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Abstract—The recent expansion of pervasive computing tech-
nology has contributed with novel means to pursue human
activities in urban space. The urban dynamics unveiled by
these means generate an enormous amount of data. These data
are mainly endowed by portable and radio-frequency devices,
transportation systems, video surveillance, satellites, unmanned
aerial vehicles, and social networking services. This has opened
a new avenue of opportunities, to understand and predict urban
dynamics in detail, and plan various real-time services and
applications in response to that. Over the last decade, certain
aspects of the crowd, e.g. mobility, sentimental, size estimation
and behavioral, have been analyzed in detail and the outcomes
have been reported. This article mainly conducted an extensive
survey on various data sources used for different urban appli-
cations, the state-of-the-art on urban data generation techniques
and associated processing methods in order to demonstrate their
merits and capabilities. Then, a possible crowd event detection
framework is discussed which fuses data from all the available
pervasive technology sources. In addition, available open-access
crowd datasets for urban event detection are provided along with
relevant Application Programming Interfaces, and finally, some
open challenges and promising research directions are outlined.

Index Terms—Urban sensing, pervasive technology, crowd
mobility and management, information fusion, decision support
system, benchmark datasets.

I. INTRODUCTION

All urban cities are becoming more interconnected with the

recent developments in the information and communication

technology (ICT) domain. Devices enabled with pervasive

computing technologies, such as, smart cards [1], [2], wearable

devices [3], Radio-Frequency (RF) communication devices

(RFCD) (e.g., mobile phones [4], [5], [6], Bluetooth [7], [8],

[9], [10], Wireless Fidelity (WiFi) [11], [12], [13], Radio-

Frequency ID (RFID), and Global Positioning System (GPS)

[14], [15], [16]), Optical-Wireless communication (OWC)

(e.g., infrared or IR devices) [17], video surveillance [18],
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[19], [20], in conjunction with social media [21], [22], [23] and

different event websites are part and parcel of our daily lives.

Recent studies report that the above mentioned ubiquitous

technologies can also be employed as sensors to collect data

on human activities from the urban space and are uploaded

to distributed / centralized databases. The acquired data are

then preprocessed, mapped, and analyzed to comprehend and

possibly predict the activity related aspects of urban life.

However, the analyses of these activities are very challenging

due to the inherent ‘Big’ and/or ‘Fragmentary’ nature of the

data. Since the last decade, many works have been reported in

the literature on their processing and development of various

support systems (SS) targeting different urban applications

(UA), e.g., real-time transportation operation and management,

urban planning, food and water stock planning, optimal re-

source allocation, and crowd safety management [24], [25],

[26].

Tailored mainly by the detected urban events, these SS

mostly consist of two major components: an Urban Event

Detection (UED) System or UEDS, and a Decision Support

System or DSS. The UEDS detects a crowd event in a

geo-location from the crowd data by monitoring changes in

estimated crowd density with respect to a dynamically defined

threshold value. After detecting an urban event, the required

information are fed to the DSS to take necessary measure(s)

as per the UA.

Currently the usage of pervasive technology (PT) has

reached an unprecedented height. With the world population

reaching 7.5 billion in 2017 [27], the PT sensors will generate

huge amount of data. One of the major contributors to this data

is the RF communication devices, out of which the dominant

cellular phone subscribers is expected to be over 99.7% in

2017 [28]. The mobile activity data (also called call detail

record (CDR) which logs data when users initiate telecom-

munication activities, e.g., placing / receiving a call, sending

/ receiving messages, and establishing Internet connection)

in conjunction with the data provided by WiFi, GPS, and

RFID render crowd information better than any other pervasive

sources. In addition, video surveillance fitted in almost all

infrastructures and peoples’ wide usage of smart cards provide

insights on crowd mobility. The social media networks and

event websites contribute through crowd assembly data of

public events at different geo-locations. Moreover, various

government agencies use satellite and unmanned aerial vehicle

(UAV) for surveillance which could be a possible source of

crowd event data.

There have been diverse technologies and techniques to
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Fig. 1. Literature survey methodology depicted as retrieved keywords from article title (A), category wise publication distribution (B), and year wise
publications in percentage (C).

acquire as well as process this massive amount of data.

Some related survey papers have been reported in the last

few years. The techniques related to CDR data for Urban

sensing applications were explored in [24]. Authors mentioned

the pros and cons of CDR data, surveyed existing filtering

and processing methods, and recommended the application of

various datasets and methods for the different urban sensing

applications. Jiang et al. reviewed methods for information

extraction from triangulated CDR data, spatio-temporal anal-

ysis, and urban modeling [29]. Also, other studies reported

real-time road traffic information extracted from the CDR

data [30], [31], [32]. In [33], Janecek et al. proposed a novel

approach combining signaling data (‘idle’ device information)

together with CDR (SigCDR) to obtain canonical information

of the mobile users in an area. They showed through vehicle

tracking that there is a strong correlation between vehicles

on the road and CDR with signaling. Schaue et al. employed

WiFi and Bluetooth to estimate crowd densities and pedestrian

flows [34]. However, the above mentioned studies dealt only

with either CDR or SigCDR or RFCD data and did not take

into account the local context information, crowd sentiment,

and other sources of urban dynamics data. Junior et al.

[35] and Zhan et al. [36] surveyed different crowd analysis

techniques based on video surveillance data, but they left

crowd counting and density estimation methods unexplored.

In [37], Saleh et al. reviewed different crowd counting and

density estimation methods from video data. In [38], Saif et

al. presented sentiment analysis from status updates of Twitter

to evaluate different organizations’ individual performance,

pointed out the limitation of different Twitter datasets used

for sentiment analysis, and proposed STS-Gold dataset with

sentiment labels. The social networks have been considered

as a worthy source of information for research purposes due

to their web-based application programming interfaces (APIs).

In [39], Batrinca and Treleaven reviewed techniques, software

tools, and platforms for social media analytics. Different data

mining techniques and models for social media analysis were

reported in [40], [41]. Gal-Tzur et al. [42] discussed different

issues and challenges of social network’s impact on transport

services and related policy development. The usage of social

network for transportation data collection, crowd modeling,

and crowd size estimation have been previously reported

[43], [44], [45], [46], [47], [26]. Ma et al. [48] introduced

a distributed stream-based framework which fused various

information to visualize data (at the different stacks) on a map.

The framework detected the position of vehicle and then adjust

the traffic load in real-time.

Though there exist few surveys on individual aspects of

crowd data (i.e., data sources, processing methods, and event

detection), yet, a comprehensive survey is missing which

covers the state-of-the-art of various crowd data generation

sources, existing processing methods for crowd estimation

and crowd event detection, and the available UA that utilize

the processed crowd data and their corresponding APIs. In

addition, pros and cons of various crowd data (e.g., CDR,

RFCD data from sources other than mobile phone, social

network, etc.) in their usage with respective UA, are difficult to

immediately identify. It is noteworthy that, with the existing

approaches, information is usually extracted from one data

source to plan appropriate UA which may provide partial

knowledge about the crowd events leading to inaccuracy in the

services provided by the UA. To improve the accuracy of such

UA, fusion of extracted information from multiple sources

are becoming increasingly essential. To mitigate this gap, this

paper presents a comprehensive umbrella survey on the state-

of-the-art in crowd analysis for UA through UED. It provides

the advances in individual steps (i.e., crowd data sources

and their generation, crowd data processing and analysis,

and crowd estimation and UED) for designing adaptive and

efficient UA from raw crowd data. Finally, also, a generic

support system has been described, where, at first, extracted

information coming from different data sources have been

fused and required crowd information from the fused data have

been extracted, then, an urban event has been detected. This

event information then can be fed into appropriate decision

support systems to design effective UA.

The survey of the literature was performed with the question

to understand in detail the UED process from various crowd

data for designing appropriate UA. To this goal, individual

methodological articles connected to UED published dur-

ing the period 1992 to June 2017 were identified through

querying major article repositories (IEEE Xplore, Scopus,

and Google Scholar) with specific search terms. These search

terms included the keyword ’Crowd’ and at least one of

terms related to the analysis and application (e.g., data,

analysis, social, mobilephone, estimation, urban, dynamics,
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Fig. 2. Smart urbanization through ubiquitous sensing. A modernized urban space facilitates its users with infrastructures to use a number of smart tools. The
raw data generated by these ubiquitous sensors can be categorized based on their sources as: CDR data, RF based data, IR data, video data, transportation
data, social network and event website data, and satellite and UAV data. The information coming from various ubiquitous sensors are fused and fed into
intelligent processing systems (e.g., UEDS). The knowledge provided by the UEDS from the fused information, as well as local context, the crowd size and
probable urban event at a geo-location are predicted. This knowledge can further be utilized in personalizing and providing various urban applications using
application specific DSSs.

detection, mobility, events, transport, and various ubiquitous

urban sensors, etc.). The returned list of articles was carefully

reviewed based on their relevance to the UED and the rele-

vant articles have been included in the reference. Figure 1A

shows a wordcloud (http://www.wordle.net/) of the articles’

title words, where the size of a word denotes the relative

number of occurrences in article titles. As seen in Figure

1B, these articles were then carefully assigned to research

areas based on their publication titles as indicated by Thomp-

son ReutersTMInCitesTMJournal Citation Report c© (https://jcr.

incites.thomsonreuters.com/) covering: Computer Science (in-

cluding Personal/Ubiquitous/Mobile/Cloud Computing, Neu-

rocomputing, Machine Learning, etc.), Transportation, Com-

munication, Computer Vision, Multidisciplinary Sciences, Ap-

plications of Artificial Intelligence, and Others (including

Civil/Electrical Engineering, Geography, Management). The

main focus of these articles were the methods that describe

detection of crowd dynamics provided by crowd data. These

dynamics generally consist of crowd count [6], [7], [11], [13],

[49], [50], [17], [51], [52], crowd trajectories/mobility [32],

[53], [9], [14], [54], crowd sentiment [21], and crowd behavior

[18], [20], [55], [56], [57], [58], [51], [59], [60]. These articles

clearly showed an increasing trend in the crowd event detection

research for UA (see Figure 1C). As the main purpose of

this work has been to report latest progress in UED which

depends on the crowd dynamics except for crowd behavior

(also detectable mainly using video data), the studies related

to crowd behavior has not been reported here.

The main contributions of the paper can be categorized as

follows:

• Review on various crowd data for different UA;

• Survey on these data generation and processing methods

for crowd event detection;

• Study on available open access benchmark crowd datasets

and different APIs;

• Describe a generic framework in the form of Urban Event

Detection System to demonstrate the possible usage of the

crowd data; and

• Identify some open challenges, and future research direc-

tions.

The organization of this paper is as follows: section II

narrates an overview of the urban sensing applications and

different crowd data sources used for various UA. Section

III discusses the existing state-of-the-art crowd analysis tech-

niques, including information fusion, for crowd size estimation

and crowd event detection. Section IV presents some available

APIs and benchmark datasets used for crowd size estimation.

The exemplary and generic framework for the SS has been

outlined in Section V. Section VI lists some open challenges

and probable research opportunities in crowd event detection.

The article concludes in Section VII.

II. OVERVIEW OF URBAN SENSING AND VARIOUS CROWD

DATA SOURCES

A. Crowd Mobility and Urban Sensing

Crowd is, “... a large group of individuals in the same

physical environment, sharing a mutual interest” [61] which

is, defined by the shared emotional experiences among the

members [62]. Also, structurally, few individuals together form

a group, and several of these groups with a common goal make

them a crowd. The management of crowd is very challenging

and a lot of research have been conducted since the last

decade related to crowd count, crowd density estimation,

crowd pattern, and crowd event estimation. The mobility of

a crowd’s members in the urban space for various purposes

(e.g., commuting, shopping, traveling, activities, etc.) make

them interact with the environment (e.g., purchase a ticket,

activity using mobile phone, appearance in a social network,

etc.) which generate huge amount of data. These data include–

mobile activity data, RF data, IR data, transport data (including

ticket and parking lot), social network data, video surveillance

data, satellite image, UAV, and census data (See figure 2).

These heterogeneous crowd data produced by different urban

sensors in the urban space are collected, fused, and analyzed
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Fig. 4. Triangulation principle confirms the location of an UEq. Based on
RSS value and TA(ti), BSs identifies a UEq with high accuracy.

to estimate the activities, and mobility of urban inhabitants

through a process called Urban Event Detection. Also, careful

analysis of these data may provide useful information about

the crowd, such as, crowd size prediction, crowd monitoring,

and most importantly– ‘urban application planning’. For exam-

ple, among the urban services, transportation is a vital service

and is directly related to the mobility of the crowd. The UEDS

estimates the crowd size and detects a crowd event in a geo-

location if the changes in crowd density estimated from the

crowd data collected by the different urban sensors are higher

compared to a given threshold value. Here Census data may

be used as baseline population information at a given geo-

location.

Table I lists the various s, and the data source(s) used in

those applications. It can be noticed that data coming from

almost all the sources support ‘event detection’ process. In

addition, most reported articles did not use more than 1 sources

(at times maximum 2) for their event detection or decision

making process.

B. Crowd Data– Sources, Generation, and Applications

This section provides overview of various crowd data

sources, generation of such data at the sources, and their

possible urban applications.

1) Mobile Phone Network Data: The CDR data is gener-

ated when voice/text are exchanged between user equipments

(UEq) and each of these records contain the source user ID

(SID), destination user ID (DID), source cell ID (SCID),

destination cell ID (DCID), timestamp (TS), call duration

(t), etc. as shown in Table II. The cell ID includes the latitude

and longitude information of a geo-location (Table II). The In-

ternet protocol detail record (IPDR) also provides a significant

amount of information about user’s activities. Some fields of

IPDR are Source and destination IP addresses, service type,

vendor ID, type of application, total upstream/downstream data

volume, etc. In both cases, the UEq is communicating with the

Cellular Access Point or CAP (e.g., Base station or BS). The

area covered by a CAP or BS is known as a ‘Cell’ (Figure

3 (Left)). A geographical area is divided into a large number

of cells. The cell size is not uniform, and depends on many

factors like propagation environment and system condition. A

single base station controller (BSC) controls 10 to 100 BSs.

Measurement of Received signal strength (RSS) from UEq,

and handover control are the core functions of the BSC. A

Mobile Switching Center (MSC) controls all BSCs. A group

of cells are called a location area or routing area or tracking

area. When an UEq is idle and within the location area, it is

reached via a periodic paging signal. If the UEq moves to the

different location area, it executes location update. When an

UEq is moved to another cell during a call or data session,

handover is performed and location area of the UEq is updated.

Figure 3 (right) shows that the location area information (LAI)

is updated:

• when handover (such as both vertical (e.g., 3G to 4G),

and horizontal handover (e.g., one BS to another BS))

occurs [63];

• periodically the current location of UEq in a BS;

• when an UEq moves between adjacent location areas.

The cellular system uses triangulation principle to identify

an UEq in a geo-location (see Figure 4). In this principle,

all three BSs use timing advance (TA) and RSS to identify

the location of an UEq with relatively high accuracy. As

these mobility data contain user’s privacy information, cellular

service providers share a portion of these data after using an

anonymity technique based on the rules and restrictions of the

country. Real-time aggregated data can be difficult to access.

Thus a possible solution is that a subset of this data can be

analyzed.
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TABLE I
DATA SOURCE FOR DIFFERENT URBAN APPLICATIONS

Urb. Sen. Param. CDR Orig.-Dest. Trans. GPS Bluetooth WiFi RFID Video Soc. Net. Act.Trac. Sat. UAV Census

Land Use ❉ ❉ ❉ ❉ ❉

Mobility pattern ❉ ❉ ❉ ❉

Periodic activity ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉

Social tier ❉ ❉

Crowd Sentiment ❉

Crowd behavior ❉ ❉

Crowd count ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉

Pop. density ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉

Event detection ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉ ❉

Legends: Urb. Sen. Param.–Urban Sensing Parameter; Orig.-Dest. Trans.–Origin-Destination Matrix for Transportation; Soc. Net.–Social Network; Act.
Trac.–Activity Tracker; Sat.–Satellite;

The CDR/IPDR data are event-driven, and captured when

cellular mobile activities such as voice calls, text messages,

and data usages (i.e. 3G/4G/5G) are detected. Such data offer

some opportunities for different services as it reflects the

spatio-temporal patterns of the users’ activities. These data

have been used for trip analysis [25], [64], [65], detecting

social events [66], urban sensing [24], city modeling [29],

finding crowd trajectories [32], planning and modeling urban

transport [65], [67], [68], [69], estimating an actual crowd size

in an event [49], [53], detecting tourist spot [70], and so on.

TABLE II
CDR CONTENT

SID DID SCID DCID TS t
Other
Fields

(Lat, Long) (Lat, Long)

2) RF and IR Based Data: RF data can be used to obtain

important information about the crowd size and mobility. Al-

most all the smartphone devices are equipped with Bluetooth,

WiFi, GPS and other RF sensors.

a) WiFi and Bluetooth Data: RF access point scans

UEq, such as smartphones or other RF devices, with high

directional RF beams. In response to the scan, UEq sends some

information (such as MAC address of the wireless interface,

RSS indicator, the vendor of the smartphone, RF access point

information, class of devices in case of Bluetooth, time-

stamp, etc.) to the RF access point. Based on the information

received, the RF access point detects the user’s geo-location

at a particular timestamp, then remove the redundant entries

(due to multiple switch-on interfaces) from the database as one

entry per device can exist for a specific space and time. The

stationary WiFi and Bluetooth scanners with highly directional

antennas can be placed at specific locations to gather data

about crowd dynamics in a large scale crowd event. The WiFi

and Bluetooth data can be used to monitor crowd size and

mobility [6], [7], [9], [11], [13], [50], [93], [94], retrieving

vehicle trajectories [10], [73], and crowd density estimation

[6].

b) GPS Data: GPS sensors receive signals from at least

four satellites which are visible at that time. Each satellite

transmits spatio-temporal information to the GPS sensor at

regular intervals. The GPS receiver reads the information

provided by the satellites and determines its geo-location. The

geo-location data generated by the GPS sensor are mainly used

for crowd tracking [14], [90].

c) RFID Data: A RFID reader (also known as an Inter-

rogator) reads the RFID tags (or smart labels) by using RF

beams. RFID tags also contain an integrated circuit with an

antenna. The information read from the tag is transferred to a

host computer for storing and analyzing. This RFID data can

also be used to derive crowd information (e.g., crowd counting

and monitoring) [95], [93].

d) OWC Data: Optical wireless communications (OWC)

employs free space as communication media to transmit

(in)visible light (e.g., infrared or IR) to carry the signal

between the transmitter-receiver pair(s) e.g., light emitting

diode- photodiode/phototransistor pairs. In contrast to RF

signal, the optical count/data transmission is ultra fast and

more accurate. But the coverage area is small due to ambient

condition. The OWC system data can be used to derive crowd

counting information [17].

3) Transport Data: Nowadays, many services are inter-

connected through the Internet and ICT infrastructures. The

umbrella term ‘transport data’ is used to denote data that are

generated by several subsources and/or sensors including fare

cards, smart card, public bicycle systems, parking occupancy

system, etc. People use these means for transit fare payment,

parking fee payment, and ticket booking via web-based ap-

plications (apps) or mobile apps. Data generated by these

means in addition to the passenger’s ticket purchase, booking,

and vehicle movements information (e.g., arrival time, service

time, delay time, etc.) are transferred to the central system

and stored in the transportation database in almost real-time.

A detailed review on smart card from the perspective of data

generation, processing, and applications has been reported

previously [1]. These data contain different information and

insights about the transport services and opinions of the

passengers. The parking lot occupancy information is also

essential to identify a crowd event near it.

The raw transportation data are converted to origin-to-

destination (O-D) matrix for using them in different UA.

These data are mainly used in transportation planning and

management [74], [52], [51], crowd density and crowd event

estimation [51], traveler trajectory and mobility pattern esti-
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TABLE III
SURVEY ON DIFFERENT CROWD DATA SOURCES, DATA ANALYSIS SCHEMES FOR DIFFERENT URBAN APPLICATIONS WITH THEIR REFERENCES

Data Source Data Analysis Scheme Applications Ref.

CDR

A persistence probability is used to identify user at a specific BS Est. Cr. Sz. [49]
Find the spatial and temporal regularity in daily human mobility Cr. Trj. / Cr. Sz. [32]
Find the O-D matrices for the transportation Urb. Trn. Pln. [71]
A method is used to detect the daily mobility patterns of large-scale crowd Cr. Trj. / Cr. Sz. [53]
A SSL based framework that identified individuals’ trips Trip analysis [25]
Tools to identify and validate road usage patterns from O-D matrices Trip analysis [64]
A tool to identify clusters of cell towers with identical call patterns Urb. Trn. Pln. [66]
Find relation between mobility and workload dynamics due to large events Management of UAs [72]
Find the frequency of travel back and forth between LA and NY Urb. Trn. Pln. [65]
Pin down the city’s hotspot & spatial structure at particular hours of a day Urb. Trn. Pln. [67], [68]
Optimized a transit network based on mobility patterns of people Urb. Trn. Pln. [69]

RF/IR

A framework to monitor a crowd with WiFi activated handheld devices Est. Cr. Sz. [11], [13]
A framework to monitor a crowd with Bluetooth activated handheld devices Est. Cr. Sz. [6], [7], [11]
Bluetooth scan analyzed the crowd trajectory in a mass gathering Cr. Trj. [9]
Bluetooth scan was employed to analyze O-D Martics Urb. Trn. Pln. [73]
GPS data can be utilized to perceive the pedestrian motion Cr. Trj. / Cr. Sz. [14]
A framework to monitor a crowd with RFID Est. Cr. Sz. [50]
A procedure to extricate vehicular trajectories and trip information vehicular trajectories [10]
IR based based Pedestrian count using Non-parametric statistical method Cr. Co. [17]

Transport

A model was used for the timing of trip based on set of ana. tras. serv. plan Cr co. UED [74]
A heuristic algorithm analyzes O-D matrix Est. trav. Mob. [2]
A probabilistic model analyzes smart card data Est. Cr. Sz. & UED [51]
A framework inspects Bicycle mobility data Urb. Att.& Urb. Mod. [75]
MNL and EC models observe different aspects of crowding on travel time Est. Cr. Sz.& UED [52]

SN

DBSCAN algorithm is employed to spatio-temporal tweets Est. Cr. Sz. & UED. [76]
A framework analyzes tweets related to sentiment of passenger Urb. Trn. Pln. [21]
An algorithm analyzes Tweets UED [23]
BDP analyzes geo-tagged SN data and illustrates events on GIS RT UED [77]
Combines DBC, SN data mining and outlier detection to detect crowds RT UED [78]
The MABED model analyzes tweets of each event Vis. To. Tr. Cr. Ev. [79]

Video Data

Regression methods dealing with many co-linearity among features. image-based Cr. Co. [80]
Sta. cr-gr anal. to estimate the stationary time of foreground pixels Trf. Fl. Co. [81]
Deep CNN was used to extract extract high and low level features Est. Cr. Co. Den. [82]
A model is used to segment and detect individual Est. Cr. Co. [37]
Each independent motions are detected using clustering Est. Cr. Co. [54]
A linear regression model was used foreground pixels as well as edge Est. Cr. Co. Den. [83]
A FFNN method was employed foreground pixels as well as edge Est. Cr. Co. Den. [84]
A LR model and foreground pixel employed as an image feature Est. Cr. Co. Den. [85]
A BPNN and foreground segmentation as well as edge detection were used Est. Cr. Co. Den. [86]
Texture-based analysis was used Est. Cr. Co. Den. [37]
Interest points were employed as feature masked with optical flow model Est. Cr. Co. Den. [87]

Satellite & UAV
An algorithm for different resolution images using probabilistic thresholds Est. Cr. Co. Den. [88]
Tex. clas. met. to identify crowded regions from aerial images Est. Cr. Co. Den. [89]

Hybrid

App and GPS trajectory data were fused Est. Cr. Co. Den. [90]
CDR/IPDR and Twitter data were fused Est.Cr. Sz. & UED [22]
CDR and Flicker data were fused Urb. att. [70]
Twitter and Instagram Data were fused Det. on-going evt. [91]
Bluetooth and GPS location Data were fused and analyzed Trk. Cr. Act./Cr. Trj. [92]

Legends: Est. Cr. Sz.: Estimate Crowd size; Cr. Trj.: Crowd trajectory; Cr. Sz.: Crowd size; Urb. Trn. Pln.: Urban Transport planning; SSL–Supervised
Statistical Learning; Cr. Co.: Crowd count; Est. trav. mob. –Estimated travelers mobility; Urb. Att.– Find Urban Attractiveness; Urb. Mod.–Urban modeling;
BDP–Big data platform; RT UED– Real-time urban event detection; Vis. To Tr Cr Ev– Visualization tool to track crowd event ; Trf. Fl. Co.: Traffic Flow
Counts; CNNConvolutional Neural Network; Est. Cr. Co. Den. - Estimate crowd count and crowd density; LR– linear regression model; FFNN–
feed-forward neural network; BPNN–back propagation neural network; Tex. Clas. Met. Texture classification methods; Det. on-going evt.–Detected on-going
event; Trk. Cr. Act. –Track crowd activity

mation [2], [75], point of interest identification [96], etc. Also,

automatic vehicle location data can be used for transportation

planning and management [97], [98].

4) Social Network Data: With the massive use of social

networks, people are generating their digital trace which

provides plentiful features of their behavior, social tier, and

finally urban dynamics. People are now sharing their space-

time information with others, read and follow the posts of other

people in various social network platforms such as Facebook,

Twitter, LinkedIn, etc. [46]. In contrast to Facebook, Twitter

is a more public profile, and it allows users to dispense their

information such as status, modes, news, etc. as a tweet (also

with hashtag) which is limited to about 150 characters [23].

Information coming from Twitter can be used for recommen-

dation system, and analysis of sentiment and different social

features [21].

A wide range of UA can be provided using social network

data. The raw form of these data include geo-referenced mes-

sages and metadata, and in some cases geo-temporal density-

based information. Geo-tagged information and messages are
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collected from the social networks using Crawlers. The spe-

cific data are collected based on the user’s query. These data

are stored and arranged in the database based on keywords

(e.g., with Hashtags). These data have been applied to iden-

tify crowd events [76], [77], [78], [79], [91], transportation

planning and management [21], and crowd sentiment analysis

[21], [12], [23].

5) Video Data: In the last decades, as a result of increased

urbanization and movement of people, large gatherings of

people are now observed in different places. Video cameras

are installed in the various important places (such as train

stations, bus stations, city surveillance, critical infrastructure,

etc.) for surveillance.

Therefore, video is an important data source for crowd

analysis. Used mainly for crowd tracking and crowd behavior

analysis [18], [20], [58], [59], [60], the video data has also

been employed in, understanding traffic flow [81], [82], and

crowd density estimation and crowd event detection [35].

6) Satellite and UAV Images: The satellite and aerial im-

ages are captured by sensors on satellites and cameras on UAV,

respectively. The satellites take images at specific times and

dates using sensors which pick up photons when they fly over

an area. The images can be combined into a mosaic image or

captured over multiple days. Examples of imaging satellites

include WorldView, Ikonos, Spot, Landsat, etc. The satellite

footprint covers a large area on Earth at high resolution.

On the other hand, UAVs can record the real-time activities

of ground area from an altitude by taking geo-tagged images

and videos. The spatial resolution depends on the altitude of

UAV (e.g., high attitude gives a low spatial resolution).

The Satellite and UAV images can provide crowd infor-

mation over a large outdoor area as they cover a broad

geographic region. However, the precision of the crowd in-

formation depends on environmental factors such as clear sky

index, ambient luminescence, shadowing, etc. These images

are employed to automatically analyze crowd count [88], [99],

crowd density [89], visual surveillance [100], and urban traffic

analysis [101].

7) Other Hybrid Data Sources: Hybrid data sources, as

combinations of some of the data sources mentioned above,

have also been reported in the literature in forms of– Applica-

tion on Smartphone for crowd monitoring [90], textitMobile

and Twitter data for crowd estimation and urban event detec-

tion [22], CDR and Flickr data for attractiveness evaluation

of urban tourist sites (e.g., Waterfalls around the New York

City) [70], Twitter and Instagram data for detecting ongoing

events [91], and Bluetooth and GPS location data for tracking

crowd activity and estimating crowd size [92].

Table IV summarizes the various advantages and disadvan-

tages of using different crowd data coming from the sources

mentioned above.

III. STATE-OF-THE-ART OF CROWD DATA ANALYSIS

This section reviews the state-of-the-art techniques from

the literature on the analysis of crowd data generated by the

different urban sensors described in section II.

A. Mobile Phone Network Data Analysis

CDR data serves as one of the major sources of crowd

analysis for UED. A subset of CDR record can be taken to

analyze and identify crowd events in specific geo-locations.

Given that human mostly follow usual routine activities,

thus, the intention is to find crowd dynamics from routine

trajectories. CDR data only records when a user’s activity is

detected, and the geo-location of the UEq is pinpointed using

the BSs latitude and longitude information. Thus the raw CDR

data has space and time sparseness. Different techniques have

been reported in the literature to identify user location and

trajectory accurately which eventually reduces the space-time

sparsity of the data [5], [49], [70].

To identify user’s location, Dong et al. defined that each

user belongs to a cylindrical cluster with a certain existence

probability [5]. Gonzalez et al. considered the users to be

concentrated at the centroid of the cell area [32]. Girardin et al.

covered all locations by multiple BSs and reported that users

were located in the best serving cell, covered by a BS, on a cell

map [70]. The measurement has been based on propagation

models and cell sectoring factors. Traag et al. also assumed a

persistence probability of a user being covered by a specific BS

based on a propagation model [49]. In addition, to identify user

trajectory, a key issue was to discover a user’s pass nodes and

most stay nodes (e.g., see Figure 5, office and home location

nodes- ‘1’ and ‘7’ along with the different pass nodes- ‘2’ to

‘6’).

Office

1

2

3

4

5

6

7

User t
ra

jecto
ry

Home

Fig. 5. User trajectory detection using cell tower. ‘1’ denotes the starting BS,
i.e., the origin point of the user (e.g., Office), and the destination point is ‘7’
(e.g., Home). ‘2’ to ‘6’ are the pass nodes.

The CDR data can be processed in two ways to find the

crowd dynamics– a) individual data processing, and b) group

data processing.

a) Individual data processing: In this technique, most

frequently visited places or most stay locations (e.g., office and

home), pass locations and thereby the daily mobility pattern

of each inhabitant can be found from CDR raw data. Two

features identify Home and Office, one is the frequency of

user contacting with a BS during the evening and daytime

respectively, and the other is the duration of stay at a place.

Some techniques have also been proposed in the literature
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TABLE IV
PROS AND CONS OF THE COMPARATIVE DATA SENSOR FOR URBAN EVENT DETECTION

Data Source Pros. Cons.

CDR
Estimate huge crowd with high accuracy Data are network driven
Find the user trajectory Privacy is major concern as human activity with mobile is highest
Huge real-time data is generated location accuracy is low compare to RF counterpart

GPS
The system is self-calibrating GPS suffers from inherent noise
User trajectory information can be recorded ndoor signal is poor

Bluetooth
Counting speed is higher than RFID Limited distance (up to 10m)
Better accuracy then RFID Interference with other RF devices and limited crowd count

WiFi
Location coverage is higher than RFID, Bluetooth Limited crowd can be counted
Estimate crowd size accurately Interference due to share bandwidth

RFID
Track crowd trajectory Additional infrastructure is required
Estimate crowd size accurately No RFID standard, low reading rate

Transport
Estimate crowd count with high accuracy Data are network driven

Private transports passenger information are missing

SN
Sentiment analysis Different language and informal words are difficult to analyze
Find social-tier Crowd estimation is not accurate
Data are user driven location accuracy is low compare to RF counterpart

Video
Analyze crowd dynamics accurately Placement of the camera ambient lighting are important
Estimate crowd size accurately Accuracy depends on image and separation

Satellite
Estimate huge crowd with high accuracy Indoor crowd size cant be approximated

Data transmission interval is about 6 hours

UAV
Cover higher outdoor area Limited flight time and no indoor coverage
Estimate real-time outdoor crowd accuracy Interrupted by environmental conditions

Census Very accurate spatial resolution Dated-out data as data are collected after 10 years interval

to find these places [29], [70], [96], [71]. This information

can be validated using the census data. By connecting several

pass nodes and stay nodes, the individual trajectory can be

constructed. Gonzalez et al. reported spatial and temporal

regularity in daily human mobility which can be represented

using simple regular patterns [32]. The same principle was

used to estimate the daily mobility tier which can be used to

find the O-D matrices for the transportation [71]. Schneider

et al. investigated a method by combining the daily mobility

patterns, called motifs, of different large-scale data sources

which can be extended to a range of UA [53]. In each dataset,

the authors observed ubiquitous daily mobility patterns which

were reproduced statistically with an analytical model. Zhao et

al. proposed a supervised statistical learning based framework

that identified individuals’ trips from CDR data [25]. Toole et

al. [64] and De Mudler et al. [102] proposed techniques which

extracted user movement profiles with high accuracy from the

CDR data. Also, there exists tools to identify and validate road

usage patterns from O-D matrices [64].

b) Group data processing: By combining some cell

tower information, events can be detected. Elzen et al. pro-

posed a tool to identify clusters of cell towers with identical

call patterns to detect events [66]. Xavier et al. related human

mobility and workload dynamics from CDR data in case of

large events for better management of UA [72].

Isaacman et al, [65] explored the CDR data to find the

frequency of travel back and forth between Los Angeles and

New York. They have identified how people travel in and

around these cities which were helpful for the urban and

transport planning. Louail et al. [67] and Isaacman et al. [68]

utilized the CDR data to pin down in the city’s hotspot, spatial

structure and the busiest points during particular hours of a

day. Di Lorenzo et al. optimized a transit network based on

mobility patterns of people extracted from CDR data which

can help government agencies to manage the transport network

efficiently [69].

B. RF Data

RF data has been an important source for UA like– crowd

mobility tracking, and accurate crowd size count. However,

the RF data generation is ‘user participatory’, therefore, the

accuracy depends on the participation of the individuals in the

crowd. Schematic diagram of data generation and processing

is shown in Figure 6.

a) WiFi and Bluetooth: WiFi access point (AP) can mon-

itor a crowd with WiFi activated handheld devices. The foot-

print of the WiFi can include a certain number of people. With

the significant number of WiFi grid, the user-driven crowd size

can be estimated precisely [11], [13]. Weppner and Lukowicz

[6], Eagle and Pentland [7] and Weppner et al. [11] presented

frameworks to estimate crowd density based on users equipped

with Bluetooth enabled handheld devices. Bluetooth can be

used to assess crowd density with an accuracy of about 75%.

Versichele et al. [9] employed Bluetooth scan to analyze the

crowd trajectory in a mass gathering. This can be used to create

visitor flow maps from several mutually exclusive visitor’s

profiles. User’s participatory Bluetooth hardware can be used

to count passenger and record O-D matrix of travelers’ journey.

These data can be used to optimize transport planning [73].

b) GPS: The GPS data can be utilized to perceive the

pedestrian motion and estimate outdoor crowd sizes [14], [90].

A Geographic Information System (GIS) is integrated with

GPS to illustrate the crowd visually [14].

c) RFID: Crowd dynamics including counting and track-

ing are also possible using RFID data. Mowasafi et al. intro-

duced a framework to detect both static and dynamic crowds

using RFID and found some significant crowd properties
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(a) Cartoon of the RF data generation process

(b) Block diagramatic representation of the RF data generation and processing steps

Time-Series
Analysis

RF access point
scans

RF receivers
responds

Information
read

Filtering
Time-series

analysis
Estimate

crowd size

Crowd size

Fig. 6. RF data generation and processing technique. The crowd size estimation steps using different RF sensors in a room are shown in (a) and the block
diagrammatic representation of each step of RF data generation and processing technique are illustrated in (b). In many of the RF system, additional RF
infrastructure is required. If all the user-participated, it can estimate a crowd size accurately.

Purchase 

Ticket/booking
Destination

Choice

Time-series

Analysis

Estimate

Crowd size

(a) Cartoon of the transportation data generation process

(b) Block diagramatic representation of the transportation data generation and process

Source and Destination
Selection

Booking
Individual at the 

destination
Time-Series

Analysis
Crowd size

Fig. 7. Transport data are generated when a ticket is purchased and booked. By analyzing these data for a particular destination, a crowd event can be
detected.

[50]. The human crowd density estimation algorithm was

then trained with mass crowd event data. The accuracy of

the algorithm was determined to be above 70%. Michau et

al. outlined a procedure to extricate vehicular trajectories

and trip information, and they have recuperated the vehicular

trajectories with the accuracy of 84% [10].

d) OWC: The OWC can also be used for crowd counting

Yang et al. introduced a nonparametric statistical method to

detect pedestrian automatically with high accuracy [17]. The

method has improve the accuracy of the counting.

C. Transport Data

The transportation data can be treated as time-series data,

collected from transportation and parking lot databases, about

the number of people coming to a destination. Therefore, time

series analysis methods can be largely applied on transporta-

tion data for UED (see Figure 7 for generation and processing

steps).

In [74], the author used London Overground network data

to manage and plan a contemporary urban railway service and

showed its potential impact. A framework was introduced for

the timing of trip based on sets of analyses and transportation

service plan. This work was also used to estimate the crowd

density and the crowd event. Fare card data have been used

to understand the mobility patterns of commuters. Nassir et

al. proposed a heuristic algorithm to find the O-D matrix

and estimated the actual travelers mobility. The algorithm was

helpful for better comprehension of the mobility motifs and
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Sentiment DB

Event DB

Social Network 
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Event

detection
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Map
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Fig. 8. Block diagram of geo-temporal observation of social network messages. The crawler periodically retrieves a set of event related information and the
user’s sentiment about these events from different social network platforms based on the queries. The retrieved spatio-temporal geo-tagged event information
is stored as a tuple field in the sentiment and event database. The textual field contains the semantics of message with hashtags. The collection of messages
that satisfy the user’s queries are stored as reports. A suitable clustering algorithm clusters the report at the end.

path options of the travelers [2]. Pereira et al. also proposed

a framework to detect crowds using public transport smart

card data by comparing habitual and non-habitual behavior of

the crowds and to assist the transport manager in mitigating

disruptions due to crowd-hotspot [51]. The framework peri-

odically retrieved possible explanatory reasons for the crowd-

hotspot using text analysis of social networks and event web-

site text data. Finally, a probabilistic model is used to estimate

over-crowding. Public bicycle system data was used to find

the individual’s movement and the results were illustrated

using a color legend. This approach identified the individual’s

mobility pattern and estimated the most visited destinations

[75]. Tirachini et al. examined different aspects of passenger

crowding in transport management and operation [52]. They

considered waiting and in-vehicle time saving, route and bus

choice, travel time reliability, passengers’ wellbeing, vehicle

size, frequency, and fare. The effect of crowding was found

to be related to demand and vehicle time-saving prediction.

The authors estimated the passenger’s discomfort on waiting

time at the stands, riding time to the services, travel time and

fare, and impact of crowding phenomenon on the health of

passengers. All these can be used to estimate the number of

the passenger for an O-D matrix and a mobility pattern.

D. Social Network Data

From the social network data collected using Crawlers allow

a user to perform sentiment analysis and event detection.

Figure 8 shows the conceptual flow diagram of Social Network

Data analysis for UED.

The sentiment analysis employs text analytics, natural lan-

guage processing, as well as computational linguistics to

extract subjective matter from the text to be analyzed. In this

case, Hashtag messages (or tweets) shared by users related to

an event or an opinion about a service are collected and stored

in a sentiment database. The sentiment of people are evaluated

via different sequential steps: firstly, collected messages are

preprocessed and then unnecessary words, preposition and

punctuations are removed. Secondly, preprocessed messages

are transformed to a feature vector. Thirdly, these features are

analyzed through Machine Learning algorithms. Finally, the

classified output is stored in the sentiment database [21].

A significant number of research articles have been found

on crowd analysis based on social network data. Arcaini et

al. suggested geo-temporal density-based technique to identify

information of regular and irregular incident announced on

Twitter [76]. The suggested method analyzed user generated

geo-referenced messages about these (a-)periodic events (i.e.,

user participatory) as well as other geo-referenced metadata.

Finally, the (a-)periodic crowd events are identified. The work

done by Candelieri and Archetti considered the streams of

Tweets on urban transport operations [21]. The proposed

framework can accumulate Tweets and analyze them to detect

crowd events or to understand the sentiment of the people. Au-

thors have tested their framework for an urban transportation

in Milan. The sentiment inferred by the passengers can help

the transport providers to modify their mobility planning [21].

Alp and Oguducu introduced an algorithm to analyze Tweets

for UED [23].

Xu et al. proposed a Bigdata model, characterized by 5Ws

(What, Where, When, Who, and Why), to detect urban events

at real-time at a geo-location from social network data [77].

The spatiotemporal information are extracted and used for a

UED, then the event is presented by GIS-based annotation. The

model has been verified by real-life data. With the increased

sharing of location and opinion of citizens on the social

network, the Location-based Social Networks (LBSN) has

gained interest by the urban planners to plan upcoming events.

Khalifa et al. combined density-based clustering, social data

mining, and outlier detection to detect crowds in cities at real-

time [78]. This method has been validated by Twitter data of

New York City on a reference (e.g., any) day and on study

day (e.g., New Years Eve) when crowd events are expected.

A mention-anomaly-based event detection (MABED)

method was proposed to detect events from Twitter data. In this

method, the period of each event was estimated from Twitter.

Authors reported linear run-time for the model in corpus size,
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and improved readability of the event description through

highlighting main words. The model helped to understand the

interest of users and designed three visualizations to track the

detected events [79].

In short, the geo-tagged information collected from the

social networks are clustered and mapped using GIS.

E. Video Data

Stationary crowd-group analysis to estimate the stationary

time of foreground pixels was proposed to perceive crowd-

scene and the effect of stationary groups on traffic flow [81].

The accuracy of the method depends on camera position,

image processing, and dynamic nature of the crowd group.

Loy et al. [80] studied as well as compared the state-of-the-

art regression methods dealing with many co-linearity among

features. They found that feature selections are important and

depend on crowd scene. These selected features can be used

for image-based crowd counting at stations. The accuracy

depends upon camera orientation and ambient light condition.

The survey by [59] gives an investigation of physics and

state-of-the-art bio-inspired techniques of crowd mobility pat-

tern. Authors have reviewed crowd density estimation and

mobility pattern analysis methods and provided some re-

search directions. A survey on pedestrian movement (i.e.,

flow) has been proposed for crowd dynamics model [103],

[104]. The model is used to design public traffic systems for

effective crowd dispersal. Authors have reviewed pedestrian

movement and crowd mobility pattern. The article in [35]

surveys on crowd analysis using computer vision and shows

crowd density estimation, crowd event detection and validation

techniques.

A deep learning based approach combining deep and shal-

low fully convolutional network was used to extract high

and low level features in an image. The high low and level

features included face/body and blob, respectively. Finally, the

crowd size was estimated from a dense crowd image [82].

Figure 9 shows the taxonomy for crowd analysis methods.

There are mainly two types of approaches reported in the

literature for crowd size estimation [35], [37]: direct detection

or object detection based approach, and indirect or feature

based approach (Figure 9).

Crowd Count 

Object detection 
based

Model-based
analysis

Clustering 
based analysis

Texture level 
analysis

Feature detection 
based

Pixel-based 
Analysis

Moving Corner 
based analysis

Crowd BehaviourCrowd Tracking

Crowds

Fig. 9. A taxonomy for crowd analysis methods. Different direct and feature
based crowd counting methods are illustrated.

In the direct method (see Figure 10 (a)), the main steps for

the detection are: segmentation, detect the individuals present

in the scenes, and count the people using classifiers (see Figure

9 (a)) [105], [106], [107]. The model-based and trajectory

clustering based approaches belong to the direct method. In the

model-based analysis, a model is used to segment and detect

and then count each individual [37], whereas, in the trajectory

clustering based approach, each independent motions in the

image are detected using clustering the site of interest, and

finally count them [54].

In the indirect method, the main step is to extract several

features (local/holistic) from the images (Figure 10 (b)). Pixel-

based, texture-based, and corner-point-based analyses belong

to the indirect method. Pixel-based analysis deals with local

features to approximate crowd size in a crowd image. How-

ever, most of the researchers pay attention to approximate

the crowd-density rather by removing the background in the

first step or generating an automatic background. For indoor

video images, authors in [83] and [84] estimated crowd size

employing a linear regression model and a feed-forward neural

network method respectively. Both papers have considered

foreground pixels as well as edge. For outdoor video images,

authors in [85] employed a linear regression model and

foreground pixel as an image feature, and in [86] employed a

back propagation neural network and foreground segmentation

as well as edge detection as an image feature. In texture-

based analysis, texture is considered as an image feature. This

method explored a coarser grain and required image patches

analysis. Texture-based crowd estimation systems for both

indoor and outdoor applications are given in tabular form in

[37]. In corner point based analysis, the researchers utilized

interest points (as feature) for crowd detection, and these

features are masked with optical flow model [87].

Image/
Video
Frame

Crowd
Size

Segmentation Classification

(a) Direct method

(b) Indirect method

Detect an
individual

Filtration &
Segmentation

Regression &
Learning

Feature
Extraction

Fig. 10. Block diagram of (a) direct and (b) indirect method of crowd analysis
from video frames or an image. In the indirect method, features are extracted
from the image which estimates large crowd size accurately compared to the
direct method.

F. Satellite and UAV Image

The following subsections discuss processing and analysis

of Satellite and UAV Images to estimate crowd event and

crowd size.

1) Satellite: Satellite image processing is time-consuming

due to their very high resolution, and successive images are

difficult to obtain due to processing time and atmospheric

conditions (see section II-B6). The images captured by a

satellite is sent to a ground station where image data is

stored in Raster format. The color composites are extracted

from the image which has been pre-processed for geometric

and radiometric connections, then digital image processing

techniques have been employed to enhance the quality of the



12

Satellite captured  

Image by sensors

Ground station 

receives Image(s)

Image 

Enhancement

UAV Image
Image Rectification 

& Restoration
Feature vector

Image acquisition Image (pre)processing Crowd counting estimation

Extract colour 

composite

Image 
Rectification 
& Restoration Approximate 

Crowd count

Information 

Extraction

Fig. 11. Block diagram of Data generation from Satellite and UAV and processing steps.

      

Fig. 12. The Kumbh Mela in Allahabad (left) on October 2012 before the
mela and (right) on February 2013 during the mela (source: http://s.ngm.com/
2014/02/kumbh-mela/index-FINAL.html).

Fig. 13. Example of two UAV images captured by thermal cameras. Crowd
size at 21.4◦ C (left image, source: https://www.drone-thermal-camera.
com/) and moving vehicle at 12.5◦ C (right image, source: https://www.
drone-thermal-camera.com/).

image. Finally, information are extracted from the image (see

Figure 11).

Figure 12 shows exemplary satellite images of Kumbh Mela,

which was held at Allahabad, India during February 2013.

The area before the mela in October 2012 (left) and during

the mela in February 2013 (right) are seen in the images. The

right image can be used to estimate the crowd size and crowd

event.

The crowd event and crowd size can be detected from

Satellite Images with a probabilistic framework. Sirmacek and

Reinartz proposed a novel approach to detect crowd auto-

matically from very high-resolution satellite images by using

airborne sensors [88]. In this method, the local features were

extracted from intensity and color bands of the image. Authors

used three different information (e.g., digital elevation model

or DEM, street segments, and shadow) for feature selection

through which they could remove redundant local features.

Then a probability density function (pdf) using Gaussian

kernel functions with adaptive bandwidth selection method

was suggested. The proposed robust algorithm can deal with

input images of different resolutions and can detect crowd

automatically using pdf function based thresholds. Worldview-

2 satellite images taken over Cairo and Munich cities were

used for testing this method, and the authors reported a very

high accuracy.

2) UAV: The UAV images are recorded with an image

coordinate (latitude, longitude) information which requires

to be converted to a standard coordinate such as Universal

Transverse Mercator (UTM) coordinate system. After the

geometric correction, the crowd size is estimated from an

image or a frame in the video using similar method discussed

in section III-E.

Figure 13 shows two thermal images taken by UAV cam-

eras.

Meynberg et al. [89] proposed texture classification methods

to identify crowded regions from aerial images. As it is hard

to get the correct size of an individual from such an image, the

authors proposed multi-class texture classification using four

classes or groups of defined crowd density ranges. Authors

reported an accuracy of 97% using both patch-based Bag-of-

Words features, and an SVM with filter-based Gabor features.

G. Information Fusion and Hybrid Data

In UED, hybrid data plays an important role and information

fusion of data coming from hybrid data sources improves the

estimation accuracy of the crowd size and UED. For example,

web-linked fixed and mobile sensors accumulate different

information from the urban space, and the information is

key for detecting urban events at various geo-locations. Using

different types of fusion techniques, information acquired from

various urban sensors can be fused based on some fuse rules

to get better, complete, appropriate and accurate information.

Moreover, this fusion technique reduces the uncertainty of the

decision support system.

1) Information Fusion: Information fusion is a technique of

integrating information extracted from heterogeneous sources

(e.g., the ones described above, see sec. II-B) with different

contextual and conceptual representations to generate a new

and enriched information set by overcoming the information

deficiencies of individual datasets. There are three types of

fusion methods [108], [109]: a) complementary fusion, b)

redundant (also called competitive) fusion, and c) cooperative

fusion.
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a) Complementary Fusion: When two or more individual

sensors (e.g., Sr1 and Sr2) extract complementary information

(e.g., D1 and D2), and the information are merged to acquire

a more complete or broader information (e.g., DS) of the

environment (Figure 14 (a)), such fusion is called comple-

mentary fusion. For example, in a video surveillance system

operating at a station, videos are collected (e.g., D1 and D2)

from multiple independent cameras (e.g., Sr1 and Sr2) and

fusing them provides the complete picture of the station (e.g.,

DS) (Figure 14 (a)).

b) Redundant Fusion: Redundant fusion, also called

competitive fusion, aggregates similar information collected

from same urban space by independent sensors (e.g., Sr1 and

Sr2) to enhance the accuracy of the information (e.g., DS)

(Figure 14 (b)). In WSN, redundant fusion technique is em-

ployed to enhance the accuracy and reliability of information

as well as to improve energy saving by preventing transmission

of redundant information [108].

c) Cooperative Fusion: The cooperative fusion method

collects different information from same urban space using

multiple separate sensors (e.g., Sr1 and Sr2) that would not be

obtainable from the individual sensors (e.g., D1 or D2) (Figure

14 (c)). In collaborative communication, the quality of service

of the wireless network is greatly improved by this fusion

method [110]. Moreover, this is also used for identifying the

position of a wireless receiver (by the APs) on the urban space

accurately using triangulation principle.

2) Hybrid Data: Hybrid data can play an important role

in crowd analysis, provided, they are fused appropriately

based on their sources. The following paragraphs illustrate the

usability of fused hybrid data in crowd analysis.

a) Data from GPS and App on Smartphone: Wirz et al.

[90] introduced a location-aware crowd monitoring approach

using smartphones with an app installed on it during mass

gatherings which can be a replacement for video-based so-

lutions. A participatory approach has been considered where

all individuals share their location information on a voluntary

basis. The only limitation is that all individuals may not share

their location information. Thus authors used fused data from

the app and GPS trajectory to monitor the crowd. They have

used pedestrians’ speed (from the GPS data) to estimate the

crowd count as well as the crowd density. This method can

assess the actual crowd size.

b) Mobile and Twitter Data: Botta et al. [22] used

CDR/IPDR and Twitter data to estimate crowd in an ur-

ban event. Their findings depicted that the accurate number

of attendees may be extrapolated in a geo-location from

CDR/IPDR and/or Twitter data.

c) CDR and Flickr Data: Girardin et al. [70] has em-

ployed a method to use the CDR data of AT&T and photos

posted on Flickr to find the urban attractiveness around the

New York City Waterfalls.

d) Twitter and Instagram Data: Ranneries et al. [91] pre-

sented a novel approach with increased classification accuracy

for UED which fused Twitter and Instagram data and detected

an ongoing event based on posts submitted during the last one

hour.
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Fig. 14. Different types of Information Fusion techniques: (a) Complementary
fusion, where complete information is achieved by fusing information of
multiple independent sensors; (b) Redundant fusion, where the accuracy
as well as the reliability of the information are improved by fusing same
information of independent sensors; and (c) Cooperative fusion, where better
and accurate view of the same space information is collected using multiple
separate sensors.

e) Bluetooth and GPS Data: In yet another approach,

data from Bluetooth scans and GPS locations of handheld

devices are fused and analyzed to track crowd activities and

estimate the crowd size [92]. The authors also introduced a

novel crowd visualization tool.

IV. OPEN ACCESS DATASETS AND APIS

Crowd analysis and management are essential for planning

UAs pertaining to a smart city. In these applications, APIs

play a key role as they are the doors to interoperability across

different organizations to connect, share, and provide real-time

data handling capabilities. In this section, some of the popular

open access benchmark public datasets (see Table V for a

summary) and few major APIs (see Table VI for a summary)

are listed below which have gained considerable importance

for the UED and DSS design for different UA.

A. Benchmark Datasets

a) D4D Challenge on Mobile phone [111]: The dataset

contains five months (from 1 December 2011 to 18 April

2012) CDR data from five million of Orange’s customers

in Ivory Coast. It gives details of hourly antenna-to-antenna
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TABLE V
BENCHMARK DATA SOURCES, DATASETS, AND THEIR APPLICATIONS

Source Dataset Applications Ref.

CDR
D4D Challenge on Mobilephone Cr. Co. & Trj. [111]
Nodobo Data Soc. Gr. [112]

Video

Data-driven Crowd Analysis Cr. Trj. [18]
Extremely Dense Crowd Images Cr. Co. [113]
QUT Crowd Counting Cr. Co. [114]
US Highway 101 Veh. Trj. Con. [115]
CUHK Crowd Cr. Sz. [116]
EyeCrowd Cr. Co. [117]

Transp.
US Government’s Open Traffic1 Traf. Fl. Co. [118]

Datagov Ireland1 Trf. Co. [119]

London DataStore2 Trf. Co. Con. [120]

UAV UAV 50 and UAV123 Cr. Trk. [121]

Hybrid
CDR, Tweets, News Cr. Co. Trj. Sen. [122]
CDR and Tweet Cr. Sz. & UED [123]

Census Cambridge Open Data Cr. Co. [124]

Survey TravelTracker Trn. Pln. [125]

1 in the form of Spot count; 2 in the form of O-D matrix; Legend– Cr. Co.:
Crowd count; Cr. Trj.: Crowd trajectory; Soc. Gr.: Social Graph; Sen:

Sentiment; Vh. Trj. Con.: Vehicles trajectory and congestion; Cr. Sz.: Crowd
size; Trf. Fl. Co.: Traffic Flow Counts; Trf. Co.: Traffic count; Ev. Det.:
Event detection; Est. Trf.: Estimate traffic; Trn. Pln.: Transport planning.

traffic, the trajectory of fifty thousand users for two weeks and

500 thousand customer’s trajectories for the whole observation

period. This dataset can be utilized for crowd counting.

b) Nodobo Data [112]: This dataset incorporates mobile

phone usage of 27 students from September 2010 to February

2011, and contains 5292103 presence records, 13035 call

records, 83542 message records and other data. This will help

to find the social graph.

c) Data-driven Crowd Analysis [18]: This dataset con-

tains crowd videos downloaded (or crawled) by search engines

as well as archive footage websites. This includes 100 individ-

uals’ trajectories selected randomly from all moving people.

d) Extremely Dense Crowd Image [113]: The dataset

incorporates 50 still images collected from the public web and

Flickr with head counts per image ranges from 94 to 4543 with

average head counts of 1280 per image.

e) QUT Crowd Counting [114]: This annotated dataset

contains videos taken by three cameras placed at different

ambient conditions and different viewing angle at the QUT

campus. This QUT datasets can be used to train a model which

estimates crowd size in hard ambient condition.

f) US Highway 101 [115]: The US Highway 101 Dataset

is a part of the Next Generation SIMulation (NGSIM) program

and contains very high-quality traffic data. This includes three

datasets of vehicle’s trajectory and congestion data, data about

the interactions of travelers and other information of the

surroundings.

g) CUHK Crowd [116]: The Chinese University of Hong

Kong crowd dataset contains 474 crowd video clips from 215

scenes with varying densities and perspectives. The videos

have been taken at many different environments, such as,

roads, malls, public parks, and airports.

h) EyeCrowd [117]: The dataset contains 500 indoor and

outdoor images with different crowd sizes and each image may

contain up to 268 faces. It also provides rectangular faces

labels, and eyetracking data.

i) US Governments Open Traffic [118]: This site gives a

wide range of traffic data which includes transportation, traffic,

highways, local roads, etc. at the Federal, County, and City

levels. Also available weekday daily traffic count information

of some of the major U.S. cities based on spot studies. The

count is averaged and includes some selected arterial streets.

j) Datagov Ireland [119]: This site includes national

road traffic count of 300 roads, transport dataset of Ireland.

k) London DataStore [120]: This sites presents informa-

tion about some bicycle hires, public transport journey, metro

network performance data, and schedule of public transport.

l) UAV 50 and UAV123 [121]: UAV 50 and UAV123

are low altitude areal video datasets and benchmark for low

altitude UAV target (such as object/human).

m) CDR, Tweets, and News [122]: This dataset contains

data from two Italian cities, i.e., Milan and Trento. It contains

the CDR data, from 1-11-2013 to 25-12-2013, of Telecom

Italia cellular network for Milan and Trento. This dataset gives

information about some interactions between mobile users of

Telecom Italia for different area of Milan. It contains mobile

users’ interaction data from 1-11-2013 to 24-11-2013 and the

volume is 138.8 GB, news portal data MilanoToday from

01/11/2013 to 31/12/2013, tweets data emanated from Milan

city during the months of November and December.

n) CDR and Twitter [123]:: This dataset contains mobile

phone and Twitter activity data of Milan from 1 November

2013 to 31 December 2013 which can be used to see the

relationship between crowd, mobile phone and Twitter.

o) Cambridge Open [124] : It comprises two years

(2014 to 2016) monthly parking ticket information; Average

Daily Traffic Counts from the year 1972 to 2014; 2016 Land

Use Data. These mentioned datasets might be used to estimate

a baseline for designing a DSS for UA.

p) Travel Tracker [125]: The CMAP has surveyed voy-

age related activities for northeastern Illinois. The data has

been collected from January 2007 to February 2008 where

10,552 households participated in the survey.

B. APIs Suitable for Crowd Data

a) Google [133]: Google APIs allow to access different

services provided by Google, e.g., Google Maps, Google

Earth, etc. The API supports data analytics, machine learning

as a service or access to user driven data. Google API can be

exploited for web mapping and shows geo-location. In addi-

tion, Google Trends [126] provide public Google Search trends

which might be helpful in finding out inhabitant sentiments for

a detected urban event and used for appropriate UA planning.

b) TFL [127]: Transport For London (TFL) unified API

supplies source and destination data of bike hire, different

transport modes, and road information.

c) Dandalion [128]: At early 2014, Telecom Italia

shared the telecommunication activity, social activity and

published news article datasets of Milano and Trento through

Dandalion API.

d) REST & Streaming [129]: The REST APIs give a

limited access to reading Twitter data, follower’s data, and

user’s profile. The APIs recognize Twitter applications and
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TABLE VI
LIST OF APIS FOR CROWD DATASETS

Ref. Launched API Name Method Usage

[126] 2006 Google Web Search Google Search User Sentiment

[127] 2015 TFL Unified O-D matrix Crowd & and congestion detection

[128] 2014 Big Open Data CDR, News-portal & tweets Crowd event detection

[129] – REST Read Tweets User Sentiment and Crowd event

[130] 2004 Flickr Image/Video Estimate crowd size

[131] 2016 Transport Travel and Ticketing Estimate crowd size

[132] 2010 Bing Maps – Web mapping

[133] 2010 Google Maps – Web mapping

[134] 2016 Crowd REST API – Crowd information
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Fig. 15. The UEDS detects an urban event in a geo-location. The UEDS utilizes the fused information of all urban sensor data, census data, users’ sentiment
about an event, event information published in social network and event webs, and detects an event at a geo-location (i, j) and estimates Ce(i, j, t).

users using ’OAuth’ and send responses are in ’JSON’ format.

The streaming APIs provide developers an access to Tweet

data with a low latency.
e) Flickr [130]: Flickr is a free web hosting facility

suited for images as well as videos. Photo researchers and

bloggers widely use this. Through the API, Flicker information

can be used to estimate crowd size.
f) Bing [132]: Bing Maps servers are exploited for web

mapping and enable to search, explore, share information of

the geo-locations. Therefore, this API can serve to interconnect

many services based on Bing.
g) Crowd REST [134]: This API allows to develop own

REST crowd datasets using Atlassian REST plugin. Finally

these data can be integrated into DSS to design different UA.

It allows access to crowd data via URL paths. This can be

integrated to a REST API and in this case the default format

will be XML/JSON.

The summary of the APIs used for crowd analysis and

management are listed in Table VI.

V. SUPPORT SYSTEM

An important part of delivering a UA connected to a crowd

event is the SS. Below a generic framework for UEDS is

described which is required for designing a DSS for an

appropriate UA.

A. Urban Event Detection System

Consider a geographical area is divided into I × J small

cells. Census data along with daily periodic crowd data indi-

cate that each cell contains C(i, j, t) crowd at time t, so this

is the baseline for that (i, j) cell area at time t. The goal of

the UEDS is to estimate crowd size (Ce(i, j, t)) in order to

detect an urban event.

However, for accurate estimation of the crowd size, redun-

dancy from the data must be removed. It is possible that one

user is involved with multiple activities at a geo-location in

the urban space, e.g., a user is using Twitter and calling at

the same time. In this case, duplicate data are generated and

matched users need to be excluded from the estimation of

crowd size. An efficient approach to handle data redundancy

in such situations is to apply information fusion on different

datasets.

The concept is illustrated in Figure 15, where the UEDS

takes fused information of different urban sensor data, such

as CDR, RF, transportation, social network and event-website

data, local context and land use data, habitats mobility pattern,

and their density distribution over time, sentiment and context

information about an event extracted from social network

and event blogs. Optimized fusion rules are required for

the information fusion to assure the exact mixing of the

information extracted from the datasets. Now, two possible

match detection scenario is provided below:

1. Let, in a time interval ∆t, two activities E1 and E2 from two

users x and y stored in the same data source are considered

matched, if and only if:

ℑ(DSx
E1

) == ℑ(DS
y
E2

) (1)

|t(DSx
E1

)− t(DS
y
E2

)| < ∆t (2)
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where DSn
Em

is the m-th activity of the n-th user stored in

DS, ℑ(.) is the geo-location (i, j, t) of the event. Matching

two datasets, t(.) is the time of the event.

2. On the other hand, two activities E1 and E2 of two users x

and y in different datasets (e.g., DS1 and DS2) are considered

matched, if and only if:

ℑdist(DS1x
E1

,DS2
y
E2

) < R (3)

tdist(DS1xE1
,DS2

y
E2

) < ∆t (4)

where ℑdist( , ) and tdist( , ) are spatial and temporal

distance respectively, and R is the minimum distance coverage.

Given that a non-redundant dataset is available at hand

for urban event detection, unusual over-crowd (Coc(i, j, t))
or under-crowd (Cuc(i, j, t)) are detected by comparing the

estimated or detected crowd size (Ce(i, j, t)) to specific de-

fined thresholds for a given scenario. These threshold values

depend on local context information, and experts’ experience

and intuition which usually are different from each other. Thus

there is no hard rule to select the value of this threshold [51].

For example, the threshold value for over-crowd (throc) can

be 90-th percentile, and for under-crowd (thruc) can be the

median of the dataset.

Therefore, Coc(i, j, t) is detected (the Red-shaded area in

Figure 16), when Ce(i, j, t) > throc; and Cuc(i, j, t) is de-

tected (the Green-shaded area in Figure 16), when Ce(i, j, t) <
thruc. This detected unusual over-crowd or under-crowd by

the UEDS can then be mapped to an urban event at a geo-

location (i, j) as show in Figure 15 and be used by specific

UAs to deliver personalized services.
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Fig. 16. Average hourly crowd size. The black dashed line shows 90-th
percentile of the data, green line with filled box shows the observed data,
and blue line with open box shows the median of the data in a day. The
red-shaded area indicates the detected unusual over-crowd when the observed
value is higher than 90-th percentile. On the other hand, green-shaded area
indicates the detected unusual under-crowd when the observed value is lower
than the median of the data.

B. Decision Support System

DSS can change the existing services adaptively based on

the detected changes in the urban events. For example, in

case of a transportation planning and management system,

the transportation services might be modified based on the

detected crowd events. As seen in Figure 16, the transportation

services might be increased when Coc(i, j, t) is detected and

decreased Cuc(i, j, t) is detected. In addition, other transporta-

tion data, e.g., automated vehicle location [98] and arrival

timing along with passenger waiting time [97] can be used to

derive other DSS which may also be applied to provide modi-

fied transportation services that include rescheduling transport

mobility of the usual trips.

VI. OPEN CHALLENGES AND RESEARCH OPPORTUNITIES

Despite the work reported in the literature, there remain

several challenging problems yet to be addressed. The fol-

lowing subsections outline few such challenges and possible

underlying research opportunities therein.

A. Uncertain and Noisy Data

Urban sensing data are enormous in volumes and generated

relentlessly. Almost all the urban sensors are prone to generate

imprecise, incomplete, uncertain, and noisy data. Examples

of such irregularities in data include: GPS data containing

inherent measurement noise; RFID and Bluetooth data may

generate high bit error rate during poor Signal-to-Noise Ratio

and link failures; discrete CDR data due to switching between

activity and non-activity modes. In addition, spatio-temporal

bias can also generate uncertain data.

Though different methods can be applied to handle incom-

plete and uncertain data, e.g., Kalman filter to estimate the

state of dynamic system to filter noisy data; regression and

interpolation to handle missing data via exploration; dynamic

Bayesian network to handle the uncertain and noisy data, yet,

the management and processing of such uncertain, noisy, and

incomplete data remain an open challenge.

B. Data Verification and Integrity

In order to get the microscopic details of inhabitants, an

urban planner collects city data generated by different sensors

(e.g., Smart Card, Parking Lot Occupancy Sensor, etc.) or

methods (e.g., census, survey, etc.) at different times. There are

also self-reported data (i.e., WiFi), network recorded data (i.e.,

CDR), and social network data. Since these data are collected

at different contexts and times, it is hard to substantiate

the results obtained using a single dataset without cross-

verification for data integrity which is still an open challenge.

C. Fusion and Fusion Rule

Crowd event detection is context oriented and all the

datasets may not always dispense comprehensive information

about the crowd event [22]. For example, the spatial accuracy

of a geo-location is necessary to identify a user’s trajectory

or the modes of transportation being used. Some of the data

(e.g., CDR, social network data, etc.) has low spatial resolution

whereas some data are incomplete as these are user-driven

or participatory (e.g., WiFi). Therefore, to have amalgamated

information from multiple datasets (e.g., CDR, WiFi, video,
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and social network data), information fusion can be applied.

The fusion process is complex owing to data registration and

alignment, conflicting and inconsistence of multiple datasets as

well as their variable spatio-temporal resolution. Moreover, the

fusion rules are context and problem specific. Thus, selecting

optimal fusion rule to extract complementary information from

different datasets for a certain application is also a challenge.

D. Real-time Data Collection and Processing

Data collected from different urban sensors at real-time

are used for specific urban sensing applications, including–

crowd event detection, traffic monitoring, and transportation

planning. Data generated from some of the sources such as

video surveillance cameras and mobile activity (e.g., CDR) are

massive. These data can be stored in real-time, but can not be

processed. Though some real-time streaming platforms (such

as Apache Spark, Apache Storm, Apache Samza, Amazon

Kinesis, Microsoft StreamInsight, IBM InfoSphere Streams,

and Informatica Vibe Data Stream, etc.) aim to process such

data and generate information in near-real-time [135], [136],

[137], [138], yet, the necessity of ad-hoc algorithms to process

the data in real-time is still an open challenge.

E. Data Privacy and Anonymity

Not all data sources used for urban event detection are

participatory or user driven, which may raise privacy con-

cerns. For example, the trajectory data provided by CDR

tracks individuals and preferences risking their privacy as it

is possible to uniquely track 95% of peoples’ trajectories

by knowing only four spatio-temporal points [139]. Though

various methods, e.g., obfuscation [140], k-anonymity [141],

differentially private model [71], [142], information fusion and

aggregation [143], have been proposed, yet privacy protection

remains an open challenge.

F. Novel Analysis Paradigms

Recently, advanced machine learning techniques (e.g., Deep

Learning or DL, Reinforcement Learning or RL) have success-

fully been employed in many applications including pattern

recognition, big data analytics, etc. due to its capability to

learn a problem at multiple levels using multiple features and

abstractions and by interacting with the environment. DL has

been successfully applied to– predict spatio-temporal traffic

flow from big transport data [144], count people in extremely

dense crowd [145], select efficient transportation based on

human mobility [146], predict crowd flow in a city [147].

In addition, deep RL has also been applied in road transport

support system [148]. Thus, development of novel machine

learning techniques would provide solutions to detect crowd

events using multiple datasets as discussed in Section II.

VII. CONCLUSION

The growing usage of ubiquitous computing, supported by

the massive development of ICT infrastructures, has become

an inseparable part of everyday life. Duly, human activities are

generating an enormous amount of data, describing the urban

dynamics. This paper surveyed heterogeneous ubiquitous ur-

ban applications, the data produced by these applications, dif-

ferent application programming interfaces, benchmark crowd

datasets, and various data generation and processing methods

for the crowd event detection to demonstrate the relative

merits and capabilities. Finally, existing open challenges, and

forecasted research directions that may impact enhancement

of the crowd event detection accuracy, have been outlined

including an investigation into the critical issues, merits and

capabilities of various existing contributions to smart trans-

portation management and planning.
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