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Advances in biotechnology and
clinical therapy in the field of
peripheral nerve regeneration
based on magnetism

Zheyuan Fan, Xinggui Wen, Xiangdong Ding, Qianqian Wang,

Shoushuai Wang and Wei Yu*

Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, China

Peripheral nerve injury (PNI) is one of the most common neurological

diseases. Recent studies on nerve cells have provided new ideas for the

regeneration of peripheral nerves and treatment of physical trauma or

degenerative disease-induced loss of sensory and motor neuron functions.

Accumulating evidence suggested that magnetic fields might have a significant

impact on the growth of nerve cells. Studies have investigated di�erent

magnetic field properties (static or pulsed magnetic field) and intensities, various

magnetic nanoparticle-encapsulating cytokines based on superparamagnetism,

magnetically functionalized nanofibers, and their relevantmechanisms and clinical

applications. This review provides an overview of these aspects as well as their

future developmental prospects in related fields.
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1. Introduction

Peripheral nerve injury (PNI) is a major clinical concern, which is caused by the

loss of structure or function of peripheral nerves. In developed countries, ∼ 13–23 per

100,000 persons are affected by PNI every year (1). It is a common complication in trauma.

The regeneration of the peripheral nerve should be improved to recover its function.

The core difficulties in nerve regeneration are the directional prolongation of neurites

and the proliferation of Schwann cells (SCs), which provide well-functional axons and

myelin sheaths. Currently, the studies on peripheral nerve regeneration involve growth

factors, nerve conduits, tissue engineering, and genetic engineering (2–5). Since the 1980’s,

researchers have been continuously studying the effects of magnetism on nerve cells. The

magnetic field can induce the orientation of cellular growth. In 1965, Murayama et al.

reported that sickled erythrocytes were oriented perpendicular to the magnetic field (6).

This was the first study on this phenomenon. Since then, erythrocytes, collagen, fibroblasts,

osteoblasts, human glioblastoma A172 cells, SCs, smooth muscle cells, and PC12 cells

have been reported to be related to magnetic fields (6–13). In addition, nerve cells have

a better growth potential in the magnetic field [16]. Based on the theoretical effects of

magnetic fields on nerve cells, biomaterial interventions have shown promising results in cell

cultures and animal studies, providing contact guidance for extending neurites or a sustained

release of various drugs and growth factors. Moreover, researchers further investigated the

magnetic stimulation of peripheral nerves to obtain a better sense and function. This review

summarizes the recent studies on the effects of magnetism on peripheral nerves and proposes

future developmental directions in this field.
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2. PNI and regeneration

PNI is a common clinical issue worldwide, and its prognosis

varies with the degree of injury. Unlike the central nerve,

the peripheral nerve has a limited regenerative capacity after

being injured. After PNI, Wallerian degeneration occurs; the cell

bodies of neurons swell, dissolving the chromatin and making

Nissl’s body disappear, which makes the cell body relatively

eosinophilic, shifting the nucleus to the periphery. Moreover,

SCs and macrophages phagocytize the myelin and axons, thereby

degenerating the myelin sheaths at the distal portion of the nerve

injury site. In addition to clearing myelin debris, macrophages and

SCs also produce cytokines, which enhance axon growth. After

clearing debris, regeneration begins at the proximal portion and

continues toward the distal stump. New axonal sprouts generate

from the Ranvier nodes (14, 15).

Different cells participate in repairing the injured nerves. SCs

are arranged longitudinally to form the bands of Büngner, guiding

the direction of regeneration and providing a microenvironment,

which promotes regeneration. The tips of the regenerated axons,

called growth cones, are composed of flat sheets of cellular matrices

with finger-like protrusions (filopodia). Actin polypeptides, which

can contract to produce axonal elongation, are in filopodia. The

growth cones release proteases, which dissolve the matrix on its

path, thereby clearing the way for regeneration. The recovery of

nerve function depends on the extension of regenerated axons from

the injured site to the target organ at the distant portion (14).

3. Theoretical study based on
magnetism and peripheral nerve
regeneration

3.1. Properties of magnetic fields and
superparamagnetism

Magnetic properties are generated by electrons, spinning

around the nuclei of atoms and their axis (16). The magnetic field

intensity of amagnetic material is related to its atomic structure and

temperature. In some atoms, the magnetic dipoles, arising from the

spinning of electrons, do not cancel each other out, thereby creating

a permanent dipole. The permanent dipole aligns with the external

magnetic field. The magnetism of superparamagnetic materials

disappears with the disappearance of the external magnetic field.

This provides a basis for strengthening the magnetic field intensity

and reducing the adverse effect of a magnetic field (17).

3.2. Growth of nerve cells in a magnetic
field

Static magnetic fields (SMFs) or pulsed magnetic fields (PMFs)

are usually used in the studies of nerve cells. PMFs are safe

and efficient to promote nerve regeneration (18–20). SMFs have

constant intensity and direction and a frequency of 0Hz. Recently,

studies have been conducted on the effects of SMFs on nerves

at the cellular level. Numerous studies showed that the effects of

exposure to SMFs on cellular proliferation varied depending on

the cell type (21, 22). Moreover, most studies, investigating the

effects of SMFs on cell cycle distribution, showed that there was

no statistical difference between the exposed and control group

(23). There are two necessary pathways for the regeneration of

peripheral nerves: the growth of neurites and myelin sheaths.

Mann et al. provided new ideas for the correlations between these

two enhanced pathways (24). They reported that a slight nuclear

magnetic resonance therapy (NMRT) could induce an increase in

SCs proliferation; however, its effect on repair-associated genes

was not statistically significant. Furthermore, NMRT could not

only enhance the neuronal maturation of individual neurons

but also encouraged neurite outgrowth. Interestingly, they also

showed that NMRT could induce the secretion of neurotrophic and

neuritogenic factors in SCs, leading to the survival of dorsal root

ganglia (DRG) neurons and neurite outgrowth.

These studies suggested that the differences in growth direction

in response to magnetic field direction depended on the cell

type. Macias made two coils of individual copper sheets folded

into a square coil to establish a PMF (25). DRG showed a

growth tendency parallel to the electric field (perpendicular to

the magnetic field). Interestingly, Eguchi showed that SCs and

collagens exhibited different growth directions under strong SMFs

(8-T). The directions of the SCs and collagen groups were parallel

and vertical to that of the magnetic field, respectively. Moreover,

SCs oriented in the direction vertical to the magnetic field in

a mixture of Schwann cells and collagen under 2 h of magnetic

field exposure. DRG showed the same growth tendency as that of

collagens, thereby providing theoretical support for the use of a

magnetic field to guide peripheral nerve regeneration. Other studies

demonstrated that fibrin (26, 27), PC12 cells (12), erythrocytes (28),

and osteoblasts (9, 29) aligned parallel to the magnetic field. This

property of the magnetic field might be significant in selecting

different ways to guide peripheral nerve regeneration.

A strong magnetic field has a destructive effect on cells and

can cause genetic mutation and DNA damage (30, 31). Liu

et al. reported that the high-intensity magnetic field might be

unfavorable for the growth of Schwann cells. When PMF was set

to a frequency of 50Hz, different from 5.0 or 10.0 mT (T = tesla),

0.5, 1.0, or 2.0 mT each was safe for the growth of Schwann cells

(32). Interestingly, Eguchi reported that SCs and collagen exhibited

normal growth under strong SMFs (8-T) (11). The reasons for

these dramatic differences have not been explored yet, and it was

speculated that the effects of magnetic field intensity on cellular

growth were related to the type of magnetic field. SCs could better

withstand SMF as compared to PMF.

3.3. Magnetic nanoparticles

A major challenge in peripheral nerve regeneration is the

local and sustained delivery of bioactive factors. Studies on MNPs

showed that the intervention of an external magnetic field was

a type of conventional means. Due to good biocompatibility,

MNPs can also be used alone as drug-loading tools to promote

peripheral nerve regeneration (33). Magnetic liposomes could

enhance neurite outgrowth with a nerve growth factor (NGF)
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through phosphorylated extracellular regulated protein kinases

(ERK) 1/2, which simultaneously upregulated the β-tubulin and

integrin β1 (34). Hu et al. showed an increased extension of

spiral ganglion neurons (SGNs) in MNPs and MNPs + magnetic

field groups as compared to those in the control group (2).

Mitrea et al. used oral chitosan-functionalized MNPs to promote

neural regeneration in the PNI experimental model and obtained

satisfactory results (35). The mechanism for this phenomenon

might be the release of Fe ions from iron oxide NPs inside the

cells, promoting neurite outgrowth. Numerous approaches used

MNPs to assist in drug or gene delivery, including liposome

or micelle encapsulation, polymer coatings, and direct surface

functionalization (16). Other applications of MNPs include the

directional migration of cells induced by external magnetic fields

(2, 36–39). In a review, Gilbert divided MNP-mediated cellular

manipulations into two categories: magnetic cell guidance and

magnetic cell transplantation (16). In essence, both these methods

are based on the combination of MNPs and target cells induced by

external magnetic fields.

To solve the problem of instability, aggregations, and cellular

toxicity of MNPs, Qin et al. synthesized a novel nanomedicine

composed of NGF-functionalized Au-coated MNPs. They showed

that both the static and rotationmagnetic groups could significantly

increase the number of differentiated cells and neurites, exhibiting

longer average neurite length and clearer directionality, as

compared to the no magnet group (36). Liu et al. designed a

type of fluorescent–magnetic bifunctional superparamagnetic iron

oxide nanoparticles (SPIONs) to control the phenotypic stability

of repaired SCs (37). The SMF-induced SPIONs group showed

a significantly higher mRNA expression level of brain-derived

neurotrophic factor (BDNF), glial cell-derived neurotrophic factor

(GDNF), oligodendrocyte transcription factor 1 (Olig1), and

vascular endothelial growth factor (VEGF) (qRT-PCR and ELISA).

Western blot analysis showed that the expression levels of Beclin1

and lc3b in the experimental group were higher than those in

the control group, while the expression level of p62 protein was

lower, suggesting the activation of autophagy in Schwann cells

by the magnetic stimulation SPIONs. Moreover, for their effects

on elongation and branching, there was a statistically significant

increase in the expression levels of immune-related cytokines

and transcription factors associated with repair phenotypes in the

SPION + MF groups. In vitro experiments also verified the effects

of SPIONs on promoting peripheral nerve regeneration. Hu et al.

reported that the combination of SGNs with poly-L-lysine-coated

SPIONs could promote the extension of neurites and growth along

the direction of a magnetic field (2). Huang et al. reported that the

number of SCs with ChABC/PEI-SPIONs, which migrated into the

astrocyte region, was 11.6- and 4.6-fold higher than that of control

groups under the driven effect of a directional magnetic field (40).

Raffa et al. observed that PC12 cells also exhibited more neurite

extension and orientation under the guidance of MNPs (39).

3.4. Biomaterials based on magnetic fibers

Due to the advantageous features of nanofibers and MNPs,

numerous researchers have combined MNPs with biodegradable

nanofibers to produce magnetic nanofiber scaffolds. Nanofibers

have the characteristics of a large surface-to-mass ratio, high

porosity, and superior mechanical performance (41–43). Based on

electrospinning (ES), there are three techniques for obtaining iron

oxide-loaded composite fibers: the introduction of pre-synthesized

SPIONs in a polymer solution before ES (used in biodegradable

polymers mostly), mixing a precursor before a post-ES process

to yield the SPIONs within the fibers, and in situ synthesis

techniques (44, 45). There are two major drawbacks in the classical

precipitation of NPs on the surface of biomaterials, including

difficulty in controlling the morphology and aggregation of NPs

and the incompatibility of SPIONs formation with a wide range

of biopolymers (44). Silanization, polymer brush coating, and

grafting have been used for ameliorating the dispersibility of NPs

in polymeric matrices (44). Sodium citrate, polyacid, or oleic acid

has also been applied for the dispersion of iron oxide NPs. Nottelet

et al. combined thiolyne photoaddition with free ligand exchange

to anchor SPIONs on the surface of nanofibers, which maintained

the initial fiber morphology and avoided the unwanted aggregation

of MNPs.

A variety of materials have been used in the preparation of

magnetic nanofibers, such as chitosan/poly (vinyl alcohol) (PVA),

poly (ε-caprolactone) (PCL), hydroxyapatite (HA), magnetic poly

(L-lactic acid) (PLLA), poly (D, L-lactic acid) (PDLLA), and poly

(glycolide-co-L-lactide) (PGLA) (46–50). Due to the tunability,

porosity, hydrophilicity, capacity for the incorporation of biological

factors, and the polymeric nature of hydrogels, they are increasingly

used in bone or nerve regeneration, cancer therapy, and tissue

engineering (51). Gilbert et al. designed a method to inject the

small conduits of aligned fibers within a hydrogel to reduce

fiber tangling (52). They observed that SPION could increase the

elongation of neurites by 30%. In addition, they also concluded

that SPION content in the electrospinning fibers could be set

between 2 and 6% by weight to balance the magnetization and fiber

diameter, alignment, and/or density. Gilbert et al. also synthesized

aligned control PLLA and SPION-grafted PLLA electro-spun fibers

to induce DRG growth. They set up three different types of

magnetic fields to study the induction of nerve regeneration

by magnetic nanofibers under different magnetic fields: SMF,

alternating magnetic field, and linearly moving magnetic field.

They observed that neurites could extend 24 and 30% farther on

SPION-grafted fibers as compared to that of untethered SPIONs

on PLLA fibers under the static or alternating magnetic field.

Moreover, 40 and 27% longer neurites were observed in the

alternating and linearly moving magnetic fields as compared to that

in the SMF (53).

In addition to inducing nerve regeneration under a

paramagnetic action, the magnetic field can also be used to

form aligned columnar structures in biological scaffolds, especially

systematically tuning the mechanical properties of hydrogel

scaffolds (54–56). Schmidt et al. used polyimide, magnetic alginate

microparticles, and glycidyl methacrylate hyaluronic acid to invent

a magnetically aligned regenerative tissue-engineered electronic

nerve interface (MARTEENI) (57). This new technology combined

TEENI technology with magnetically templated scaffolds to

overcome the challenges of prosthetic-limb neural-interfacing

technology, such as stiffness mismatch, low axonal population
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sampling, and long-term signal decay. After 6–8 weeks of exposure,

MARTEENI groups showed similar results in the expression

levels of extracellular matrix (ECM) proteins and axonal density

as compared to the autograft groups. Under the induction of an

external magnetic field, magnetic nanofibers can accelerate drug

release. Ming-Wei Chang et al. reported that magnetic hollow

fibers could induce greater drug release as compared to the

non-treated samples under AMF (∼40 kHz) (58). This might be

due to the magnetocaloric effect caused by superparamagnetism.

This kind of nanofiber might have a good prospect in drug delivery

with precise positioning.

3.5. Mechanism of magnetic e�ects on
nerve cells

Since the 1970’s, increasing evidence has confirmed the

neuron-promoting effects of SMF and alternating magnetic fields.

The mechanism of the magnetic field, including both external or

micromagnetic fields based on superparamagnetism, which affects

peripheral nerves, is unclear. A comprehensive understanding of

the mechanism at the cellular level might help in developing

strategies to use magnet-mediated therapy for PNI. This part of

the review highlights the mechanism of stimulating the effects of

a magnetic field on cells (Figure 1).

One of the mechanisms of the magnetic field on cells is

its effect on the molecular structure of excitable membranes,

modifying the function of embedded ion-specific channels (59).

Strong magnetic fields can alter the preferred orientation of

different diamagnetic anisotropic organic molecules. Lowmagnetic

field intensity relies on the molecular structure of excitable

membranes. Researchers have focused on the changes in ion

channels under a magnetic field. The voltage-gated channels,

including potassium, sodium, and calcium ion channels, are

affected by magnetic field exposure, thereby making neurons

highly sensitive to magnetic field exposure (60–62). Numerous

studies have investigated the internal flow of calcium ions (3, 63).

In previous studies, Aldinucci simultaneously exposed human

lymphocytes to 4.75 T SMFs and 0.7 mT PMF at 500 MHz for

1 h. The combined SMF and PMF groups could increase the Ca2+

influx (64). Balassa et al. reported that the calcium ion channels

might play significant roles in synaptic functions under magnetic

field stimulation (65). Finberg et al. reported that SMFs could

mediate the Ca2+ influx through L-type voltage-gated calcium

channels (VGCCs), providing a neuroprotective activity related

to their anti-apoptotic capacity. They reported that the cellular

apoptosis of primary cortical neurons, which were exposed to

SMF (50G), decreased, showing a lower expression level of pro-

apoptotic markers, including cleaved caspase-3, cleaved poly ADP

ribose polymerase-1, the phospho-histone H2A variant (Ser139),

and active caspase-9. Moreover, the expression levels of Cav1.2

and Cav1.3 channels were significantly enhanced (63). Currently,

these protective effects on these cells are only reflected in the SMF,

while the strong PMF accelerates cellular apoptosis. Prasad et al.

reported that the moderate-intensity SMF (0.3 T) could induce

the oligodendrocytes precursor cells to increase the intracellular

Ca2+ influx by increasing the expression levels of L-type channel

subunits—CaV1.2 and CaV1.3 (3). Numerous studies showed that

the changes in ion channels were an important part of this process.

Studies on MNPs in various magnetic fields have shown that

they have great potential for nerve regeneration. After the binding

of MNPs to target cells, the magnetic force acting on the target cells

becomes the most intuitive mechanism. Schwann cells, which are

the commonly used target cells, are essential for the rapid saltatory

propagation of action potential. Studies have focused on the effects

of mechanical stimulation on Schwann cells (66). Recent studies

showed that Schwann cells could create “stimuli” for themselves

even in the absence of external mechanical stimulation (67, 68).

They secrete basal lamina, an essential component of the SC’s ECM,

to enhance mechanical resistance. Mechanical stimulation might

have a positive impact on SCs based on mechano-sensors and

mechano-transducers (66). The stimulation can activate ECM, cell

adhesion molecules, and some mechano-transduction pathways

(69) and can enhance the expression levels of β1 integrins (70,

71). Moreover, low-level mechanical stimulation can promote the

proliferation of SCs accompanied by demyelination and apoptosis

(72–74). Xia et al. reported that miR-23b-3p from the extracellular

vesicle of SCs might be a key factor of mechanical stimulation,

promoting peripheral nerve regeneration (75). Meanwhile, force

generation is downstream of many signaling cascades activated

by neurotrophic factors, such as netrin-1 and NGF (76, 77).

Raffa et al. quantified the correlations between the magnitude of

mechanical force and nerve elongation (78, 79). This provided a

theoretical basis for the quantitative design of MNPs to promote

axonal regeneration.

Another possible mechanism is the magnetocaloric effects of

MNPs in an external magnetic field, promoting nerve regeneration.

This effect has been applied in bioengineering for a long time.

Lin et al. completed and applied the localized heating of magnetic

nanofibers to inactivate tumor cells (80). Although there is a lack

of studies on the correlation of the magnetocaloric effect with

nerve regeneration under a magnetic field, the correlation between

temperature and neurite growth has been confirmed. He et al.

reported that suitable temperature increased the serum levels of

TGF-β and IL-10 and decreased the serum levels of TNF-α and

IL-1β (81). This result is the same as the cytokine changes of

nerve cells under the magnetic field. Numerous studies proved

that the increase in temperature could positively affect the growth

of neurites, and the temperature of 37–42◦C might be the most

suitable temperature for nerve growth (82).

The effects of the magnetic field on peripheral nerves are also

reflected in growth factors and inflammatory factors. Zhang et al.

reported that the low-intensity PMF could enhance the expression

levels of myelin basic protein (MBP), myelin oligodendrocyte

glycoprotein expressions (MOG), and transforming growth factor

(TGF) (TGF-β1, TGF-βR1, and TGF-βR2) in the central nervous

system (83). The TGF-β inhibitor could reduce the expression levels

of NGF in a mouse model, which suggested that the stimulation

of a magnetic field might promote the release of NGF (4). Mert

et al. reported that the low-frequency PMF (1, 3, 5, 7Hz) not

only increased compound action potential (CAP) amplitude and

sciatic nerve conduction velocity (SNCV) but also reduced the

expression levels of chemokines, such as CXCL1 and CCL3, which

prevented the infiltration of immune cells and migration of neural

progenitors (84). Moreover, PMF treatment could increase the
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FIGURE 1

Magnetism-related nerve regeneration strategies can be divided into simple magnetic fields and magnetic nanoparticles. The growth trend of

neurites and Schwann cells in the simple magnetic fields is di�erent. Schwann cells tend to grow parallel to the magnetic field, while neurites tend to

be vertical. In addition, this process is accompanied by macrophage transformation, cytokine regulation, and changes in ion channels. Strategies

based on magnetic nanoparticles generally combine particles with Schwann cells. In this process, Schwann cells are subject to mechanical action

and magnetocaloric e�ect. In the process of mechanical stimulation, Schwann cells are directionally proliferated in the magnetic field by F-/G-actin,

YAP/TAZ, MRTF, LINC pathway, and the downregulation of NRP1 induced by microRNA 23b-3p proliferation.

expression levels of bFGF and decrease that of VEGF in the sciatic

nerve. Interestingly, VEGF and bFGF indicated different results in

diabetic mouse models, showing decreased expression levels (85).

The mRNA expression levels of BDNF, GDNF, and VEGF were

higher in the magnetic field-induced Schwann cells than those in

the control group, while those ofNT-3 were similar (86). There was

no reasonable explanation for this phenomenon. It was speculated

that this might be related to the differences in the growth directions

of Schwann cells and neurites in the magnetic field.

During peripheral nerve regeneration, macrophages gradually

convert from the pro-inflammatory (M1) phenotype to the anti-

inflammatory (M2) phenotype (87–90). They are also associated

with cellular proliferation and differentiation as well as the release

of growth factors (91). Dai et al. reported that the combination of

MNPs and alternating magnetic fields could promote macrophage

to M2 polarization (92). In addition, they also suggested that this

regulation might be directly related to the internalization of MNPs

involved in activating the expression of interleukin 10 (IL-10),

which might be amplified by the external magnetic field.

Brief exposure to SMF at 100 mT for 15min led to a

marked but transient potentiation of binding of a radiolabeled

probe for activator protein-1 (AP1) in immature cultured rat

hippocampal neurons. It caused a high expression level of growth-

associated protein-43 and increased AP1 DNA binding through

the expression of Fra-2, c-jun, and jun-D proteins. A study by

Hirai provided a basis for finding the signaling pathway of the

magnetic stimulatory effects on neurons (93). Liu et al. studied the

mechanism of remyelination using in vitro and in vivo experiments

on MNPs bound to SCs under SMFs. They suggested that

Raf-MEK-ERK1/2, Rac1-MKK7-JNK-c-Jun, and TORC1-c-Jun

pathways might be related to peripheral nerve regeneration under

superparamagnetism. Notably, although there was a statistically

significant increase for regeneration-related protein in the SPION

+ MF group as compared to the pure magnetic field group, it

was not possible to determine whether this effect was due to

superparamagnetism or mechanical stimulation (37).

Numerous high-quality studies are still required to establish

a complete system for the mechanistic effects of magnetism on

peripheral nerves, which should include all the aforementioned

experimental phenomena.

4. Clinical applications

With the continuous theoretical studies on peripheral nerve

regeneration using a magnetic field, relevant clinical applications

are also being developed. Due to its muscle contractions

and sensory afferents, repetitive peripheral magnetic stimulation

(rPMS) is a non-invasive treatment for the nervous and

musculoskeletal system (94) and has been widely used in many
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fields, such as reducing spasticity and improving the motor control

of paretic limbs (95–97).

There is no conclusion about the underlying mechanism of

rPMS. Researchers showed that the cortical plastic effects might be

a key factor (98). The activation of the frontoparietal loops and an

increase in corticomotor excitability are also important effects after

magnetic stimulation (96). Liu et al. reported that the peripheral

nerve electrical stimulation for 1 h could increase corticomotor

excitability and hand dexterity improvement in patients withmotor

impairment after stroke (99). Other studies have shown similar

results (100, 101).

A randomized controlled trial of 46 samples showed that the

repetitive magnetic stimulation of the median nerve with 2,400

pulses (20Hz over 10min) could increase the peak motor evoked

potential (MEP) amplitudes and RC slope in the contralateral

hemisphere (98). Furthermore, the improvement in the Purdue

Pegboard Test (PPT) score was significant after 24 h as compared

to the baseline (∗P = 0.003) and immediately after rPMS

(∗P = 0.012). Savulescu et al. reported that rPMS in association

with physiokinesiotherapy (PKT) groups showed more improved

results in the pain score and electromyography (EMG) analysis

than in monotherapy groups (102).

rPMS has therapeutic effects on stroke-induced neurological

and muscular sequelae. Jiang et al. reported that rPMS groups

showed a better arm function and muscle strength for grip and

elbow flexion and an extension of patients suffering from an early

subacute stroke with severe upper extremity impairment than

conventional physiotherapy groups (103). Zschorlich et al. reported

that a 5-Hz rPMS could reduce the tendon reflex amplitude, which

reduced muscle stiffness and increased mobility (104). Although

rPMS involves the direct effect of magnetic field and peripheral

nerve, there are few clinical studies on rPMS and peripheral nerve

injury. The aforementioned research suggests that rPMS may play

a role in promoting peripheral nerve regeneration. We need more

high-quality studies to verify the efficacy and specific parameters

of rPMS.

Magnetic fields are also applied in chemotherapy-induced

peripheral neuropathy (CIPN), which is performed by axonal

degeneration (vinca alkaloids) and demyelination (platinum

compounds) (105, 106). Rick et al. reported that the 3-month

magnetic field treatment could significantly improve NCV and

subjectively perceived neurotoxicity (107). Moreover, there was

no statistically significant difference in the pain detection

end scores.

The International Commission on Non-Ionizing Radiation

Protection (lower than 300Hz for the general public and 400Hz

for occupational exposure) and the Institute of Electrical and

Electronics Engineers International Committee on Electromagnetic

Safety (lower than 750Hz) have set limits on electromagnetic

field thresholds for protection against stimulation and thermal

effects (108–110). Moreover, the threshold of electromagnetic field

strength is conservative due to a lack of correlation between

internal and external field strengths and nerve activation (108).

Hirata et al. used a multi-scale computation to study the threshold

of peripheral magnetic stimulation based on a human anatomical

model (108). They showed a margin factor of 4–6 and 10–24

times between internal and external protection limits of the

international standards.

It is worth noting that the preliminary or explorative studies

on the nature of rPMS have reported single cases, case series,

or different stimulation protocols (111–115). Sollmann et al.

made a checklist, including eight subject-related items, such as

age, gender, handedness, or footedness; 16 methodological items,

such as coil location, coil type, pulse duration, and shape; and

11 stimulation protocol items, such as stimulation frequency,

stimulation intensity, and duty cycle, to guide the research direction

of rPMS and contribute to new interventional or exploratory rPMS

studies (116).

5. Conclusion and future prospects

This review discusses magnetic field properties and

intensities, MNP-encapsulating various cytokines based on

superparamagnetism, magnetically functionalized nanofibers,

relevant mechanisms, and some clinical applications. This review

attempted to completely and systematically analyze the latest

studies on these topics.

At the same time, there are numerous problems in this

field, which should be solved by researchers in their future

studies. First, a suitable magnetic field mode and methods to

be used are needed to be formulated. Gleich et al. reported

that the cornered FO8 coil was more effective, which could

reduce the stimulation voltage, current, and energy of the

stimulation device (117). Abe et al. also used a newly developed

stimulator to reduce the pain and discomfort of magnetic

stimulation (118). Heiland et al. reported that the magnetization

transfer ratio in the peripheral nerve tissue altered with age

(119). This indicated that the mode setting of peripheral nerve

magnetic stimulation therapy should be adjusted based on the age

of patients.

In addition, the relevant mechanism requires further

exploration. The molecular mechanisms of these problems are

still unknown. Using experiments based on MNPs-Schwann

cells under SMFs, Liu et al. showed that Raf-MEK-ERK1/2,

Rac1-MKK7-JNK-c-Jun, and TORC1-c-Jun pathways might

be related to peripheral nerve regeneration; however, there

is no evidence determining whether this effect was due to

superparamagnetism or mechanical stimulation. Moreover, the

direction of cell growth was correlated with the cell type under

different magnetic fields. According to previous studies, Schwann

cells tended to grow parallel to the direction of the magnetic

field, while neurites grew perpendicular to the magnetic field.

This difference might limit the potential of axon and myelin

sheath growth under a magnetic field. Future studies should

focus on finding a more reasonable magnetic field placement

mode, strength, and time to obtain the best effects with the

smallest damage.

The effects of magnetism on peripheral nerves have always

been a research hotspot. A suitable application of magnetic

field or magnetic biomaterials can shorten the regeneration

time of peripheral nerves, enhance the orientation of nerves,

and promote the release of growth factors. In future, more

high-quality studies are warranted, which could further clarify

the mechanism of magnetic action and formulate guidelines for

magnetic therapy.
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