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Abstract

Non linear transformations are a good alternative for the numer-
ical evaluation of singular and quasisingular integrals appearing in
Boundary Element Methods specially in the p-adaptive version.Some
aspects of its numerical implementation in 2-D Potential codes is dis-
cussed and some examples are shown.

1 Introduction

One of the most important computational problems in Boundary Element
Methods (BEM) is the accurate evaluation of the integrals appearing in the
influence coefficients matrices .Integral kernels in Potential and Elasticity
problems produce singular and quasisingular integrals depending on the col-
location point position.

Special techniques have been developed in order to evaluate strongly sin-
gular integrals and some rules-of-thumb have been established to avoid in-
accurate results in the quasisingular ones. Current computer programs take
three courses of action to solve the above mentioned integrals:

e Analytical solution,specially in constant or linear elements.

e Differents numerical quadratures depending whether the collocation
point i1s on or outside the elements.



e Special rules for the computations at internal points.

However there are some typical problems in which these techniques pro-
duce inaccurate results: elements round a corner ,specially in non homoge-
neous media, internal points near the boundary and slender bodies. The
main source of inaccuracy is the short distance between collocation point
and the element under integration.

The new development of p-adaptive version of BEM needs accurate com-
putation of integrals with high order aproximation functions and correspond-
ing collocation points inside the elements that tends to the ends as the order
of aproximation grows.

It 1s then desirable to have an integration rule that can be used for every
situation of the collocation point.

In what follows we shall show some improvements in the evaluation of
singular and quasisingular integrals based on non linear transformation tech-

niques as well as the results of the implementation of these techniques in a
2D BEM Potential code.

2 Non linear transformations for the com-

putation of 2-D singular and quasisingular
integrals

Several techniques have been suggested to evaluate strongly singular or qua-
sisingular integrals.

Lachat and Watson [1] and Watson [2] proposed, to solve different singu-
larities appearing in 2D and 3D Elasticity problems,by dividing the element
into subelements when the collocation point is on 1t. Quasisingular integrals
are evaluated with different gaussian formulation depending on the colloca-
tion point distance to the element by controlling element characteristic size
and number of gaussian points accordingly with an error bound.

Gomez-Lera et al [3] proposed a non linear trnasformation to accurately
compute the integrals appearing 1n axisymmetric elastodynamic problems,
although no justification was presented about the observed improvements.

Telles [4] proposed a non linear coordinate transformation to solve these
integrals.Second and third degree polynomials were suggested for singular
integrals with the first and second derivatives null at the singularity. while
exponential and polynomial transtormations were proposed to treat quasisin-
gular integral evaluation.

Guiggiani and Casalini [5],[6] evaluated numerically the Cauchy Principal
Value of integrals (CPV) in 2D Elastostatic problems.CPV can be obtained



with standard Gauss-Legendre quadratures and a logarithmic term because
of the coordinate transformation at both sides of the singularity are not equal
in different curved elements.

Guiggiani [7] showed the error if gaussian quadratures are employed over
curved elements and logarithmic terms are not considered. This logarithmic

term vanishes if the collocation point 1s on the element or linear elements
with linear mappings are employed.

Cerrolaza et al [8] used a numerical procedure to evaluate the Cauchy
Principal Value integrals. Two cubic coordinate transformations are suggested
at each side of the singularity. This procedure mimic the limit process in-
volved in the CPV analysis. These transformations map each subinterval
in the two intervals in which the singularity divide the element.The trans-
formations must have null jacobian at the singularity and the last (or first)
gaussian point is mapped into the singularity minus (or plus) the parame-
ter € which 1s a small free real value. Numerical good results are obtained
specially with high order gaussian quadratures.

Sanz Serna et al [9] showed a hidden error in the numerical evaluation
of singular integrals by non linear coordinate transformations.The source
of the error is a logarithmic relation between the main coefficients of the
transtormation not considered in a numerical quadrature.This term vanishes
if the two main coeflicients are equal and tends rapidly to zero if high order
gaussian quadratures are employed.

Alarcon et al [10],[11] explained the reasons of the good behaviour of
non linear coordinate transformations in the numerical evaluation of singular
and quasisingular 2D integrals.Intrinsic errors in some of these methods are
detected New transformations, a bicubic a single 4th degree transformation
and bitangent (Alcantud {12]), are suggested with a good behaviour in both
singular and quasisingular integrals. *

Non linear transformations produce a mapping from the integration in-
terval n into the gaussian integration interval £

This mapping has three objectives:

e Concentration of integration points near the singularity n, to evaluate
the function where 1ts contribution i1s more important.

e Zero jacobian at the singularity n,

e Smooth behaviour of the jacobian near the singularity n,

The integration interval can be divided into two subintervals at each

side of the singular point (—1,7,) and (7,,1) and each of them needs a new
mapping into the integration interval (-1,1) as is shown in Fig.1.



Figure 1:

Let us consider the transformations
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m(€) =ns +a1(§ = 1) + (€ —1)" + (6 = 1)°
n2(€) = ns +az2(é + 1) + b2(§ + 1)? + c2(§ 4+ 1)° (1)

These transformations at the left and the right side of the singularity
verity:

771('5 = ‘"1) = —1 772(5 - —'1) ST

n2(§ =1) =n, n2(§ =1) =1 (2)
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In the case of a logarithmic singularity the integrand may be always
expressed as

[ =alnr + 1. (3)

I. 1s a regular function.
A cubic transformation with a null jacobian at the singularity produce

1(6) = ns + As(€ — &) + Ba(€ — )% + C1(€ — &)
I() = aLnr(£)2A:(€ — £) + - + L(£)24:(€ — &) + -+ (4)

This integrand is a regular function what explains the good pertomance
of all these transformations.



In the case of a Cauchy Principal value integral in 2D

[==+1, (5)

Tl

I, 1s a regular function.
Let us investigate the perfomance of an integral of the type

1 dn -

Ns € (_1?1) (6)

With the definition of Cauchy Principal Value and the two transforma-
tions considered in (1)

M dn L dp i (e=9 py(€)dE : n2(§)d§
1:7L1 W—m+FMwn—m_7L1 m@%—m+l;mﬁam@%—m
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a4 @l =) b1+ St ao(€+ 1) + a6 + 12 + -

(7)

This integral can be expressed as

ny (ns—€)  d¢ 1 d¢
—_— -+ — + Ir — Ir T Is 3
[-1 (-1 nyt(nste) & + 1 (8)
Where I, i1s a new regular integral
A numerical evaluation of I, is zero by simmetry if the same number of
gaussian points are employed.
Analytical evaluation of I, is trivial
— |  — . l |
I,=In Ql?fu_“l (9)
Up: (773 T 6) + 1

The limits of I, when ¢ tends to zero

a9

aq

(10)

lim/, =In

c—0

[f both a; = 0 the limits of I, becomes the logarithmic of the ratio between
b,‘ etc.

[t is clear that the analytical value of I, will be the same as the numerical
one when the dominant coefficient of both transformations are the same.

Then,the transformations considered in (1) must be of the form:
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If boundary coditions in (2) are included, the transformations become

) = mt e~ 1~ (€ ~D(E-1)
nE) = mt S EEAPHSA-E)E+D) (1)

B i1s a free parameter.The transformation 1s monotonic if

B>0 and B<3(1=1n) (13)

4
Good results have been obtained with B = (1 — |n,|)

3 BEM 1n potential theory

Potential problems may be in general expressed as:
—ADdP=f in QCR T =00 (14)

where A is the Laplace’s operator,® € C*({2) is the unknown function.
Boundary conditions may be expressed in terms of the function, normal

derivatives around the boundary or both defining Dirichlet, Neumann or
Mixed problems. |

3.1 Green’s Theorems

Let us consider functions u,v € C*(Q) If second Green’s Theorem is consid-

ered: 5 9
v U
_ — == 1
/Q(uA'u vAu)df) ./r‘(uan van)dF (15)
Let us consider u = ® and v = o*
AP = f
—-Ad®" = 4n6(P)

where



6 (P) is the Dirac’s function at point P
®*  is called the fundamental solution 1n potential problems

. _ L _ 1
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If the second Green’s theorem is applied avoiding the singularity building
a sphere centered in P with radius e.

Taking limits when ¢ tends to zero, Green’s equation becomes:

~C(P)2(P) = /F( (P)q" (P, a- (P,Q)q(Q))dI‘ - /Q wran (16
where g = a,nd gt = -@-9—
In 3D:
47 1 P €l
C(P)z{ 2 ifPeT
0 otherwise
*(P, Q) = -
ip.0) - 4002
In 2D:
2r i P €
C(P) = { = 1HPerl
0 otherwise

(P, Q) = Ln-

dLn(l/r)

" (P,Q) = -



3.2 Numerical treatment

n

The boundary is discretized in n elements ' = {J,_; I'.. Using the procedures
of projective methods, looking for the best aproximation in the subspace
generated by the finite base functions {/V; };ern.

In a local system of coordinates in element e:

(&) = D N;ps
1=1
¢°(§) = Z:qu;?

Substituting in eq ( ):

ot 2 [N (PQI= Y [ (2 Ng®(PQL+ [ /(P

1=1 e=1 71=1

Let us consider

a; = 2 [ Na(PQ)= | Nig'(xi¢ (17

b = 2 ), N (PQ) = [ N (i 0 (18)
fo= [ FOPRQ) = [ £ (x08) (19

Where ¢; are the elements to which node j belongs to. Let

a. . = Ci5,',j

=t,J

Gij = Qij T &, .

A linear system of equations for Poisson’s problems is obtained:

a;;0; = biiq; + fi
In the matrix form:

AP =BQ+f (20)

for Laplace’s equation f = 0:



Ad® = BQ (21)

If all the unknowns are included in vector o

Ké=p (22)

is the linear system of equations to be solved.

4 P-adaptive Boundary Elements

Once the basic theory and the numerical implementation difficulties were
undestood in Finite Element Methods (FEM), researchers tryed to establish
”a posterior1” errors of the solution by refining the order of the approach in
a selfadaptive fashion.

Two ways were proposed the h-version, where the accuracy is obtained
reducing the size ot the elements, and the p-version, increasing the order of
the aproximation functions in the areas where it is necessary.[13],[14].

Those ideas have been recently introduced in Boundary Elements field,
both in h and p versions.[15]-[17].

The basic ideas of p-adaptive boundary elements can be obtained com-
paring the fundamental differences between FEM and BEM:

e In FEM the basis of interpolating and weighting functions i1s the same.

They are functions locally defined over the elements.Sparse and sim-
metric global matrices are then obtained.

e In BEM weighting functions are the fundamental solutions of the prob-
lem under consideration.They are globally based functions while the

interpolating ones are generally locally based. Full and non-simmetric
global matrices are then obtained.

As the weighting functions are globally based it seems logical to con-
sider as well the possibility of globally based interpolating functions, at least
over macro-elements, and to analyse the consequences that such decision can
have in the whole computational scheme.In some macroelements the order
of interpolating functions must be increased depending on local indicators of
Eerror.

A general scheme of a p-adaptive boundary element code is shown 1n

Table-1.

Representation of the geometry and boundary conditions



Geometry representation
Joundary conditions representation
Linear 1interpolation solver

Global error estimation ::e.. ,

DO WHILE -
FOR I=1
[f | VIN:/ -Tolerance

Add a new polynomial

TO Number of elements
Global error computation :.:e, .,

ety = Tolerance > 0

Table 1: p-adaptive BEM



Macro-elements must be defined at this step. Geometrical criteria would
be the first to be employed: Changes of geometry from straight to curved
lines, changes ot alignments created by corners, define natural macro-elements.

Boundary conditions may define them. Different boundary conditions
define different macro-elements.

Interpolating hierarchy functions may be used in this representation.

-

Interpolating hierarchy

In two dimensional cases, the family i1s monodimensional. It is possible
to work with the Peano approach:

=
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where p > 2 and £ € [-1, 1]

b 1 if piseven
| € ifpisodd

Influence matrices analysis

During the adaptive process the degree of the interpolating functions is
increased what induces a 'nesting’ influence matrices so that all the coeffi-

cients obtained at each step of the adaptivity process may be used in the
next one.

In order to see the nesting of influence matrices let us imagine that the
equations corresponding to a certain discretization are as follows:

Ad = BQ (24)

Each row corresponds to a collocation point,while each column reflects
the integration of a shape function over an element.

If 1t 1s decided to introduce new interpolating functions, it is necessary to
compute three blocks of integrals, producing the new system:

A*®* = B*Q" (25)




®.Q  boundary conditions in the previous step
®’' Q' boundary conditions in the new step

. A A
A* =
[ Ay Ag }

-

A B Influence coefficients in the previous step.
A,2,B:2 Influence coefficients of new interpolating functions viewed
from the old collocation points.

A,;,B,; Influence coefhicients of old interpolating functions viewed
from the new collocation points.

Aj,,B,  Influence coeflicients of new interpolating functions viewed
from the new collocation points.

This nesting i1s then transmited to the global stiffness matrix:
Ké§=p K*0® =p” (26)
Error indicator and estimators

Error indicators show in which elements the order of interpolating func-
tions must be increased.

Two indicators were used in "Queimada” program:
Peano’s criterion:

_ 2j#i B5i6i — p;

Q; 27
; K. (27)
ETSIIM criterion:
N}
¢ =g (28)
Ir, S \'f l
where
5, ~ h_
Khph

These terms are obtained nesting the stiffness matrix, loads matrix and
unknowns matrix:

Khidi + Kpnén = pn (29)



Error estimators are the stop criteria.In FEM analysis 'a posterior: error
estimators’ are used.In BEM techniques the mathematical support 1s still
lacking.In potential problems equilibrium conditions are used:

£q=0 (30)
for Dirichlet and Mixed problems.

5 Numerical implementation of non-linear

transformations 1n a 2D p-adaptive BEM
code

5.1 Standard influence coefficients computation

Let us study the standard techniques used in the evaluation of influence
coefficients in a 2D p-adaptive BEM potential code.

e Matrix A influence coethcients computation

-Collocation point is outside the element: standard Gauss-Legendre
quadratures are used.

Numerical problems may appear if the collocation point is close to the

element whether the collocation point belongs to the boundary or it is
an internal point.

-Collocation point is on the element: the integral has a singularity in

the form O(1/r) and 1t only exists in the Cauchy Principal Value sense.
Two standard Gauss-Legendre quadratures are needed. |

If the collocation point i1s on the edge of the element the influence
coethcient belongs to matrix A main diagonal and may indirectly be
computed with the sum of the rows of A.(Constant potential hypothe-

sis).
e Matrix B influence coeflicients computation

-Collocation point is outside the element: standard Gauss-Legendre
quadratures are used.

As coefficient A computations, numerical problems may appear if the
collocation point is close to the element.

-Collocation point is on the element: the integrand has a singularity in
the form O(Lnr), although the integral exists.



If the collocation point is on an edge of the element the integrand
can be divided into two functions: A regular one in which standard

Gauss-Legendre may be used and a function of Lnl/x {(x) type where
a Stroud-Secrest quadrature may be used.

If the collocation point i1s on the element, the integral can be divided
into two integrals each of them with the collocation point on a subele-
ment edge. The numerical quadrature 1s then obtained after two stan-
dard Gauss -Legendre and two Stroud-Secrest quadratures.

5.2 Influence coefficient computation with non-linear
transformations

As it has been shown, standard BEM codes compute influence coefficients,
with a great casuistic. Singular integrals are computed depending whether
the collocation point is on the element. Quasisingular integrals are com-
puted increasing the number of gaussian points in a standard Gauss-Legendre
quadrature when the collocation point is outside the element etc.

Non-linear transformations allow to treat singular and quasisingular in-
tegrals under the same algorithm.

Let us consider the bicubic transformation (12).Once the B parameter has

been established, n, singularity position must be established in each case.

In the bicubic transtormation, gaussian points are concentrated where the
contribution of the function to the integral value is more important and points
which tend to infinity are well regulated with first and second derivatives
transformation properties above mentioned.

These characteristics are valid for both singular and quasisingular inte-
grals ‘_
Accordingly with that approach the two type of singularities O(1/r) and

O(Lnr) may be treated in the same way and then influence coefficients A and
B can be computed with the same formulae.

e Collocation point on the element

If the collocation point is on the element the abscissa 7n, is the colloca-
tion point one.

If the collocation point is in an edge of the element there are two
possibilities:

— Influence coeflicient A is computed in an indirect way by the sum
of the rows of the matrix. Influence coefficient B may be com-

puted taking the abscissa 1 or -1 as n,. Bicubic transformation
degenerates as a single cubic one.



— The transformation would be defined over the element we are
treated and the next one. Influence coefficients A and B would
be the contribution of this element. Because of each element has
different coordinate mapping a logarithmic term must be added

15],(6]. This possibility would make the code more tedious, so it
has not been considered

Collocation point outside the element.

In these cases there are no singularities in the integrands terms, but
depending on collocation point distance to the element quasisingular
integrals can be obtained. Non-linear transformations may be used in

order to concentrate gaussian points where the function contribution
to the integral is more important as it was mentioned.

Maxima values of integrands are close to the collocation point projec-
tion over the element as it is shown in Figs.5-7. |

Integrands (17) and (18) are represented for different values of N ; shape
functions and X0/L and YO0/L values accordingly to Fig.i gcheme.

A general algorithm may be proposed depending on the “collocation
point projection.(Fig.2).
— Collocation point projection lies on the element. Abscissa projec-

tion will be the singularity abscissa n,.

— Collocation point projection lies outside the element No transfor-

the element could be used as singularity abscissa 7, in order to
take into account the close position of the collocation point.



Figure 3:

5.3 Parametric studies

In order to check the criteria above mentioned, parametric studies have been
developed 1n linear elements to compare analytical with numerical results.

In all these studies, relative errors is represented depending on relative
position of collocation point and a standard linear element as 1t is shown in
Fig.3.

All these integrals have been computed with polynomial N;.

Two numerical solutions have been compared. Influence coeflicients com-
puted with bicubic transformations accordingly the criteria established above,
each transformation with 4 Gaussian points and influence coefficients com-
puted with 8 Gaussian points.

In general, when the integrals are not singular or quasisingular, an eight-
point quadrature is better than two four-point quadratures. However non-
linear transformations give better results in singular and quasisingular cases.

As it is shown in Figs 8 and 9 with Gaussian quadratures very good
results are obtained in A and B/L influence coeefficients up to collocation
point adimensional distances y0/L equal to 0.50 or 0.25 . For lesser values
of y0/L, numerical instabilities have been observed and high relative errors
have been obtained.

With bicubic transformations higher relative errors are obtained when
the collocation point distance to the element is big, specially if its projection
1s near the element edge so a four-points quadrature 1s obtained against an

eight-points quadrature in the Gaussian case. However very well bounded
relative errors are obtained for small values of y0/L.



Figure 4:

5.4 Examples

Two examples are shown in order to analyse non linear transformations be-
haviour in 2D BEM Potential problems:

o Ezample 1:(Fig.4).Square domain. Null flux in sides 1 and 3 and poten-

tial 0. and 300. in the others two opposite sides. Analytical solution
18 linear with one variable dependent.

o Lzample 2:(Fig.4). Same problem as example 1 with a rectangular

domain in which one side is 100 times larger than the other one (slender
domain).

With examples 1 and 2 influence of singular and quasisingular integrals
in both boundary and internal points solution is expected

¢ Example 1:

Boundary solutions are the exact ones in both cases bicubic and gaus-
sian quadratures.

Both quadratures have four-Gaussian points because in this case bicu-
bic transformation always degenerates in a cubic one.

Because of boundary solutions are equal, internal points solutions could
be well compared.



In Fig.10 comparisons along x=0.25 and x=0.01 at different y coordi-
nates of potential function F i$shown.

Good behaviour of bicubic transformations is observed.

e Example 2:

Boundary solution has important relative errors with Gaussian quadra-
tures (up to 88//

Solution at internal points depends on boundary values so very bad

results are obtained with gaussian quadratures and better ones are
obtained with bicubic transformations as is shown 1n Fig.11.
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