. Carbohydrates

immobilized via oxime linkages have been used to generate carbohydrate microarrays [132].

There are numerous examples in the literature of hydrazone and oxime conjugates of

oligonucleotides [133]. For example, acylhydrazone linkages have been used for the

immobilization of aldehydic oligonucleotides on surfaces displaying acylhydrazines [134].

Additionally, peptide nucleic acid–peptide conjugates have been generated using oxime

conjugation [135].

Peptide microarrays generated by immobilizing peptides via acylhydrazone linkages enable

the sensitive detection of antibodies in blood samples [136,137]. Peptides and small molecules

have been immobilized via oxime linkages onto glass slides displaying aldehydes, and the

resulting microarrays used for protein binding and cell-adhesion assays [138]. Peptide

fragments bearing aminoxy functional groups were incubated with a polyaldehyde template to

generate large protein-like molecules containing multiple oxime linkages [139,140]. The

chemoselectivity of oxime formation has been used to assemble a transcription factor-related

protein that is not readily accessible by recombinant DNA technology [141]. A conceptually

related approach was used to synthesize glycodendrimers appended with an antigen [142,

143]. Finally, oxidative deamination mediated by pyridoxal 5′-phosphate can be used to

generate an aldehyde or ketone at the N terminus of some peptides and proteins [144,145].

Although hydrazones and oximes are common conjugates, both are labile to spontaneous

hydrolysis. The hydrolytic stabilities of isostructural alkylhydrazones, acylhydrazones, and an

oxime were examined at pD 5.0–9.0 [146]. The hydrolysis of each adduct was found to be

catalyzed by acid. Rate constants for oxime hydrolysis were nearly 103-fold lower than those

for the hydrazones; a trialkylhydrazonium ion (formed after condensation) was even more

stable than the oxime. These data led to a general mechanism for the hydrolysis of C=N–X

linkages. There are several important messages from this work. First, alkylhydrazones and

acylhydrazones should not be used for bioconjugation, as their half-lives are only an hour or
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so under physiological conditions. Secondly, oximes are far more stable than hydrazones,

having half-lives close to a month. Finally, efforts to develop a gentle means to condense a

trialkylhydrazine with an aldehyde or ketone are worthwhile.

3.4. Linkages Generated by Cycloaddition

The discovery of the rate acceleration availed by Cu(I) has made the Huisgen 1,3-dipolar azide–

alkyne cycloaddition one of the most useful reactions for bioconjugation [147–151]. This

cycloaddition results in the irreversible formation of a 1,4-disubstituted[1,2,3]triazole linkage,

as in Fig. (5D). The reaction has been used in an extraordinary range of contexts, including

labeling proteins with small molecules [152,99,153,154], immobilizing proteins and peptides

[155,118], proteomics applications [156], immobilizing carbohydrates [155], functionalizing

DNA [155,157], and decorating virus particles and bioactive polymers with fluorescent

molecules [158,159]. A Ru(II) catalyst leads to the 1,5-disubstituted[1,2,3]triazole [160],

which mimics a cis (that is, E) peptide bond [161], as in Fig. (5E).

The Cu(I)-catalyzed version of the Huisgen cycloaddition can cause cytotoxicity and protein

precipitation due to the Cu(I) ion [156,99]. Moreover, the reaction rates are slow, precluding

its use for studying cellular processes. To overcome these drawbacks, several groups have

exploited a reaction discovered in the 1950s [162,163] and exploited latterly [164], using the

ring strain of a cyclooctyne group to enable the Huisgen 1,3-dipolar azide–alkyne cycloaddition

to proceed rapidly without a catalyst [165–167], as in Fig. (5F).

Another cycloaddition reaction—the Diels–Alder reaction—between a diene on a peptide and

a dienophile on a glass surface has been used for peptide immobilization [168]. A similar

approach was employed for immobilizing carbohydrates onto glass slides displaying

hydroquinone functional groups [169]. The inverse–electron-demand Diels–Alder reaction

between a tetrazine and trans-cyclooctene is especially rapid and has much potential for

bioconjugation [170].

3.5. Chemoselectivity and Kinetics

Of the functional groups described above, the azido group is foremost in having an intrinsic

reactivity that is versatile though relatively chemoselective under physiological conditions

(Fig. (5)) [171,172]. Accordingly, the Staudinger ligation and Huisgen 1,3-dipolar azide–

alkyne cycloaddition have gained special favor amongst chemical biologists. There are,

however, two limitations to consider.

The first limitation is the relatively low chemoselectivity of azide coreactants. The oxidizing

extracellular environment is electron-poor, and hence replete with electrophiles. Prevalent

there are disulfide bonds and singlet oxygen, which can react rapidly with the phosphines of

the Staudinger ligation. Conversely, the reducing environment of the cytosol is electron-rich

and awash with nucleophilic thiolates that can attack cyclooctyne and its congeners (including

trans-cyclooctene). Although these bioconjugation reactions are compromised by coreactant

promiscuity, extracellular Huisgen cycloadditions avoid the most calamitous of side reactions.

The second limitation is the rather modest reaction rate constants of azide-mediated

conjugation reactions. The second-order rate constant for the fastest known Staudinger ligation

is 7.7 × 10−3 M−1s−1 [105]. That for the most rapid Huisgen cycloaddition is 2.3 M−1s−1

[167]. What do these rate constants mean for a chemical biologist? Consider a bioconjugation

reaction between equimolar reactants A and B to form A–B with second-order rate constant

k:
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(1)

Integrating the rate equation gives

(2)

and the yield = [A – B]t /[A]t=0 of conjugate is

(3)

If attainable concentrations of [A]t=0 = [B]t=0 = 1 µM are allowed to react for a reasonable time

of t = 1 h without any side reactions, then the fastest known Staudinger ligation and Huisgen

cycloaddition would provide A–B yields of 0.003% and 0.8%, respectively. For comparison,

we note that highly chemoselective enzyme-mediated conjugation reactions can occur with a

second-order rate constant of 2.7 × 106 M−1s−1 [173], which would provide an A–B yield of

>90%. This value provides a benchmark for the development of rapid but still chemoselective

reactions for biological contexts.

4. CONCLUSIONS

Bioconjugation is being applied in research laboratories, industrial facilities, and medical

clinics. Choosing the optimal linkage for a particular application is crucial. One imperative is

the ease of generating the desired bioconjugate quickly under physiological conditions.

Another is the stability of the bioconjugate during the course of its use. These imperatives

present interesting challenges of substantial importance. As a consequence, new conjugation

modalities are being pursued with vigor.
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Fig. (1).

Random and site-specific bioconjugation. Ligands are immobilized to a surface at (A) multiple

sites, or (B) a single site; and are then probed with a cognate receptor.
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Fig. (2).

Bioconjugation via thioethers or disulfides. Reaction of a thiolate with (A) a haloacetamide,

(B) a maleimide, and (C) a disulfide.
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Fig. (3).

Amide bond formation via native chemical ligation. An N-terminal cysteine residue reacts with

a thioester, which after an S→N acyl shift leads to an amide bond.
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Fig. (4).

Amide bond formation via expressed protein ligation. An intein installs a thioester at the C

terminus of the target protein, which undergoes native chemical ligation with a peptide

containing an N-terminal cysteine residue. Protein–intein thioesters can be treated with other

nucleophiles (H–Nu) to install functional groups or surfaces at the C terminus.
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Fig. (5).

Bioconjugation via azido groups. (A) Non-traceless Staudinger ligation. (B) Traceless

Staudinger ligation. (C) Reductive cleavage to a diazo compound, which could be followed by

carbene-mediated crosslinking. (D) Cu(I)-catalyzed Huisgen 1,3-dipolar azide–alkyne

cycloaddition. (E) Cu(I)-catalyzed Huisgen 1,3-dipolar azide–alkyne cycloaddition. (F) Strain-

induced Huisgen 1,3-dipolar azide–alkyne cycloaddition.
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Fig. (6).

Bioconjugation via a squarate.
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Fig. (7).

Bioconjugation via carbon–nitrogen double bonds. X = O in oximes, NH in alkylhydrazones,

and NHC(O) in acylhydrazones.
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