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Abstract  
Respiratory tract infections (RTI) are one of the commonest reasons for seeking healthcare, but are 
amongst the most challenging diseases in terms of clinical decision making. Proper and timely 
diagnosis is critical in order to optimize management and prevent further emergence of antimicrobial 
resistance by misuse, or overuse of antibiotics. Diagnostic tools for RTI include those involving 
syndromic and etiological diagnosis: from clinical and radiological features to laboratory methods 
targeting both pathogen detection and host biomarkers, as well as their combinations in terms of 
clinical algorithms. They also include tools for predicting severity and monitoring treatment 
response. Unprecedented milestones have been achieved in the context of the COVID-19 pandemic, 
involving the most recent applications of diagnostic technologies both at genotypic and phenotypic 
level, which  have changed paradigms in infectious respiratory diseases in terms of why, how and 
where diagnostics are performed. The aim of this review is to discuss advances in diagnostic tools 
that impact clinical decision making, surveillance and follow-up of RTI and tuberculosis. If properly 
harnessed, recent advances in diagnostic technologies, including omics and digital transformation 
emerge as an unprecedented opportunity to tackle ongoing and future epidemics while handling 
antimicrobial resistance from a One Health perspective.  
  



1. General introduction 
Respiratory tract infections (RTI) are amongst the most common reasons for seeking healthcare. 

Despite important advances in the last two decades, clinical management is challenging at several 

levels. Many RTI are caused by viruses for which antibiotics are not effective and in many cases are 

self-limiting. Misuse and mismanagement of antibiotics is particularly relevant in RTI and contributes 

to the emergence of antimicrobial resistance (AMR) while hindering treatment. The aim of the 

current review is to discuss advances in diagnostic tools that have an impact on clinical decision 

making and follow-up. 

Pneumonia is the leading cause of death among children under 5 years old and the fifth cause of 

death among adults over 69 [1]. By contrast, for decades, the leading  cause of death from a single 

infectious pathogen is tuberculosis (TB) [2]. In 2020, COVID-19 overtook TB as the infectious disease 

causing highest mortality; and although global TB control efforts were not on track, even before the 

advent of the pandemic, TB control strategies have been further impacted by it [3]. According to the 

World Health Organization (WHO) report 2021 [4] reduced access to TB diagnosis and treatment in 

2020 resulted in the first year-on-year increase (of 5.6%) since 2005: estimated numbers account 1.3 

million TB deaths among HIV-negative people and an additional 214 000 among HIV-positive people, 

with the combined total back to the level of 2017.  

Existing surveillance programs regularly monitor respiratory syndromes with focus on Influenza 

viruses [5] and very efficient initiatives provide a coordinated and agile research response to 

infectious disease  outbreaks [6]. Usefulness of monitoring became evident with the reported 

clusters of patients with pneumonia of unknown cause in late December 2019 that led to the 

description of the novel human pathogen SARS-CoV-2 [7].  The initial predictions were that 60% of 

the global population could be infected [8]. During 2020 and 2021, we witnessed a pandemic with 

devastating effects on health and economies but simultaneously a historical game-changer. The 

SARS-CoV-2 is unquestionably a One Health disease and has highlighted the concept of syndemics: a 

synergistic effect of the pandemic overlapping with endemic diseases and contextual determinants 

of health such as cultural, socio-economic factors, climate and environment [9]. The influence of non-

communicable diseases is well known and the impact of smoking and air pollution is finally being 

highlighted [10]. New vulnerable populations are resulting from population ageing [11] and the 

increased use of immunosuppressive therapies for a wide range of medical conditions [12]. 

2. Why do we need diagnostics? The concept of diagnostic tools  

The concept of diagnostics refers to: 1) interpreting the clinical profile to predict the presence of the 

illness (syndromic diagnosis), 2) finding an explanation for the illness (etiology) and 3) predicting the 



course of disease and need for follow-up (prognosis) (Figure 1). These three above mentioned 

aspects have been reflected in this review. 

Diagnostic tools must be accurate and need to be properly assessed and monitored, as emphasized 

by the introduction of the European in vitro diagnostic and medical devices regulation [13]. Risks and 

benefits need to be quantified, based on scientific evidence and fit for use in the population for 

which they are intended (age, comorbidities, immune status). Finally, they need to be used at the 

right time and interpreted appropriately to affect care optimally.  

Never before have we witnessed such social awareness of infectious disease; the importance of non-

pharmacological measures, of a test result and of understanding the immunity behind it. COVID-19 

provided an unprecedented response from industry during the massive testing and vaccination 

campaigns that ensued with more than 1,000 new tests, new diagnostic approaches and modification 

of existing techniques or the development of new ones[14] . While we must continue to monitor the 

virus closely, it is time to change the dynamics regarding the value of diagnostics of RTI globally.  If 

this is properly addressed, an unprecedented opportunity emerges to face current and future 

epidemics.   

3. Advances in syndromic diagnosis  

One of the first challenges in RTI is correcting frequently inconsistent case definitions. Clinical signs 

and symptoms are similar for many lower respiratory tract infections and several other diseases (e.g. 

pulmonary embolism, acute heart failure, asthma). Global burden estimations require  valid, reliable 

and timely data [1], so appropriate definitions are essential and important progress has recently 

been made [15]. Those aspects that have shown advances are highlighted below.  

 

Pneumonia is defined as an acute illness affecting the lungs usually presenting with cough, sputum 

production, and rapid and difficult breathing with a new or worsening pulmonary infiltrate on a chest 

radiograph. The diagnostic processes range from simple to relatively complex procedures combining 

clinical, radiological and laboratory features. Specific investigations should be considered in some 

endemic settings (e.g. TB, mycoses) [16] and also in cases of pneumonia associated with air pollution 

[17]. Depending on the clinical setting and accessibility, the plain chest radiograph is not always 

required for diagnosis, nevertheless it still remains a relevant tool. Lung ultrasound has shown better 

accuracy than chest X-ray for bacterial pneumonia in emergency departments [18]  and an advance 

during the pandemic has been its increased use for both diagnosis and follow-up [19]. The additional 

value of computed tomography has been widely recognized for COVID-19 pneumonia [20]. 

 



Tuberculosis. One of the main advances in definitions is the change from addressing two disease 

states (latent TB infection or active TB disease) to evaluating a continuous spectrum of metabolic 

bacterial activity and antagonistic immunological responses by adding two additional clinical states: 

incipient (asymptomatic phase of early disease, between latent infection and subclinical TB) and 

subclinical TB  (described as having viable and detectable bacteria, but without TB-related symptoms) 

[21, 22].  Recent WHO guidelines endorse automated nucleic acid amplification tests for detection of 

TB and resistance to rifampicin and isoniazid, providing more options for early diagnosis of TB [23].  

 

Bronchiolitis is a disorder commonly caused by viral infections in infants, typically beginning with 

rhinitis and cough, which may progress to tachypnoea, wheezing, rales, use of accessory muscles, 

and/or nasal flaring [24]. Many respiratory viruses cause a similar constellation of signs and 

symptoms. The most common aetiology is respiratory syncytial virus (RSV), which  infects 90% of 

children in the first 2 years of life, with up to 40% experiencing lower RTI during the initial infection 

[25]. Recent advances include the definition of different endotypes and the identification of relevant 

risk factors for recurrent wheezing and asthma development [26] .  

 

Bronchiectasis is characterized by a permanent and progressive dilation of the airways because of a 

vicious cycle of inflammation, infection, and repair of the bronchial mucosa, which leads to 

malfunctioning of the mucociliary system and destruction of the bronchial wall [27]. Awareness 

bronchiectasis has increased considerably in recent years [28, 29] and advances include a clearer 

definition of the disease [30] as well of its exacerbation. Now acute deterioration in three or more of 

the following symptoms for at least 48 hours: cough, sputum volume and/or consistency, sputum 

purulence, dyspnea and/or exercise tolerance, fatigue and/or malaise, or  hemoptysis; lead clinicians 

to make changes in bronchiectasis treatment [31].  

  

The definition of Chronic Obstructive Pulmonary Disease (COPD) exacerbation has also improved by 

highlighting a spectrum of different exacerbation types that can require different interventions. 

Identifying exacerbation triggers is of the utmost importance for proper treatment. Best-known are 

viral and bacterial RTI with a significant proportion of co-infections. However, in one third of cases, 

they remain unidentified [32].  

 

Recently, a novel treatment approach based on "treatable traits" recognizes that airway infection is 

only one of many treatable traits in a given patient that benefit from specific management; such as 

airway clearance techniques, prompt treatment of exacerbations or oral or inhaled antibiotics. This 



approach makes it possible to differentiate those individuals in whom symptoms or exacerbations 

are driven by a different treatable trait that will not benefit from antibiotic treatment [33-35].  

 

When potentially pathogenic microorganisms are present over time, a chronic bronchial infection 

occurs. Chronic bacterial infection can be clinically defined as evidence of positive respiratory tract 

cultures of the same microorganism by standard microbiology, on two or more occasions, at least 3 

months apart over 1 year, while in a stable state [30]. Several novel techniques such as automated 

molecular diagnostic systems might be incorporated into the diagnostic scheme for exacerbations 

following careful interpretation. Both acute and chronic respiratory infection cause a progression of 

the disease and a worsening quality of life [29]. This is a very common situation in diseases such as 

COPD and bronchiectasis, and less frequently it also occurs in asthma. Chronic airway infection has 

been associated with altered pulmonary immune response and worse clinical outcomes [36, 37].   

 

Spectrum of disease. A major challenge in each of these clinical conditions is correlating syndromic 

and etiological diagnosis leading to the concept of spectrum of disease. Diagnosis is straightforward if 

a primary pathogen such as Mycobacterium tuberculosis, Legionella pneumophila or Pneumocystis 

jirovecii is identified. In other situations, more careful interpretation is needed such as when 

identifying virus (infection or asymptomatic shedding), environmental fungus or environmental 

mycobacteria (infection, colonization or contamination). The most frequently isolated bacteria such 

as Streptococcus pneumoniae, Haemophilus influenzae or Moraxella catarrhalis are potentially 

commensal. This is also the case for Staphylococcus aureus and Pseudomonas aeruginosa and other 

non-fermenting bacilli (e.g. Achromobacter xylosoxidans, Stenotrophomonas maltophilia) when 

underlying disease is present.  Non-primary pathogens might gain access and trigger symptoms or 

disease (eg. by activating virulence factors) or remain quiescent (biofilm, intracellular survival), so 

better understanding of host pathogen interaction is crucial [38]. Improving microbiological methods 

and added number of vulnerable patients, has added Nocardia spp., fungi and environmental 

mycobacteria to the spectrum of potential pathogens. Recent advances include guidelines to assess 

definitions of disease stages for environmental mycobacteria [39-41] and  also for pulmonary 

aspergillosis, depending on the interaction between Aspergillus and the host [27].  

 

4. Advances in diagnostic tools identifying the etiological agent 

Microbiological diagnostics are critical at three levels: 1) identifying the etiological agent and guiding 

appropriate therapy, so adjusting spectrum and duration and decreasing misuse and overuse of 

antibiotics to prevent the emergence of AMR; 2) surveillance of local resistance patterns and 



screening to identify patients colonised with resistant pathogens and adoption of infection 

prevention and control measures to prevent spread; and 3) detecting emerging pathogens. An 

important concept is that detection might refer to screening (e.g. detecting carriers of resistant 

pathogen) or to etiological diagnosis. Independent of the sophistication of the methods, it is crucial 

to generate timely, understandable results that can inform clinical decisions.  

A diagnostic test can be used to demonstrate the presence or absence of infection or to detect 

evidence of a previous one. Generally speaking, it can be categorized into direct diagnosis, including 

microscopic examination, culture, antigen detection and molecular detection; and indirect diagnosis, 

covering immunological tests. The pandemic has brought advances in every single technique [42]. 

Appropriate sample and methodology.  

Accurate microbiological diagnosis of RTI requires good quality specimens. Samples must be 

collected taking medical condition into account, either from the upper (nasal/ throat specimens) or 

lower respiratory tract (bronchoalveolar lavage fluid, tracheal aspirate). Additionally, improved 

detection methods are making the use of new types of specimens possible and even saliva and oral 

mucosa may have a role to play in some situations [43-46]. But this is not true for all microorganisms, 

it depends on the pathogenesis and whether they are primary pathogens or potentially commensal. 

Particularly for COVID-19 diagnosis, pre-analytical factors have been particularly relevant, such as the 

swabbing methods and the use of different matrices and viral transport media [47, 48]. Lastly, 

reliable transportation in optimal conditions (temperature, time) to the laboratory are key in insuring 

valid results. 

Pathogen Identification. For culture based methods, the arrival of Matrix-Assisted Laser 

Desorption/Ionization-Time Of Flight (MALDI-TOF) mass spectrometry to clinical labs has been a 

major development in rapid identification, with the additional potential for detection of antimicrobial 

resistance and even typing, among other  possible/putative/ future uses. In culture independent 

detection, recently antigen detection has increased its identifiable targets. Additionally, and of 

particular note, molecular methods have increased the diagnostic yield for virus and atypical 

bacteria, showing unprecedented development during the COVID-19 pandemic. Molecular 

techniques are also becoming available at point-of-care (POC) or near-POC as different portable 

molecular diagnostic instruments are being developed [49]. These syndromic multiplex panels can be 

used to detect the pathogen DNA or RNA most commonly associated with RTI, including viruses and 

bacterial atypical pathogens [50-54]. Advantages include decreased time to detection, the possibility 

of quantification and detection of resistance and virulence genes. Serological diagnosis of atypical 

pneumonia has been replaced by molecular tests and is now only used in cases such as Q fever. 



Antibody detection has seen a comeback, mostly for immunoprevalence and vaccine response 

studies of COVID-19 (enzyme-linked immunosorbent/chemiluminescence/ fluorescence microparticle 

and lateral flow immunoassays). The pandemic has also enabled the development of advanced 

sensing technologies based on microfluidics, nanotechnology and material science [55] as well as on 

targeting structures such as serum extracellular vesicles [56]. The main benefits of these assays is 

that they are portable, miniaturized, low cost and highly integrated POC devices [57]. In the move to 

a new paradigm of personalized medicine, POC diagnostic testing has been proposed to improve the 

quality of antibiotic prescription [58] but accuracy is variable and settings need careful 

adjustment[59]. 

Susceptibility testing Advances involving the use of selective chromogenic media shorten the 

detection time for  resistant bacteria. The gold standard is Phenotypic testing because it shows the 

overall phenotype, although multiple resistance mechanisms can lead to difficult phenotype 

interpretations.  The long time to result has been improved by selective culture media and analytical 

methods starting from a bacterial pellet, which is particularly useful in systemic infections [60] and 

also applicable to mass spectrometry or nanosensors [61]. Genotypic tests detect resistant genes in a 

fast and sensitive way, but genes may be present but not expressed, and the tests only detect known 

resistance genes. As a pragmatic summary, phenotypic testing can tell what antibiotics to prescribe, 

while genotypic testing can tell what not to prescribe. 

Molecular epidemiology. Available typing methods for respiratory pathogens are laborious and time-

consuming, but in recent years whole genome sequencing (WGS) has emerged as the gold standard 

method for detecting outbreaks and preventing clonal dissemination in medical settings. However, 

this is not so easily implemented in real-time practice. In this sense, the current COVID-19 pandemic 

has seen unprecedented generation and global sharing of  large numbers of SARS-CoV-2 sequences 

in a record time with global sharing of variants of concern in common databases, powering influenza 

surveillance programs into COVID-19 efforts [62]. The next step involves real-time molecular 

epidemiology [63]. Genomics have expanded rapidly bringing the opportunity to move these 

approaches from academic to public health decisions and surveillance, as well as strengthening 

global cooperation with other disease control programs [64]. Phenotypical typing methods are also 

improving, such as Fourier-Transform InfraRed spectroscopy [65].  

Extended culture techniques, automated molecular diagnostic systems and DNA sequencing 

technologies have revealed unknown airway microbiota, including an abundance of species that are 

refractory to common diagnostic tools. The interactions that occur between these microbial species 

can profoundly affect the expression of pathogenicity and virulence [27]. Large numbers of 



microorganisms, including bacteria, fungi and viruses, collectively known as the microbiome, coexist 

in the lungs of healthy subjects and patients with respiratory diseases [66].  

Microbiome is defined as the set of the genes and gene products (RNA, proteins, metabolites) 

produced by resident microbial communities. Research into the chronic lung disease microbiome 

began in the early 2000s, when ecological techniques of microbial DNA analysis were applied to 

sputum samples [67, 68]. Since then, the number of studies of the respiratory microbiome has grown 

exponentially. Whilst traditionally bacterial infection in the airways has been characterized using 

culture-based methods, 16S ribosomal RNA and other metagenomic approaches provide a powerful 

method of determining microbial identities and relative abundances [69].  

5. The impact of omics technologies on precision approaches  

General concepts of omics. There is  growing clinical interest in understanding biological mechanisms 

beyond  the molecular level to include biological functionality. In this sense, systems biology aims to 

explore how the interactions between biological components (genes, proteins, metabolites, etc.) 

contained in a biological tissue, cell, fluid or a whole organism affect its functionality (biological 

processes) as a whole, thus making it possible to characterize a biological system in a complete and 

integrated way [70].  Omics cover the set of high-throughput technologies that provide a global 

vision of a dynamic biological process through the analysis of genes (genomic), Ribonucleic acid-RNA 

(transcriptomic), proteins (proteomic) or metabolites (metabolomic).  

Metagenomics. The first sequencing technique used in respiratory microbiome research was 16S 

rRNA gene sequencing. It is based on PCR amplification using primers that target the 16S ribosomal 

gene in variable regions of bacterial genomes, which can be used for taxonomic classification [71]. It 

is fast, reasonably low cost, and by converging on a specific region of the bacterial genome requires 

only a limited sequencing depth and allows the  study of microbial communities [72]. However, it 

targets relatively short gene sequences, which are often shared by different closely related species, 

making distinguishing them a challenge [73].  Another shortcomings is that 16S sequencing analyses 

are restricted to the detection of bacteria and archaea since viruses or fungi do not carry 16S rRNA 

genes. In this sense, shotgun metagenomic sequencing is an approach that allows microbiome 

characterization with a much greater resolution than 16S sequencing. The term ‘shotgun’ refers to 

the untargeted sequencing of all DNA present, in contrast to the targeted amplicon-based 

approaches. By not limiting sequencing to a single region of DNA, metagenomic sequencing can also 

provide information on the functional characteristics of the taxa present, including their metabolic 

traits, and their carriage of antibiotic resistance and pathogenicity features. [74].Furthermore, the 

inclusive nature of metagenomic sequencing provides information not only on the bacteria present, 



but also the fungi and DNA viruses, achieving identification to a subspecies or strain level. The 

principal limitation of shotgun metagenomic approaches is related to costs, but also to host DNA 

contamination. Finally, current methods cannot differentiate between live and dead microbes, which 

may be relevant for several reasons, such as assessing the impact of antibiotic therapy in clinical 

samples [75]. Novel methodologies to integrate bacterial, viral and fungal communities to allow 

assessment of the ‘interactome’ have been recently developed. Rather than focusing on individual 

taxa, this approach proposes a role for microbial networks in altering clinical outcomes or treatment 

responses [76]. 

Transcriptomics involves the analysis of RNA produced by a given genome at a given time and 

condition, and thus during lower RTI it can provide information regarding pathogen and host 

dynamics. It can refer to the exploratory analysis of an entire transcriptome, primarily using RNA 

sequencing, or to a targeted analysis of known RNAs using techniques such as gene expression 

panels.  

 

Metabolomics is one of the most powerful bioanalytical strategies to obtain a picture of the 

metabolites in the course of a biological process and is a phenotyping tool [77]. Metabolomics allows 

the comparison of a chemical fingerprint present in a cellular system or a biofluid under normal 

conditions with that of altered states produced by disease, pharmacological treatment, dietary 

intervention or environmental modulation [78]. 

 

Clinical impact of omics: There is enormous interest in the potential of the microbiome to improve 

the understanding and stratification of respiratory diseases and to serve as a biomarker for clinical 

management. Host-microbiome interactions probably contribute substantially to differences in 

clinical phenotypes and disease outcomes [79-81]. Recent studies conclude that the microbiome 

could identify subgroups of patients at higher risk of poor outcome, who could benefit from precision 

treatment strategies [81]. Important questions still need to be examined, including the role of fungi, 

viruses and mycobacteria, the interactions with the host, and the usefulness of microbiome profiles 

for selecting antibiotics and to evaluate therapeutic responses [82]. The gut-lung axis affects disease 

and treatment. The intestinal microbiome influences the pulmonary microbiome and also lung 

immune responses by directly seeding the airways with bacteria and distributing bacterial 

metabolites that act as immune modulators [83]. 

Regarding tuberculosis, advances in systems biology and omics strategies have identified sets of 

biomarkers with the potential to optimize TB prevention, diagnosis, and treatment. Only a few have 

been evaluated in clinical trials, so applicability in TB management is still limited [84, 85]. 



Metabolomics has provided insight into the pathogenesis of TB related to detection of infection and 

disease progression [77, 86-89]. Urinary metabolomic response has also been characterized during 

community-acquired pneumonia, and different profiles have been identified according to the 

causative microorganism, atypical bacteria vs pneumococcal or viral [90]; ARDS vs influenza; 

pneumococcal vs other aetiologies [91]; and pneumococcal vs staphylococcal [92].  

 

6. Advances in diagnostic tools characterizing the host response 

The identification of novel biomarkers based on host-pathogen interactions related to the shift from 

carriage to infection may improve RTI management. There is a need to understand how the 

pathogens interact with their host to achieve a successful invasion (Figure 2). Inflammatory 

biomarkers and severity scores can contribute to some levels of stratification [38, 93].  

Systemic biomarkers, such as the C-reactive protein (CRP) and procalcitonin (PCT) have been widely 

analyzed in patients with LRTI although other biomarkers are also being investigated [94, 95]. They 

are also being implemented at POC. The capacity of biomarkers to distinguish acute bacterial from 

viral RTI has enabled their use as tools for guiding antimicrobial therapy [96], but in the outpatient 

setting they might have a limited capacity [97]. Regardless of whether they are used for diagnostic or 

monitoring purposes, biomarker analysis should be included as an additional criterion to be 

integrated into decision-making algorithms.  

During the COVID-19 pandemic, besides the identification of the causative agent, the detection and 

monitoring of the host response has provided insights into the pathogenesis of the disease [98, 99]. 

In fact, immune tools measuring T-cell responses and detecting IFN-γ in vitro (IGRAs) have been used 

for some years to diagnose TB and nowadays they are under investigation for SARS-CoV-2 [54-59]. 

Furthermore, second-generation IGRAs which detect other cytokines, such as IP-10, have proved 

comparable to IFN-γ. Furthermore, IP-10 cytokine has been shown to be very stable when dried on 

filter paper, which facilitates sample shipment to reference laboratories [100-103]     

Since disease outcome depends on dynamic host-pathogen interactions, specific host genetic 

signatures, together with pathogen genomics can be combined in order to identify those individuals 

with a higher risk of severe disease [104, 105]. Specific host transcriptomic signatures have also 

been identified for this purpose [106-109]. An interesting additional area of host genomics research, 

is its use during pre-symptomatic stages, which can be important in influenza [110, 111] or TB [112] 

for predicting disease progression or detecting early forms of the illness. Host determinants for 

outcome are also related to acquired risk factors. Biological therapies targeting cytokines and/or cell 



subsets have become essential for the treatment of several immune-mediated diseases and have an 

impact on RTI, as reviewed elsewhere [12]. 

    

Advances in understanding host immunity has been unprecedented during the pandemic, providing 

better knowledge of the immune response for other endemic respiratory viruses. Multiple 

mechanisms might lead to humoral and cellular responses involved in combatting RTI. While an 

enormous  effort has been put into vaccine development and immunogen design, there are still 

some knowledge gaps in understanding long-term memory and protective immunity. Advances in 

methods to assess immunogenicity have been very relevant. Vaccines have been traditionally 

dependent on humoral response activation by means of B-cells producing neutralizing antibodies. 

However, over the years it has been accepted that cellular immunity mediated by CD4+ and CD8+ T-

cells is also critical, evidencing that even  a strong antibody response is not sufficient for protection. 

Recently it has been recognized that local immunity to bacterial or viral RTI can be mediated by a 

specific cells with a memory phenotype, called tissue-resident memory T-cells (TRMs). These cells are 

non-circulating, present at  the site of infection, and retained in tissues for mediating a protective 

response in case of re-infection. Studies in mouse models and humans have evidenced that TRMs 

have a potential role against several respiratory pathogens such as influenza, RSV, M. tuberculosis or 

SARS-CoV-2 virus [113-118]. It is therefore important to develop new approaches and perform 

immunological studies to characterize TRMs as a diagnostic tool to monitor new vaccines that 

enhance these cell populations. Finally, the pandemic accelerated novel vaccine formulations 

including new viral vectored or nucleic acid-based vaccines, as well as the re-emergence of the 

concept of trained immunity. Live vaccines such as BCG can confer non-specific protection against 

upper and lower RTI not associated with M. tuberculosis through epigenetic re-programming  during 

haematopoiesis  of innate cells [119-124].   

 

Finally, better understanding of host-pathogen interactions has allowed the identification of 

potential host targets and therefore the development of host-directed therapies. These 

methodologies consist of inhibiting host factors indispensable for microorganism replication, 

intensifying a pathway of the host immune response or decreasing the inflammatory status [125-

128]. Metabolic, autophagy and immune response pathways are currently being investigated. 

Implementation is still a challenge with a need for accurate patient stratification for tailored 

interventions that prevent major side effects Several randomized clinical trials are ongoing, focussing 

on TB and COVID-19(https://clinicialtrials.gov).   

 



7. Advances in diagnostic tools to predict severity 

Clinical assessment of severity, related to involvement of lung parenchyma in the acute phase and 

prediction of functional sequelae, is relevant for clinical decisions. In radiology, current practices 

include tedious conventional processes, which  rely on specialist technical expertise and are prone to 

human error. Great progress has been made in deep learning that supports medical radiologists [129-

131]. Novel approaches such as radiomics, a high-throughput method extracting a tremendous 

amount of quantitative imaging data using data-characterization algorithms, have shown great 

potential in characterizing imaging biomarkers [132]. Also radiomics-based machine learning 

signatures have shown the potential to accurately differentiate ground‑glass opacities due to 

COVID‑19 pneumonia from those due to other acute lung diseases [133] or distinction between lung 

adenocarcinoma and tuberculosis granuloma[134]. Another example would be the Computer Aided 

Design (CAD) procedure for automatic diagnosis of COVID-19 from chest X-ray images [135].  

 

Several bronchoscopic technologies have emerged over recent years, including thin/ultrathin 

bronchoscopes, radial probe endobronchial ultrasound (RP-EBUS), virtual navigation bronchoscopy 

(VBN), electromagnetic navigation bronchoscopy (ENB), and robotic bronchoscopy [136]. 

Bronchoscopic transparenchymal nodule access (BTPNA) and transbronchial access tool (TBAT) are 

novel techniques that combined with navigational bronchoscopic technologies improve access to 

lung lesions. The introduction of cryobiopsy improved tissue sampling. These innovative techniques 

allow higher diagnostic yield, also in the context of RTI and TB and other mycobacterial infections 

during the study of lung nodules and staging of lung cancer [137].  

 

Oxygen saturation monitoring has traditionally been carried out using transmittance pulse oximeters 

due to their dependability, but they are limited to peripheral regions. Recently, new options being 

studied include reflectance pulse oximeters that can be used at different body sites (finger, wrist, 

chest and forehead) and can be scaled down to affordable patches [138].  

  

Regarding prognostic tools, diaphragm ultrasound can be utilized to diagnose diaphragm 

dysfunction, assess severity, and monitor disease progression and could be beneficial both in 

pneumonia and COVID-19 [16, 139]. Advances have also been made regarding better diagnosis of 

long-term structural-functional complications and a better follow-up of sequelae by standardising 

prognostic measures such as quality of life and social impact [140-142].   

 



8. Final remarks. Lessons learned. 

The pandemic has brought the need for an integrated approach for handling infectious diseases back 

to the forefront, along with the need for a coordinated effort across multiple disciplines including 

human, animal and environmental [143]. Unprecedented milestones have been achieved by 

improving and applying the latest technologies in key areas such as epidemiology, contact tracing, 

diagnostics and vaccine development.  

However, global health inequities in low-income countries related to vaccines and treatments, and  

also diagnostics still need to be addressed. The pandemic has additional costs related to the 

previously identified global crisis in AMR and TB [144] and several aspects have been highlighted as 

opportunities at different levels [145, 146] .  

POC technologies have allowed community-based testing to be scaled up and used as a public health 

tool, but they need to be linked to careful evaluation [147] and to demonstrate their diagnostic 

accuracy in clinical practice [59]. Timely results also involve careful interpretation and this is 

facilitated by effective interdisciplinary communication starting with understandable reporting of 

results.   

While providing emergency healthcare, clinicians and scientists have carried out clinical research and 

lessons learned underline the importance of pre-established structures and procedures and the need 

for improved regulatory consensus and globally connected networks [148]. Cost-effectiveness 

analyses can be used to assess the value of diagnostics in clinical practice, but they need proper 

design and reporting [149] in the context of pragmatic clinical trials. Digital transformation of health 

is ongoing through the incorporation of  artificial intelligence to support clinical decision processes 

[150] . 

After years of reporting clinical diagnosis and microbiologically confirmed diagnosis in different 

databases, priorities have been set up in data connectivity by maximizing efforts in FAIR (Findable, 

Accessible, Interoperable, Recuperable) approaches [151, 152]. Real-world data and real-world 

evidence is rapidly gaining importance and being formalized in policy frameworks [153]. 

In summary: Advances in diagnostic tools have been largely accelerated by the pandemic and affect 

both the design of personalized therapies and public health measures. Transdisciplinary 

communication is crucial for proper development and implementation of current techniques.  Impact 

of the use of diagnostic tools depends on several contextual factors involving clinical setting, 

geographical location, connectivity and clinical research resources. It is mandatory to maintain 

monitoring of  pathogenesis of individual RTI for a timely diagnosis and proper interpretation.  



  



Figures 
Figure 1. Three pillars in clinical decision making:  syndromic diagnosis, etiological diagnosis and 

prognosis assessment. The most relevant advances regarding methodologies available are presented.   

Figure 2. Omics for a better characterization of host, pathogen and host-pathogen interaction factors 

during RTI 
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