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Abstract

Carnegie Mellon University (CMU) and the
Sarno� Corporation (Sarno�) are performing
an integrated feasibility demonstration of Video
Surveillance and Monitoring (VSAM). The ob-
jective is to develop a cooperative, multi-sensor
video surveillance system that provides contin-
uous coverage over battle�eld areas. Signi�cant
achievements have been demonstrated during
VSAM Demo I in November 1997, and in the
intervening year leading up to Demo II in Oc-
tober 1998.

1 Introduction

The thrust of the VSAM Integrated Feasibility
Demonstration (IFD) research program is co-
operative multi-sensor surveillance to support
enhanced battle�eld awareness [Kanade et al.,
1997]. We are developing automated video un-
derstanding technology that will enable a sin-
gle human operator to monitor activities over a
complex area using a distributed network of ac-
tive video sensors. Our advanced Video Under-
standing technology can automatically detect
and track multiple people and vehicles within
cluttered scenes, and monitor their activities
over long periods of time. Human and vehi-
cle targets are seamlessly tracked through the
environment using a network of active sensors
to cooperatively track targets over areas that
cannot be viewed continuously by a single sen-
sor alone. The idea is to allow a commander
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or military analyst to tap into a network of sen-
sors deployed on and over the battle�eld to get a
broad overview of the current situation. Other
military and law enforcement applications in-
clude providing perimeter security for troops,
monitoring peace treaties or refugee movements
from unmanned air vehicles, providing security
for embassies or airports, and staking out sus-
pected drug or terrorist hide-outs by collecting
time-stamped pictures of everyone entering and
exiting the building.

Keeping track of people, vehicles, and their in-
teractions, over a chaotic area such as the bat-
tle�eld, is a di�cult task. Populating the bat-
tle�eld with digital sensing units can provide
the commander with up-to-date sensory feed-
back leading to improve situational awareness
and better decision making. The role of VSAM
video understanding technology in achieving
this goal is to automatically \parse" people and
vehicles from raw video, determine their geolo-
cations, and automatically insert them into a
dynamic scene visualization. We have devel-
oped robust routines for detecting moving ob-
jects using a combination of temporal di�erenc-
ing and template tracking [Lipton et al., 1998]

(in this proceedings). Detected objects are clas-
si�ed into semantic categories such as human,
human group, car, and truck using shape and
color analysis, and these labels are used to im-
prove tracking using temporal consistency con-
straints. Further classi�cation of human ac-
tivity, such as walking and running, has also
been achieved [Fujiyoshi and Lipton, 1998] (in



this proceedings). Geolocations of labeled en-
tities are determined from their image coordi-
nates using either wide-baseline stereo from two
or more overlapping camera views, or intersec-
tion of viewing rays with a terrain model from
monocular views [Collins et al., 1998] (in this
proceedings.) An airborne surveillance plat-
form has been incorporated into the system, and
novel real-time algorithms for camera �xation,
sensor multi-tasking, and moving target detec-
tion have been developed for this moving plat-
form [Wixson et al., 1998]. Resulting target hy-
pothesis information from all sensor processing
units (SPUs), including target type and trajec-
tory, are transmitted as symbolic data packets
back to a central operator control unit (OCU),
where they are displayed on a graphical user
interface to give a broad overview of scene ac-
tivities.

This paper provides an overview of VSAM
research at Carnegie Mellon University and
the Sarno� Corporation, drawing upon results
achieved during VSAM Demo I held on Novem-
ber 12 1997 at Bushy Run, and preliminary re-
sults from the new VSAM IFD testbed system
that will be unveiled during Demo II at CMU on
October 8, 1998. Section 2 describes the compo-
nents and infrastructure underlying the current
VSAM testbed system, while Section 3 details
the video understanding technologies that pro-
vide core system functionality. Section 4 out-
lines a key idea of our research, namely the use
of geospatial site models to enhance system per-
formance. The role of the human operator in
achieving battle�eld awareness also can not be
overstated { our intention is not to design a fully
automated, stand-alone system, but rather to
provide a human commander with timely infor-
mation regarding events unfolding on the bat-
tle�eld. To this aim, a graphical user interface
for visualizing large scale, multi-agent events
is a vital system component, and the relevant
human-computer interface issues are discussed
in Section 5. Finally, Section 6 provides a road-
map of where we have been and where we are
going by outlining the signi�cant technological
accomplishments that we have achieved during
VSAM Demo I, and that are planned for Demos
II and III.

2 VSAM Testbed System

The current VSAM testbed system is evolving
along the path outlined in the 1997 VSAM PI
report [Kanade et al., 1997]. The system con-
sists of a central operator control unit (OCU)
which receives video and ethernet data from re-
mote sensor processing units (SPUs) (Figure 1).
The OCU is responsible for integrating symbolic
and video information accumulated by each of
the SPUs and presenting it in a concise, mean-
ingful form to users operating VSAM visualiza-
tion tools. A central graphical user interface
(GUI) is used to task the system by specifying
which areas, targets and events are worthy of
special attention.

2.1 Sensor Processing Units (SPUs)

Sensor processing units (SPUs) are the front end
nodes of the VSAM network. Their function is
to analyze video imagery for the presence of sig-
ni�cant entities or events and transmit that in-
formation to the OCU. The notion is that SPUs
act as intelligent �lters between sensing devices
and the VSAM network. This arrangement al-
lows for many di�erent sensor modalities to be
seamlessly integrated into the system. Further-
more, performing as much video processing as
possible on-board the SPU reduces the band-
width requirements of the VSAM network. Full
video signals do not need to be transmitted;
only symbolic data extracted from video signals.

The VSAM testbed can handle a wide vari-
ety of sensors and sensor platforms. SPUs
can vary from simple sensors with rudimentary
vision processing capabilities to very sophisti-
cated sensing systems capable of making intelli-
gent inferences about activities in their �eld of
regard. SPUs can be connected to the system by
radio links, serial lines, wireless ethernet, cables,
or any other medium. The 1997 demo saw the
integration of monochrome CCD sensors with
an airborne color CCD sensor. In 1998, the list
of SPUs includes:

� Five �xed-mount color CCD sensors with vari-
able pan, tilt and zoom control, a�xed to build-
ings around the CMU campus.
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Figure 1: Overview of the VSAM testbed system.

� One van-mounted relocatable SPU that can
be moved from one point to another during a
surveillance mission.

� A FLIR Systems camera turret mounted on
an aircraft.

� A Columbia-Lehigh CycloVision ParaCamera
with a hemispherical �eld of view.

� A Texas Instruments (TI) indoor surveillance
system, which after some modi�cations is capa-
ble of directly interfacing with the VSAM net-
work.

Logically, all of these SPUs are treated iden-
tically. They di�er only in the type of phys-
ical connection required to the OCU. In fu-
ture years, it is hoped that other VSAM sen-
sor modalities will be added, including thermal
infra-red sensors, multi-camera omnidirectional
sensors, and stereo sensors.

2.2 Airborne SPU

The airborne SPU warrants further discus-
sion. The sensor and computation packages are
mounted on a Britten-Norman Islander twin-
engine aircraft operated by the U.S. Army Night
Vision and Electronic Sensors Directorate. The
Islander, shown in Figure 2 is equipped with a

Figure 2: The Night Vision and Electronic
Sensors Directorate Islander aircraft. Camera
turret is below wing at left.

Figure 3: The Sarno� airborne camera simu-
lator.



FLIR Systems Ultra-3000 turret that has two
degrees of freedom (pan/tilt), a GPS system
for measuring position, and an AHRS (Attitude
Heading Reference System) device for measur-
ing orientation. Video processing is performed
using on-board Sarno� VFE-100 and PVT-200
video processing engines [Hansen et al., 1994] in
Years 1 and 2, respectively.

Because the cost of testing algorithms on the
airplane is high, we have constructed a simu-
lated airborne platform using a gantry, shown
in Figure 3. The gantry travels in the XY
plane with a camera suspended beneath it on
a pan/tilt mount. This enables us to obtain
quantitative results and simulate airborne per-
formance while debugging the airborne VSAM
algorithms.

2.3 Operator Control Unit (OCU)

Figure 4 shows the functional architecture of the
VSAM OCU. It accepts video processing results
from each of the SPUs and integrates the in-
formation with a site model and a database of
known targets to infer activities that are of in-
terest to the user. This data is sent to the GUI
and other visualization tools as output from the
system. Data about relevant entities and events
is packaged up and transmitted to the GUI and
other visualization tools.
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Figure 4: Functional architecture of the
VSAM OCU.

One key piece of system functionality provided
by the OCU is sensor arbitration. At any given
time, the system has a number of \tasks" that

may need attention. These tasks are explic-
itly indicated by the user through the GUI, and
may include such things as speci�c targets to
be tracked, speci�c regions to be watched, or
speci�c events to be detected (such as a per-
son loitering near a particular doorway). Sensor
arbitration is performed by an arbitration cost
function. The arbitration function determines
the cost of assigning each of the SPUs to each of
the tasks. These costs are based on the priority
of the tasks, the load on the SPU, the visibility
of the tasks, and so on. The system performs a
greedy optimization of the cost to determine the
best combination of SPU tasking to maximize
overall system performance requirements.

2.4 Graphical User Interface (GUI)
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Figure 5: VSAM Demo I Graphical User In-
terface.

One of the technical goals of the VSAM project
is to demonstrate that a single human operator
can e�ectively monitor a signi�cant area of in-
terest. Towards this end, the testbed employs a
graphical user interface for scene visualization
and sensor suite tasking. Through this inter-
face, the operator can task individual sensor
units, as well as the entire testbed sensor suite,
to perform surveillance operations such as gen-
erating a quick summary of all target activities
in the area. The operator may choose to see
a map of the area, with all target and sensor
platform locations overlaid on it (a sample of
the Demo I GUI can be seen in Figure 5).



2.5 Communication
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Figure 6: A nominal architecture for expand-
able VSAM networks.

Figure 6 depicts a nominal architecture for the
VSAM network. It allows multiple OCUs to be
linked together, each controlling multiple SPUs.
Each OCU supports exactly one GUI through
which all user related command and control in-
formation is passed. However, data dissemina-
tion is not limited to a single user interface, but
is also accessible through a series of visualisa-
tion nodes (VIS).

There are two independent communication pro-
tocols and packet structures supported in this
architecture: the Carnegie Mellon University
Packet Architecture (CMUPA) and the Dis-
tributed Interactive Simulation (DIS) protocols.
The CMUPA is designed to be a low band-
width, highly exible architecture in which rele-
vant VSAM information can be compactly pack-
aged without redundant overhead. The concept
of the CMUPA packet architecture is a hierar-
chical decomposition. There are six data sec-
tions that can be encoded into a packet: com-
mand; sensor; image; target; event; and region
of interest (ROI). A short packet header sec-
tion describes which of these six sections are
present in the packet. Within each section it is
possible to represent multiple instances of that
type of data, with each instance potentially con-
taining a di�erent layout of information. At
each level, short bitmasks are used to describe
the contents of the various blocks within the
packets, keeping wasted space to a minimum.
All communication between SPUs, OCUs and
GUIs is CMUPA compatible. The CMUPA pro-
tocol speci�cation document is accessible from
http://www.cs.cmu.edu/�vsam.

VIS nodes are designed to distribute the output
of the VSAM network to where it is needed.
They provide symbolic representations of de-
tected activities overlaid on maps or imagery.
Information ow to VIS nodes is unidirectional,
originating from an OCU. All of this communi-
cation uses the DIS protocol, which is described
in detail in [IST, 1994]. An important bene�t
to keeping VIS nodes DIS compatible is that it
allows us to easily interface with synthetic en-
vironment visualization tools such as ModSAF
and ModStealth (Section 5).

3 Video Understanding Technologies

3.1 Moving Target Detection

The initial stage of the surveillance problem
is the extraction of moving targets from a
video stream. There are three conventional ap-
proaches to moving target detection: temporal
di�erencing (two-frame or three-frame) [Ander-
son et al., 1985]; background subtraction [Har-
itaoglu et al., 1998, Wren et al., 1997]; and op-
tical ow (see [Barron et al., 1994] for an excel-
lent discussion). Temporal di�erencing is very
adaptive to dynamic environments, but gener-
ally does a poor job of extracting all relevant
feature pixels. Background subtraction pro-
vides the most complete feature data, but is
extremely sensitive to dynamic scene changes
due to lighting and extraneous events. Optical
ow can be used to detect independently mov-
ing targets in the presence of camera motion;
however, most optical ow computation meth-
ods are very complex and are inapplicable to
real-time algorithms without specialized hard-
ware.

The approach presented here is similar to that
taken in [Haritaoglu et al., 1998] and is an at-
tempt to make background subtraction more ro-
bust to environmental dynamism. The notion is
to use an adaptive background model to accom-
modate changes to the background while main-
taining the ability to detect independently mov-
ing targets.

The �rst of these issues is dealt with by using a
statistical model of the background to provide



a mechanism to adapt to slow changes in the
environment. For each pixel value pn in the nth

frame, a running average pn and a form of stan-
dard deviation �pn are maintained by tempo-
ral �ltering. Due to the �ltering process, these
statistics change over time reecting dynamism
in the environment.

The �lter is of the form

F (t) = e
t

� (1)

where � is a time constant which can be con�g-
ured to re�ne the behavior of the system. The
�lter is implemented:

pn+1 = �pn+1 + (1� �)pn
�n+1 = �jpn+1 � pn+1j+ (1� �)�n

(2)

where � = � � f , and f is the frame rate. Un-
like the models of both [Haritaoglu et al., 1998]

and [Wren et al., 1997], this statistical model
incorporates noise measurements to determine
foreground pixels, rather than a simple thresh-
old. This idea is inspired by [Grimson and Vi-
ola, 1997].

If a pixel has a value which is more than 2�
from pn, then it is considered a foreground pixel.
At this point a multiple hypothesis approach is
used for determining its behavior. A new set of
statistics (p0; �0) is initialized for this pixel and
the original set is remembered. If, after time
t = 3� , the pixel value has not returned to its
original statistical value, the new statistics are
chosen as replacements for the old.

\Moving" pixels are aggregated using a con-
nected component approach so that individ-
ual target regions can be extracted. Transient
moving objects cause short term changes to
the image stream that are not included in the
background model, but are continually tracked,
whereas more permanent changes are (after 3�)
absorbed into the background (see Figure 7).

While this class of detection methods is inap-
plicable to video streams from moving cameras,
it can be employed in a \step and stare" mode
in which the system can predict the position of
a target and point the camera in such a way
as to reacquire it. Most background subtrac-
tion schemes require a period of time in which

(A)

(B)

Figure 7: Example of moving target detection
by dynamic background subtraction.

the scene remains static so that a background
model can be built. This is unacceptable in a
video surveillance application where motion de-
tection must be available to the system imme-
diately after a \step and stare" move. In this
implementation, temporal di�erencing (3-frame
di�erencing) is used as a stop-gap measure until
the background model is stabilized. While the
quality of the moving target detection is dimin-
ished using this method, it is assumed that since
the system is in a tracking mode, it has some no-
tion of which target it is looking for, and where
it may be located, so this inferior motion detec-
tion scheme will be adequate for the system to
reacquire the target.

The MTD algorithm is prone to three types of
error: incomplete extraction of a moving ob-
ject; erroneous extraction of non-moving pixels;
and legitimate extraction of illegitimate targets
(such as trees blowing in the wind). Incomplete
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Figure 8: Target pre-processing. A moving
target region is morphologically dilated (twice),
eroded and then its border is extracted.

targets are partially reconstructed by blob clus-
tering and morphological dilation (Figure 8).
Erroneously extracted \noise" is removed using
a size �lter whereby blobs below a certain crit-
ical size are ignored. Illegitimate targets must
be removed by other means such as temporal
consistency and domain knowledge. This is the
purview of the target tracking algorithm.

3.2 Target Tracking

One main purpose of the system is to build a
temporal model of activity. To do this, indi-
vidual objects must be tracked over time. The
�rst step in this process is to take the blobs
generated by motion detection and match them
frame-to-frame.

Many systems for target tracking are based on
Kalman �lters, but as pointed out by [Isard and
Blake, 1996], they are of limited use because
they are based on unimodal Gaussian densi-
ties and cannot support simultaneous alterna-
tive motion hypotheses. A few other approaches
have been devised; Isard and Blake [Isard and
Blake, 1996] present a new stochastic algorithm
for robust tracking which is superior to previ-
ous Kalman �lter based approaches; and Bre-
gler [Bregler, 1997] presents a probabilistic de-
composition of human dynamics to learn and
recognise human beings (or their gaits) in video
sequences.

The IFD testbed system uses a much simpler
approach based on a frame-to-frame matching
cost function. A record of each blob is kept

with the following information:

� trajectory (position p(t) and velocity v(t)
as functions of time) in image coordinates,

� associated camera calibration parameters
so the target's trajectory can be normal-
ized to an absolute coordinate system (p̂(t)
and v̂(t)),

� the \blob" data as an image chip,

� \blob" size s and centroid c,

� Color histogram h of \blob".

First, the position and velocity of Ti from the
last time step tlast is used to determine a pre-
dicted position for Ti at the current time tnow.

p̂i(tnow) � p̂i(tlast) + v̂i(tlast)� (tnow � tlast)
(3)

Using this information a matching cost can be
determined between a known target Ti and cur-
rent moving \blob" Rj

C(Ti; Rj) = f(jp̂i�p̂jj; jsi�sjj; jci�cj j; jhi�hj j)
(4)

Matched targets are then maintained over time.
This method will fail if there are occlusions. For
this reason, signi�cant targets (chosen by either
the user or the system) are tracked using a com-
bination of the cost function and adaptive tem-
plate matching [Lipton et al., 1998]. Recent re-
sults from the system are shown in Figure 9.

3.3 Target Classi�cation

The ultimate goal of the VSAM e�ort is to be
able to identify individual entities, such as the
\FedEx truck", the \4:15pm bus to Oakland"
and \Fred Smith". As a �rst step, entities are
classi�ed into speci�c class groupings such as
\humans" and \vehicles". An initial e�ort in
this work [Lipton et al., 1998] used view inde-
pendent visual properties to classify entities into
three classes: humans; vehicles; and clutter. In
the rural environment of the Bushy Run demo,
this is an adequate �rst step; however, in the
less constrained urban environment of Demo II,
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Figure 9: Recent results of moving entity detection and tracking showing detected objects and
trajectories overlaid on original video imagery. Note that tracking persists even when targets are
temporarily occluded or motionless.

a more robust method is employed with a larger
number of entity classes.

As mentioned in section 3.1 two di�erent MTD
algorithms might be employed depending on the
stability of the background scene. The qual-
ity of the motion detection extracted by three
frame di�erencing is inferior to that of dynamic
background subtraction, so a di�erent classi�-
cation metric must be employed.

In the usual case when entities are accurately
extracted by background subtraction, a neu-
ral network approach is used (Figure 10). The
neural network is a standard three-layer net-
work which uses a back propagation algo-
rithm for hierarchical learning. Inputs to the
network are a mixture of image-based and
scene-based entity parameters: dispersedness
(perimeter2/area (pixels)); area (pixels); appar-
ent aspect ratio; and camera zoom. The net-
work will output three classes: human; vehicle;

or human group.

When teaching the network that an input entity
is a human, all outputs are set to 0.0 except for
\human", which is set to 1.0. Other classes are
trained similarly. If the input does not �t any of
the classes, such as a tree blowing in the wind,
all outputs are set to 0.0.

Results from the neural network are interpreted
as follows:

if (output > THRESHOLD)

classification = maximum NN output

else

classification = REJECT

In the case when the background model is un-
stable, and three frame di�erencing is used to
detect moving targets, a di�erent classi�cation
criterion is used. Given the geolocation of the
entity, its actual width w and height h in meters
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Figure 10: Neural network approach to target
classi�cation.

Class Samples % Classi�ed

Human 430 99.5
Human group 96 88.5

Vehicle 508 99.4
False alarms 48 64.5

Total 1082 96.9

Table 1: Results for classi�cation algorithms
on VSAM IFD data

can be determined. Then a heuristic is applied
to these values:

w < 1:1 h 2 [0:5; 2:5] ) human
w 2 [1:1; 2:2] h 2 [0:5; 2:5] ) group
w 2 [2:2; 20] h 2 [0:7; 4:5] ) vehicle
ELSE ) reject

(5)

The results for this classi�cation scheme are
summarized in table 1.

These classi�cation metrics are e�ective for sin-
gle images. One of the advantages of video is its
temporal component. To exploit this, classi�ca-
tion is performed on every entity at every frame
and the results of classi�cation are kept in a his-
togram. At each time step, the most likely class
label is then chosen as the entity classi�cation,
as described in [Lipton et al., 1998].

3.4 Target Recognition

One of the key features of the VSAM IFD
testbed system is the ability to re-acquire a spe-
ci�c target in a video image. It may be nec-
essary to do this from a single camera when
the target has temporarily been lost, or between
two di�erent cameras when performing hando�.
Obviously viewpoint-speci�c appearance crite-
ria are not useful, since the new view of the
target may be signi�cantly di�erent from the
previous view. Therefore, recognition features
are needed that are independent of viewpoint.

In this system, two such criteria are used: abso-
lute trajectory; and color histogram. The �rst
is computed by geolocating targets using view-
ing ray intersection with a scene model (Sec-
tion 4.3), and the second is determined in a nor-
malized RGB color space.

The �rst step in recognition is to predict the
position in which the target is likely to appear.
This is done using equation 3. After this, can-
didate motion regions are tested by applying a
matching cost function. The form of the cost
function is similar to equation 4, but with fewer
parameters.

Creacquire = f(jp̂i � p̂jj; jhi � hjj) (6)

3.5 Activity Analysis

Using video in machine understanding has re-
cently become a signi�cant research topic. One
of the more active areas is activity understand-
ing from video imagery [Kanade et al., 1997].
Understanding activities involves being able to
detect and classify targets of interest and ana-
lyze what they are doing. Human motion anal-
ysis is one such research area. There have been
several good human detection schemes, such as
[Oren et al., 1997] which use static imagery. But
detecting and analyzing human motion in real
time from video imagery has only recently be-
come viable with algorithms like P�nder [Wren
et al., 1997] and W 4 [Haritaoglu et al., 1998].
These algorithms represent a good �rst step to
the problem of recognizing and analyzing hu-
mans, but they still have some drawbacks. In



general, they work by detecting features (such
as hands, feet and head), tracking them, and �t-
ting them to some a priori human model such as
the cardboard model of Ju et al [Ju et al., 1996].

The VSAM IFD proposes the use of the \star"
skeletonization procedure for analyzing the mo-
tion of targets [Fujiyoshi and Lipton, 1998] -
particularly, human targets. The notion is that
a simple form of skeletonization which only ex-
tracts the broad internal motion features of a
target can be employed to analyze its motion.
This method provides a simple, real-time, ro-
bust way of detecting extremal points on the
boundary of the target to produce a \star"
skeleton. The \star" skeleton consists of the
centroid of an entity and all of the local extremal
points which can be recovered when traversing
the boundary of the entity's image (Figure 11).
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Figure 11: The boundary is \unwrapped" as a
distance function from the centroid. This func-
tion is then smoothed and extremal points are
extracted.

Figure 12 shows the skeletons of various objects.
It is clear that while this form of skeletonization
provides a sparse set of points, it can neverthe-
less be used to classify and analyze the motion
of various di�erent types of entity.

3.6 Human motion analysis

One technique often used to analyze the motion
or gait of an individual target is the cyclic mo-
tion of skeletal components [Tsai et al., 1994].
However, in this implementation, the knowl-
edge of individual joint positions cannot be de-

(a) Human

(b) Vehicle

(c) Polar bear

video image motion detection skeleton

Figure 12: Skeletonization of di�erent moving
targets. It is clear the structure and rigidity
of the skeleton is signi�cant in analyzing target
motion.

termined in real-time, so a more fundamental
cyclic analysis must be performed. Another cue
to the gait of the target is its posture. Using
only a metric based on the \star" skeleton, it is
possible to determine the posture of a moving
human. Figure 13 shows how these two prop-
erties are simply extracted from the skeleton.
The uppermost skeleton segment is assumed to
represent the torso, and the lower left segment
is assumed to represent a leg, which can be an-
alyzed for cyclic motion.
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Figure 13: Determination of skeleton features.
(a) � is the angle the left cyclic point (leg) makes
with the vertical, and (b) � is the angle the torso
makes with the vertical.

Figure 14 shows human target skeleton motion
sequences for walking and running and the val-
ues of �n for the cyclic point. These data were



acquired in real-time from a video stream with
frame rate 8Hz.
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Figure 14: Skeleton motion sequences.
Clearly, the periodic motion of �n provides cues
to the target's motion as does the mean value
of �n.

Comparing the average values �n in �gures
14(e)-(f) show that the posture of a running
target can easily be distinguished from that of
a walking one using the angle of the torso seg-
ment as a guide. Also, the frequency of cyclic
motion of the leg segments can also be used to
determine human activity.

Another approach to classifying a moving object
is to determine whether it is rigid or non-rigid
by examining changes in its appearance over
multiple frames [Wixson and Selinger, 1998].
This is most useful for distinguishing vehicles
from humans and animals.

3.7 Airborne Surveillance

Fixed ground-sensor placement is �ne for de-
fensive monitoring of static facilities such as
depots, warehouses or parking lots. In those
cases, sensor placement can be planned in ad-
vance to get maximum usage of limited VSAM
resources. However, the battle�eld is a large
and constantly shifting piece of real-estate, and
it may be necessary to move sensors around in
order to maximize their utility as the battle un-
folds. While the airborne sensor platform di-
rectly addresses this concern, the self-motion of
the aircraft itself introduces challenging video
understanding issues.

3.7.1 Airborne Target Tracking

Target detection and tracking is a di�cult prob-
lem from a moving sensor platform. The di�-
culty arises from trying to detect small blocks of
moving pixels representing independently mov-
ing target objects when the whole image is shift-
ing due to self-motion (also known as host mo-
tion). The key to our success with the air-
borne sensor is characterization and removal
of host motion from the video sequence using
the Pyramid Vision Technologies PVT-200 real-
time video processor system. As new video
frames stream in, the PVT processor registers
and warps each new frame to a chosen refer-
ence image, resulting in a cancelation of pixel
movement caused by host motion, and leading
to a \stabilized" display that appears motion-
less for several seconds. Airborne target detec-
tion and tracking is then performed using three-
frame di�erencing after using image alignment
to register frame It�2 to It and frame It�1 to It.
This registration is performed at 30 frames/sec.

During stabilization, the problem of moving tar-
get detection from a moving platform is ideally
reduced to performing VSAM from a stationary
camera, in the sense that moving objects are
readily apparent as moving pixels in the image.
However, under real circumstances some of the
remaining residual pixel motion is due to par-
allax caused by signi�cant 3D scene structure.
This is a subject of on-going research.



3.7.2 Camera Fixation and Aiming

It is well known that human operators fatigue
rapidly when controlling cameras on moving air-
borne and ground platforms. This is because
they must continually adjust the turret to keep
it locked on a stationary or moving target. Ad-
ditionally, the video is continuously moving, re-
ecting the ego-motion of the camera. The com-
bination of these factors often leads to operator
confusion and nausea. We have built upon im-
age alignment techniques [Bergen et al., 1992,
Hansen et al., 1994] to stabilize the view from
the camera turret and used the same techniques
to automate the camera control, thereby signif-
icantly reducing the strain on the operator. In
particular, we use real-time image alignment to
keep the camera locked on a stationary or mov-
ing point in the scene, and to aim the camera at
a known geodetic coordinate for which reference
imagery is available. More details can be found
in [Wixson et al., 1998], this proceedings.

Figure 15 shows the performance of the sta-
bilization/�xation algorithm on two ground
points as the aircraft traverses an approximate
ellipse over them. The �eld of view in these
examples is 3�, and the aircraft took approxi-
mately 3 minutes to complete each orbit.

3.7.3 Air Sensor Multi-Tasking

Occasionally, a single camera resource must be
used to track multiple moving objects, not all of
which �t within a single �eld of view. This prob-
lem is particularly relevant for high-altitude air
platforms that must have a narrow �eld of view
in order to see ground targets at a reasonable
resolution. Sensor multi-tasking is employed to
switch the �eld of view periodically between two
(or more) target areas that are being monitored.
This process is illustrated in Figure 16 and de-
scribed in detail in [Wixson et al., 1998].

4 Site Modeling

We have used site models in the VSAM program
both to improve the human-computer interface
and to enable various tracking capabilities such
as inferring target positions and camera visibil-

(A) (B)

Figure 15: Fixation on target point A and on
target point B. The images shown are taken
0, 45, 90 and 135 seconds after �xation was
started. The large center cross-hairs indicate
the center of the stabilized image, i.e. the point
of �xation

ity. These models have included automatically-
generated image mosaics, USGS orthophotos,
Digital Elevation Models (DEMs), and CAD
models in VRML.

The OCU site model contains VSAM-relevant
information about the area being monitored.
This includes both geometric and photometric
information about the scene, represented us-
ing a combination of image and symbolic data.
Site model representations have intentionally
been kept as as simple as possible, with an
eye towards e�ciently supporting some speci�c
VSAM capabilities:

� The site model must primarily support OCU
workstation graphics that allow the operator
to visualize the whole site and quickly compre-
hend geometric relationships between sensors,



Figure 16: Footprints of airborne sensor being
autonomously multi-tasked between three dis-
parate geodetic scene coordinates.

targets, and scene features.

� The site model provides a geometric context
for VSAM. For example, we might directly task
a sensor to monitor the door of a building for
people coming in and out, or specify that vehi-
cles should appear on roads.

� A 3D site model supports visibility analysis
(predicting what what portions of the scene are
visible from what sensors( so that sensors can
be e�ciently tasked.

� An accurate 3D site model supports target
geopositioning via intersection of viewing rays
with the terrain.

4.1 Coordinate Systems

Two geospatial site coordinate systems are used
interchangeably within the VSAM testbed. The
WGS84 geodetic coordinate system provides a
reference frame that is standard, unambiguous
and global (in the true sense of the word). Un-
fortunately, even simple computations such as
the distance between two points become com-
plicated as a function of latitude, longitude and
elevation. For this reason, geometric processing
is performed within a site-speci�c Local Verti-
cal Coordinate System (LVCS) [ASP, 1980]. An
LVCS is a Cartesian system oriented so that the
positive X axis points east, positive Y points
true north, and positive Z points up. All that
is needed to completely specify an LVCS is the
3D geodetic coordinate of its origin point. Con-
version between geodetic and LVCS coordinates
is straightforward, so that each can be used as
appropriate to a task.

4.2 Model Representations

Figure 17 illustrates the wide variety of site
model representations that have been used in
either the 1997 IFD VSAM demo system or the
1998 testbed system.

A) USGS orthophoto. The United States
Geological Survey (USGS) produces several dig-
ital mapping products that can be used to cre-
ate an initial site model. These include

� Digital Orthophoto Quarter Quad (DOQQ) -



a nadir (down-looking) image of the site as it
would look under orthographic projection (Fig-
ure 17A). The result is an image where scene
features appear in their correct horizontal posi-
tions.

� Digital Elevation Model (DEM) - an image
whose pixel values denote scene elevations at the
corresponding horizontal positions. Each grid
cell of the USGS DEM shown encompasses a
30-meter square area.

� Digital Topographic Map (DRG) - a digital
version of the popular USGS topo maps.

� Digital Line Graph (DLG) - vector representa-
tions of public roadways and other cartographic
features. Many of these can be ordered directly
from the USGS EROS Data Center web site, lo-
cated at URL http://edcwww.cr.usgs.gov/.
The ability to use existing mapping products
from USGS or National Imagery and Mapping
Agency (NIMA) to bootstrap a VSAM site
model demonstrates that rapid deployment of
VSAM systems to monitor trouble spots around
the globe is a feasible goal.

B) Custom DEM

The Robotics Institute autonomous helicopter
group has mounted a high precision laser range
�nder onto a remote-control Yamaha helicopter.
This was used to create a high-resolution (half-
meter grid spacing) DEM of the Bushy Run site
for VSAM DEMO I (Figure 17B). Raw radar
returns were collected with respect to known
helicopter position and orientation (using on-
board altimetry data) to form a cloud of points
representing returns from surfaces in the scene.
These points were converted into a DEM by pro-
jecting into LVCS horizontal-coordinate bins,
and computing the mean and standard devia-
tion of height values in each bin.

C) Mosaics. A central challenge in surveil-
lance is how to present sensor information to a
human operator [Miller and Amidi, 1998]. The
relatively narrow �eld of view presented by each
sensor makes it very di�cult for the operator to
maintain a sense of context that enables him or
her to know just what lies outside the camera's
immediate image. Image mosaics from moving
cameras overcome this problem by providing ex-

tended views of regions swept over by the cam-
era. Figure 17C displays an aerial mosaic of
the Demo I Bushy Run site. The video sequence
was obtained by ying over the demo site while
panning the camera turret back and forth and
keeping the camera tilt constant[Hansen et al.,
1994, Sawhney and Kumar, 1997, Sawhney et

al., 1998]. The VSAM IFD team also demon-
strated coarse registration of this mosaic with a
USGS orthophoto using a projective warp to de-
termine an approximate mapping from mosaic
pixels to geographic coordinates. It is feasible
that this technology could lead to automated
methods for updating existing orthophoto in-
formation using fresh imagery from a recent y-
through. For example, seasonal variations such
as fresh snowfall (as in the case of VSAM Demo
I) can be integrated into the orthophoto.

D) VRML models. Figure 17D shows a
VRML model of one of the Bushy Run build-
ings and its surrounding terrain. This model
was created by the K2T company using the fac-
torization method [Tomasi and Kanade, 1992]

applied to aerial and ground-based video se-
quences. Another use of VRML models in the
VSAM system is to display spherical mosaics
with the user immersed at the location of the
focal point (more on this below).

E) Compact Terrain Data Base (CTDB).

Recently, we have begun to use the Compact
Terrain Data Base (CTDB) to represent full site
models. The CTDB was originally designed to
represent large expanses of terrain within the
context of advanced distributed simulation, and
has been optimized to e�ciently answer geo-
metric queries such as �nding the elevation at a
point in real-time. Terrain can be represented
as either a grid of elevations, or as a Triangu-
lated Irregular Network (TIN), and hybrid data
bases containing both representations are al-
lowed. The CTDB also represents relevant car-
tographic features on top of the terrain skin,
including buildings, roads, bodies of water, and
tree canopies. Figure 17E shows a small portion
of the Schenley Park / CMU campus CTDB
currently being generated for the 1998 VSAM
demo. In addition to determining object ge-
olocation by intersecting viewing rays with the
ground, we are using the CTDB to perform oc-



Figure 17: A variety of site model representations have been used in the VSAM IFD testbed
system: A) USGS orthophoto; B) custom DEM; C) aerial mosaic; D) VRML model; E) CTDB site
model; and F) spherical representations.



clusion analysis by determining inter-visibility
of one point from the viewpoint of another. An-
other important bene�t to using CTDB as a
site model representation for VSAM process-
ing is that it allows us to easily interface with
synthetic environment tools ModSAF and Mod-
Stealth.

F) Spherical Representations.

Everything that can be seen from a stationary
camera can be represented on the surface of
a viewing sphere [Adelson and Bergen, 1991].
This is true even if the camera is allowed to pan
and tilt about the focal point, and to zoom in
and out { the image at any given (pan,tilt,zoom)
setting is essentially a discrete sample of the
bundle of light rays impinging on the camera's
focal point. This year, the VSAM IFD team is
making use of this fact to design camera-speci�c
representations of the geometry and photome-
try of the scene (Figure 17F). Spherical lookup
tables are being built for each �xed-mount SPU
to precompile and store the 3D locations and
surface material types of the points of inter-
section of that camera's viewing rays with the
CTDB site model. Spherical mosaics are being
produced in real-time to provide an extended
view of what can potentially be seen from the
camera, again to provide a better sense of con-
text to the human observer. Figure 18 dis-
plays a spherical mosaic constructed by panning
and tilting a stationary camera mounted on a
rooftop at the VSAM Demo II site. This rep-
resentation can be displayed using a VRML or
RealSpace viewer with the observer situated at
the center of the sphere for a realistic surround-
video e�ect. The ultimate goal is to display
extracted moving entities in real-time superim-
posed on this extended spherical background.

4.3 Model-based Geolocation

One example of model-based VSAM is compu-
tation of target geolocation from a monocular
view. We believe the key to coherently integrat-
ing a large number of target hypotheses from
multiple widely-spaced sensors is computation
of target spatial geolocation. In regions where
multiple sensor viewpoints overlap, object tra-

Figure 18: Spherical mosaic from a camera at
the VSAM Demo II site.

jectories can be determined very accurately by
wide-baseline stereo triangulation. However, re-
gions of the scene that can be simultaneously
viewed by multiple sensors are likely to be a
small percentage of the total area of regard in
real outdoor surveillance applications, where it
is desirable to maximize coverage of a large area
given �nite sensor resources.

Figure 19: Estimating object geolocations by
intersecting target viewing rays with a terrain
model.

Determining target trajectories from a single
sensor requires domain constraints, in this case
the assumption that the object is in contact
with the terrain. This contact location is es-
timated by passing a viewing ray through the



bottom of the object in the image and inter-
secting it with a model representing the ter-
rain (see Figure 19). Sequences of location es-
timates over time are then assembled into con-
sistent object trajectories. Previous uses of the
ray intersection technique for object localization
in surveillance research have been restricted to
small areas of planar terrain, where the relation
between image pixels and terrain locations is a
simple 2D homography [Bradshaw et al., 1997,
Flinchbaugh and Bannon, 1994, Koller et al.,
1993]. This has the bene�t that no camera
calibration is required to determine the back-
projection of an image point onto the scene
plane, provided the mappings of at least four
coplanar scene points are known beforehand.
However, the VSAM testbed is designed for
much larger scene areas that may contain signif-
icantly varied terrain. We perform geolocation
using ray intersection with full terrain models
provided by either digital elevation maps, or the
compact terrain database. See [Collins et al.,
1998] in this proceedings for more details.

5 Human-Computer Interface

Keeping track of people, vehicles, and their in-
teractions, over a chaotic area such as the bat-
tle�eld, is a di�cult task. The commander obvi-
ously shouldn't be looking at two dozen screens
showing raw video output { that amount of
sensory overload virtually guarantees that in-
formation will be ignored and would require
a prohibitive amount of transmission band-
width. Our approach is to provide an interac-
tive, graphical visualization of the battle�eld by
using VSAM technology to automatically place
dynamic agents representing people and vehi-
cles into a synthetic view of the environment.

This approach has the bene�t that visualization
of the target is no longer tied to the original res-
olution and viewpoint of the video sensor, since
a synthetic replay of the dynamic events can
be constructed using high-resolution, texture-
mapped graphics, from any perspective. Par-
ticularly striking is the amount of data com-
pression that can be achieved by transmitting
only symbolic georegistered target information
back to the operator control unit instead of raw

video data. Currently, we can process NTSC
color imagery with a frame size of 320x240 pix-
els at 10 frames per second on a Pentium II
PC, so that data is streaming into the system
through each sensor at a rate of roughly 2.3Mb
per second per sensor. After VSAM processing,
detected targets hypotheses contain information
about object type, target location and velocity,
as well as measurement statistics such as a time
stamp and a description of the sensor (current
pan, tilt, and zoom for example). Each target
data packet takes up roughly 50 bytes. If a sen-
sor tracks 3 targets for one second at 10 frames
per second, it ends up transmitting 1500 bytes
back to the OCU, well over a thousandfold re-
duction in data bandwidth.

5.1 Benning MOUT Site
Experiment

Ultimately, the key to comprehending large-
scale, multi-agent events is a full, 3D immer-
sive visualization that allows the human oper-
ator to y at will through the environment to
view dynamic events unfolding in real-time from
any viewpoint. A geographically accurate 3D
model-based visualization can give the comman-
der a comprehensive overview of the battle�eld
by displaying people and vehicles dynamically
interacting in their proper spatial relationships
to each other and to 3D cartographic features
such as buildings and roads.

We envision a graphical user interface based on
cartographic modeling and visualization tools
developed within the Synthetic Environments
(SE) community. The site model used for
model-based VSAM processing and visualiza-
tion is represented using the Compact Ter-
rain Database (CTDB). Targets are inserted
as dynamic agents within the site model and
viewed by Distributed Interactive Simulation
clients such as the Modular Semi-Automated
Forces (ModSAF) program and the associated
3D immersive ModStealth viewer. We have
already demonstrated proof-of-concept of this
idea at the Dismounted Battle Space Battle
Lab (DBBL) Simulation Center at Fort Ben-
ning Georgia as part of the April 1998 VSAM
workshop. On April 13, researchers from CMU



set up a portable VSAM system at the Benning
Mobile Operations in Urban Terrain (MOUT)
training site. The camera was set up at the
corner of a building roof whose geodetic coor-
dinates had been measured by a previous sur-
vey [GGB, 1996], and the height of the cam-
era above that known location was measured.
The camera was mounted on a pan-tilt head,
which in turn was mounted on a leveled tripod,
thus �xing the roll and tilt angles of the pan-
tilt-sensor assembly to be zero. The yaw angle
(horizontal orientation) of the sensor assembly
was measured by sighting through a digital com-
pass. After processing several troop exercises,
log �les containing camera calibration informa-
tion and target hypothesis data packets were
sent by FTP back to CMU and processed using
the CTDB to determine a time-stamped list of
moving targets and their geolocations. Later in
the week, this information was brought back to
the DBBL Simulation Center at Benning where,
with the assistance of colleagues from BDM,
it was played back for VSAM workshop atten-
dees using custom software that broadcast time-
sequenced simulated entity packets to the net-
work for display by both ModSAF and Mod-
Stealth. Some processed VSAM video data and
screen dumps of the resulting synthetic environ-
ment playbacks were shown previously in Fig-
ure 20.

5.2 3D Immersive VSAM

The Fort Benning experiment demonstrated
that it is possible to automatically detect and
track multiple people and vehicles from a VSAM
system and insert them as dynamic actors in a
synthetic environment for after-action review.
We are proposing that, with some modi�ca-
tions, this process can also form the basis for a
real-time immersive visualization tool. First, we
are currently porting object geolocation compu-
tation using the CTDB onto the VSAM sensor
processing unit platforms. Estimates of target
geolocation will be computed within the frame-
to-frame tracking process and will be transmit-
ted in data packets back to the operator control
workstation. Secondly, at the operator worksta-
tion, incoming object identity and geolocation

data packets will be repackaged on the y into
Distributed Interactive Simulation (DIS) pack-
ets that are understood by ModSAF and Mod-
Stealth clients. At that point, targets will be
viewable within the context of the site model
by the 3D ModStealth viewer.

A real-time immersive visualization system
would allow us to explore several experimental
human-machine interface questions, the most
important of which is: can the user get a feel
for what activity is taking place purely by view-
ing events within the synthetic environment? If
not, what additional information, such as infre-
quently updated images or very low-resolution
video, is necessary to complete the picture? Can
the operator e�ectively task troops to intercept
a moving target on the basis of what he sees
in the synthetic environment? Can the 3D syn-
thetic environment be used to interactively con-
trol a multi-sensor VSAM system? (For exam-
ple, the operator could be placed at the same lo-
cation of the sensor and allowed to rotate their
viewpoint within the simulated environment {
thereby teleoperating the camera pan-tilt unit
to point in the same direction.) What might
be a good approach to specifying 3D regions
of interest while immersed within a simulated
environment? We expect to answer some of
these questions within our third year research
program.

6 VSAM Demonstrations

6.1 Demo I : Bushy Run

VSAM Demo I was held at CMU's Bushy Run
research facility on November 12, 1997, roughly
nine months into the program. The VSAM
testbed system consisted of an OCU with two
ground-based and one airborne SPU. The demo
successfully highlighted the following technical
achievements:

� Modeling. A site model was generated us-
ing a USGS orthophoto in combination with a
high resolution DEM generated using an air-
borne laser range-�nder. At the time of the
demo, an aerial scene mosaic was generated
from the airborne sensor and geo-registered
with the orthophoto using a projective warp to



Figure 20: Sample synthetic environment visualizations of data collected at the Benning MOUT
site. A) Automated tracking of three human targets. B) ModSAF 2D orthographic map display
of estimated geolocations. C) Tracking of a soldier walking out of town. D) Immersive, texture-
mapped 3D visualization of the same event, seen from a user-speci�ed viewpoint.

hand-selected tie points.

� Ground SPUs. Two ground sensors coop-
eratively tracked a car as it entered the Bushy
Run site, parked and let out two occupants. The
two pedestrians were detected and tracked as
they walked around and then returned to their
car. The system continued tracking the car as it
commenced its journey around the site, handing
o� control between cameras as the car left the
�eld of view of each sensor. All entities were de-
tected and tracking using temporal di�erencing
motion detection and correlation-based track-
ing. Targets were classi�ed into \vehicle" or
\human" using a simple image-based property
(aspect ratio) in conjunction with a temporal

consistency constraint. Target geolocation was
accomplished by intersection of back-projected
viewing rays with the DEM terrain model. A
synopsis of the vehicle trajectory is shown in
Figure 21.

� Air SPU. The airborne platform showcased
real-time, frame-to-frame a�ne motion estima-
tion and image warping using the Sensar VFE-
100 video processing system (precursor to PVT-
200). Speci�c capabilities demonstrated were
�xating on a designated ground point while
compensating for airplane movement and vi-
bration using electronic stabilization and active
camera control, multi-tasking the airborne sen-
sor to servo between multiple designated areas



Figure 21: Synopsis of vehicle trajectory dur-
ing the Bushy Run demo.

so that the human operator could monitor sev-
eral regions simultaneously, and limited mov-
ing target detection in open areas using tempo-
ral di�erencing on electronically stabilized video
frames.

� OCU. The operator control unit featured
a 2D graphical user interface that displayed
all sensor positions, �elds of view, and target
locations overlayed on the orthophoto, along
with live microwave video feeds from all sensors
(shown previously in Figure 5). The GUI also
allowed a human operator to task the ground
sensors by selecting regions of interest and loca-
tions for sensor hand-o�, and to directly control
sensor pan/tilt and various control algorithm
parameters.

6.2 Demo II : CMU

Demo II will be held on the campus of CMU,
a much more urban environment than either
Bushy Run or the Benning MOUT site. Fig-
ure 22 shows the placement of sensors and
the OCU. IFD sensor assets include �ve �xed-
mount pan-tilt-zoom cameras and the Islander
airborne sensor. These will be augmented with
two FRE sensor packages provided by Lehigh-
Columbia (ParaCamera) and TI (video alarm
system). These sensors will all cooperate to
track a vehicle from nearby Schenley Park onto
campus, follow its path as it winds through cam-
pus and stops at the OCU building, alert the op-
erator when the vehicle's occupants attempt to
break into the building, and follow the ensuing

Figure 22: Overview of sensor placement and
OCU location for VSAM Demo II, to be held
on the campus of CMU on October 8, 1998.

car and foot chases as the vehicle and its oc-
cupants attempt to ee from the police. Some
preliminary moving object detection, tracking
and geolocation results from the VSAM Demo
II testbed system were shown in Figure 9. The
testbed system and current video understanding
technologies were presented in Sections 2 and 3.

6.3 Demo III : CMU

The VSAM IFD e�ort has been funded for a
third year. Demo III will also be held on the
CMU campus, to take advantage of the VSAM
infrastructure now in place. This section out-
lines planned goals for the third year e�ort.

System Architecture: A second OCU with
additional cameras will be added to the far
side of campus to begin exploring issues in dis-
tributed VSAM. One or two thermal sensors will
be installed to provide continuous day/night
surveillance and to gain experience in target
classi�cation and recognition from thermal im-
agery.

Sensor Control: We will add more complex
ground sensor control strategies such as sensor
multi-tasking, and the ability to perform unsu-
pervised monitoring of limited domains such as
parking lots.

Video Understanding: We will develop im-
proved capabilities for doing VSAM while in
motion, including tracking targets while the



sensor is panning and zooming, and perform-
ing real-time spherical mosaic background sub-
traction. Improved representation and classi�-
cation of targets based on edge gradients, sur-
face markings and internal motion will be ex-
plored, as well as analysis of target behaviors
using gait analysis, crowd ow analysis, and de-
tection of human-vehicle interactions. We will
also use domain knowledge of road networks to
predict trajectories of vehicles.

User Interaction: Year 3 will see the CTDB
campus site model fully integrated into the
VSAM testbed system. We will also pursue the
goal of 3D immersive graphical user interfaces
for operator visualization and sensor tasking to
the operator control workstation. Finally, year
3 will see the advent of Web-VSAM { remote
site monitoring and SPU control over the inter-
net using a JAVA DIS client. Potential sites
being evaluated for a VSAM web-cam are the
CMU campus and the Benning MOUT site.
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