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Abstract

Cancer is often driven by the accumulation of genetic alterations, including single nucleotide variants, small insertions
or deletions, gene fusions, copy-number variations, and large chromosomal rearrangements. Recent advances in next-
generation sequencing technologies have helped investigators generate massive amounts of cancer genomic data and cata-
log somatic mutations in both common and rare cancer types. So far, the somatic mutation landscapes and signatures of
>10 major cancer types have been reported; however, pinpointing driver mutations and cancer genes from millions of avail-
able cancer somatic mutations remains a monumental challenge. To tackle this important task, many methods and compu-
tational tools have been developed during the past several years and, thus, a review of its advances is urgently needed.
Here, we first summarize the main features of these methods and tools for whole-exome, whole-genome and whole-
transcriptome sequencing data. Then, we discuss major challenges like tumor intra-heterogeneity, tumor sample satur-
ation and functionality of synonymous mutations in cancer, all of which may result in false-positive discoveries. Finally,
we highlight new directions in studying regulatory roles of noncoding somatic mutations and quantitatively measuring
circulating tumor DNA in cancer. This review may help investigators find an appropriate tool for detecting potential driver
or actionable mutations in rapidly emerging precision cancer medicine.

Key words: next-generation sequencing; cancer driver genes; significantly mutated genes; driver mutations; structural
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Introduction

Cancer is driven by genetic alterations, including single nucleo-
tide variants (SNVs), small insertions or deletions (indels), gene
fusions, copy-number variations (CNVs) and large chromosomal
rearrangements (also called structural variants). The revolution-
ary advances in next-generation sequencing (NGS) technolo-
gies, now with high-throughput, much greater speed and much
lower cost, have helped investigators generate massive
amounts of cancer genomic data, providing somatic mutation

landscapes for better understanding cancer biology and improv-
ing cancer diagnosis and therapy [1–8]. So far, somatic muta-
tions of >20 cancer types have been systematically explored.
The COSMIC (the Catalogue Of Somatic Mutations In Cancer)
database deposits >3.1 million of coding mutations. In addition,
several national and international cancer genome projects,
such as The Cancer Genome Atlas (TCGA) and the International
Cancer Genome Consortium (ICGC), are ongoing, aiming to com-
plete cancer genome sequencing for >50 types or subtypes
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[9–11]. As of May 2015, nearly 13 million somatic mutations
have been uncovered by ICGC (https://icgc.org).

The mutation rate in cancer genomes varies dramatically. It
varies as greatly as by 1000 folds among different cancer types
[12]. Most solid tumor genomes harbor hundreds of sequence-
level genetic alterations. The majority of these alterations are
expected to be passenger mutations (mutations that have no
direct or indirect effect on a selective growth advantage of
tumor cells), while few are driver mutations (mutations that
have a selective growth advantage in tumor cells) [13]. Although
it is easy to define a ‘driver mutation’ in a physiological role
(conferring a selective tumor growth advantage), systematically
identifying driver mutations and the significantly mutated
genes (SMGs) that mediate tumor physiological roles from
large-scale human cancer genomic data remains a monumental
challenge [14, 15]. Here, we used SMGs to generally refer to the
terms in literature such as driver genes, candidate cancer genes
and mutated genes in cancer. We believed this term is more ap-
propriate in the analysis of large-scale somatic mutations by
statistical methods and computational tools.

In this review, we focus on the description of computational
approaches and tools in identifying driver mutations and SMGs
in cancer using NGS data. To our best understanding, we cate-
gorized these approaches into five types based on their major
features: (1) mutation frequency based, (2) functional impact
based, (3) structural genomics based, (4) network or pathway
based and (5) data integration based, as shown in Figure 1. It is
important to note that many methods and tools have more
than one feature above, but we believed this categorization

could best reflect the major features among them. In this review
article, we first summarized the major biological resources that
are commonly used for the development of these tools. Then,
we described the main features of the tools in these five types.
Next, we discussed some major challenges on identification of
driver mutations or SMGs from large number of somatic muta-
tions in cancer NGS data. These challenges include tumor het-
erogeneity and purity, tumor sample saturation, somatic
mutation calling and potential functional roles of synonymous
mutations and noncoding mutations in cancer. Inappropriate
dealing with such factors may yield false-positive discoveries
from computational approaches. Finally, we highlight several
new directions, such as the study of noncoding regulatory mu-
tations through integrated pan-cancer analyses of somatic mu-
tations using functional genomics and whole-genome
sequencing (WGS) data.

Data resources for method and tool
development and evaluation
NGS data resources

COSMIC is the largest somatic mutation repository database. It
offers an important resource for exploring the impact of somatic
mutations in cancer [16]. As of March 31, 2015 (version v70),
COSMIC contained 3 158 657 coding point mutations. TCGA was
jointly funded by the National Cancer Institute (NCI) and
National Human Genome Research Institute, National
Institutes of Health, USA in 2006 [9]. Since then, the success of

Figure 1. An overview of computational approaches and tools for identifying driver mutations and significantly mutated genes (driver genes) from somatic mutations

in cancer genomes. We assigned each method or tool to one of the five categories based on its main feature; however, some tools use the features in more than one

category.
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the TCGA project has led to characterization of >25 cancer
types, providing an important opportunity in evaluating the bio-
logical relevance of cancer genomics discovery (http://cancerge-
nome.nih.gov). ICGC aims to systematically catalog the
genomic, epigenomic and transcriptomic profiles of >25 000
cancer genomes across 50 different cancer types or subtypes
[10, 11]. As of February 2015 (data release 18), ICGC collected
>12.9 millions of somatic mutations from 12 807 cancer gen-
omes (including >1000 based on WGS) to provide insights into
the landscape of somatic mutations and define the unique gen-
etic signature of an individual tumor (https://dcc.icgc.org). The
cBioPortal is a web resource for exploring, visualizing and ana-
lyzing multidimensional cancer genomics data [17]. As of April
2015, cBioPortal contained genomic data of 20 958 samples from
89 cancer studies.

Protein’s three-dimensional (3D) structure information is
often crucial for identifying driver mutations, especially in kin-
ase domains. Thus, such annotation databases will be useful to
decipher the biological consequences between protein 3D struc-
tures and driver mutations. Cancer3D is a user-friendly data-
base to analyze somatic missense mutations in the context of
protein 3D structures [18]. Mosca et al. developed dSysMap, a re-
source for the systematic mapping of disease-related missense
mutations on the structurally annotated binary human interac-
tome [19].

Studies of genome sequences have revealed that protein-
coding genes account for <2% of the human genome [20].
Recently, several international functional genomics projects
have released massive functional genomics data for studying
the regulatory roles of noncoding somatic mutations in cancer.
These projects include the Encyclopedia of DNA Elements
(ENCODE) [21], NIH Roadmap Epigenomics [22] and the func-
tional annotation of the mammalian genome 5 (FANTOM5) [23].
For example, the NIH Roadmap Epigenomics Consortium gener-
ated 111 reference human epigenomes using various assays,
such as chromatin immunoprecipitation, DNA digestion by
DNase I (DNase), RNA expression and DNA methylation [22].
These data sets, along with the previous 16 epigenomes gener-
ated by ENCODE project, provide us with valuable opportunities
for regulatory annotations of noncoding mutations in cancer
[21, 22]. In addition, the Genotype-Tissue Expression project
(GTEx) generated large-scale gene expression (e.g. RNA-Seq) and
regulation data across multiple types of human tissues. This en-
ables investigators to study the tissue-specific gene regulatory
mechanisms that are altered by somatic mutations in cancer
[24, 25].

In summary, the aforementioned data resources (Table 1)
provide multidomains of data for systematically exploring the
genomic, epigenomic and transcriptomic characteristics of
tumor samples. These data not only allow for, but also call for,
the development of methods and tools that can efficiently de-
tect cancer-related mutations and genes.

Network and pathway data resources

Recently, network-based analyses have been increasingly
applied to decipher the biological consequence of somatic mu-
tations in cancer [44]. Much effort has been made to develop
comprehensive pathway-related or protein–protein interaction
(PPI)-based databases (Table 1). Several curated cell signaling
pathway databases, such as WikiPathways [26], KEGG [27],
Reactome [28], Pathway Commons [29], and the Pathway
Interaction Database (PID) that is carefully curated by US NCI
and Nature Publishing Group, [30], have been widely used to

explore the functional roles of disease-causing variants [45] or
somatic mutations in cancer [46]. In addition, PPI databases
deposit experimental and literature-derived PPIs, kinase-
substrate-specific phosphorylation and 3D structural PPIs, pro-
viding complementary molecular interaction network resources
for deciphering functional consequences of somatic mutations
in cancer at a molecular network level. Major PPI databases
include BioGRID [31], HPRD [32], MINT [33], IntAct [34],
STRING [35], PINA [36], PhosphoSitePlus [37], Phospho.ELM
[38], PTMcode [39], Interactome3D [41], Instruct [43] and 3did
[42]. The details of pathway or PPI databases are provided in
Table 1.

Method and computational tools
Mutation frequency-based approaches

Computational approaches commonly define SMGs in cancer by
identifying the genes that harbor significantly more mutations
than that based on background mutation model in a given can-
cer type [12]. Table 2 and Figure 1 summarize several mutation
frequency-based computational approaches or tools for iden-
tifying SMGs. For example, the Mutational Significant in Cancer
(MuSiC) is an integrated mutational analysis pipeline that in-
corporates standardized sequence-based data with clinical data
to infer the relationships among mutations, the affected genes
and pathways for prioritizing driver mutations and SMGs [47].
Dees et al. applied MuSiC to the TCGA ovarian cancer data set
and found 12 SMGs in ovarian cancer [47]. ContrastRank priori-
tizes putative SMGs in cancer by comparing the putative defect-
ive rate of each gene in tumor versus normal samples and the
data from the 1000 Genomes Project [49]. ContrastRank has
been found with reasonable accuracy in its evaluation for priori-
tizing putative SMGs in colon, lung and prostate adenocarcin-
oma samples.

However, classical mutation frequency-based approaches
often have some limitations owing to tumor heterogeneity and
other factors [12]. It is expected that the assumption of a con-
stant background mutation model with low mutation frequency
will lead to spuriously false-positive discoveries. To solve this
problem, some complementary approaches were proposed.
OncodriveCLUST is designed to identify SMGs based on the ob-
servation that gain-of-function (GoF) mutations in cancer genes
predominantly occur at specific protein residues or active do-
mains [48]. OncodriveCLUST primarily uses silent mutations in
the coding regions as the background. However, recent studies
have showed that silent mutations may play important func-
tional roles in cancer [84]. In addition, the silent mutation-based
background model cannot effectively assess the constraints in
some genomic regions owing to the low-recurrence of syn-
onymous mutations. Lawrence et al. developed MutSigCV, a
popular tool for prioritizing SMGs, using gene expression and
replication timing information to build a patient-specific back-
ground mutation model [12]. They applied MutSigCV to whole-
exome sequencing (WES) data in 3083 tumor-normal pairs
across 22 cancer types and found 450 SMGs with a false discov-
ery rate of q< 0.1.

Empirically observed local mutation frequency obtained
from massive amounts of WES data may also influence the ac-
curacy of the mutation frequency-based approaches like
MutSigCV and ContrastRank. These limitations may be partially
solved by using large-scale WES or WGS data sets from several
human genome projects. For instance, the mutation data from
the Icelandic genome project [85], the 100 000 Genomes Project
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from the Genomics England [86], the Human Longevity
sequencing initiative [86] and the Exome Sequencing Project
[87] may provide additional NGS-based mutation information
for building more reliable background mutation models, which
may not be well represented in the 1000 Genomes Project data
set [88].

Functional impact-based approach

In response to the large volume of mutations being generated
from massively parallel sequencing projects, it is urgently
needed to find highly efficient ways to prioritize driver muta-
tions that can be further selected for experimental validation
and clinical applications. Computational approaches provide us
with a fast and inexpensive way to define functional annotation
and evaluate the functional impact of mutations. These meth-
ods and tools could theoretically be used to help investigators
select putative driver mutations that would merit further ex-
perimental validation or have potential for clinical applications
[89]. If the approaches work well, it will save huge amounts of
work for laboratory and physician scientists, thus dramatically
promoting translational medicine.

Table 2 and Figure 1 describe major computational
approaches or tools for characterizing functional impact of mu-
tations. Most of these tools were developed in the past several
years, reflecting the strong need of such tools in the field. The
Sorting Intolerant from Tolerant (SIFT) is an algorithm that

predicts the potential impact of amino acid substitutions on
protein functions based on the degree of conservation of amino
acids in sequence alignments derived from the closely related
sequences [50, 51]. So far, SIFT has become one of the standard
tools for characterizing functional impacts of missense muta-
tions. Polymorphism Phenotyping v2 (PolyPhen-2) is a software
tool that predicts the functional impact of protein sequence
variants by an integration of eight sequence-based and three
structure-based features [52]. It is commonly used in conjunc-
tion with SIFT to improve the accuracy. MutationAssessor is a
web server that uses a novel functional impact score for charac-
terizing amino-acid residue mutations. It applies combinatorial
entropy formalism to define evolutionary conservation patterns
that are derived from aligned families and subfamilies of se-
quence homologs within and between species [54]. Of note, the
application of these three methods is limited to nonsynony-
mous SNVs only.

There are many approaches by integrating multiple-domain
information to train machine learning-based models for pre-
dicting the functional impact of SNVs. OncodriveFM is a specific
approach to identify lowly recurrent candidate SMGs using
functional impact features derived from SIFT, PolyPhen-2 and
MutationAssessor [57]. MutationTaster is a web-based applica-
tion for rapid evaluation of disease-causing functional effects of
DNA-sequence alterations using information from evolutionary
conservation, splice-site changes and loss of protein features or
changes [53]. However, MutationTaster cannot evaluate

Table 1. Data resources for development and evaluation of computational tools for prioritizing driver mutations and SMGs in cancer

Name Brief description Web site Ref.

Somatic mutation data
COSMIC Comprehensive resources of som-

atic mutations.
http://cancer.sanger.ac.uk/cosmic [16]

TCGA http://cancergenome.nih.gov [9]
ICGC https://icgc.org [11]
cBioPortal http://www.cbioportal.org [17]
Cancer3D Resources for functional roles of

somatic mutations through pro-
tein 3D structures.

http://www.cancer3d.org [18]
dSysMap http://dsysmap.irbbarcelona.org [19]

ENCODE Comprehensive resources of func-
tional genomics data.

https://www.encodeproject.org [21]
NIH Epigenome Roadmap http://www.roadmapepigenomics.org [22]
FANTOM5 http://fantom.gsc.riken.jp/5/ [23]
GTEx A atlas of the tissue-specific gene

expression and regulation.
http://www.gtexportal.org/ [25]

Pathway annotations
WikiPathways Manually curated biological net-

works and pathways.
http://www.wikipathways.org/ [26]

KEGG http://www.genome.jp/kegg/ [27]
Reactome http://www.reactome.org [28]
Pathway Common http://www.pathwaycommons.org/ [29]
PID http://pid.nci.nih.gov [30]

PPIs
BioGRID Repository for PPIs. http://thebiogrid.org [31]
HPRD Manually curated PPIs. http://www.hprd.org [32]
MINT http://mint.bio.uniroma2.it/mint/ [33]
IntAct http://www.ebi.ac.uk/intact/ [34]
STRING http://string-db.org [35]
PINA http://cbg.garvan.unsw.edu.au/pina/ [36]
PhosphoSitePlus Manually curated kinase–substrate

interactions with specific phos-
phorylation sites.

http://www.phosphosite.org/ [37]
Phospho.ELM http://phospho.elm.eu.org [38]
PTMcode http://ptmcode.embl.de [39]
KinomeNetworkX bioinfo.mc.vanderbilt.edu/kinomenetworkX/ [40]
Interactome3D Manually curated protein–protein

3D interactions.
http://interactome3d.irbbarcelona.org [41]

3did http://3did.irbbarcelona.org [42]
Instruct http://instruct.yulab.org [43]
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Table 2. Summary of computational approaches and tools for identifying driver mutations and SMGs in cancer genomes

Name Brief description Inventor institute Year Ref.

Mutation frequency based
MuSiC A pipeline for determining the mutational sig-

nificance in cancer.
Washington University 2012 [47]

MutSigCV An integrative approach that corrects for vari-
ants using patient-specific mutation fre-
quency and spectrum, and gene-specific
background mutation model derived from
gene expression and replication timing
information.

The Broad Institute 2013 [12]

OncodriveCLUST Identifying genes with a significant bias toward
mutation clustering in specific protein re-
gions using silent mutations as a background
mutation model.

Universitat Pompeu Fabra,
Spain

2013 [48]

ContrastRank A method based on estimating the putative de-
fective rate of each gene in tumor against
normal and samples from the 1000 Genomes
Project data.

University of Alabama at
Birmingham

2014 [49]

Functional impact based
SIFT A popular tool for predicting the biological ef-

fect of missense variations by using protein
sequence homology.

J. Craig Venter Institute 2009/2012 [50, 51]

PolyPhen-2 A popular tool using eight sequence-based and
three structure-based predictive features to
build naı̈ve Bayes classifiers for predicting
the functional impacts of protein sequence
variants.

Harvard Medical School 2010 [52]

MutationTaster A web-based tool comprising evolutionary con-
servation and splice-site change information
for predicting the functional impacts of DNA
sequencing alterations. It limits on alter-
ations spanning an intron-exon border or
indels at most 12 base pairs.

Charite-Universitatsmedizin
Berlin, Germany

2010 [53]

MutationAssessor Predicting functional impact scores based on
evolutionary conservation patterns.

Memorial Sloan-Kettering
Cancer Center

2011 [54]

Condel A consensus deleteriousness score for assess-
ing the functional impact of missense
mutations.

Universitat Pompeu Fabra,
Spain

2011 [55]

CHASM and SNVbox Python and Cþþ programs for prioritizing can-
cer-related mutations using their tumori-
genic impact.

Johns Hopkins University 2011 [56]

OncodriveFM An approach based on functional impact bias
using three well-known methods.

Universitat Pompeu Fabra,
Spain

2012 [57]

PROVEAN A tool for predicting the functional effects of
SNV and in-frame insertions and deletions.

J. Craig Venter Institute 2012 [58]

CanDrA A machine learning-based tool based on a set
of 95 structural and evolutionary features.

The University of Texas MD
Anderson Cancer Center

2013 [59]

FATHMM A Hidden Markov model-based tool for func-
tional analysis of driver mutations.

University of Bristol, UK 2013 [60]

CRAVAT A web-based toolkit for prioritizing missense
mutations related to tumorigenesis.

Johns Hopkins University 2013 [61]

Structural genomics based
iPAC An algorithm using protein 3D structure infor-

mation for predicting SMGs.
Yale University 2013 [62]

ActiveDriver An approach for predicting SMGs harboring
driver mutations significantly altering pro-
tein phosphorylation sites.

University of Toronto,
Canada

2013 [63]

CanBind A computational pipeline for predicting SMGs
using protein–ligand binding site
information.

Princeton University 2014 [64]

MSEA MSEA for predicting SMGs based on mutation
hotspot patterns on protein domains or any
genomic regions.

Vanderbilt University 2014 [65]

(continued)
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alterations spanning an intron-exon border or insertions/dele-
tions (indels) >12 base pairs. CHASM is a method that predicts
the functional significance of somatic missense mutations
using a Random Forest classifier trained with 49 predictive

features [56, 90]. FATHMM is a Hidden Markov model-based
software that distinguishes cancer-associated amino acid sub-
stitutions from passenger mutations by integrating the align-
ment of homologous sequences and conserved protein domain

Table 2. Continued

Name Brief description Inventor institute Year Ref.

eDriver A method for predicting SMGs based on the
mutation bias between protein domain or in-
trinsically disordered regions and other
regions.

Sanford-Burnham Medical
Research Institute

2014 [66]

Protein-Pocket A method for prioritizing SMGs harboring en-
riched mutations in its protein pocket
regions.

Vanderbilt University 2014 [67]

SGDriver A method for prioritizing SMGs and druggable
mutations in protein–ligand binding sites
using a Bayes inference statistical
framework.

Vanderbilt University 2015 [68]

Network or pathway based
PARADIGM A novel method for detecting consistent path-

ways in cancers by incorporating patient-
specific genetic data into carefully curated
NCI pathways.

University of California,
Santa Cruz

2010 [69]

PARADIGM-SHIFT A method for prioritizing downstream path-
ways altered by a mutation in cancer using a
belief-propagation algorithm.

University of California,
Santa Cruz

2012 [70]

Personalized Pathway
Enrichment Map

A personalized pathway enrichment method
for identifying putative cancer genes and
pathways from each individual genome.

Vanderbilt University 2012 [71]

DriverNet A computational framework for identifying
driver mutations by estimating their effect
on mRNA expression networks.

British Columbia Cancer
Agency, Canada

2012 [72]

TieDIE A network diffusion approach for identifying
cancer mutated subnetworks.

University of California,
Santa Cruz

2013 [73]

NBS A somatic mutation network-based approach
for stratifying tumor mutations.

University of California, San
Diego

2013 [74]

DawnRank A tool for prioritizing SMGs in a single patient
based on the PageRank algorithm.

University of Illinois at
Urbana-Champaign

2014 [75]

VarWalker A novel personalized mutation network ana-
lysis approach for prioritizing SMGs.

Vanderbilt University 2014 [76]

HotNet2 A new algorithm uses an insulated heat diffus-
ing process to overcome the limitations of
existing single-gene, pathway and network
approaches for detecting mutated subnet-
works in cancer.

Brown University 2015 [46]

Data integration based
CONEXIC A computational framework that integrates

copy number variants and gene expression
changes for prioritizing SMGs.

Columbia University 2010 [77]

CAERUS An integrative approach for predicting SMGs
using protein structural information, protein
networks, gene expression and mutation
data.

University of British
Columbia, Canada

2011 [78]

MAXDRIVER An integrated approach for predicting SMGs
using the data from copy number variant re-
gions of cancer genomes.

Chinese Academy of
Sciences, China

2013 [79]

Helios An algorithm predicts SMGs by integrating gen-
omic and functional RNAi screening data
from primary tumors.

Columbia University 2014 [80]

DOTS-Finder A functional and frequentist-based tool for pre-
dicting SMGs in cancer.

Istituto Italiano di
Technologia, Italy

2014 [81]

OncodriverROLE A machine learning-based approach classifies
SMGs into LoF and GoF.

Universitat Pompeu Fabra,
Spain

2014 [82]

OncoIMPACT An integrative framework for prioritizing SMGs
based on their phenotypic impacts.

Genome Institute of
Singapore, Singapore

2015 [83]
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information [60]. CRAVAT is a web-based toolkit for prioritizing
driver mutations and SMGs using CHASM and SNVbox [61].
CanDrA is a supporting vector machine (SVM)-based tool for pri-
oritizing SMGs by incorporating 95 structural and evolutionary
features generated by >10 different functional prediction algo-
rithms [59].

In summary, most of the above tools (Table 2) primarily rely
on estimating the deleterious effects of SNVs via evaluating
amino acid conservation at the corresponding positions. There
are some limitations in the clinical settings for those
approaches and tools. For example, most tools are machine
learning based, such as PolyPhen-2, CHASM and CanDrA.
Building a gold-standard positive data set (experimentally vali-
dated functional mutations) is always a difficult task for ma-
chine learning-based tool development. Furthermore, selection
of high-quality negative data set (nonfunctional mutations) is
another big challenge owing to few negative results published
in current literature. Martelotto et al. systematically evaluated
15 mutation impact prediction algorithms using experimentally
validated cancer missense mutations [89]. They found that no
algorithm was able to accurately predict SNVs that should be
taken forward for further experimental or clinical testing, while
combination of different tools could modestly improve accuracy
and significantly reduce false-negative predictions. Gonzalez-
Perez and Lopez-Bigas presented a consensus deleteriousness
(Condel) score using a weighted average of the normalized
scores derived from five complementary tools [55]. Condel score
outperforms a single approach in predicting functional impact
of missense mutations. Put together, taking advantage of com-
plementarity of different approaches or tools is a useful strategy
to improve the predictions of functional impacts of somatic mu-
tations in cancer.

Structural genomics-based approach

Owing to the rapid advancement of structural genomic technol-
ogies, such as nuclear magnetic resonance and X-ray, large-
scale, high-quality protein 3D structure data have been
generated and carefully curated, and such data are made avail-
able in the databases like Protein Data Bank (PDB) [91]. Because
the mutations at the structurally important sites are more likely
linked to disease or drug targets, we have witnessed many com-
putational methods and tools that are recently developed by
using such features. The functional features implemented in
such methods and tools include specific protein regions (e.g.
protein domain, intrinsically disordered regions), posttransla-
tional modification (PTM) sites (e.g. phosphorylation sites), pro-
tein pockets and protein–ligand binding sites.

MSEA, mutation set enrichment analysis, was implemented
by two novel modules (MSEA-domain and MSEA-clust) to pre-
dict putative SMGs. MSEA-domain is based on mutation hotspot
patterns on protein domains, while MSEA-clust is to screen mu-
tation hotspot regions by scanning any genomic regions [65].
Yang et al. systematically investigated the mutation frequency
distribution in protein domains using thousands of tumor gen-
omes across 21 cancer types [92]. They observed the expected
patterns that protein domain mutations (e.g. both known and
new cancer hotspot mutations in kinase domains) are recur-
rently mutated in both oncogenes and tumor suppressor genes.

In addition to protein domain information, protein PTM sites
(e.g. phosphorylation sites) play essential roles in regulating
cellular signaling pathways [40]. Considering the large number
of PTM sites being identified by proteomic approaches, there is
good rationale to develop new approaches or tools for

pinpointing putative SMG products that harbor mutations lead-
ing to significant PTM site changes. Among these methods,
Cheng et al. constructed a global kinase–substrate interaction
network containing 7346 pairs connecting 379 kinases and 1961
substrates harboring 36 576 phosphorylation sites. Based on the
global network analysis, they found a high anticancer drug re-
sistance risk that might be caused by the distinct network cen-
trality of kinases owing to feedback or crosstalk mechanisms
within cellular networks [40]. ActiveDriver [63] is an approach to
search for SMGs based on the hypothesis that cancer driver mu-
tations are more likely to alter protein’s phosphorylation sites
[93]. ActiveDriver was demonstrated to successfully identify
dozens of SMGs (e.g. ASF1, FLBN and GRM1) based on the cancer
genomics data in 800 cancer genomes across eight cancer types.
Furthermore, the same group applied ActiveDriver to analyze
known phosphorylation sites mutated by SNVs in �3200 cancer
genomes across 12 cancer types from the TCGA pan-cancer data
set, and they identified 150 SMGs by a gene-centric analysis [94].
So far, ActiveDriver only analyzes missense point mutations;
other types of mutations like truncated mutations have not yet
been implemented. In addition, ActiveDriver uses all literature-
reported phosphorylation sites from different cell or tissue
types as a mixture training set. However, while some phosphor-
ylation sites are cancer specific, others may not. Massive high-
quality cancer-specific phosphoproteomic data, such as that
generated by Clinical Proteomic Tumor Analysis Consortium,
may provide new opportunities in this research direction [95].

Understanding the biological consequences of somatic mu-
tations at the protein structural and functional levels is a prom-
ising research field. Several studies have demonstrated the
close relationship between protein structures and their function
altered by cancer-related missense mutations [96, 97]. Vuong
et al. presented a protein pocket-based computational pipeline
to study the functional consequences of somatic mutations in
cancer [67]. Protein pocket regions are where small molecules
and drugs bind with the protein; thus, mutations at such sites
are likely to alter protein function, leading to disease such as
cancer. By mapping 1.2 million somatic mutations across 36
cancer types from the COSMIC database and TCGA onto the
computationally predicted protein pocket regions for >5000 pro-
tein 3D structures, they found that gene products (proteins) har-
boring missense mutations located in their protein pocket
regions were more likely to be cancer proteins. Furthermore,
they identified four putative cancer genes (RWDD1, NCF1, PLEK
and VAV3), whose expression levels were associated with over-
all poor survival rates in lung, melanoma or colorectal cancer
patients. Furthermore, based on the close relationship between
somatic mutations and protein 3D structures, Zhao et al. de-
veloped a protein structural genomics-based approach,
SGDriver, to prioritize SMG products and druggable mutations
[68]. SGDriver incorporates the somatic missense mutations
into the protein–ligand binding sites using a Bayes inference
statistical framework. They applied SGDriver to analyze mis-
sense mutations in 4997 cancer genomes across 16 cancer types
from TCGA. SGDriver identified �300 proteins (adjusted
P-value< 0.05) harboring mutations that were significantly en-
riched at protein–ligand binding sites through both pan-cancer
and individual cancer analyses. One utility of SGDriver is to
identify promising druggable mutations that can be further
studied in the emerging field of precision cancer medicine.

CanBind is a computational approach to prioritize SMGs that
harbor enriched mutations by altering their nucleic acid, small
molecules and ion or peptide binding sites [64]. iPAC, namely
Identification of Protein Amino acid Clustering, is an algorithm
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that characterizes nonrandom somatic mutations in protein by
using its 3D structure information [62]. Evaluation of iPAC using
the data from the PDB and COSMIC databases indicated that it
could identify both well-known cancer driver genes (e.g. KRAS
and PIK3CA) and new cancer driver genes (e.g. EIF2AK2).
Another tool, eDriver, was developed to prioritize SMGs based
on the comparison of the internal distribution of somatic mis-
sense mutations between the protein’s domains or intrinsically
disordered regions and other domains of the same protein [66].

Collectively, development of new computational approaches
or tools that can efficiently prioritize SMGs in cancer according
to their functional effects on protein 3D structures will provide
us with unprecedented opportunities for clinical applications of
the cancer genomic data. While the demand on such tools is
strong, so far, most approaches have focused on only SNVs, ra-
ther than all types of mutations, including indels and gene fu-
sions [98]. Previous observations suggested that truncated
mutations (e.g. nonsense mutation, out-of-frame indels and
splicing) also play critical roles in cancer molecular networks
[99]. The other challenge of structural genomics-based
approaches is the limited number of proteins having high-
resolution 3D structures available (�15% human proteins hav-
ing known 3D structures) when compared with the whole
human genome [91].

Network- or pathway-based approach

Cells consist of various molecular structures that form complex,
plastic and dynamic networks [100, 101]. Under the molecular
network framework, a genetic aberration may cause network
architectural change by affecting or removing a node or its con-
nection within the network or by changing the biochemical
properties of a node (e.g. protein) [99, 102, 103]. The abundance
of cancer genomics data from NGS studies provides biologists
with huge opportunities to gain a network- or systems-level
understanding of tumor initiation and progression. One of the
major findings from TCGA project is that cancer is a complex
disease, with many changes altered at the network and path-
way levels, not simply a point mutation. Therefore, there has
been strong interest in prioritizing driver mutations and SMGs
using the network- and pathway-based approaches.

PARADIGM is a novel method for detecting consistent path-
ways in cancer by incorporating patient-specific genetic data
(CNVs and gene expression) into carefully curated NCI path-
ways [69]. PARADIGM outperforms a previous method in iden-
tifying cancer-related pathways based on evaluation of both
breast cancer and glioblastoma multiforme data sets. The au-
thors further expanded PARADIGM to PARADIGM-SHIFT, which
infers downstream pathways altered by a given mutation in
cancer by incorporating somatic mutations, CNVs and gene ex-
pression into an integrated pathway using a belief-propagation
algorithm [70]. Importantly, PARADIGM-SHIFT could identify
potential functional effects such as neutral, loss-of-function
(LoF) and GoF for a given mutation in individual cancer patient.
In addition, Jia and Zhao developed a personalized pathway en-
richment method for identifying putative cancer genes and
pathways from each individual genome using NGS-based muta-
tion data [71].

TieDIE uses a network diffusion approach to predict gene ex-
pression changes altered by genomic alteration in cancer [73].
Specifically, TieDIE identified a cancer-specific subnetwork by
incorporating genomic and transcriptomic data into networks
from PPIs, computationally predicted transcription factor-to-
target connections and manually curated interactions from

literature. Comparing with other approaches, TieDIE can iden-
tify pathways that are related to the downstream transcrip-
tional changes altered by somatic alterations in cancer.

DriverNet is a computational framework to identify candi-
date driver mutations by modeling their effect on mRNA expres-
sion networks [72]. A useful feature of DriverNet is to identify
rare driver mutations mediating oncogenic and metabolic net-
works. VarWalker is the first personalized network tool by using
somatic mutations from individual genome to prioritize puta-
tive SMGs. It incorporates large-scale cancer genomic data into
PPI network using the random walk with restart algorithm [76].
The unique features of VarWalker include its use of the somatic
mutations from individual cancer genomes and adjustment of
the gene length biases by resampling mutations from each indi-
vidual genome. Network-based stratification (NBS) is a novel
network-based approach that stratifies cancer subtypes based
on the profiles of the somatic mutations presented in individual
tumor [74]. A recent tool, DawnRank, is a computational ap-
proach to prioritize SMGs on an individual patient using a
PageRank algorithm [75]. HotNet detects significantly mutated
pathways in cancer based on the context of a genome-scale
gene interaction network using a network diffusion approach
[104]. However, most of aforementioned network-based
approaches, such as VarWalker, NBS, DawnRank and HotNet,
are proposed based on network propagation processes (e.g. ran-
dom walk with restart algorithm or PageRank). Hub genes (the
nodes with high degree in the network) are often yielded with
the highly predicted scores. Thus, development of novel algo-
rithms by investigating the significance of the predicted SMGs
regardless of network topology biases would be more appropri-
ate. The same group of HotNet further developed HotNet2, a
new algorithm for detecting mutated subnetworks in cancer by
using an insulated heat diffusing process to overcome the limi-
tations of existing single-gene, pathway and network
approaches [46]. They identified 16 significantly mutated
subnetworks comprising well-known cancer signaling path-
ways during pan-cancer analysis. In addition, HotNet2 can iden-
tify subnetworks containing genes that are rarely mutated in
both individual cancer type and pan-cancer data sets.

Although network or pathway-based approaches have been
successfully used for studying the biological consequences of
somatic mutations in cancer, these approaches have limitations
too. First, current PPI networks detected by high-throughput
technologies may only cover 20–30% of all potential pairwise
PPIs in the human cells [105, 106], suggesting that the current
human interactome map might be up to 80% incomplete [107].
Second, the network is often error prone because it is built
based on large-scale experimental data, computational predic-
tion data or both. Such data are always mixed, rather being cell
type specific, tissue specific or condition specific. Third, struc-
tural variants, noncoding variants, gene expression and methy-
lation data are often not considered in the majority of the
aforementioned approaches. Thus, developing an integrative
framework by incorporating somatic mutations, structural vari-
ations, gene expression and methylation into the improved
knowledge of the human interactome would provide a more
comprehensive catalog of significantly mutated networks or
pathways in cancer.

Data integration-based approach

Cancer ‘panomics’ data, including somatic mutations,
transcriptome, methylation and proteomics profiles of a
patient’s tumor and matched normal tissue generated from
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high-throughput technologies, enable investigators to have sys-
tematic investigation of SMGs and driver mutations for preci-
sion cancer medicine [108, 109]. The details of several data
integration-based approaches are provided in Table 2. Diver
Oncogene and Tumor Suppressor (DOTS)-Finder identifies
SMGs in cancer by an integration of three aspects of a mutated
gene: mutation pattern (the genome position of the observed
mutations), the functional effect of mutations on gene product
and mutation frequency [81]. An important feature of DOTS-
Finder is that it can predict SMGs as specific as tumor suppres-
sor genes or oncogenes.

In addition to SNVs, structural variants, such as deletions,
duplications and CNVs, often alter DNA sequences. For ex-
ample, as much as 15% of the human genomes falls into CNV
regions [110]. Wong et al. proposed a novel computational pipe-
line, SVMerge, for detection of structural variants and break-
points by integrating several existing structural variant calling
algorithms and local assembly information [111]. Detailed de-
scriptions of structural variant detection can be found in several
recent review articles [15, 112]. Development of an integrated
approach to prioritize driver mutations or SMGs by using struc-
tural variant data such as CNVs is a promising direction.
CONEXIC identifies driver mutations related to cancer progres-
sion by integrating CNVs (amplifications and deletions) and
gene expression data from matched tumor-normal samples
[77]. They have successfully identified known SMGs and mul-
tiple tumor dependences (e.g. TBC1D16 and RAB27A) in melan-
oma via CONEXIC. The same group further developed Helios, an
algorithm that identifies SMGs within large recurrently ampli-
fied regions of DNA by incorporating cancer genomics data into
data from functional RNA interference (RNAi) screening studies
[80]. They pinpointed a set of candidate SMGs in breast cancer
and further experimentally validated that RSF-1-mediated
tumorigenesis and metastasis in vivo. Helios assesses candidate
drivers by a transfer learning technique that does not require
any prior list of driver genes. Thus, it does not suffer from the
prior knowledge biases.

MAXDRIVER identifies putative SMGs using several opti-
mization strategies to construct a heterogeneous network
through an integration of a fused gene functional similarity net-
work and an existing gene–cancer association network [79].
However, incompleteness and data noise of currently
known gene–cancer associations may yield false-positive dis-
coveries in MAXDRIVER. OncodriverROLE is a machine learning-
based approach to classify SMGs into LoF and activated (Act)
genes [82]. Construction of the gold-standard positive and
negative LoF and Act gene sets is a big challenge for
machine learning-based classification model that is imple-
mented in OncodriverROLE. OncoIMPACT is a data integration
framework for predicting patient-specific SMGs based on their
phenotypic impacts [83]. OncoIMPACT can predict patient-
specific drivers.

The existing computational tools are often developed based
on different biological hypotheses. Combining two or more
methods by their complementary biological hypotheses may
improve the prediction accuracy of each individual tool. With
this rationale, Tamborero et al. systematically identified 291
high-confidence SMGs using cancer genomics data in 3205
tumors across 12 different cancer types from TCGA using a
combination of four complementary methods, including MuSiC,
OncodriveFM, OncodriveCLUST and ActiveDriver [113]. They
demonstrated that the combinations of different approaches
using their complementary hypothesis could outperform each
individual method.

Challenges on current approaches
Tumor heterogeneity and sample saturation

So far, the widely used computational methods are designed to
identify SMGs that have more mutations than the expected
based on background mutation model. However, tumor intra-
heterogeneity often leads to false-positive discoveries [113–115].
A subtype of colorectal cancer (namely, stem/serrated/mesen-
chymal transcriptional subtype) was reported to be driven by
stromal cells rather than tumor cells [116]. Batile et al. drew a
similar conclusion that a poor-outcome colorectal cancer sub-
type was driven by the genes expressed in tumor-associated
stromal cells [117]. Yoshihara et al. described ESTIMATE, a com-
putational method to infer the fraction of stromal and immune
cells in tumor samples using gene expression signatures [118].
Thus, evaluation of tumor purity and intra-heterogeneity is a
critical part when we distinguish SMGs and driver mutations
from passenger mutations in cancer. In addition, tumor sample
saturation also limits the creation of a comprehensive catalog
of SMGs based on the currently limited sequencing data. For in-
stance, a recent mathematical model was proposed to estimate
the minimum number of samples for detecting SMGs [119]. The
mathematical analysis revealed that building a comprehensive
catalog of SMGs would need to sequence an average of nearly
2000 tumors for each of the at least 50 cancer types.

Although some cancer driver genes are mutated at high fre-
quencies (>20%), most cancer mutations occur at intermediate
frequencies (2–20%) or lower [119]. An analysis based on 183
lung adenocarcinoma samples suggested that 15% of patients
lacked even a single mutation affecting well-known cancer
genes (e.g. EGFR, KRAS and ALK) [120]. Vogelstein et al. estimated
that a typical tumor contained two to eight driver mutations;
the remaining mutations are passengers that do not contribute
to the tumor growth advantage [13]. Tomasetti et al. suggested
that only three sequential mutations are required to develop
colon and lung cancers based on genome-wide sequencing data
[121]. Identifying the exact number of driver mutations in a typ-
ical tumor would be helpful for our understanding of tumor ini-
tiation and progression.

High quality of sequencing data is important when predict-
ing SMGs and driver mutations using computational tools.
However, existing methods typically miss low allele frequency
mutations that occur in only a small subset of the sequenced
cells owing to tumor heterogeneity [122]. In addition, the cover-
age and false discovery rate of sequencing data from WES are
two other critical issues for pinpointing driver mutations and
SMGs. A recent study showed that WGS is more powerful than
WES for detecting potential disease-causing mutations within
WES regions, particularly those due to SNVs [123]. This observa-
tion only focused on disease-causing mutations in six unrelated
patients. The accuracy of the detection of somatic mutations of
tumor-normal matched samples using WGS and WES may be
different [86]. Although WGS is currently more expensive than
WES, its cost is expected to decrease dramatically, and coverage
in WGS is expected to increase as well. Another issue is the
false-negative discovery—those cancer mutations that
could not easily be detected by NGS technologies. The advances
in high-throughput NGS technologies, both second-generation
and third-generation, will help solve this problem. Therefore,
reliability of computational tools will improve with higher qual-
ity of data derived from cancer genomes in the near future.

In summary, the number of discovered SMGs has been
steadily increasing with the accumulation of high-quality
sequencing data [119]. Importantly and timely, the Precision
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Medicine Initiative launched by US President Obama earlier this
year with a $215 million initial investment will catalog muta-
tions in 1 million patients including cancer patients; this will
dramatically accelerate the catalog of cancer driver mutations
and SMGs by using the flood of sequencing data and computa-
tional approaches in the near future [124].

The accuracy of somatic mutation calling

Somatic mutation calling in cancer genomes is an important
prerequisite step for the identification of driver mutations or
SMGs [125]. There are many tools available for detection of
SNVs, indels, CNVs, gene fusions and large structural variants
[15]. Genome Analysis Toolkit is a broad and widely used toolkit
developed by the Broad Institute for NGS data processing and
variant discovery in the 1000 Genomes Project and TCGA [126].
Calling somatic mutations is a harder problem than calling
germline variants because of high variability such as tumor het-
erogeneity and tumor subclonality [127]. Cibuskis et al. proposed
a Bayesian classifier-based approach, namely MuTect, for de-
tecting somatic mutations having low allele fractions [122].
They showed that MuTect has higher sensitivity with similar
specificity in comparison with several previous approaches. In a
recent study, O’Brien et al. suggested the inconsistency and fea-
tures for SNV detection in WES versus transcriptome sequenc-
ing data [128]. They found a low overlap of �14% SNVs called in
WES and RNA-Seq data from 27 tumor-normal pairs in lung
cancer as a case study. In addition to the evaluation of SNV call-
ing in MuTect, Wang et al. systematically evaluated the per-
formance of six tools (EBCall, JointSNVMix, MuTect,
SomaticSniper, Strelka and VarScan 2) for somatic point muta-
tion detection based on real WGS and WES data as well as the
simulation data [129]. The found that MuTect detected most low
allelic-fraction somatic point mutations, while VarScan 2 identi-
fied more somatic point mutations than other tools, suggesting
a potential room for improvement of somatic mutation detec-
tion. In addition, the ICGC-TCGA DREAM Somatic Mutation
Calling Challenge benchmark evaluated 248 submissions from
21 research teams [130]. They found that different algorithms
exhibit characteristic error profiles and false-positive discov-
eries: recall ranged from 0.559 to 0.994, F-score from 0.046 to
0.975 and precision from 0.101 to 0.997. The authors suggested
that robust ensemble learners might eventually improve the ac-
curacy of somatic mutation detection [130]. We believe that
combining different somatic mutation calling approaches or
tools would enhance the somatic mutation calling and, thus,
benefit the identification of driver mutations and SMGs in can-
cer genomes.

Functional synonymous mutations in cancer

Most recently, efforts have been made in identifying functional
mutations from synonymous variants, those mutations in cod-
ing regions but do not change amino acids or protein sequences.
Supek et al. performed a large-scale cancer genomics analysis
using 3851 cancer exomes from TCGA and COSMIC [84]. They
showed that synonymous mutations also contributed to human
cancer. For instance, they found that synonymous mutations
recurrently mutated in oncogenes. One possible mechanism of
recurrent mutations in oncogenes contributing to cancer is that
synonymous mutations recurrently target exonic splicing
motifs and cause abnormal oncogene splicing. For instance,
they showed that recurrent synonymous mutations in TP53 are
adjacent to splice sites and inactivate splice sites. Thus,

consideration of functional roles of synonymous mutations as
part of further development of computational approaches may
both increase the use of the existing data and find additional
cancer SMGs with different molecular mechanisms. This direc-
tion is relatively new; however, the initial findings are promis-
ing. And efforts on using other ‘nonfunctional’ mutations, like
those in noncoding regions, in computational analysis, are on-
going as well.

Pan-cancer analysis

By the end of 2015, the TCGA research network will have
achieved the ambitious goal of analyzing the genomic, epi-
genomic and gene expression profiles of >10 000 specimens
from >25 different tumor types [131]. As of late 2014, TCGA sci-
entists had nearly completed sequencing the protein-coding re-
gions for most tumor types and had completed WGS of >1000
tumor samples. During the past several years, many investiga-
tors have successfully applied the TCGA data for their own re-
search projects or clinical applications, resulting in publishing
over 2700 peer-review articles, many of which appeared in high
profiling journals (http://cancergenome.nih.gov/publications).
Now, TCGA expanded to its pan-cancer analysis. In August
2014, TCGA pan-cancer project of a multiplatform analysis of 12
cancer types was published in Cell [132]. This pan-cancer ana-
lysis showed that some tumors were more likely to be genetic-
ally and molecularly similar owing to the type of their arising
cells rather than from the tissue site of origin [132]. To expand
the TCGA’s pan-cancer analysis, two new projects (PanCanAtlas
and Pan-Cancer Analysis of Whole Genomes) are currently
underway. Put together, a systematic pan-cancer analysis based
on panomics data generated by NGS and other platforms will
allow investigators to have more clinical relevance discoveries
across different cancer types [131, 133].

Perspectives

Several future directions are attracting more and more atten-
tion. First, most cancer genomic studies have focused on pro-
tein-coding regions of the genome. However, functional
genomics projects, such as the ENCODE [21], NIH Roadmap
Epigenomics [22] and FANTOM5 [23], are elucidating the func-
tional elements of the human genome, including promoter and
enhancer regions. These projects will provide researchers with
huge opportunities for deciphering the regulatory landscape of
somatic mutations across the whole genome covering both cod-
ing and noncoding regions. For example, two independent
groups performed genome-wide analysis of noncoding regula-
tory mutations in cancer, and found that TERT promoter recur-
rent mutations play crucial roles in multiple cancer types
[134, 135]. Second, high-throughput functional screening tech-
nologies, such as RNAi and CRISPR-Cas9, would provide us with
new innovative strategies for identifying SMGs and driver muta-
tions with high accuracy. For instance, Schramek et al. found
Myosin IIa as a tumor suppressor of squamous cell carcinoma
using in vivo RNAi screens [136]. Konermann et al. proposed a
structure-guided engineering of a CRISPR-Cas9 complex to iden-
tify candidate genes mediating the resistance to a BRAF inhibi-
tor in both cell lines and patient-derived samples [137]. Taken
together, an integration of genomics data with other data from
functional screens (e.g. RNAi and CRISPR-Cas9) would create a
new promising research field for identifying new SMGs and
driver mutations in cancer.
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Third, circulating tumor DNA (ctDNA) is a promising bio-
marker for noninvasive monitor of the tumor burden for diagno-
sis, prognosis and treatment selection [138–140]. Currently,
ctDNA detecting methods do not have high sensitivity, limiting
their broad clinical applicability. In addition, ctDNA detection
approach needs to overcome the limitation in isolating rare cir-
culating tumor cells and sequencing low volume of circulating
cell-free DNA materials [140]. Recently, Newman et al. proposed a
cancer personalized profiling via deep sequencing approach
(CAPP-Seq) for detecting ctDNA by combining optimized library
preparation methods and a multiphase bioinformatics approach
[138]. They demonstrated that CAPP-Seq could detect ctDNA in
100% of non-small cell lung cancer patients with stages II–IV.
Thus, an approach effectively combining both technologies (e.g.
NGS) and bioinformatics methods is promising for enhancing the
ctDNA detection, and this will provide new ways for prognosis
and precision treatment of cancer [140, 141]. Forth, development
of a new integrated approach using single-cell genomics data
would reduce the false-positive discoveries caused by tumor pur-
ity and tumor intra-heterogeneity [142–145]. Finally, the gen-
omics landscape of individual tumors enables systematic
investigation of antitumor immunotherapeutic responses driven
by somatic mutations [146–148]. For example, Rooney et al. quan-
tified the cytolytic activities of the local immune infiltrate across
18 cancer types using large-scale genomic data sets from solid
tumor biopsies [149]. Furthermore, the large volume of genomic
alterations has made it possible to examine the immune re-
sponse to patient-specific neoantigens, advancing development
of personalized cancer immunotherapy [150, 151].

Key Points

• Massive amounts of somatic mutation data have been
generated from large-scale cancer genome sequencing
projects; how to identify driver mutations and signifi-
cantly mutated genes (SMGs) remains a great
challenge.

• This review describes recent development and advances
of methods and computational tools for identifying driver
mutations and SMGs from whole-exome, whole-genome
and whole-transcriptome sequencing data.

• Studying noncoding regulatory mutations through the
integrated analysis of functional genomics and whole-
genome sequencing data will be a promising research
direction for precision cancer medicine.
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