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Abstract

Zinc (Zn) is one of the most essential micronutrients required for the growth and development of human beings.
More than one billion people, particularly children and pregnant women suffer from Zn deficiency related health
problems in Asia. Rice is the major staple food for Asians, but the presently grown popular high yielding rice
varieties are poor supplier of Zn in their polished form. Breeding rice varieties with high grain Zn has been
suggested to be a sustainable, targeted, food-based and cost effective approach in alleviating Zn deficiency. The
physiological, genetic and molecular mechanisms of Zn homeostasis have been well studied, but these
mechanisms need to be characterized from a biofortification perspective and should be well integrated with the
breeding processes. There is a significant variation for grain Zn in rice germplasm and efforts are being directed at
exploiting this variation through breeding to develop high Zn rice varieties. Several QTLs and gene specific markers
have been identified for grain Zn and there is a great potential to use them in Marker-Assisted Breeding. A
thorough characterization of genotype and environmental interactions is essential to identify key environmental
factors influencing grain Zn. Agronomic biofortification has shown inconsistent results, but a combination of
genetic and agronomic biofortification strategies may be more effective. Significant progress has been made in
developing high Zn rice lines for release in target countries. A holistic breeding approach involving high Zn trait
development, high Zn product development, product testing and release, including bioefficacy and bioavailability
studies is essential for successful Zn biofortification.
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Introduction
Micronutrient deficiencies or hidden hunger has become
a major nutritional problem affecting more than two bil-
lion people in the developing countries of Asia, Africa,
and Latin America. Also, the micronutrient malnutrition
associated health risks have become a major hindrance
in achieving the Millennium Development Goals (MDG)
such as reducing poverty and hunger, improved maternal
health status, and less child mortality (Cakmak 2008;
White and Broadley 2011; Wessells and Brown 2012)
and these are also important sustainable development
goals (SDGs) to be achieved by 2035 (https://
sustainabledevelopment.un.org).

Zinc (Zn) is one of the essential micronutrients, which
serves as a co-factor for more than 300 enzymes involved in
the metabolism of carbohydrates, lipids, proteins, and nucleic
acids, hence its importance in normal growth and develop-
ment of plants and animals (Keith et al. 2006; Roohani et al.
2013; Sadeghzadeh 2013). One-third of the human popula-
tion, particularly children and women suffer from Zn defi-
ciency related health problems such as growth retardation,
loss of appetite, impaired immune function, hair loss, diar-
rhea, eye and skin lesions, weight loss, delayed healing of
wounds, and mental lethargy (Hotz and Brown 2004; Insti-
tute of Medicine Food and Nutrition Board IMFNB 2001;
Prasad 2004; Wang and Busbey 2005). Some of these prob-
lems are more acute and clearly evident in developing coun-
tries where people depend on cereal-based foods for their
daily diet and they cannot afford to diversify their meal by
adding mineral-rich fruits, vegetables, and meat (Maret and
Sandstead 2006; Shahzad et al. 2014).
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An adequate supply of Zn is essential for maintaining
a healthy and productive life, and the average daily require-
ment for Zn is 7–13 mg per day for adults (Department of
Health (UK) 1991; Institute of Medicine Food and Nutri-
tion Board IMFNB 2001). A change of diet to Zn-rich food,
preventive supplementation of Zn, and Zn fortification of
processed foods are all being used to reduce human Zn-
deficiency related problems, but these approaches have
limited impact because of the recurring costs and also the
ineffective delivery systems (Berti et al. 2014). Biofortifica-
tion of staple food crops with Zn has been suggested to be
an alternative, complementary, and sustainable approach
to overcome Zn malnutrition, as staple foods are eaten in
large quantities on a daily basis by malnourished poor
(Thorne-Lyman et al. 2010; Bouis and Welch 2010).
Rice is the major staple food and source of energy for

more than half of the world’s population, but the presently
grown popular high yielding rice varieties are a poor source
of essential micronutrients such as Zn in their polished
(white) form (Kennedy et al. 2002; Sharma et al. 2013). The
biofortification of rice with enhanced levels of Zn in its
polished form may be a cost-effective and sustainable solu-
tion to assist in combating Zn malnutrition.
Over the last decade, several efforts have been made

to biofortify food crops with micronutrients, which led
to a significant understanding of the physiological, gen-
etic, and molecular basis of high Zn accumulation in
grains, and also the influence of agronomic management
and environmental factors on Zn uptake, translocation
and loading into grains (Impa and Johnson-Beebout
2012). Several genetic studies have also been carried out
to identify Quantitative Trait Loci (QTLs) for high Zn in
grains, and there is a great potential to use them in
marker assisted breeding. Candidate genes involved in
Fe and Zn uptake and accumulation have also been
identified in rice and successfully used in developing
high Zn transgenic lines. Breeding efforts could increase
the Zn level by 6–8 mg kg −1 (HarvestPlus 2014); while
transgenic rice lines developed show an improvement of
15–30 mg kg −1 in Zn levels (Johnson et al. 2011;
Masuda et al. 2012; Slamet-Loedin et al. 2015). However,
deregulation of Genetically Modified (GM) products for
cultivation is still a major challenge. In our review, we
discuss the recent advances in the physiological, genetic,
and molecular basis of high grain Zn, approaches for
biofortification of Zn, advances in breeding for high Zn
rice, status of high Zn rice product development and
delivery in the target countries.

Review
Physiological basis of grain Zn
In order to accumulate Zn in grains, rice plants have to
uptake, mobilize, and transport Zn from soil to grain,
which involves many complex physiological processes at

different levels within the rice plant. Provided there is an
adequate supply of Zn in the soil, biofortified rice geno-
types to be developed should have the genetic potential
and physiological efficiency to utilize the available Zn
from the soil. A better understanding of the physiological
basis of Zn uptake, its translocation, the maintenance of
Zn homeostasis, Zn partitioning within and between dif-
ferent plant parts and within rice grain, internal allocation,
re-allocation, re-mobilization, and efficient loading into
grain is essential for genetic biofortification of rice, but a
complete knowledge of these processes in rice is still lack-
ing (Stomph et al. 2009; Olsen and Palmgren 2014).
In general there are three major rate limiting steps or

barriers for efficient Zn accumulation in rice grain: 1)
soil-to-root barriers; 2) root-to-shoot barriers; and 3)
barriers in loading Zn into grains.
Root uptake is the first step towards the accumulation

of Zn in rice grains. Plant factors that affect root Zn
uptake include root architecture, root hairs, crown root
development, root surface area, root anatomical struc-
tures and modification of rhizosphere chemistry through
exudation of protons, which can change soil pH, thereby
improve the solubility of Zn in the soil and facilitate its
diffusion to the root surface (Rose et al. 2013). Soil fac-
tors that affect the plant-availability of Zn for all crops
include soil pH, texture, organic matter content, min-
eralogy, and microbial populations (Hacisalihoglu and
Kochian 2003; White and Broadley 2011). The availabil-
ity of soil Zn for rice from flooded (anaerobic) soil is af-
fected by an additional set of factors including soil redox
potential, total sulfur content, and soluble bicarbonate
(Impa and Johnson-Beebout 2012). Thus, a combination
of agronomic management practices and genetic ap-
proaches are essential to improve the soil health condi-
tions to enhance the root uptake of Zn.
In rice, direct root uptake, remobilizations from vegeta-

tive tissues or combination of both of these two ap-
proaches are the main source of Zn in grains (Impa et al.
2013a). There is a continuous xylem flow from root to
grain mediated by transpiration system, which can directly
transport Zn to grains (Krishnan and Dayanandan 2003);
however Zn movement is restricted by the presence of
barriers for root-to-shoot transfer and for internal alloca-
tion and re allocation of Zn within and between vegetative
and reproductive tissues, which leads to reduced accumu-
lation of Zn in grains (Jiang et al. 2008). Suberin in the cell
wall, casparian strips, Zn sequestration in cytoplasm and
vacuoles, and anatomical variations in root-shoot junction
are some of the root-to-shoot barriers for Zn transport
(Yamaguchi et al. 2012; Yamaji et al. 2013). The Zn taken
up by roots is translocated to different plant parts by
xylem and phloem, and there is a huge variation in Zn al-
location and reallocation between different organs, tissues
and cells of root and shoot (Jiang et al. 2008). However,
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genotypic differences exist in loading of Zn in xylem and
phloem and its unloading into different tissues (Jiang et al.
2008), which clearly indicates that by breeding, there is a
possibility to improve the efficiency of root uptake, root-
to-shoot translocation and internal allocation of Zn.
Efficient loading of Zn into grains, especially to the

endosperm is most important for Zn biofortification of
rice (Waters and Sankaran 2011). Eventhough there are
huge amounts of Zn in vegetative tissues of rice plants,
remobilization of Zn from vegetative tissues to repro-
ductive tissues and finally to grains is limited due to se-
lective phloem transport of Zn from old tissues to new
tissues and to the grains (Wu et al. 2010; Impa et al.
2013a). Flag leaf, which plays an important role in
photosynthesis and grain yield, was found to have a little
contribution to grain Zn (Sperotto et al. 2013), while
Wu et al. (2010) reported significant translocation of Zn
from flag leaf to the grain. A continuous supply of Zn to
different tissues throughout the life cycle by transloca-
tion and phloem remobilization to grains is an import-
ant feature of Zn efficient rice genotypes (Yin et al.
2016). Through transgenic approaches and over expres-
sion of Zn homeostasis genes such as OsZIP1, OsZIP4,
OsZIP8, OsZIP8a, OsYSL8, OsYSL9 OsFRO2A, OsNAS1,
OsNAS2, OsNAS3, OsArd2, OsIRT1, OsNRAMP1 and
OsHMA2 several studies have highlighted the import-
ance of efficient Zn uptake and unhindered transporta-
tion of Zn among different plant tissues especially
during grain filling stages (Ishimaru et al. 2005, 2007,
2011; Chandel et al. 2010; Yamaji et al. 2013; Sasaki et
al. 2014). It is also interesting to note that at lower tissue
Zn concentrations, most of the Zn was found in leaf and
reproductive tissues, while at higher Zn levels, stem and
roots showed increased Zn. Also, the increased root up-
take of Zn and root to shoot transfer could not propor-
tionately increase the grain Zn concentrations indicating
that internal translocation/retranslocation of Zn from
vegetative tissues to grains is the major bottleneck for
improving grain Zn concentrations (Stomph et al. 2014;
Yin et al. 2016).
Though, a number of physiological studies have

been published about Zn-efficient rice, little is known
on how Zn is redistributed and remobilized from
vegetative tissues to the grains (Ren et al. 2006). A
better understanding of the mechanisms involved in
loading of Zn into the endosperm of rice and identifi-
cation of rice genotypes with better Zn remobilization
capacity without having any adverse effect on yield
will be highly useful for Zn biofortification of rice
(Jiang et al. 2007; Wu et al. 2010). Rice has also been
found to show different levels and patterns of Zn ac-
cumulation under high or low Zn conditions and in
different rice ecosystems (Wissuwa et al. 2006;
Mabesa et al. 2013; Impa et al. 2013b).

Genetic basis of grain Zn
Increasing the bioavailable Zn in the rice endosperm is
the major goal of rice biofortification. There is a vari-
ation in the pattern of Zn distribution within rice grain
with the aleurone layer having 25–30 % of the total Zn,
and this is lost during processing, while the endosperm
has 60–75 % of Zn, which is retained even after polish-
ing (Hansen et al. 2009). The genetic basis of high grain
Zn in brown/polished rice is very complex and a better
understanding of the genetic basis of high grain Zn in
rice is essential for the systematic utilization of rice
germplasm in Zn biofortification programs. Grain Zn
has a moderate to high broad-sense heritability and can
be improved by breeding (Norton et al. 2010; Zhang et
al. 2014), while reports of narrow sense heritability
clearly indicated significant additive and dominant genetic
effects. Also, grain Zn has been found to be significantly
influenced by the environmental factors (Gregorio 2002;
Chandel et al. 2010; Anuradha et al. 2012a). Genetic
characterization of grain Zn in several Recombinant In-
bred Lines (RILs) and also in rice germplasm collections
has shown significant Phenotypic Co-efficient of Variation
(PCV), Genotypic Co-efficient of Variation (GCV), broad-
sense Heritability and Genetic Advance (GA) (Table 1). In
12 out of the 14 studies, biparental mapping populations
were used and in two studies germplasm collections were
used for genetic characterization of Zn concentrations.
One population was derived from wild progenitor species
O. rufipogon. Among the different studies PCV and GCV
for grain Zn concentration varied from 9.3 % to 40 % and
from 9.2 % to 36 % respectively, while heritability varied
from 41 % to 99.4 % and GA varied from 18.6 % to 66.6 %.
Highest PCV and GCV values were reported in Azucena ×
Moromutant population, while lowest in TRY (R) 2 ×
Mapillaisamba population. Heritability and genetic ad-
vance were highest in BPT5204 ×HPR14 and Azucena x
Moromutant populations respectively. All these results
show that there is a sufficient variation for grain Zn con-
centration with moderate to high heritability and genetic
advance. Thus it is possible to improve the Zn concentra-
tion of popular rice varieties by exploiting high Zn gem-
plasm in the breeding programs.
The combining ability analysis by diallel crosses in-

volving seven specific rice varieties with different levels
of Zn showed that additive genetic effects were more
important for Zn, while the co-efficient of variation
(CV) for Zn varied significantly among the entries over
the years and locations, indicating significant genotype
and environment interactions (G x E) (Zhang et al. 1996;
Sharifi 2013). In another study involving black pericarp
indica rice, genetic and cytoplasmic effects influenced
the final grain Zn content, but the genetic effect was
stronger and it constituted the major portion of the seed
genetic effects. The heritability of the seed genetic effect
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was highly significant and narrow-sense heritability was
very high, suggesting single plant selection as an effect-
ive approach for improving Zn content. There is also a
positive correlation between grain Zn and the grain
characteristics such as grain weight, grain length and
width, so during the selection process, some consider-
ation should be given to grain traits (Zhang et al. 2004).
However, in a RIL population platykurtic and skewed
distributions were observed for grain Zn, indicating in-
volvement of several minor genes with duplicate gene
interactions indicating little improvement by direct se-
lection (Banu and Jagadeesh 2014).
Significant positive heterosis for grain Zn has also

been reported. In a line × tester analysis involving six
lines and eight testers and a total of 48 hybrids, it was
interesting to note that 14 out of 48 hybrids showed sig-
nificant positive heterosis for grain Zn over the standard
micronutrient check variety Chittimutyalu. Two crosses
(PR116 ×Chittimutyalu, MandyaVijay × Jalamagna) showed
more than 50 % heterosis for grain Zn (Babu et al. 2012).
Transgressive segregants were also observed for grain Zn
(Stangoulis et al. 2007).
High grain Zn trait was found to be tightly linked with

aroma, while there are no reports of pleiotropic effects
of high grain Zn with other traits (Welch and Graham
2004; Gregorio 2002). There are several reports indicating
epistatic interactions for grain Zn (Lu et al. 2008; Norton
et al. 2010). In some cases, genetic factors increasing Zn
also co-segregate with genetic factors that increase Fe and
other mineral elements (Gregorio 2002; Jiang et al. 2007).
Grain quality traits and grain Zn was also found to be cor-
related (Anandan et al. 2011; Zhang et al. 2004). All the
associations of grain Zn with different mineral elements

and grain quality traits must be taken into consideration
while breeding for high Zn rice.
One of the most important aspects of high Zn rice

development is the relationship between grain Zn
concentration and grain yield. Several reports indicate a
significant negative association between grain Zn con-
centration and yield in rice (Gao et al. 2006; Jiang et al.
2008; Norton et al. 2010; Wissuwa et al. 2007), but a
positive relationship between grain yield and grain Zn
concentration was observed under Zn-deficient soil
(Gregorio 2002) and also in different panel of aromatic
rice and land races under Zn sufficient conditions non
significant correlations were observed between yield and
grain Zn (Gangashetty et al. 2013; Sathisha 2013). This
is also supported by the non significant correlations be-
tween yield and Zn in other cereal crops such as pearl
millet (Rai et al. 2012). Thus, it can be concluded that it
is possible develop high yielding varieties with high
levels of Zn. Identification of high Zn donor lines with
high yield, high Zn transgenic lines with high yield
(Johnson et al. 2011; Trijatmiko et al. 2016), and recently
released high Zn rice lines with high yield potential in
Bangladesh provide positive evidence for the possibility
of combining high Zn and high yield potential in rice
(HarvestPlus 2014).

Molecular basis of grain Zn
Identification of genes/major effect QTLs and under-
standing the molecular basis of grain Zn in rice will
facilitate breeding for high Zn rice through Marker-
Assisted Selection (MAS). Several genes/gene families
involved in Zn homeostasis have been well characterized
in rice (Additional file 1: Table S1). Root exudates or

Table 1 Genetic parameters for grain Zinc concentration in rice

S. No Population PCV(%) GCV(%) Heritability (%) Genetic advance (% mean) Reference

1 ADT 37 × IR68144-3B-2-2-3 19.2 18.6 94.2 37.2 Sala et al. 2013

2 ADT 43 × IR68144-3B-2-2-3 15.6 15.2 94..1 30.4 Sala et al. 2013

3 TRY (R) 2 × Mapillaisamba 9.3 9.2 96.8 18.6 Sala et al. 2013

4 TRY (R) 2 × IC 255787 17.2 17.0 98.0 34.8 Sala et al. 2013

5 Rice land races 21.9 18.4 70.6 31.9 Thongbam et al. 2012

6 Rice hybrids 11.7 10.8 85.8 20.7 Babu et al. 2012

7 BPT5204 × HPR14 26.1 26.0 99.4 53.6 Samak et al. 2011

8 Rice genotypes 25.5 21.1 94.0 30.1 Bekele et al. 2013

9 IRRI38 × Jeerigesanna 18.4 17.0 85.6 32.5 Gande et al. 2013

10 F2 population - - 96.9 - Zhang et al. 2004

11 BIL mapping population 10.8 - 76.4 - Susanto 2008

12 Azucena ×Moromutant 40.1 36 80.6 66.6 Bekele et al. 2013

13 Bala × Azucena - - >60 - Norton et al. 2010

14 Teqing × O rufipogon - - 41 - Garcia-Oliveira et al. 2009
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phytosiderophores helps in efficient release and uptake
of metals from the soil (Bashir et al. 2006; Widodo et al.
2010; Nozoye et al. 2011). Some of the gene families
such as OsNAS, OsTOM1, OsDMAS, OsSAMS and
OsNAAT are involved in biosynthesis, transport and se-
cretion of phytosiderophores in the root zone and
thereby increases the metal uptake by roots (Inoue et al.
2003, 2008; Bashir et al. 2006; Widodo et al. 2010;
Nozoye et al. 2011; Johnson et al. 2011). The ZIP family
genes are important metal transporters found to be in-
volved in transport of Zn within and between different
parts of rice plant, and their expression varied with the
different Zn conditions (Ramesh et al. 2003; Ishimaru et
al. 2007, 2011). The OsZIP1 gene was up regulated
under Zn deficient conditions, while OsZIP3 was up reg-
ulated both under controlled and Zn deficient conditions
in rice (Ramesh et al. 2003). Over expression of OsIRT
and MxIRT gene in rice resulted in increased Fe and Zn
concentration in rice grains (Lee and An 2009; Tan et al.
2015). Similarly, OsOZT1, OsVIT1 and OsVIT2 are im-
portant vacuole metal transporters involved in Zn trans-
port across the tonoplast and also help in Zn
sequestration within the cell (Lan et al. 2013; Zhang et
al. 2012). While, OsYSL family proteins play an import-
ant role in phloem transport and long distance transport
of metals (Inoue et al. 2009; Aoyama et al. 2009; Lee et
al. 2009; Ishimaru et al. 2010; Sasaki et al. 2011; Kakei et
al. 2012). The OsYSL2 gene has increased the Fe content
in rice by 4 folds (Ishimaru et al. 2010; Masuda et al.
2013). Over-expression of OsHMA3 enhanced the up-
take of Zn by up regulating the ZIP family genes in the
roots (Sasaki et al. 2014). Whereas, OsHMA2 gene was
involved in loading of Zn to the developing tissues in
rice (Yamaji et al. 2013). Several studies have shown that
the over expression of OsNAS genes improved the grain
Fe and Zn concentrations by several folds, OsNAS2 and
OsNAS3 over expression showed increased accumulation
of Fe and Zn (Lee et al. 2011; Johnson et al. 2011).
OsIRO2 increases Fe content in rice plants grown in cal-
careous soils (Ogo et al. 2011). The ferritin gene OsFer2
over expressed in a basmati rice (Pusasugandh II) accu-
mulated higher levels of Fe and Zn (Paul et al. 2012).
Several transcription factors such as OsNAC, NAM-B1,
OsIDEF1, OsIDEF2 and OsIRO2 also play an important
role in up regulating the genes involved in metal homeo-
stasis (Ogo et al. 2006, 2007, 2008; Waters et al. 2009;
Banerjee et al. 2010; Ogo et al. 2011; Gande et al. 2014).
In an expression analysis study with 25 metal-related
genes revealed that nine genes such as OsYSL6, OsYSL8,
OsYSL14, OsNRAMP1, OsNRAMP7, OsNRAMP8,
OsNAS1, OsFRO1 and OsNAC5 were specifically over
expressed in the flag leaves and showed significant cor-
relations with Fe and/or Zn concentrations in the seeds
(Sperotto et al. 2010). Similarly, transcriptome analysis

of 25 metal homeostasis genes in different tissues of 12
rice genotypes showed expression of highest number of
genes (24) in flag leaf, while genes such as OsZIP4,
OsZIP11, OsNRAMP5, OsNRAMP7, OsYSL2, OsYSL4,
OsYSL6, OsYSL9, OsNAAT1, OsNAC, OsFER1, OsVIT1,
OsFRO2, OsIRT1, OsFER2, OsZIP7, OsZIP8, OsZIP9,
OsNRAMP4, OsNRAMP6 and OsYSL12 were expressed
in roots. Expression of OsNAC, OsYSL2, OsYSL9,
OsZIP4, OsVIT1, OsNAAT1 and OsNRAMP7 genes in
the flag leaf was highly correlated with the high grain Zn
content (Banerjee and Chandel 2011). Zn deficiency tol-
erant line RIL46 was found to produce higher level of
deoxy mugineic acids and low molecular weight organic
acids compared to non- tolerant line IR74 under Zn de-
ficient conditions (Widodo et al. 2010). In a another
study with RILs of Madhkar x Swarna, OsNAS and
OsHMA were over expressed in the leaves (Priya et al.
2015), in the same set of materials under Fe deficient
conditions NAS2, IRT2, DMAS1 and YSL15 were
expressed in shoot, while NAS2, IRT1, IRT2, YSL2 and
ZIP8 in the roots (Agarwal et al. 2014). Similarly,
Chadha-Mohanty et al. (2015) reported that OsZIP5 and
OsFRO1 were up regulated in roots and flag leaf of high
Zn rice lines. Thus, it is very clear that several genes and
gene networks are involved in metal uptake, transloca-
tion, sequestration and loading, and their well coordi-
nated action play a key role in metal homeostasis in the
rice plants.
Several QTLs for grain Zn have been mapped using

various rice germplasm resources such as rice land races,
indica, japonica, aus accessions, and wild rice species,
viz., O. rufipogon and O. nivara (Lu et al. 2008; Garcia-
Oliveira et al. 2009; Norton et al. 2010; Swamy et al.
2011). Different mapping populations such as Recom-
binant Inbred Lines (RILs), Double Haploids (DH),
Backcross Inbred Lines (BILs), and Introgression Lines
(ILs) have been used in grain Zn QTL mapping studies
(Stangoulis et al. 2007; Lu et al. 2008; Garcia-Oliveira et
al. 2009; Norton et al. 2010; Zhang et al. 2011; Anur-
adha et al. 2012b). Details of the QTLs identified,
mapping populations used, size of the population,
marker intervals, phenotypic variance (PV) and addi-
tive effects are presented in Table 2. In all there were
26 QTLs reported from eight different studies. It is
clearly evident that genes/QTLs for high grain Zn are
distributed throughout the genome and also found to
co-locate with QTLs for other mineral elements in the
grain. The number of QTLs on each chromosome varied
from 1 to 6. One QTL each on chromosomes 1, 3, 8, 9, 10
and 11, two QTLs each on chromosomes 2, 4 and 6, three
QTLs on chromosome 5, five and six QTLs on chromo-
some 12 and 7 respectively. QTLs on chromosome 7 and
12 were found to be more consistent across the genetic
backgrounds and environments. Sixteen QTLs had more
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than 10 % PV and it varied from 5.0 % (qZn5-1) to 35.0 %
(qZn7.2 and qZn12) (Anuradha et al. 2012b). The additive
effect of the QTLs varied from 0.4 ppm (qZn4, qZn6) to
17.1 ppm (qZn12.2). QTLs such as qZn1-1, qZn3.1 qZn7.1
qZn7.2, qZn7.3, qZn8-1, qZn12.1, qZn12.2, qSZn2 and
qSZn12 had PV of more than 10 % with an additive effect
of more than 5 ppm. The consistently identified grain Zn
QTLs on chromosomes 7, 11, 12 are good targets for
MAS. Thus, it is possible to increase the grain Zn concen-
tration by 10 to 15 ppm in the existing popular rice var-
ieties by a well designed Maker Assisted QTL pyramiding
program.
Several gene specific markers such as OsZIP1, OsZIP3,

OsZIP4, OsZIP5, OsZIP8, OsZIP8a, OsYSL8, OsYSL9,
OsFRO2A, OsNAS1, OsNAS2, OsNAS3, OsArd2, OsIRT1,
OsIRT2 and OsNRAMP1, showed a very good associ-
ation with grain Zn (Giraldo et al. 2008; Chandel et al.
2011; Anuradha et al. 2012b; Gande et al. 2014). Simi-
larly, based on the expression analysis of 21 metal

homeostasis genes in 12 diverse rice genotypes, 179
novel SNPs and 39 SSR markers were identified for
grain Zn (Banerjee et al. 2010). Several SSR markers
and grain Zn trait associations have also been identi-
fied in different populations and germplasm panel of
rice (Hanamareddy et al. 2007; Susanto 2008; Zhang
et al. 2013; Brara et al. 2015). All these tightly linked
SNP and SSR markers can be used in MAS. However,
there is no literature indicating the successful use of
these markers in MAS for improving grain Zn in rice.
So, before using these QTLs/genes in MAS further
validation on a large panel of high Zn donor lines
and Zn specific biparental mapping populations is es-
sential. A QTL pyramiding approach with different
combinations of these consistent major effect QTLs
can be tried in MAS for high grain Zn. As some of
these QTLs have large intervals, fine mapping, candi-
date gene identification, and development of gene
specific markers may facilitate their use in MAS.

Table 2 Details of QTLs identified for grain Zn in different studies

SN Parentage Pupulation Population Size QTL Flanking marker R2 (%) Additive
effect

positive allele References

1 Zhengshan 97 ×Minghui 63 RIL 241 qZn-5 R3166-RG360 12.3 −2.3 Zhengshan 97 Lu et al. 2008

qZn-7 RM234-R1789 5.3 −1.5 Zhengshan 97

qZn-11 C794-RG118 18.6 2.9 Minghui 63

2 Teqing × O rufipogon BIL 85 qZn5-1 RM1089 5.0 −2.2 TeQing Garcia-Oliveira et al.
2009

qZn8-1 RM152 19.0 5.0 Oryza rufipogon

qZn12-1 RM3331 9.0 6.9 Oryza rufipogon

3 IR64 × Azucena DH 129 qZn1-1 RM34–RM237 15.0 5.4 Azucena Stangoulis et al. 2007

qZn12-1 RM235–RM17 12.8 1.6 Azucena

ZYQ8 × JX17 DH 127 qZn4 CT206-G177 10.8 0.4 JX17 Zhang et al. 2011

qZn6 RZ516-G30 12.3 0.4 JX17

4 Madhukar × Swarna RIL 168 qZn3.1 RM7–RM517 31.0 11.01 Madhukar Anuradha et al. 2012b

qZn7.1 RM234–RM248 35.0 13.3 Madhukar

qZn7.2 RM248–RM8007 35.0 13.3 Madhukar

qZn7.3 RM501–OsZip2 29.0 −11.4 Swarna

qZn12.1 RM17–RM260 35.0 −16.2 Swarna

qZn12.2 RM260–RM7102 34.0 −17.1 Swarna

5 Bala × Azucena 158 qZn7 R1440 12.0 - Azucena Norton et al. 2010

6 Sasanishiki × Habataki BIL 85 qSZn2 R418–C1221 16.7 −16.0 Habataki Ishikawa et al. 2010

qSZn12 R1709–C1069 21.3 15.9 Sasanishiki

7 TeQing × Lemont IL 123 qZn2 RM106 - −0.8 Lemont Zhang et al. 2014

qZn4 RM317 - −1.4 Lemont

qZn5 RM421 8.1 −0.5 Lemont

qZn6 RM435 - −1.5 Lemont

qZn7 RM248 - −0.9 Lemont

qZn9 RM3909 - 1.1 TeQing

8 Lemont × TeQing RIL 280 qZn10 RG241a 4.4 −0.5 Lemont Zhang et al. 2014
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It is also interesting to note that there is a highly sig-
nificant positive correlation between grain Fe and Zn
concentration and it is evident by the co-location of
QTLs for Fe and Zn in brown rice, and there is no such
strong correlation between these two elements in
polished rice (Sala et al. 2013). Grain Zn QTLs also
found to co-locate with QTLs for other mineral ele-
ments such as Cu, Cr, Mg, Si and Se (Hanamareddy et
al. 2007; Du et al. 2013). Introgression of such QTLs will
help to enhance the levels of multiple beneficial mineral
elements in rice grains.
The expression of QTLs for grain Zn may be consist-

ent or may vary with the genetic background and envir-
onment. Garcia-Oliveira et al. (2009) identified two
grain Zn QTLs such as qZn5-1 and qZn8-1 consistently
over two years. Bekele et al. (2013) identified seven
marker and Zn trait associations; five of these were con-
sistently identified over two seasons, while two of them
were evident only in one season. Du et al. (2013) evalu-
ated a DH population in two different locations and
identified three different QTLs in each location, indicat-
ing the environment specificity of QTLs. Based on se-
lective genotyping, two loci on chromosome 3 and one
locus on chromosome 4 were consistently identified for
grain Zn in two populations derived from Chittimutyalu
and Ranbir Basmati (Babu 2013). In a Genome-Wide
Association (GWAS) mapping for grain Zn and other el-
ements in a rice diversity panel of 421 accessions, repre-
senting five sub populations of rice, including indica,
tropical japonica, temperate japonica, aus, and aromatic,
evaluated over five locations identified significant SNPs
at 22.26 Mb on chromosome 3, consistently associated
with grain Zn over four locations, while another set of
SNPs identified on chromosome 9 were associated with
grain Zn only in the indica and aus sub-populations
(Norton et al. 2014). All these results clearly indicates
significant G x E for grain Zn accumulation. Thus,
choosing QTLs or their combinations based on the gen-
etic background of recipient varieties and intended tar-
get environment is important before embarking on MAS
(Swamy et al. 2012, 2013a, 2014).
In addition to main effect QTLs, several epistatic

QTLs were also identified for grain Zn. Lu et al. (2008)
reported six epistatic loci with additive and additive in-
teractions for grain Zn, which accounted for 50.2 % of
the total heritability of the trait. Norton et al. (2010) also
reported `epistasis for grain Zn, which accounted for
20 % of the PV between chromosome 7 (G338-C39) and
9 (G1085-AB0905) with a LOD of 4.5, indicating strong
genetic control involving multiple QTLs/genes. Apart
from identifying QTLs for grain Zn, several QTLs have
also been identified for Zn in other plant parts. Norton
et al. (2010) identified a QTL with a PV of 12 % for Zn
in leaf and four QTL were identified for grain Zn with a

PV of 11 to 15 %. There was a little correlation between
leaf Zn and grain Zn concentration, also the QTLs for
Zn concentration in leaf and grain Zn are found on dif-
ferent chromosomal locations indicating different mech-
anisms responsible for Zn accumulation in vegetative
and reproductive tissues (Norton et al. 2010; Nagarathna
et al. 2010). In an IR64 × Jalamagna population, six
QTLs were identified for Zn concentration in root and
shoot; all were minor alleles and also showed epistatic
effects. Some of them co-located with QTLs identified
for grain Zn, Zn toxicity tolerance, and Zn deficiency
tolerance (Dong et al. 2006; Wissuwa et al. 2006). Simi-
larly, in a Sasanishiki × Habataki BIL population, two
QTLs qSZn2 and qSZn12 with a PV of 16 % and 21 %
were identified for straw Zn concentration (Ishikawa et
al. 2010). All these recent advances in understanding of
molecular basis of grain Fe and Zn should be used in in-
creasing the efficiency of Zn biofortifcation of rice.

Agronomic interventions to enhance grain Zn
An adequate amount of plant available Zn in the soil is
essential for Zn biofortified rice genotypes to accumulate
Zn in grains. Most of the rice growing area is Zn deficit
and also Zn availability in irrigated rice ecosystems is
very low due to formation of less soluble Zn complexes
under anaerobic conditions. An estimation of soil Zn
status and application of Zn fertilizer to Zn deficit soil is
important for Zn biofortification. Agronomic Zn biofor-
tification through Zn fertilizer application is a comple-
mentary approach to increase grain Zn concentration in
new elite rice genotypes to ensure adequate root Zn up-
take and transport to the grains during reproductive
growth stage (Shivay et al. 2008; Phattarakul et al. 2012).
The kind of Zn fertilizer applied, timing, and method of
application is crucial for enhancing grain Zn. Applica-
tion of Zn fertilizer to Zn sufficient soil has shown in-
consistent results and most of the Zn was found to
accumulate in vegetative tissues rather in grains, how-
ever in Zn deficit soil, Zn fertilizers improved grain Zn
concentrations of rice (Wissuwa et al. 2008; Johnson-
Beebout et al. 2009). Further, the response to Zn
fertilizer has been shown to differ across rice genotypes
and soil conditions (White and Broadley 2011; Jiang et
al. 2008). Foliar application of Zn fertilizers has shown
better results than soil application for increasing grain
Zn concentration, but the magnitude of this increase is
not consistent across genotypes (Wei et al. 2012; Mabesa
et al. 2013). The effect of Nitrogen fertilizer application
on rice grain Zn concentration has also shown inconsist-
ent results, but in general, increasing Nitrogen applica-
tion negatively influences grain Zn (Moraghan et al.
1999; Zhang et al. 2008; Chandel et al. 2010; Gao et al.
2010; Kutman et al. 2010; Shi et al. 2010). The applica-
tion of gypsum is useful to remove bicarbonate from the
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soil solution, and can be highly beneficial for lowering
the soil pH thereby increasing the availability of micro-
nutrients including Zn in alkali and sodic soils (Rengel
et al. 1999).
Bio-fertilizers such as Mycorrhiza, Azolla, Rhizobacter,

Azospirillum, Zn-solubilizing bacteria, and organic ma-
nures enhance the levels of bioavailable Zn under
flooded conditions and also shown to increase the Zn in
rice grains (Tariq et al. 2007; Singh and Prasad 2014;
Vaid et al. 2014; Wang et al. 2014; Subedi and Shrestha
2015), but their application on large scale biofortification
programs needs to be carefully studied.
Water and crop residue management also significantly

influence the Zn availability in continuous flooded soils.
Zn forms less soluble Zn complexes under anaerobic
conditions while in aerobic soils, free Zn is available to
the plant (Johnson-Beebout et al. 2009; Impa and
Johnson-Beebout 2012). Alternate wetting and drying
(AWD) technology, which has been advocated for rice
cultivation as a water saving technology also found to in-
crease the Zn in grains. A combination of suitable rice
genotype, AWD water management and ZnSO4

fertilization increased Zn accumulation and bioavailabil-
ity in rice grains (Wang et al. 2014). A high Zn rice
genotype Maligaya Special (MS13) showed consistent ac-
cumulation of Zn both under flooded and aerobic condi-
tions (Nemeño et al. 2010). Therefore, development of
high Zn rice genotypes with better accumulation of Zn
across the water regimes and agronomic management
without any yield penalty is highly desirable for efficient
rice Zn biofortification. Crop rotation and intercropping
of rice with other cereals and legumes could improve
the Zn availability (Rengel et al. 1999). Rice-wheat crop
rotation, application of farmyard manure and green ma-
nure can maintain the available fraction of soil micronu-
trients such as Fe, Zn, Cu, and Mn (Karlen et al. 1994;
Kumar and Yadav 1995).
Agronomic management of the rice crop during

breeding for high Zn rice is one of the most important
considerations since Zn status in the soil and water
management affects the availability of Zn and finally in-
fluences the grain Zn. All the early and advanced gener-
ation breeding materials should be evaluated in locations
where soil Zn is homogeneous and not limiting, and
water management is carefully controlled throughout
the cropping cycle. This may be achieved by selecting
plots which are naturally homogenous or applying a high
rate of Zn fertilizer to Zn deficit plot to homogenize the
area. The latter may be done by planting a systematic
check cultivar in a given area and developing maps using
geo-statistics that show variability for Zn grain concen-
tration. It is important to maintain an adequate amount
of available Zn in the soil during the crop growth period
and testing the performance of high Zn rice lines over a

wide range of environments with different levels of Zn is
essential before being released as varieties as most parts
of the rice growing areas suffer Zn deficiency. A combin-
ation of best agronomic management practices and
selection of appropriate rice genotypes is essential for
successful rice biofortification.

Breeding interventions to enhance grain Zn
The genetic biofortification strategy uses plant breeding
techniques to produce staple food crops with higher
micronutrient levels (HarvestPlus 2014). It offers a sus-
tainable solution to malnutrition problems by exploring
natural genetic variation to develop mineral-dense crop
varieties (Bouis 2003; Pfeiffer and McClafferty 2008).
There is a wide variation for grain Zn in the rice germ-
plasm and it is possible to breed for high Zn rice by
exploiting high-Zn donors.

Zn target to be achieved in rice by breeding
The rice varieties commonly grown by farmers have
relatively low levels of Zn (<12–14 mg kg −1) in polished
rice and cannot meet the daily dietary requirement of
Zn. HarvestPlus, which has a specific focus on crop bio-
fortification, has determined a target for the Zn level to
be achieved in rice. Based on the nutrient needs, daily
food intake, retention and bioavailability analyses of
people suffering from Zn deficiency, the Zn breeding
target in rice was raised from the previous target level of
24 mg kg −1 of Zn to a new target of 28 mg kg −1 (Har-
vestPlus 2014). The new value is based on the daily re-
quirement of Zn for women. Given the 422 g of daily
average rice consumption, with a lower Zn absorption of
20 %, and with a retention of 90 %, a concentration of
28 mg kg −1 of Zn in the parboiled and milled rice
would be enough to attain the Estimated Average Zn
Requirement (EAR) of 25 %, which is sufficient to over-
come most of the severe Zn deficiency problems (Harvest-
Plus 2014).

High throughput phenotyping for grain Zn
Precision phenotyping of grain Zn concentration is vital
for breeding high Zn rice variety. Since breeding pro-
grams handle huge amount of materials, fast, accurate,
and inexpensive methods of phenotyping grain Zn are
essential for making timely and effective selection deci-
sions when advancing the material. Seed sampling,
hulling, and milling procedures without any metal con-
taminations have already been standardized for rice
(Stangoulis and Sison 2008). Traditionally, Atomic Ab-
sorption Spectrometry (AAS) and Inductively Coupled
Plasma-Optical Emission Spectrometry (ICP-OES) are
being used in elemental analysis (Zarcinas et al. 1987),
while these methods are highly accurate, they require
expensive equipment, highly trained analysts, contamination
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free reagents, and extensive sample preparation (Velu et al.
2013). Alternatively, colorimetric approaches have been de-
veloped for Zn and Fe analysis in different cereal crops;
however, these approaches are only semi-quantitative and
laborious when applied in large scale (Prom-u-thai et al.
2003; Ozturk et al. 2006; Choi et al. 2007; Velu et al. 2008).
X-Ray Fluorescence (XRF) Spectrometry is very useful in
non-destructive determination of relative Zn and Fe con-
centration in rice breeding lines to discard low Zn lines,
and the resulting high Zn lines selected on the basis of XRF
can be validated with ICP (Paltridge et al. 2012). Most of
the biofortification programs are using XRF for metal
analysis.
The Synchrotron based X-ray micro fluorescence im-

aging and isotope discrimination techniques are helpful
in understanding the pathways of metal uptake, trans-
location and retranslocation, portioning and distribu-
tions among different tissues and organs. Takahashi et
al. (2009) and Lu et al. (2013) characterized the dynamic
changes in the pattern and distribution of different
metals in germinating rice seedlings using X-ray imaging
and concluded that metals have different patterns and
preferences in their movement and accumulations. Ar-
nold et al. (2015) used Isotope discrimination to study
the Fe and Zn uptake and translocation in rice grown
under different environmental conditions and results
showed that different isotope fractionation for different
metals in different organs/tissues and in different environ-
ments indicating different mechanisms involved in Fe and
Zn homeostasis. This novel Isotope fractionation tech-
nique is highly useful in better understating the physio-
logical mechanisms, and the genotype and
environment interactions involved in the Zn accumu-
lation in grains.

Identification of high Zn rice germplasm
Selection of donors with high grain Zn in polished rice,
acceptable yield potential and other desirable traits with
minimal linkage drag and without any crossing barriers
is an essential foundation for a successful high Zn breed-
ing program. There is abundant genetic variation for the
grain Zn concentration in both brown and polished
grains in the rice germplasm. Rice wild relatives, land-
races, aus and aromatic accessions, deep water rice and
colored rice are the best sources of high grain Zn. Wild
species of rice such as O. nivara, O. rufipogon, O.
latifolia, O. officinalis, and O. granulata also contain
high amounts of Zn, around 2–3 fold higher than in
the cultivated rice, with Zn concentration varying
from 37 mg/kg to 55 mg/kg in non-polished grains
(Cheng et al. 2005; Banerjee et al. 2010; Anuradha et
al. 2012a). Aromatic rice has also shown high Zn
compared to non-aromatic rice (Gregorio 2002).

Breeding strategies for developing high Zn rice
Genotypic variation for grain Zn concentration in rice
can be exploited through breeding. For the past few
years, breeding efforts to increase grain micronutrients
have resulted in the development of biofortified crops
including rice (HarvestPlus 2014). Since the genetic basis
of grain Zn is complex with the involvement of multiple
small effect genes/QTLs and significantly influenced by
the environment, the choice of appropriate breeding
methods, crossing programs, individual plant selections
and field evaluation processes are critical for the suc-
cessful development of high-Zn rice. Previously, high-Zn
donors have been crossed with popular high-yielding but
low-Zn rice varieties and selection was carried out for
agronomic traits in the segregating generations, with
final fixed lines tested for grain Zn and yield in repli-
cated large scale plots. This method was time consuming
and resulted in modest increase in the Zn concentration,
while the lines developed had moderate yield potential.
However, a modified breeding program using high-Zn
donors with acceptable yield potential crossed with
popular high yielding, highly adapted, but low-Zn rice
varieties, coupled with Zn testing in early segregating
lines from the F4 generation onwards along with the se-
lections for acceptable agronomic traits, can hasten the
process of high-Zn variety development and simultan-
eous maintenance of yield potential (Fig. 1). Multiple
crosses involving several donors and recipient parents
such as three-way, four-way crosses etc., reciprocal
crosses with the donor parent, high Zn × high Zn crosses
involving advanced Zn lines will enhance the Zn levels
and yield potential. Multi-parent Advanced Generation
Inter-Cross (MAGIC) is also an attractive method for
pooling the genes for high Zn, and at IRRI several
MAGIC populations such as MAGIC-indica, MAGIC-
japonica and MAGIC-global (utilizing crosses between
indica and japonica MAGIC lines) have been developed
(Bandillo et al. 2013) and these are a good resource for
selecting high Zn lines and also provides an opportunity
to select transgressive segregants for high Zn.
Exploitation of heterosis of grain Zn and yield poten-

tial is also an important approach for developing high
Zn rice hybrids. Reports have shown that there is very
good heterosis for grain Zn in rice (Nagesh et al. 2012).
Wild relatives of rice such as O. nivara, O. rufipogon, O.
barthii, and O. longistminata, and African cultivated rice
O. glaberrima are found to have higher level of Zn in
the grains and these are a potential source of high Zn
donors (Garcia-Oliveira et al. 2009; Sarla et al. 2012).
Advanced backcross breeding method can be used to ex-
ploit these wild resources to combine high Zn and high
yield potential, and this will also help to broaden the
genetic base of the popular rice varieties. Mutation
breeding is also gaining importance as a strategy to
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improve Zn concentration in rice. Physical and chemical
mutagens have been used in mutation breeding and mu-
tants with high Zn have been identified. A number of
IR64 mutants produced by the treatment with Sodium
azide were reported to have high Zn (Jeng et al. 2012).
Three IR64 mutant lines viz; M-IR-180, M-IR-49, and
M-IR-175 had more than 26 mg kg −1 Zn in polished
rice as against 16 mg kg −1 in IR64. These mutants can
be used as a donor in Zn breeding programs and are also
a valuable resource for understanding the genetic mech-
anism involved in the expression of high Zn phenotype.
There are reports indicating high correlations between
Zn deficiency tolerance and high grain Zn in rice, so the
selection of segregating recombinant inbred lines or mu-
tants under Zn deficiency conditions followed by yield
evaluation under normal conditions may also be a useful
approach to improve the Zn concentration in rice.
Marker assisted breeding for high Zn rice using major

effect grain Zn QTLs is also a more faster and precise
approach. Several major effect grain Zn QTLs with a
high PV (>10 %) and also gene-specific markers for grain
Zn have been reported in rice, but use of these markers
to assist breeding efforts to improve Zn concentration in
rice has not been reported. There is a huge potential to
use these markers in marker assisted breeding to improve
grain Zn concentration in rice. Since there are many
QTLs/ genes responsible for grain Zn concentration
located on different chromosomes, QTL pyramiding,
Marker Assisted Recurrent Selection (MARS) and Gen-
omics Assisted Breeding approaches are worth trying to
develop high-Zn rice.
SNPs are becoming markers of choice for many breed-

ing programs. Several diverse SNP chips such as 1536

SNPs diversity panel, 44 K, 50 K, 1 M SNP chips are
available for rice. The cheaper, faster and high through-
put SNP assays made it possible the routine use of
markers in the breeding programs (McCouch et al. 2010;
Swamy and Kumar 2013b; Singh et al. 2015). The recent
advances in sequencing technologies such as Next Gen-
eration/Second Generation Sequencing (NGS/SGS) and
Third Generation Sequencing technologies (TGS) have
revolutionized the breeding unprecedently (Varshney et
al. 2009). Sequencing and resequencing of several thou-
sands of accessions and breeding lines for use in se-
quence based mapping, genome wide association
mapping, genome wide predictions and genomic selec-
tions have become possible with the help of these tech-
nologies (Deschamps et al. 2012). In rice, 3000
accessions have been sequenced and efforts are ongoing
to sequence 10,000 accessions (Li et al. 2014). More than
20 M SNPs have been identified from 3 K panel (Alexan-
drov et al. 2015). High quality and high throughput se-
quencing coupled with Rapid Generation Advance
(RGA) and high throughput phenotyping can hasten the
breeding process especially for complex traits such as
grain micronutrients. Genome Wide Association Studies
(GWAS) and Genomic Selections (GS) approach have
not been explored much for improving grain micronutri-
ents but they hold great promise for improving the grain
Zn concentration of several popular rice varieties and
highly useful in main streaming of the Zn breeding.
While breeding for high Zn rice, special attention

should be given to the amount of anti-nutrients as they
significantly influence Zn bioavailability. Phytate is the
major anti-nutrient inhibiting the quantity of Zn
absorbed. In rice, Zn is preferentially stored together

Fig. 1 Breeding strategy for developing high Zn rice varieties
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with phytate, which is a strong chelator of divalent cations
(Bohn et al. 2008; Hambidge et al. 2010; Petry et al. 2012).
Hence, selections should be made for low phytate content.
The use of high Zn donors with low phytate, selection of
segregating lines and advanced fixed lines with low phy-
tate, and integrating phytate phenotyping along with grain
Zn in the breeding program will help in developing high
Zn lines with low phytate content. Recently by mutation
breeding, several mutants with low phytate content have
been developed and are good resources as low-phytate
donors in breeding programs (Liu et al. 2007).

Current status of breeding for high Zn rice
Zn biofortified rice has a huge potential in combating
malnutrition in rice consuming poor countries of Asia,
Africa and Latin America. HarvestPlus in collaboration
with International Rice Research Institute (IRRI) and
International Center for Tropical Agriculture (CIAT)
and National Agricultural Research and Extension Sys-
tems (NARES) partners in several countries are carrying
out programs to develop high Zn rice varieties (Bouis et
al. 2013). International Rice Research Institute (IRRI) is
also making efforts to include high grain micronutrient
trait as an integral part of all the mainstream breeding
projects. The major target countries of the rice Zn bio-
fortification program are India, Bangladesh, Indonesia
and the Philippines. The biofortification breeding team
at IRRI has identified several high Zn rice germplasm as
donors, early generation and also advanced high Zn ma-
terial in the background of popular rice varieties such as
IR64, Swarna, Swarna Sub1, NSICRc222, PSBRc82,
BR28, BR29, BR11, and Ciherang has been produced and
shared with national partners. Overall, IRRI is coordinat-
ing the breeding activities of the country partners and
also encouraging them to generate high Zn material in the
genetic backgrounds of locally adopted popular rice var-
ieties using the high Zn donors supplied by IRRI (Swamy
et al. 2015). The first installment of high Zn materials with
an additional 6–8 mg kg −1 of Zn (18–20 mg kg −1 as
against 12–14 mg kg −1 Zn of popular varieties) are ready
for release in the partner countries, and a second cohort
of high Zn lines with additional 8–10 mg kg −1 of Zn are
in the development pipeline. Two high Zn rice varieties
BRRI dhan 62 and BRRI dhan 64 have been released for
cultivation during the Aman and Boro seasons in
Bangladesh. These two varieties have 19 mg kg −1 and
25 mg kg −1 of Zn with a yield potential of 4.2 t/ha and
6 t/ha respectively (HarvestPlus 2014), and also there are
many high Zn lines in advanced stages of evaluation for
varietal release in Bangladesh. IRRI has also shared with
them early generation material combining high Zn and
submergence tolerance, for further evaluation and selec-
tion in Bangladesh environments.

In the Philippines, the high Zn breeding materials
shared by IRRI are in the Pre-National Cooperative Test
(Pre-NCT) and National Cooperative Test (NCT) for re-
lease. There are many high Zn lines under evaluation in
research station trials within the Philippines Rice Research
Institute (Inabangan-Asilo et al. 2015). In Indonesia and
India, high Zn rice lines are in the advanced stages of
evaluation in the multi-location testing and in station
trials. These first and second sets of high Zn lines have
18–22 mg kg −1 of Zn with acceptable yield potential,
grain quality and agronomic traits (Swamy et al. 2015).
These lines can meet 16–20 % of the estimated average re-
quirement of Zn, which is sufficient to overcome severe
health problems caused by Zn deficiency. In the coming
years we are hopeful of releasing several high Zn rice lines
in the target countries and seeing them deployed on a
large scale. The initial success of high Zn rice and high Zn
cultivars of other crops which have been developed and
released has provided further impetus to expand the pro-
gram to other poor countries of Asia.

Conclusions
Biofortification of rice with Zn is a cost-effective and
sustainable solution to mitigate Zn deficiency problems
in the rice consuming malnourished Asian populations.
There is a significant genetic variation for grain Zn in
rice germplasm resources which can be exploited by
breeding to develop high Zn rice varieties. The recent
advances in understanding the physiological, genetic and
molecular basis of Zn uptake, Zn transport and loading
into grains has allowed effective breeding for increased
Zn, however the physiological barriers for loading Zn
into grains are still a significant obstacle for attaining
the targeted level of Zn. A complete understanding of
Zn allocation, reallocation, and remobilization within
and between vegetative and reproductive tissues is lack-
ing. Agronomic interventions to improve the grain Zn
have inconsistent results, but a combination of agro-
nomic and genetic interventions is likely to prove a
more effective approach. Several major effect and con-
sistent QTLs for grain Zn have been identified; there is
great potential to use them in MAS. Two high Zn rice
lines have been released in Bangladesh, and several high
Zn lines are in the advanced stages of evaluation for re-
lease in other partner countries.
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