
CHAPTER 6 

On the complexity of linear programming 

Nimrod Megiddo 

Abstract: This is a partial survey of results on the complexity of the lin- 
ear programming problem since the ellipsoid method. The main topics 
are polynomial and strongly polynomial algorithms, probabilistic analy- 
sis of simplex algorithms, and recent interior point methods. 

1 Introduction 

Our purpose here is to survey theoretical developments in linear program- 
ming, starting from the ellipsoid method, mainly from the viewpoint of 

computational comp1exity.l The survey does not attempt to be complete 

and naturally reflects the author's perspective, which may differ from the 

viewpoints of others. 

Linear programming is perhaps the most successful discipline of Oper- 

ations Research. The standard form of the linear programming problem 
is to  maximize a linear function cTx ( c ,  x E R n )  over all vectors x  such 

that Ax = b and x  r 0. We denote such a problem by ( A ,  b, c ) .  Currently, 

the main tool for solving the linear programming problem in practice is 

the class of simplex algorithms proposed and developed by Dantzig [43]. 
However, applications of nonlinear programming methods, inspired by 
Karmarkar's work [79], may also become practical tools for certain classes 
of linear programming problems. Complexity-based questions about linear 
programming and related parameters of polyhedra (see, e.g., [661) have 

been raised since the 1950s, before the field of computational complexity 
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' The topic of linear programming has been interesting to economists not only due to  its 

applicability to  practical economic systems but also because of the many economic in- 

sights provided by the theory of linear programming. However, in this chapter we dis- 
cuss linear programming from a point of view of theoretical computer science. 
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started to develop. The practical performance of the simplex algorithms 
has always seemed surprisingly good. In particular, the number of itera- 
tions seemed polynomial and even linear in the dimensions of problems 
being solved. Exponential examples were constructed only in the early 
1970s, starting with the work of Klee and Minty [85]. 

The field of computational complexity developed rapidly during the 
1970s. The question of the complexity of linear programming was for- 
malized in a new and more precise sense. A specific question remained 
open for several years until finally solved by Khachiyan [83, 841 in 1979. 
He showed that linear programming, as a problem of recognizing a for- 
mal language, is in the class 6; that is, it can be solved in polynomial 
time relative to the length of the binary encoding of the input. Khachi- 
yan's result was also applied in a very elegant way to problems of combi- 
natorial optimization by Grotschel, Lovasz, and Schrijver [641. 

Khachiyan's result was widely misinterpreted for a while, mainly be- 
cause of popular articles claiming that a substitute had been found for 
the simplex algorithm. However, it was not long before it became clear 
that the ellipsoid algorithm (that was used by Khachiyan to prove his nice 
result) is not useful for solving linear programming problems in practice. 
This was quite a disappointment to those who believed complexity theory 
could be relied on in practice. It became clear that some exponential al- 
gorithms (namely, variants of the simplex method) were very efficient in 
practice, while a polynomial algorithm for the same problem (the ellip- 
soid method) was very inefficient. It was only natural that interest in the 
field started to increase in two directions: (i) analyzing the behavior of the 
simplex method from a different viewpoint, and (ii) searching for other 
methods. 

A breakthrough in the analysis of the simplex method was indepen- 
dently made by Borgwardt [26,27,28] and Smale [144,145]. In Section 4 
we review further work in this field. 

At least from a theoretical viewpoint, it is interesting to settle the com- 
putational complexity of linear programming under different models of 
computation. Khachiyan's result relies on the so-called logarithmic-cost 
model [9]. It is still an open question whether a system of linear inequali- 
ties can be solved in a number of arithmetic operations that is polynom- 
ially bounded by the dimensions of the system, independently of the mag- 
nitudes of the coefficients. In [I071 such an algorithm is given for systems 
with at most two variables per inequality (whereas the general case can be 
reduced to at most three variables per inequality). Questions about the 
model are discussed in Section 2. So far, only partial results are known. 
Eva Tardos [147, 1481 obtained a general linear programming algorithm 
whose number of elementary operations is independent of the magnitudes 
of coefficients in the objective-function and the right-hand-side vectors, 
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but depends on the coefficients in the matrix A. This implies that many 
combinatorial optimization problems, including the minimum cost-flow 
problem, can be solved in "strongly" polynomial time. This work of Tar- 
dos is reviewed in Section 5. 

Theoretical research on algorithms in recent years focused on the di- 
rection of estimating the asymptotic worst-case complexity of problems 
in 6. For instance, knowing that a certain problem can be solved in poly- 
nomial time, it is of interest to find exact (asymptotic) upper and lower 

bounds on the time it should take any algorithm to solve the problem in 
the worst case. There has been much research done in this direction in the 
related field of computational geometry [95]. For example, it is known 
that the complexity of computing the convex hull of a set of n points in 
the plane is B(n log n).2  A surprising result was obtained in [log]; namely, 
for any fixed d, linear programming problems with d variables and n con- 
straints can be solved in O(n)  time as n tends to infinity. This extended 
previous independent work (148, 1081) that showed the same for d I 3. 
This area of research is reviewed in Section 6. 

Linear programming was again in the news in the fall of 1984: Kar- 
marker developed a new polynomial-time algorithm for linear program- 
ming that is in fact practical. It improves the upper bound on the com- 
plexity of linear programming, again under the logarithmic-cost model. 
Karmarkar has claimed very strongly [80] that his algorithm is superior 
by far to the simplex method. However, at the time of this writing there 
is no publicly available evidence to support clear superiority. This work 
inspired renewed interest in applying methods of nonlinear programming 
to the linear programming problem. The algorithm is reviewed in Section 
7. Recent related work is reviewed in Section 8. 

Regarding the worst-case complexity of the simplex method, it is only 
known that specific variants of the method require exponential time in the 
worst case. It is a major open question whether every variant3 requires 
exponential time in the worst case. The complexity of the randomized 
simplex algorithm is not known. Results have been obtained about the 
worst-case complexity of certain variants of the simplex method when 
applied to special classes of linear programming problems. Of special in- 
terest are assignment problems and the more general minimum cost-flow 
problem. This topic is discussed in Section 9. 

We conclude the paper with some discussion in Section 10 on theory 
versus practice. 

This means that there is an algorithm that finds the convex hull in C,nlog n time and 

there is a constant C,  such that any algorithm for the convex hull requires in the worst 

case at least C2n log n time. 

We have not defined what a variant is. Clearly, the effort per pivot step must be restricted 

because otherwise any algorithm can be stated as a variant of the simplex method. 
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2 On complexity and models of computation 

Complexity of computations is a central area of research in theoretical 
computer science. One of the common measures of complexity of an algo- 
rithm is the asymptotic worst-case running time. Here we discuss this con- 
cept on a rather informal level. The interested reader may refer to [9] for 
exact definitions. Any measure of complexity must be defined relative to 
a specific model of computation. The meaning of a statement like "Prob- 
lem P has complexity O( f(n))" is roughly as follows. First, P is under- 
stood to be a class of instances with a well-defined measure of length of 
an instance. Second, there is an "algorithm" and there is a constant C 
such that any instance of P of length n is solved by the algorithm within 
C f ( n )  time units. The notion of an algorithm, and the amount of time it 
takes to execute the basic operations in the algorithm, must be defined. It 
is customary among theoretical computer scientists to think of a problem 
as tractable if it has polynomial time complexity, and intractable other- 
wise. The advantage of this approach is that the property of polynomial 
time is robust in the sense that (to a certain extent) it does not depend on 
the model of computation. 

Practitioners usually have different point: of view. First, they are not 
interested so much in the worst-case performance of an algorithm. They 
usually like to have an idea about the distribution of running times, al- 
though they usually do not have a definite idea about the distribution of 
instancese4 Also, practitioners are less interested in asymptotic complex- 
ity. The advantage of the asymptotic approach is that it is more amen- 
able to mathematical analysis. When a theoretician says he has improved 
an algorithm he usually means he has designed an algorithm of lower 
asymptotic worst-case time complexity. Practitioners may then wonder 
at what size of an instance the asymptotically better algorithm becomes 
more favorable (yet in the sense of the worst case). Moreover, practition- 
ers are interested in factors such as space (also of interest to theoreticians), 
program length and simplicity, numerical characteristics, and versatility. 

In the context of linear programming, the size of an instance can be 
defined in different ways. Usually the complexity is expressed in terms of 
the numbers of rows and columns of the system. Assuming exact com- 
putation on real machines, the cost of performing arithmetic operations 
must depend also on the sizes of numbers involved. However, in practice 
most problems are being solved in floating-point arithmetic and the cost 

It remains a challenge to theoreticians to come up with models for predicting the effi- 
ciency of algorithms in practice. Results that depend on an exact probability distribution 
of instances are often not satisfactory. Because the distribution is not known, analysis 
should be done about classes of distributions characterized by weakest possible assump- 

tions (see [7] for further discussion of this issue). 
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is uniform (if numbers do not get out of range). On the other hand, the 
known polynomial algorithms for linear programming require in the worst 
case a number of steps that depends on the sizes of the coefficients. To 
relate theoretical complexity results to the practical performance of the 
algorithm, one needs to specify the precision under which a solution must 
be obtained. Matters are then complicated even further by the need to 
specify the measure of approximation to be used. 

Another point related to linear programming is the sparsity of the ma- 

trix. Most of the theoretical work on linear programming measures the 
complexity relative to the dimensions or the length of the binary repre- 
sentation of the problem. Of course, sparse problems have shorter repre- 
sentations even if each zero coefficient is given explicitly. However, sparse 
systems are being solved much more efficiently in practice, essentially be- 
cause the necessary linear algebraic steps are carried out more efficiently. 
For polynomial worst-case complexity, sparsity helps only because of a 
shorter binary representation. Theorists pay little attention to the cost of 
performing single iterations, whereas practitioners have a goal of making 
the cost of a single step as low as possible. The initial attitude of theoreti- 
cians is to look at the general problem, first ignoring any structure. When 
any complexity measure is expressed in terms of several parameters rather 
than just a single input size, it becomes more difficult to compare algo- 
rithms, because the result of the comparison may depend on the particu- 
lar combination of parameter values. 

The problem of linear programming has more than one level of ab- 
straction. The original problem is usually stated and solved over the field 
of the reals. Actually, for the traditional model of complexity, as well as 
for most practical computations, the field of the rationals is the appropri- 
ate one. There also exist combinatorial abstractions of linear program- 
ming in the context of "oriented matroids" (see, e.g., [22]). This area will 
not be discussed here. 

From an algebraic point of view, the problem can be posed relative to 
any "ordered field." An ordered field is a field where the nonzero elements 
are classified as positive (when an element a is positive we write a > 0) or 
negative ( a  < 0) subject to the following axioms: (i) If a and b are positive 
then so are a+ b and ab. (ii) If a nonzero element a is not positive then 
- a  is. It is obvious that the simplex algorithm solves the linear program- 
ming problem over any ordered field. Interesting observations on resolv- 
ing degeneracy in real problems via the use of larger ordered fields, as 
well as solutions to asymptotic problems, are given in [77] and the refer- 
ences thereof. A more recent paper on this subject is [51]. 

The term "ordered field" is justified by the fact that positivity induces 
a total order: An element a precedes an element b ( a  < b )  if b - a > 0. Thc 
relations I and L are defined in the natural way. Obvious consequences 
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are as follows: (i) 1 > 0; (ii) a +  1 > a;  (iii) a ,  b < 0 implies a +  b < 0 and 
ab  > 0. It thus follows that an ordered field cannot befinite. Moreover, it 
must contain the field of rationals. This containment is in the strong sense 
of ordered fields; that is, for any ordered field F there is an isomorphism 
of ordered fields from the ordered field of the rationals, Q, into F. Let F 
be any ordered field. Since F contains the field of rationals Q, we can de- 
fine a mapping p from F into the extended real line R* = R U I - w, w J as 
follows. For any a ~ F l e t  p ( a ) = S u p { r ~ Q : r < a ) .  (We use r  to denote 
both a rational number and its corresponding element in F.) By p(a) = 
- oo (respectively, p(a) = w) we mean a < r ( a  > r) for all rational r. It is 
easy to check that p(a) > p(b) implies a > b while a > b implies p(a) 2 
p(b). The mapping p is not necessarily one-to-one; for example, F may 
contain "infinitesimal" elements - that is, elements a such that 0 < a  < r 
for every positive rational r. However, p is a "homomorphism" from the 
subfield FR = ( a  E F: p(a) E R ) ;  that is, 

It  follows that many useful theorems on real systems of inequalities can 
be generalized to abstract ordered fields, even when the proof relies on 
properties of the real numbers. For example, vector spaces over ordered 
fields are not necessarily normed but some useful properties related to 
norms extend to such spaces. The following proposition is one such ex- 
ample, which turns out to be related to Karmarkar's algorithm. 

Proposition 2.1. Let u E F n  be an n-dimensional vector over an 
orderedjield F and let H G F n  be a linear subspace. Suppose v* E 

H is such [hat (u  - v* ) 'w = 0 for every w E H. Under these con- 
ditions, v* minimizes [he "quared distance" function f (v) = 

(U-v)'(u-V) for UEH.  

Proof: Let v E H be any vector and denote w = v- v*. Then 

( u - ~ ) ~ ( u - - v ) = ( u - v * - ~ ) ~ ( u - v * - ~ ) = ( u - ~ * ) ~ ( u - - ~ * ) + ~ ~ ~ .  

The claim follows from the fact that wTw r 0. rn 

At least from a theoretical viewpoint, the following (loosely stated) 
question is important for understanding linear programming: Can linear 
inequalities be decided in a polynomial number of field operations over 
any ordered field?5 More precisely, is there a polynomial p(m, n) and an 

The same question can be asked with respect to real closed fields. A field F is realclosed if 
i t  satisfies: (i) C a:# 0 unless a, = 0 for all i, and (ii) all the nontrivial algebraic exten- 
sions ol' F d o  not satisfy (i). I t  is known that any real closed field can be ordered uniquely. 
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algorithm6 that decides any system Ax I b of dimension rn x n after per- 
forming no more than p(m, n)  field and other machine operations? The 
simplex method is valid over any ordered field but several variants of it 
are known to run in exponential time in the worst case. 

There is still a problem with the formulation of the question in the 
preceding paragraph. It seems that multiplication and division are quite 
powerful operations. Complicated computational tasks can be performed 
by generating large numbers. For example, given a set S of n field ele- 

ments a , ,  ... , a,, one can generate in O(n) additions and multiplications 
an element A of the form A = c ~ ~ ,  aj ~ j ,  where a , ,  ... , az" are all the 
sums over subsets of S,  and M > E ai is another element. Operations on 
elements of the form of A  can simulate simultaneous operations on all the 
subsets of S. This suggests that a polynomial number of multiplications 
involving large elements may suffice for solving real problems that require 
exponential time under a model of logarithmic cost. So it seems reason- 
able to include in a definition of a "strongly" polynomial algorithm [147, 
1481 also the requirement that when the input consists of rational num- 
bers, the sizes of the numbers occurring in the computation are bounded 
by a polynomial in the input size. In other words, an algorithm is strongly 
polynomial if (first) it is polynomial and (second) the number of arith- 
metic operations is polynomial in the dimensions of the problem. Over 
an abstract field, because the size of an element is not well defined, we 
might require that the height7 [I101 of multiplications and divisions be 
bounded by p(1og rn, log n)  for some polynomial p. The simplex algo- 
rithm satisfies this requirement about heights, since each iteration can 
start from inputs and only has to solve a system of linear equations. Sys- 
tems of linear equations can be solved over any ordered field in a poly- 
nomial number of field operations with small height of multiplications 
[53, 30, 1341. 

3 The ellipsoid method 

The question that was settled by Khachiyan [83, 841 can be stated as fol- 
lows. Given a system of linear inequalities A x 5  b ( A E  RInXn, b e  R'") 
with integral coefficients,"et L denote the total number of bits in a binary 
representation of the coefficients aj j  and b;. The question is whether there 

We still assume here that an "oracle" can be used to perform the tield operations - that is, 
the arithmetic operations and comparison. 

' The height h(a) of an input element a is I .  ln general, for any elements generated by the 
algorithm, h(u+ b) = max(h(a), h(b)) and h(ab) = h(a)h(b); subtraction and division 
are handled like multiplications and divisions, respectively. 

"he extension to rational coefficients is trivial. 
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exists an algorithm for deciding feasibility (i.e., the existence of a solu- 
tion to the system) that takes no more than p (L)  bit operations, where p 
is a polynomial. The answer is yes, and the proof relies on an algorithm 
by Yudin and Nemirovsky [161]. 

Before sketching the algorithm, we find it helpful to describe an ab- 
stract scheme of establishing a time bound for an algorithm that gener- 
ates a sequence of objects 0; (i = 0,1,2, ...) (e.g., points, intervals, ellip- 
soids). Suppose g is a criterion function from the set of objects into the 
positive reals. Assume the algorithm makes progress in terms of g, with 
a lower bound on the rate of improvement, so that there is a 6 < 1 such 
that for every i ,  g(Oi+,) 5 6g(Oi). Furthermore, suppose the algorithm 
terminates when g(0;)  s E for some prespecified E > 0. Obviously, an up- 
per bound on the number of steps of the algorithm can be stated in terms 
of g(Oo), 6, and E .  A bound N on the number of steps is derived from 
the equation g(OO)hN= E, so that N =  (log g(0,) -log €)/(-log 6). Thus, 
if log g(Oo), -log E, and -l/(log 6) are each bounded by a polynomial 
function of the input size then the algorithm terminates in polynomial 
time. 

The objects generated by the "ellipsoid" algorithm are n-dimensional 
ellipsoids. A suitable criterion function maps n-dimensional ellipsoids to 
their n-dimensional volumes. It is easier to state the algorithm for the 
problem of deciding feasibility of a set of strict inequalities whose solu- 
tion set is guaranteed to be bounded: Ax < 6 ,  lxjl < L2L/nJ. For proving 
a polynomial upper bound, this form is equivalent to the original one. 
The algorithm generates a sequence of ellipsoids with the following prop- 
erties: (i) Each ellipsoid contains all the basic feasible solutions of the sys- 
tem A x 5  b. (ii) The factor by which the volume of the current ellipsoid 
decreases during a single step satisfies 6 < 2-'/(2(n+1)). Interestingly, this 
factor depends only on the smaller dimension n and does not depend on 
the number of constraints m or the numerical values of the coefficients. 
This allows for many elegant applications of the method to combinato- 
rial optimization problems with exponentially many constraints [64]. The 
efffect of L on the time bound is via the volumes of the first and last el- 
lipsoids. 

The first ellipsoid is a ball of radius n2L centered at the origin. Thus its 
volume is not greater than (2n222L)n. This ball is guaranteed to contain 
all the basic feasible solutions of Ax 5 b if there are any. A step of the 
algorithm starts by checking whether the center of the current ellipsoid 
solves the system Ax< b. If so, then the algorithm terminates with the 
center as solution; otherwise, a (volume-wise) smaller ellipsoid is con- 
structed. It can be proved that if the volume of the current ellipsoid is less 
than E = 2-(n+')L then there can be no basic feasible solutions and hence 
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no feasible solutions at all. Polynomiality of the algorithm follows from 
the preceding discussion. 

The original algorithm relies on the square-root operation. It is known 
that finite precision suffices [146, 1551. It follows that the ellipsoid algo- 
rithm can run over any ordered field; that is, the iterations can be per- 
formed. However, if infinitesimals are involved then the algorithm may 
not solve the problem. For example, the algorithm may never reach a 
point where infeasibility is evident. Similarly, if the volume of the initial 
ellipsoid is infinite then all the following ellipsoids have infinite volume. 
Thus, the ellipsoid algorithm does not solve the problem over general or- 
dered fields. A good survey of the ellipsoid method is given in [24]. 

An algorithm by Levin [99] was shown by Yamnitsky and Levin [I591 to 
run in polynomial time, using a similar analysis. Levin's algorithm works 
with simplices rather than ellipsoids. Hence, it can be run over any or- 
dered field but does not solve the problem in general. 

4 Probabilistic analyses of simplex algorithms 

The number of pivot steps performed by simplex algorithms in practice is 
widely considered surprisingly small. The "surprise" is due to observa- 
tions as follows. Every simplex algorithm visits bases of the underlying 
system of linear equations. It is known how to guarantee that no basis is 
visited more than once -that is, how to avoid "cycling." Because there are 
a finite number of bases, it follows that any noncycling simplex algorithm 
is finite. Moreover, this number is bounded (from above) by an exponen- 
tial function of the dimensions of the system. It is not known whether 
there exists a simplex9 algorithm whose (worst-case) number of steps is 
bounded by a polynomial function of the dimensions. Furthermore, for 
some simplex algorithms there have been constructed examples on which 
these algorithms perform an exponential number of steps. The first such 
example was designed by Klee and Minty [85]. Related examples were 
later designed for several simplex algorithms [78,13,119,120,63,163]. It 
is customary to say that "the simplex algorithm is exponential," meaning 
that it requires in the worst case an exponential number of steps. How- 
ever, this qualification is unfair because it has not been proven that for 
every variant of the method (in any precise sense) there exists an exponen- 
tial example. There are in fact variants whose worst-case analysis seems 
vely difficult. On the other hand, even for the (worst-case) exponential 
variants, practitioners report numbers of steps that are far smaller than 

We have stated earlier in this chapter that the concept of a simplex algorithm or variant 
is not well defined. 
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the numbers suggested by the worst-case complexity. The wide gap calls 
for mathematical analysis to explain it. 

Many simplex algorithms can be described as generating simple paths 
in the one-dimensional skeleton of some polytope. In other words, in one 
step they move from a vertexJ0 to an adjacent one, visiting no vertex more 
than once. This suggests that such variants would perform better on poly- 
topes with fewer vertices. Thus, first attempts to explain the good perfor- 
mance of simplex algorithms in practice were based on estimating num- 
bers of vertices of random polytopes. We will not review the results here. 
For analysis in linear programming it is interesting to consider random 
polytopes generated by picking half-spaces at random. Under most of 
the models investigated, it turned out that in a fixed dimension the expec- 
ted number of vertices increased slowly with the number of half-spaces. 
However, the expected number of vertices was exponential in both the di- 
mension and the number of half-spaces. Obviously, an approach based 
on estimating numbers of vertices of polytopes cannot demonstrate that a 
simplex algorithm is more efficient than an algorithm that enumerates all 
the vertices of a polytope. Such an approach ignores the particular way a 
specific algorithm chooses the next vertex in the path. Also, many simplex 
algorithms generate paths on which some linear function is monotone. 
The essence of the intuitive argument for the efficiency of monotone sim- 
plex algorithms is as follows. We think that if v'and u2 are adjacent ver- 
tices then, on the average, there are many vertices w where the value of 
the objective function is between the values at v' and v2. Thus, such ver- 
tices w are "skipped" when the algorithm moves from v' to v2. 

The works of Borgwardt [26,27,28] and Smale [144,145] constituted a 
breakthrough in the probabilistic analysis of simplex algorithms. In these 
works, for the first time, the particular choice of the algorithm was taken 
into account. Both identified closely related variants of the simplex meth- 
od, where it was possible to write closed-form formulas for the expected 
number of steps of the variant, in terms of the probability distribution 
over the set of problem instances. It is surprisingly easy to obtain for- 
mulas for these variants. The algorithms that can be analyzed in this way 
are based on parameterization in some form: The algorithm follows so- 
lutions to a parameterized family of problems. The number of steps cor- 
responds to the number of certain cones met by a certain straight line. 
The hard part in this research is the analysis of the resulting formula. 

lo  In the presence of degeneracy this statement is not accurate. The method actually visits 
buses of a linear system and may change the basis many times before moving to a new 
vertex. Furthermore, every linear programming problem can be reduced to a problem 
where all the algorithm has to do is move from the second-best vertex to the best one 
(but through many changes of the basis). 
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Borgwardt and Smale worked with closely related probabilistic models. 
However, their models differ in a very significant way. Under Borgwardt's 
model only feasible problems with known feasible solutions are gener- 
ated. Under Smale's model most of the problems are either infeasible or 
unbounded, depending on whether we consider the primal or the dual 
problem. On the other hand, the questions that arise in the analyses of the 
formulas are very closely related. Borgwardt succeeded in proving that 
under his model the expected number of steps was bounded by a polyno- 
mial in both the dimension and the number of half-spaces. Smale proved 
that under his model if one of the parameters (i.e., either the dimension 
or the number of half-spaces excluding the nonnegativity constraints) was 
fixed then the expected number of steps was bounded by a polynomial in 
the logarithm of the other parameter. Megiddo [I151 showed that in this 
case the expected number of steps was bounded by a function of the small- 
er parameter; that is, for any fixed m the poly-log function of n can be re- 
placed by a constant. However, it is still an open question whether this 
constant depends polynomially on the smaller parameter. It is reasonable 
to conjecture that the ideas and methods used by Borgwardt would help 
in proving polynomiality here as well. Blair [20] obtained a result close to 
Smale's for a large set of algorithms. Blair's result is based on estimating 
the expected number of undominated columns. This is closely related to 
the expected number of vertices of random polyhedra. 

Haimovich [67] and Adler [l] obtained a result related to the analysis 
of a similar simplex variant. They consider a model that was previously 
looked at in [31, 118, 2, 3, 104, 41. In this model all the hyperplanes are 
fixed in a nondegenerate manner. A cell of the induced partition of space 
is picked at random. Suppose any two vectors c and c' are given. Con- 
sider the family of vectors of the form c, = tc+cl,  where t varies over 
the reals. For each cell of the partition consider a path of optimal solu- 
tions determined by minimizing the linear function c:x over the cell. Hai- 
movich and Adler prove that the average length of such a path (i.e., the 
number of vertices on the path) is linear. However, this result applies 
neither directly to a specific algorithm for linear programming nor even 
to Phase I1 of an algorithm, since the "auxiliary" direction c' depends on 
the vertex of the cell that is produced in Phase 1. Thus, it is hard to justify 
an assumption that the direction is independent of the cell. However, this 
result is surprisingly good and provides much insight into average lengths 
of parametric paths on random polyhedra. 

Adler, Karp, and Shamir [5] show that for constraint-by-constraint al- 
gorithms (this does not include the self-dual method considered by Smale), 
the probabilistic model of "sign-invariance" (i.e., where the probability 
distribution is invariant under changes in the directions of inequalities) 
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implies that the expected number of steps is bounded by a function of the 
smaller dimension. However, in that paper all the upper bounds are still 
exponential. The result in [115], of a bound depending only on the smaller 
dimension, is not covered by the result in [5]. 

Polynomial upper bounds depending only on the smaller dimension 
were obtained in [149, 7, 6, 81. In these papers the analytic difficulties en- 
countered in [144, 145, 1151 are avoided. The mathematical analysis is con- 
siderably simplified if the starting point of the algorithm is changed from 
(1, ..., 1) to ( E ,  c2, e3,  ...). Furthermore, the assumptions of the probabil- 
istic model can be relaxed. An upper bound of o(min(m< nz)) can be 
proved under assumptions of sign-invariance and nondegeneracy. A quad- 
ratic upper bound is proved in [7] for any assignment of powers of E to 
rows and columns of the system. Moreover, [7] also proves a quadratic 
lower bound under a stronger model, which implies that even under the 
weaker model one cannot prove a subquadratic upper bound. It should 
also be noted that the algorithms in these papers are all special cases of 
the self-dual algorithm with various starting points (see [113]). It is not 
clear what is the best starting point for the average performance of the 
self-dual method for linear programming. The question of the starting 
point in the context of the general linear complementarity problem is tack- 
led in [70, 140, 114, 1491. It is known that (1, ... , 1) is worst for the average 
case of the general problem. However, the author conjectures that for the 
linear programming problem this point is best among all the nonnegative 
starting points. The model under which the O(min(mz, n 2 ) )  result is ob- 
tained may be criticized for allowing unboundedness (or infeasibility) 
with increasing probability. However, at least for the case m  = n (i.e., for 
a system with n linear inequalities in n nonnegative variables) it  implies 
that the conditional expectation of the number of steps, given that the 
problem is feasible and bounded, is only 0 ( m 2 . ' ) ,  while the conditional 
expectation of the number of vertices is exponential. 

5 Strongly polynomial algorithms 

People have been interested in the computational complexity of linear 
programming since the development of the simplex method. The funda- 
mental question concerned the dependence of the number of pivot steps 
on the dimensions m and n of the problem. The number of pivot steps 
is a natural measure of complexity for simplex algorithms, provided the 
effort per step is reasonable. The search for polynomial algorithms for 
linear programming was intensified in the 1970s because of two devel- 
opments: (i) the discovery that several simplex algorithms required ex- 
ponential numbers of pivot steps in the worst case, and (ii) the growing 
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interest among computer scientists in polynomial-time algorithms. It seems 
that the concept of a polynomial algorithm was understood by the mathe- 
matical programming community differently. The mathematical program- 

ming community is a little more inclined toward practice. In practice, lin- 
ear programming problems are usually solved in floating-point arithmetic 
and the numbers are limited to some finite range. The cost of performing 
arithmetic operations is constant provided the numbers stay in this range. 
The space occupied by a.number is bounded provided it is in this range. 
Hence, for the mathematical programming community, the natural ques- 
tion was the existence of an algorithm that required only a polynomial 
number p(m, n) of arithmetic operations. In theoretical computer science 
the common approach is that machines work with bits, and hence the size 
of the input has to be measured in bits and the running time in bit opera- 
tions. This means that the size of the input for a linear programming prob- 
lem depends not only on m and n but also on the coefficients themselves. 
The difference between the two approaches led to a surprise within the 
mathematical programming community when Khachiyan's result was an- 
nounced. The presence of the parameter L (the number of bits in the bin- 
nary representation of the input) in the polynomial upper bound was not 
expected. Of course, this parameter must appear in any bit-operations es- 
timate of the running time, because it takes unbounded time to carry out 
arithmetic operations on unbounded numbers. However, it is not clear 
that the number of arithmetic operations should depend on the magni- 
tudes of the numbers. The distinction between the two approaches can 
also be explained as a difference between models of computation. Theo- 
retical computer scientists like to work with complexity classes that are 
robust against changes in the model of computation. The class P of prob- 
lems solvable in polynomial time is a good example. However, the com- 
plexity of a problem is actually the complexity of a formal language that 
encodes it, and hence depends on the encoding. The question is: What is a 
reasonable model for discussing problems with numerical inputs? Suppose 
the input in a problem is a sequence of n numbers and the required output 
is another number. Is it reasonable to use the number n as the input size? 
The answer depends on the problem. Many computational number-theo- 
retic problems have only one or two numbers as input (e.g., primality test- 
ing, greatest common divisor), and the difficulty of the problem depends 
on the magnitudes of the numbers. It is hard to imagine that such prob- 
lems can be solved in a bounded number of arithmetic operations. On the 
other hand, it seems reasonable to measure the input to a problem of solv- 
ing linear equations by the number of coefficients in the system. More- 
over, the number of arithmetic operations needed for solving linear equa- 
tions is bounded by a polynomial in the number of coefficients. 
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Naturally, there is interest in settling the complexity of linear program- 
ming under this alternative model. Results are known only for special 
classes of linear programming problems. It is known that systems of lin- 
ear inequalities with at most two variables per inequality can be decided 
in strongly polynomial time [107]; that is, the number of arithmetic oper- 
ations is bounded by a polynomial in m and n. In fact, a linear function 
with at most two nonzero coefficients can be optimized subject to such in- 
equalities. The algorithm is also polynomial in the usual sense. 

Desire for a strongly polynomial algorithm for the minimum cost-flow 
problem was expressed by Edmonds and Karp [54] in the same paper that 
proposed the first polynomial algorithm to the problem. A strongly poly- 
nomial algorithm for the minimum cost-flow problem was recently devel- 
oped by Tardos [147], who also obtained [148] an algorithm for the gen- 
eral linear programming problem. In the rest of this section we review 
this nice result on linear programming in strongly polynomial time (with 
respect to the objective function and the right-hand-side vector) recently 
obtained by Tardos. Work related to Tardos's algorithm was done by Or- 
lin [127] and Fujishige [58]. Another extension is the work by Frank and 
Tardos [56] mentioned at the end of this section. 

The main result of Tardos [148] can roughly be described as follows. 
Linear programming problems (A, b, c )  with rational coefficients can be 
solved in a number of arithmetic operations bounded by a polynomial in 
m, n and the number of bits in the binary representation of the matrix A 

(regardless of the magnitudes of coefficients in b and c). For any matrix 
of rational numbers, the length of the binary representation of the matrix 
is called the size of the matrix. Thus, the time-complexity of Tardos's al- 
gorithm depends only on the size of A and not on the sizes of b and c, 

whereas in the other polynomial-time algorithms [83, 84, 791 the com- 
plexity does depend on these sizes. However, the claim about polynomial 
dependence on the size of A is possible due to the existence of polynomial- 
time algorithms for linear programming, but Tardos's result should be 
appreciated independently of these results. It provides strongly polyno- 
mial algorithms for numerous problems of combinatorial optimization 
without relying on polynomial algorithms for the general linear program- 
ming problem. 

The number of elementary operations used in Tardos's algorithm is 
independent of large numbers occurring in the objective function and 
the right-hand-side vectors.ll It is linear programming duality that allows 
one to deal with these vectors in a symmetric way. We first consider the 
objective function vector. The essence of the method is as follows. Given 

If one assumes that the cost of an operation depends on the magnitudes of the operands 
then the performance is affected by the existence of large numbers anywhere. 
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any objective function vector, one can replace it by another with "moder- 
ate" coefficients. The optimal solution relative to the revised objective 
function identifies at least one constraint that is tight at the optimum rela- 
tive to the original objective function. Thus, instead of solving a problem 
with arbitrarily large coefficients, one can solve a sequence of problems 
(each identifying at least one additional tight constraint) with moderate 
coefficients in the objective function. Each of these problems may still 
have arbitrarily large coefficients in the right-hand-side vector. However, 
with the help of duality, the same trick can be applied to the subproblems. 

The main ideas of the algorithm can be explained in the case where one 
needs to maximize a linear function cTx over a nonempty polyhedral set 
P, given in the form [ x :  Ax = b, x 2 O), where the dimensions of the sys- 
tem are m x n. The algorithm is stated for an integer matrix A.  Obviously, 
any problem with rational A can be handled too. A modified direction Cis 
computed as follows. First, any linear combination of rows of A can be 
added to c r  without changing the set of optimal solutions. Choosing an 
appropriate combination, we can replace c by a vector c' = c- ATy such 
that Ac'= 0. The case c '= 0 is trivial. Otherwise, c' is replaced by c"= 
( n 2 ~ / l l c ' l ( m ) ~ r ,  where A is an upper bound on the absolute value of any 
minor of A. The size of A can be bounded by a polynomial in the size of 
A.  Obviously, 11 c" 11, = n 2~ and the set of c"-optimal solutions still equals 
the set of the c-optimal ones. Now, c" is replaced by a vector Tconsisting 
of the integral values of the coordinates of c". The set of F-optimal solu- 
tions is no longer the same as the set of c-optimal solutions. However, im- 
portant information can be obtained by solving the dual problem with I?. 

Suppose y is an optimal solution to this dual problem - that is, the prob- 
lem of minimizing bry subject to A T y l  Tand y z  0. It can be proved that, 
for any column A, of A such that y T ~ ,  2 c;+ nA, necessarily xj = 0 for 
any optimal solution x of the original primal problem (maximize cTx sub- 
ject to Ax= b and x? 0). The interesting fact is that there is at least one 
such column. Such a column can be dropped from the system and the 
same process repeated with a smaller system. After at most n steps we 
identify the set of all j's such that xj = 0 for any optimal solution x. 

Each step in the above procedure requires the solution of the dual prob- , 

lem whose right-hand-side vector is T (consisting of moderate coefficients, 
i.e., integers of absolute values not greater than n2A), but whose objec- 
tive function vector b may still consist of large numbers. The idea is to 
solve this problem with the same basic trick but note that feasibility is not 
guaranteed. Also, the description so far applies only to problems that are 
guaranteed to be feasible. 

The feasibility of any system A x 5  b can be decided in polynomial time 
in the size of A as follows. An objective function c, is introduced: c, = 
C ( A +  l)'a,, where a, is the ith row of A.  Consider the problem of maxi- 
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mizing c 2  subject to  Ax  5 b. The dual problem of the latter is to mini- 
mize bTy subject to  ATy = c, and y r 0. We first note that this dual prob- 

lem is feasible (e.g., yi=  (A+1)' is feasible). Moreover, the size of its 
right-hand-side vector c, is bounded by a polynomial in the size of the 
matrix A. The basic trick applies here (consider maximizing -bTy), and 
any polynomial algorithm can be used to solve the subproblems because 
the right-hand-side vector is of moderate size. If the dual problem is un- 
bounded then the primal is infeasible; otherwise, the primal here is feas- 
ible since the dual is. In the latter case the basic algorithm identifies all the 
(dual) constraints that are tight at the (dual) optimum. Any polynomial 
linear programming algorithm can be used to select a dual optimal solu- 
tion; i t  takes polynomial time in the size of A only, because the dual ob- 
jective b is not required once the optimal face is known and the size of c, 

is polynomially bounded by the size of A anyway. Once a dual optimal 
solution J is found, a primal feasible solution X is computed by solving 
the system a,X= b, for all i such that J, >O. The validity of the last step 
follows from the particular choice of c, and the complementary slackness 
theorem. 

The complete algorithm for linear programming now works as fol- 
lows. Given the problem of maximizing c7x subject to Ax= b and x r  0, 

the algorithm first checks the feasibility of the system {Ax= b, x z  0).  If 
feasible then the feasibility of the dual system ATyr c is checked. If the 
dual is also feasible then the basic algorithm is applied to the primal prob- 
lem. The subproblems here are solved as follows. First, feasibility of the 
dual system ~~y r F is checked (this may be done by any polynomial lin- 
ear programming algorithm because F is of moderate size). If this dual is 
feasible then Tardos's algorithm can be called recursively to find an opti- 
mal solution to the problem of minimizing b7y subject to ATy= T and 
y r 0. Specific optimal primal and dual solutions can then be found by 
the procedure described above for detecting feasibility. 

In the way stated in [148], Tardos's algorithm is not well-defined for a 
general matrix A of real numbers, even though the vectors c and b may 
be real. In fact, the coordinates of b and c can be elements of any ordered 
field. Normalization eliminates all the infinite elements and then infinites- 
imal elements are rounded down to zero. Recall that the basic trick of the 
algorithm is to replace c by a vector whose coordinates are integers with 
absolute values not greater than n2A, where A is determined by the ma- 
trix A. When A has integral entries, A has to be an upper bound on the 
absolute value of any minor of A. The natural generalization for real ma- 
trices is to choose A as an upper bound on the absolute value of the ratio 

of any two nonzero minors of A. The given problem is then reduced to 
a polynomial number (in m and n) of problems with modified objective 
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functions. More precisely, the vector c is replaced by C, where 

Cj=L(n2~/llc'llm)cjJ and c f=c-ATy 

so that Ac'= 0. This raises two questions. First, it is not known whether 

such an upper bound A can be found in a polynomial number (in m and 
n) of elementary operations on real numbers. It is easy to compute an 
upper bound on the absolute value of any minor: namely, n!An, where A 
is the maximum absolute value of entries of A. However, it is not known 
how to compute a positive lower bound for the absolute value of any non- 
zero minor of A in a polynomial number of real number operations. Even 
if an appropriate A could be found in polynomial time, it is not clear that 
the optimization problem with the modified objective function vector C is 
easier than the original one. 

It is interesting to examine the existence of a Tardos-type result over 
general ordered fields. However, we have to be careful in phrasing the 
question. Consider the following question: Can we solve the problem 
(A, b, C) using a number of field operations that depends only on A? The 
answer is (trivially) yes, because the problem can be solved by enumerat- 
ing all the bases. This procedure has an upper bound on the number of 
field operations that depends only on m and n. The more general interest- 
ing question is of course the existence of polynomial bounds (in m and n) 
but this is the fundamental question rather than what we would call a 
Tardos-type question. A more reasonable question can be asked as fol- 
lows. Does there exist a function g that assigns to any field element a a 
positive integer g(a) ,  and does there exist an algorithm that solves the 
problem in g(A)p(m,  n )  field operations, where g(A) is the maximum of 
g (a )  over entries of A, and p is a polynomial? 

Frank and Tardos [56] extend Tardos's algorithm to certain combina- 
torial optimization problems with exponentially many constraints. This 
extension applies the simultaneous approximation algorithm of [97] for 
computing an equivalent objective function vector with moderate coeffi- 
cients. Most o f  the combinatorial optimization problems can be formu- 
lated as linear programming problems (possibly with exponentially many 
constraints), where the coefficients in the matrix are 0, 1, or -1. If the 
number o f  constraints is polynomial in the size of the original problem 
(e.g., the minimum cost-flow problem) then Tardos's method provides a 
strongly polynomial algorithm. Linear programming problems with an ex- 
ponential number of constraints (given implicitly) can be solved in poly- 
nomial time by the ellipsoid algorithm, provided a polynomial-time algo- 
rithm is available for proving feasibility of a given point or else providing a 
violated constraint. The Frank and Tardos algorithm makes such polyno- 
mial algorithms strongly polynomial by modifying the objective function 
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into an equivalent one whose size is polynomial. It replaces a given ob- 
jective function vector c  by a vector c* of integers of polynomial size such 
that, for any vector u  E (-1,0,1 In, u T c r  0 if and only if u T c * r  0. The 
components of c  may be elements of any ordered field. The computation 
of c* relies on the simultaneous approximation algorithm. 

6 Linear programming in fixed dimension 

Questions about the asymptotic worst-case time complexities of various 
problems became very popular during the 1970s. In particular, questions 
of computational geometry (see [95] for a survey) attracted much atten- 
tion. It has been known that the complexity of finding the extreme points 
of the convex hull of a set of n points in the plane is B(n log n). This sug- 
gested that the complexity of the two-variable linear programming prob- 
lem was the same. However, it was shown in [108, 481 that this problem 
could be solved in O(n)  time. The idea is quite simple. For any two con- 
straints of the form y r a,x+ bi ( i  = 1,2), there is a value x' (namely, 
where a ,  x'+ bl  = azx'+ b2,  assuming a nondegenerate case) so that on 
each side of the line ( x = x l J  one of the constraints dominates the other 
(in the weak sense). Thus, if at some point it becomes known that the 
search for a solution may be restricted (say) to the half-plane ( x r x ' ] ,  

then at that point one of the constraints may be eliminated. The algo- 
rithm is based on finding good values of x that allow for the elimination 
of "large" sets of constraints. Suppose, for simplicity, we have n = 4k 
constraints of the form y r ax+ b and they are paired arbitrarily; that is, 
we have arranged them in 2k disjoint pairs. Let x, denote the median of 
the intersection values xi , .  . . , xik of these pairs (assuming a nondegener- 
ate case). It is easy to decide in O(n) time whether the search may be re- 
stricted to ( x  5 x,, J or to ( x  L x,, j .  This decision then allows for the elim- 
ination of k constraints, namely, one dominated constraint from each 
pair of constraints that do not intersect on the side of the line ( x  = x,,] to 
which the search may be restricted. It follows that in Cn time (where C i s  
some constant) about a quarter of the set of constraints can be eliminated. 
This implies that by repeating the process about logdl3 n times the set of 
constraints is exhausted and eventually two critical constraints are identi- 
fied. The total time is of the form Cn(1 + (3/4) + (3/412 + (3/413 + ..- ) 
and is hence linear in n. The linear upper bound relies on the result that 
the median can be found in O(n) time (see [9]) and this algorithm can be 
considered as an extension of the linear-time median-finding algorithm. 

Three-variable linear programming problems can also be solved in O(n) 
time [lot?, 481 but the algorithm is more involved and the resulting con- 
stant is larger. It turns out that only about one-sixteenth of the constraints 
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can be eliminated during one iteration. The elimination is based on knowl- 

edge that the search may be restricted to a certain quadrant of the plane, 
determined in two median-finding steps. The generalization of this result 
to dimensions higher than three [109] is not trivial. The algorithm works 
according to the same principle of eliminating dominated constraints. In a 
fixed dimension (i.e., when the number of variables is fixed and the num- 
ber of constraints is n), a fixed fraction of the set of remaining constraints 
is eliminated. However, the fraction tends to zero very fast with the num- 
ber of variables. In the construction of [109] the fraction is doubly expo- 
nential, yielding an 0 ( 2 ~ ~ n )  algorithm for d variables and n constraints. 
Improved constructions that provide a bound of 0 (3~ 'n )  were suggested 
in [50, 361. 

Linear-time algorithms using similar methods also appear in [49, 112, 
116, 1641. Although the basic algorithm for two variables is extremely fast 
(using "approximate" medians obtained by sampling, rather than exact 
medians), the algorithm in [I091 is clearly not a serious tool for solving 
general linear programming problems in practice. However, considering 
asymptotic worst-case complexity, it is optimal for any fixed number of 
variables. 

7 Karmarkar's algorithm and related work 

Karmarkar [79] developed another polynomial-time algorithm for linear 
programming that generates a sequence of interior points converging to 
an optimal solution. Interior point methods are usually used in nonlinear 
programming [55,61] and have been proposed for linear programming as 
well (see [601), but no one before Karmarkar had identified a method that 
provably ran in polynomial time. To analyze the time-complexity of  an 
algorithm, one usually needs a measure of the progress (a "merit func- 
tion") that the algorithm makes toward the solution. However, it is usu- 
ally not easy to identify good measures of the progress. The naive mea- 
sures - like the amount of improvement in the objective function or the 
distance to the solution - usually do  not suffice for proving nice bounds, 
simply because it is impossible to prove a good lower bound on the prog- 
ress per  irerution. Of course, efficient methods do  not have to make much 
progress in every single step and thus, to prove their efficiency, one needs 
to understand how they make good progress in the long run. 

A common technique in nonlinear programming is the burrier- funcrion 
method. The goal is to solve constrained optimization problems with the 
tools of unconstrained optimization. A sequence of points is generated, 
starting in the interior of the feasible domain. The objective function is 
replaced by another function that is coherent with the original objective, 
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and yet has a "barrier" ingredient that prevents the algorithm from get- 

ting out of the feasible domain. To specify a barrier-function method, 
one needs to construct such a function and also specify an unconstrained 
optimization algorithm. 

Karmarkar's algorithm is easy to state with respect to the following 
form of the linear programming problem: minimize cTx subject to (i) 
Ax = 0, (ii) Ck xk = 1, and (iii) x r 0, where A is of dimension m x n; it is 
also assumed that the problem has an optimal solution and that the opti- 
mum of cTx equals zero. A vector x is called interior if it satisfies (i) and 
(ii) and if x > 0. It is assumed that an interior point x0 is available in the 
beginning. Any linear programming problem can be reduced to such a 
form. This is accomplished if the program is formulated so that the pri- 
mal and dual problems are combined. The algorithm can be stated with 
the following barrier function: 

which is well-defined for interior points x. Obviously, the value of F(x)  
tends to infinity when x tends (from the interior) to a boundary point z 
such that crz > 0. Also, unless cTx is constant over the feasible region, 
F(x) > 0 for every interior point x. On the other hand, if x tends from the 
interior along any straight line to an optimal point x* on the boundary 
then F(x) tends to zero; this is true because cTx approaches zero faster 
than (nk xk)'ln, given that Zk xk = 1. It follows that while F(x) is sought 
to be minimized over the interior of the feasible domain, a minimum of 
cTx over the feasible domain is approached. However, we have not yet 
explained how an optimum is actually reached in polynomial time. 

The algorithm (to be described below) generates a sequence xO, x', x2, . . . 
of interior points along which the function F(x)  decreases monotonically. 
Moreover, the rate of decrease is provably good enough to imply the de- 
sired result. Notice that the infinite process of optimizing F(x)  does not 
produce a boundary point. One needs to apply a stopping rule, and then 
either leave the problem with the current point as an approximate solu- 
tion or run a procedure that produces an exact solution from the current 
approximate one. In practice, one can sometimes guess the optimal basis 
and then verify that it is optimal. In theory, if F(x) is sufficiently close to 
zero then an optimal solution can be easily computed from x. Thus, in 
theory, the stopping rule is based on a sufficiently small value of F(x).  

The upper bound on the running time of Karmarkar's algorithm is 
polynomial in terms of the length of the binary representation of all the 
numbers involved. Let L denote this input length. An argument that ap- 
pears in the analysis of the ellipsoid algorithm is as follows. For some 
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constant K ,  if X I  and x2 are basic solutions such that cTx l#  cTx2 then 
IcTxl-cTx2( > 2-uL. This implies that if x is any feasible solution such 
that 0 < cTx< 2-KL, then - by modifying x into a basic feasible solution 
while improving the objective function value (a standard procedure some- 
times called "purification") - we obtain an optimal solution. Thus a valid 
stopping rule is c Tx 5 2 2KL. Note also that F(x)  > cTx for any interior x, 
so F(x)  < 2-KL is also a valid stopping rule. The barrier function F(x)  is 
also a suitable criterion function in terms of the discussion in Section 3, 

with the iterates x i  playing the roles of the objects. The initial interior 
point x 0  can be chosen so that log ~ ( x ' )  is bounded by a polynomial in 
L. The parameter 6 here is equal to 2-KL so that -log E is also polynomial 
in L. It remains to show (see below) that the rate of improvement 6 is also 
such that -l/(log 6) is polynomial in L. From a theoretical viewpoint, 
this characteristic is perhaps the most significant contribution of 1791. 

Let x '  be an interior point. We would like to move from x i  to a point 
xi+'  such that F ( x i + ' ) / ( ~ ( x i )  is sufficiently small. Karmarkar's step is 
related to the fact that the barrier function is, in a certain sense, invariant 
under a projective rescaling transformation P defined as follows. Given a 
point a =  xi, let x '=  P(x)  be defined for any feasible x. First, for conve- 

nience of notation let D =  diag(ak) denote a diagonal matrix of order n, 
where the diagonal entries are the components of the vector a. Also, let 
e denote an n-vector of 1's. The vector x' is equal to (D-'x)/(eTD-'x). 
The sense of invariance can be explained as follows. First note that x =  
(Dx')/(eTDx'). Thus, 

Denote c' = Dc and F'(xl) = ( ~ ' ) ~ x ' / ( n ,  xi)'/". It follows that for any 
two points x, y ,  if x '=  P (x )  and y '= P ( y )  then 

This equality allows us to work in the space transformed under P so that 
a (relative) improvement in F', while taking a step from a '=  P (a ) ,  is the 
same as that of the corresponding step from a. 

The natural question at this point is what is the benefit from the trans- 
formation P. The answer is that it reveals a good way to take a step from 
a', as we explain below. Note that in fact = l/n for every k. Also, the 
linear subspace [x :  Ax = 0)  is transformed under P into a subspace (x :  
A'x = 0) while the simplex (x: eTx = 1, x r 0)  is mapped onto itself. The 
situation is now as follows. There are two balls, B, and B2, both centered 
at the current point a', with the following properties: (i)  BI is contained 
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in the (transformed) feasible domain while the latter is contained in B,. 
(ii) The ratio of the radius of B, to that of B, is n- 1. The balls are simply 
the intersections of ( x :  A'x = 0 ]  with the largest inscribed and the small- 
est circumscribing balls of the simplex ( x :  C xj = 1, x r 0 ) .  This construc- 
tion is reminiscent of Lenstra's construction [98] for a polynomial integer 

programming algorithm in a fixed dimension. The step of Karmarkar's 
algorithm in the transformed space is made in the direction of the pro- 
jection of the vector c' on the subspace ( x :  A'x=O); its length is equal 
to one-quarter of the radius of B, .  The minimum of the linear function 
( c ' )  Ty over the (transformed) feasible domain is zero. It follows from the 
ball inclusion relations that the value of this function is multiplied during 
this step by a factor not greater than 1 - 1/4n. However, we are interested 
in the improvement of the function F' so we must consider the change in 

( I I k  xk)'ln during the step. This is the reason a step of only one-quarter 
rather than the full radius of B,  is taken. It is shown that this guarantees 
that the denominator of the (transformed) barrier function does not de- 
crease too much. The result is that the value F' (and hence also of F )  is 
multiplied during a step by a factor not greater than e-'/'". The latter 
quantity plays the role of 6 in the discussion of Section 3. Polynomiality 
follows from the fact that -l/(log 6) here equals 8n. Thus, as in the ellip- 
soid algorithm, the factor of improvement depends (polynomially) only 
on the dimension1* and not on the numerical values of the coefficients. 
Blair [21] showed that a step of length ( n -  1) / (2n-  3 )  of the radius of Bl 
was possible with a corresponding 6 = (4/(3*))'/". 

Karmarkar's algorithm provides the strongest upper bound known 
concerning the worst-case complexity of the linear programming problem 
under the logarithmic cost model. The number of arithmetic operations 
in the worst case is bounded by13 o ( ~ ~ . ~ L "  if the matrix operations are 
carried out in a specific way described in [79].  

Interestingly, the iterative step of Karmarkar's algorithm can be adapt- 
ed to work over any ordered field. Moreover, the guaranteed rate of im- 
provement prevails. It is easy to get rid of the logarithms and roots in the 
analysis of the algorithm. Thus, for example, one can easily obtain the 
following from Proposition 2.1. 

Proposition 7.1. Under the conditions of Proposition 2.1, if H = 

( x ~ F " : A x = 0 ) ,  w h e r e A ~ F ~ ~ " i s o f  rank rn, then the vector 

v* = [ I -  A ~ ( A A ~ ) - ' A ] U  minimizes the function f over H.  

l 2  Interestingly, in the ellipsoid algorithm the factor depends on the smaller dimension of 
the system, and this allows for the nice applications to combinatorial optimization prob- 
lems with exponentially many constraints. This is not so with Karmarkar's method. 

'' The parameter L* is usually smaller than L and reflects a better estimate of  the distances 

between basic solutions using minors of the matrix A. 
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We also have the following. 

Proposition 7.2. Let u = (n  - ', . . . , n -I) E F" and  let H G F" be de- 
termined by C f:: xi = 1 and x, = 0. Under these conditions, the 
vector v*= ((n- 1)-I, ... , (n-I)- ' ,  0) E F" minimizes the func- 
tion f ( v ) = ( u - V ) ~ ( U - V )  for UEH. 

The following proposition extends [21, Lemma 51, and justifies the 
choice of the step length so that the barrier component deterioration is 
controlled. 

Proposition 7.3. Let F be an orderedjield, n r 2 a natural num- 
ber, and let (xl , . . . , x,, a)  E F be such that 

n 

and C x k = l .  
k = ~  n(n- I)  k = ~  

Under these conditions, 

Using a criterion function that avoids nth roots, f (x)  = (cTx)" /nk  xk, 
one can see that during each step the value of this function is multiplied 
by a factor that is less than and bounded away from 1. If the problem 
is solved over the rationals then this implies a polynomial time bound. 
However, despite a guaranteed rate of improvement, the algorithm does 
not solve the problem over general ordered fields because it is not guaran- 
teed to reach infinitesimally close to an optimum. It can be used as an ap- 
proximate method though, where the approximation is in terms of the 
objective function value. Recall that the simplex method works over any 
ordered field. 

The computation of the projection of c' dominates the effort involved 
in a single iteration of the algorithm. The projection problem of a vec- 
tor c' on a subspace ( x :  A'x = 0) is equivalent to the minimization of 
11 A'x- c'll. This is known as a least-squares problem for which there are 
several techniques available. Further development in the numerical solu- 
tion least-squares problems should improve the performance of Karmar- 
kar's algorithm. 

It should be noted that the practical implementations of Karmarkar's 
algorithm may be quite different from the theoretical algorithm. Devia- 
tions from the theoretical algorithm can be in several ways: (i) Problems 
may be solved not in the combined form of the primal and the dual. (ii) 
Instead of a fixed step length, the proposed direction of movement may 

be searched for a best step. Moreover, even the direction of movement 
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itself may be selected after a search of a low-dimensional subspace. (iii) 
The theoretical stopping rule is not practical so heuristic rules may be de- 
veloped for stopping. (iv) The least-squares subproblems may be solved 
only approximately (especially if iterative methods are selected for them), 
and there may be a certain degree of heuristicism involved in the choice of 
the level of precision. (v) Some effort may be invested in frequent check- 
ing for optimality of a guessed basis. (vi) Variables and constraints may 
sometimes be eliminated on the basis of both theoretical and heuristic 
arguments. The significance of an algorithm running in polynomial time 
diminishes in practice if it is no longer clear that the particular imple- 
mentation is guaranteed to run in polynomial time. On the other hand, it 
is easy to run any algorithm in "parallel" to a polynomial-time algorithm, 
so that at least one of the algorithms is guaranteed to terminate in poly- 
nomial time. 

Since the first publication of Karmarkar's algorithm there have been 
several papers written on variants of the method [ll ,  19, 32, 33, 59, 101, 
111, 103, 151, 156, 1601. It is not clear what qualifies an algorithm as a vari- 
ant of Karmarkar's algorithm. Karmarkar's algorithm is classified in [60] 
as one member of a family of methods that have been experimented with 
in the past and also recently at Stanford. The claim is that Karmarkar's 
algorithm can be reproduced as a projected Newton search method ap- 
plied to a certain barrier function with a certain rule for updating the bar- 
rier parameter. Also, resemblances between Karmarkar's barrier func- 

tion, Frisch's barrier function [57], and Huard's method of centers [71] 
are mentioned in [151]. Resemblance to Lawson's algorithm [94, 136, 38, 
391 was pointed out by Walter Murray. Here, an I,-approximation prob- 
lem is solved by a sequence of weighted 12-approximation problems with 
a rule for updating the weights. However, the formal equivalence shown 
in [60] does not degrade the significance of Karmarkar's result. It seems 
reasonable to conjecture that under suitable weak conditions any interior- 
point method can be formulated as a barrier-function method. The inter- 
esting problem is to identify good methods. Karmarkar provided the first 
polynomial one; his algorithm is based on sensible principles that do  not 
hold for the barrier-function algorithms in general. On the other hand, 
it is still not clear whether his algorithm is in fact better in practice than 
other variants of the barrier-function idea. 

In Section 8 we discuss recent applications of nonlinear programming 
methods to linear programming that were inspired by Karmarkar's work. 
Besides the references mentioned above, further work related to Karmar- 
kar's algorithm can be found in [21, 25, 34,45, 60, 75, 76, 81, 87, 91, 123, 
130, 131, 137, 152, 1561. Todd and Burrell [151] and Anstreicher [ll] show 
how to extract dual variables without having to run the problem in the 
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combined primal-dual form. This resolves the difficulties with a "sliding" 

objective function mechanism that was described in an earlier version of 
Karmarkar's paper. 

Other recent iterative methods, independent of Karmarkar's work, are 
[102,117,121, 122,1331. It is expected that more papers will appear soon in 
this field. Unfortunately, it is not easy to assess the practical significance 
of newly proposed algorithms because of insufficient computational ex- 
perience. Moreover, an acceptable format for testing software for math- 
ematical programming has not been decided yet. Some related questions 
are discussed in Section 10. 

8 Recent interior-point methods 

Methods of nonlinear programming have been tried in the past for solv- 
ing linear programming problems (see [60] for references). However, the 
simplex method has been accepted as the most practical general-purpose 
method for linear programming. Practitioners often try to linearize a non- 
linear problem, but not to "unlinearize" a linear one. The ellipsoid algo- 
rithm is in fact a theoretical application of nonlinear programming to lin- 
ear programming. Interest in nonlinear methods for linear programming 
was recently revived with the strong claims about the practicality of Kar- 
markar's algorithm. In this section we review some of the recently pro- 
posed algorithms. 

We have explained the notion of a barrier-function method in Section 
7. Given a valid barrier function for a linear programming problem, it is 
usually a good idea to use the Newton search method for finding the opti- 
mum of the function, especially if the latter is convex. The method is 
usually applied to unconstrained optimization problems but can easily be 
extended to handle linear equality constraints. A single iteration of the 
Newton search method amounts to searching a direction. The direction is 
obtained by optimizing a quadratic function that approximates the given 
function. Suppose we need to minimize a convex function F(x)  subject 
to Ax = b, and assume we have already computed a point a.  Let V and H 

denote the gradient and Hessian, respectively, of the function F at the 
point a. The approximate optimization problem at a  is to minimize Q ( x )  = 

F(a)  + v T ( x -  a )  + ; ( ~ - a ) ~ ~ ( x - a )  subject to Ax = b. The search direc- 
tion v  is obtained by minimizing t v  T ~ v  + v 'V subject to Av = 0. This 
direction can also be obtained by linear optimization over an ellipsoid as 
follows. The inequality ( x -  a )TH(x-  a )  5 p 2  ( p  # 0) describes an ellip- 
soid centered at a.  An approximate linear optimization problem at a  is 
to minimize v T ( x -  a )  subject to ( x -  a ) T ~ ( ~ - a )  5 P 2  and Ax = b. The 
direction to the optimum of the latter is independent of p and coincides 
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with the direction obtained by Newton's method. There is yet another 
way to obtain the search direction by transforming the space. The gradi- 
ent direction is not invariant under linear transformations of the space. 
Thus, this direction depends on the representation. It is possible to trans- 
form the space, choose the gradient direction in the transformed space, 
and return to the original space, so that the resulting direction is the same 
as the one supplied by Newton's method. If the Hessian is symmetric and 
positive-definite then H - ' =  WWT for some real matrix W. In that case 
the transformation is v'= W-'v. The approximate quadratic optimiza- 
tion problem at a is to minimize $I(u'1l2+ V'WV' subject to  AWvf = 0. 
Equivalently, v' is determined by minimizing the linear function V'WV' 

over a ball that can be described as the intersection of the full-dimen- 
sional ball (x': 1 1 ~ ' -  a' 11 I p) with the affine subspace (x': A Wx' = b j. Ob- 
viously, the direction v' is obtained by projecting the transformed gra- 
dient W'V on the linear subspace (v': AWvl= 0). The projection of a 
vector u on a subspace ( 2 :  Mz = 0) (assuming M has a full row rank) is 
given by [I- MT(MMT)-'M]u (see Proposition 7.1). Thus, v = Wv'= 
W[I- W'A'(A ww -'Awl W'V. In the applications the matrix W 
usually has a special structure that allows for more efficient ways to  com- 
pute the search direction. 

It is interesting to note that Newton's method for nonlinear optimiza- 
tion is not invariant under monotone transformations of the objective 
function. Thus, one obtains different search directions if the objective 
function is replaced by its logarithm or its nth power. On the other hand, 
the search directions corresponding to all possible monotone transforma- 
tions of the same objective function form a two-dimensional linear space. 
Thus the different algorithms are closely related. 

Gill, Murray, Saunders, Tomlin, and Wright 1601 propose an algorithm 
for linear programming where they apply the Newton search method to a 
traditional form of a barrier function. They obtain an unconstrained op- 
timization problem (but still with equality constraints) with an objective 
function of the form F,(x) = cTx+pB(x). Here B(x) is the barrier com- 
ponent that tends to infinity as x approaches the boundary of the feasible 
domain, and p is a positive scalar that is driven by the algorithm to zero. 
For the linear programming problem of minimizing cTx subject to Ax= b 

and x r 0, the proposed barrier function is B(x) = -Ck In xk, SO the un- 
constrained optimization problem with the parameter p is to minimize 
cTx-pCk In xk subject to AX= b. Let us use the notation of Section 7. 

Thus, let a denote the current point, D=diag(ak),  and e is a vector of 1's. 
The gradient of this barrier function at a is c-pD-'e and the Hessian is 
p ~ - * .  For comparison, consider Karmarkar's potential function F(x) = 
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n In cTx-Ck In xk. Thus, in Karmarkar's algorithm, the gradient at the 
current point a is equal to (n/cTa)c-D-'e and the Hessian is equal to 
~ - ~ - n ( c ~ a ) - ~ c c ~ .  Thus, if p =  (cTa)/n then the directions of the gradi- 
ents in both cases are formally the same. Note that if the optimal value of 
cTx is zero then by taking p = (cTa)/n we drive p  to zero. It is shown in 
[60] that there is a choice of p  that yields the same search direction. The 
Hessian in Karmarkar's function contains an extra term, attributable to 
the dependence of p  on x. Because the Hessian in the [60] algorithm is 
equal to P D - ~ ,  it follows that the matrix Win that case equals &D. The 
search direction is hence D[I-~DA~(AD~A~)-'AD]D(C-~D-'~). TO 
compute the search direction, there is no need to invert the matrix AD2AT 
or even to generate it. What we have to do is essentially solve a system of 
equations of the form ( A D ~ A ~ ) ~  = 0. Thus, we can expand the system 
in the form 

so that sparsity of A can be exploited. 
Iri and lmai [76] propose an algorithm that can also be described as 

a Newton search direction method applied to a barrier function. They 
work on the problem of minimizing c7x subject to inequality constraints 
A x r  b, where the optimal value of the objective function is zero and an 
initial interior point is known. The barrier function is 

where rn is the number of rows in the matrix A and A: denotes the kth 
row of A. This function is based on the ideas behind the potential func- 
tion used by Karmarkar for the analysis of his algorithm. The function 
F(x) is convex. The algorithm iterates as follows. Given an interior point 
x', it finds the minimum x' of the quadratic approximation to F(x)  based 
on the Hessian at x'. It then searches the feasible segment of the line de- 
termined by x i  and x' for a minimum x i+ '  of F(x).  It is interesting to 
consider an analogous algorithm for the problem in the form we have 
used in this chapter, namely: minimize cTx subject to A x =  b and x r  0. 
The barrier function of Iri and Imai would be f(x)  = (c7x)"+7(nk  xk), 
where X E  R:. The gradient V of F at a point a satisfies, for every j ,  Vj  = 

f (a )  [(n + 1) (c  Ta)-'cj - a y  '1. It follows that the Hessian H o f f  at a sat- 
isfies, for every i and j, 

where 6,j = 1 if i = j and = 0 otherwise. It follows that 



252 Nimrod Megiddo 

C . C .  6. .  a= - ( n + l ) a + x  
f ( a )  (cTa)2 a,? 

In matrix notation, 

where uk = (cTa)  -'ck - (nuk) and D = diag(ak). It is now clear that H 
is positive semidefinite at any a €  R; so F is convex over R;. Interest- 
ingly, Karmarkar's potential function ( cTx)" / (Hk  xk)  is not convex. For 
example, let n = 2, c = ( 1 ,  O)', and a = ( i ,  i )T .  Then the Hessian of this 
function at a is proportional to the 2 x 2 matrix I-eeT,  which is indefi- 
nite. On the other hand, Karmarkar's algorithm works within the sub- 
space ( x :  C k  xk = 1 ). The restriction of Karmarkar's function to the latter 
subspace is convex. The proof of this claim follows by eliminating x,. 

Consider the function G(x)(cTx)"/ ( ( l  - C k  xk) H k  xk) ,  where x E R:-'. 

The Hessian of the latter can be represented as the sum of the Hessian of 
F(x)  = ( c T x ) " / n k  xk (also with X E  R:-') and a positive multiple of eeT, 

so the Hessian of G is positive definite. 
The difference between the [60] and the [76] algorithms is that the for- 

mer has a parameter that is updated by the algorithm, so that the Newton 
step is computed with respect to a different function in each iteration; the 
latter applies Newton's method to a fixed function. Because the rule for 
updating the parameter is incorporated into the barrier function in [76], 
the Hessian matrix is naturally a little more complicated. On the other 
hand, it is still amenable to sparse matrix computation. The search direc- 
tion is obtained by solving (for v)  an optimization problem of the form: 
minimize i v  ' H V +  gTv subject to Av = 0. With a vector h of Lagrange 
multipliers, this amounts to the following system of equations: 

In [60], H is diagonal so the sparsity of the latter system is essentially de- 
termined by the sparsity of the matrix A. In the algorithm analogous to 
[76] the matrix H is dense but has a nice structure: H = D P 2 -  wwT for a 
certain vector w. Thus, the system of equations (in v  and A) is 

D - ~ V - A ~ X =  (wTv)w-g  A V = O .  

The latter can be solved by taking a linear combination of solutions for 
two systems with a diagonal matrix in the upper left-hand corner: 
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D - ~ ~ I - A T X ~ ,  w A ~ ~ = o  

and 

D - ~ ~ ~ - A T x ~ =  -g A V ~ =  0. 

The solution is (v, A)= t(vl,  X')+(v2, X2), where t is determined by the 

equation wT(tv'+ v2) = t. 
Vanderbei, Meketon, and Freedman [I561 propose an algorithm that, 

in a certain sense, can be derived by dropping the projective ingredient 
from Karmarkar's algorithm. This algorithm (which we refer to as the 
VMF algorithm) can be described as follows. Suppose the problem is to 
minimize cTx subject to Ax = b and x 2 0. Let a denote the current inte- 
rior point. Thus, Aa  = b and a > 0. The direction that the VMF algorithm 
takes is computed as follows. It is convenient to describe this direction 
using an affine scaling transformation. Given a,  any point x is mapped 
into x' where x i  = xk/ak. In particular, the current point a is mapped into 
the n-vector e consisting of n 1's. Let D denote the same diagonal matrix 
used above; that is, D = diag(ak). Thus, the problem is transformed into 
an equivalent one: minimize cTDx' subject to ADx'= b and x ' r  0. 

The equivalence holds in general regardless of the vector b and the op- 
timal value of the objective function. For comparison, consider Karmar- 
kar's transformation. The latter is applied when the problem is to mini- 
mize cTx subject to Ax = 0, e 'x = 1, and x r 0. Given an interior point a, 
the projective rescaling transformation takes x into x'= (D-'x)/(eTD-'x) 
so the problem is transformed into the following: minimize cTDx'/eTDx' 
subject to ADx'/eTDx'= 0, eTx; = 1, and x' 20 .  However, because b = 0 

and the optimal value of the objective function is also equal to 0, it fol- 
lows that the latter is equivalent to minimizing cTx' subject to ADxf= 0, 

eTx;=1, a n d x ' 2 0 .  
In the transformed space the direction v' is obtained by projecting the 

direction Dc on the space { v': ADvf= 0 ) .  Thus, in this space the VMF al- 
gorithm moves from e to a point of the form e +  av', where a is chosen 
so that the new point is still interior. This step can be interpreted in two 
ways: (i) It is a rescaled steepest descent method; the algorithm moves (in 
the transformed space) in the direction opposite to the projected gradi- 
ent. (ii) The algorithm considers (in the transformed space) a ball, con- 
tained in the feasible region and centered at the current point. It takes a 
direction that passes through the point where the objective function is 
minimized over that ball. 

The VMF direction is computed as follows. First, the projection of any 
vector u on a subspace (2: M z  = 0)  is given by (I-MT(MMT)-'M)u. 
Thus the projection of the vector Dc on the subspace I v': ADv'= 0 )  is 
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given by (I- ( A D ) ~ ( A D ~ A ~ ) - ' A D ) D C .  The inverse image of the latter 
(i.e., the VMF direction in the original space) is obtained by multiplying 
by D. Thus, this direction is D ~ ( I - A ~ ( A D ~ A ~ ) - ' A D ~ ) C .  

Interestingly, the VMF direction can be derived from the [60] algo- 
rithm as the limit of the search direction when the parameter p tends to 
zero. It is instructive to consider analogous algorithms for the problem in 
inequality constraints form, since it seems that in this form projections 
on subspaces may not be needed and insight into duality may be gained. 
Consider the problem of minimizing cTx subject to Ax r b (where A E  
R m X n  is of rank n). An adequate barrier function for the problem in this 
form would be F(x)  = cTx-p Zk(Afi-  bk), where A r  denotes the kth 
row of the matrix A. Suppose that a is an interior feasible point; that is, 
A t a  > bk (k=  1, ... , m). ~ e t  D= d i a g ( ~ r a -  bk) E R ~ ~ ~ .  The gradient of 
F at a is equal to c- pATD-'e (where e is an m-vector of 1's). The Hes- 
sian of F at a is proportional to A ~ D - ~ A  SO the Newton search direction 
at a with parameter p is equal to ( A ~ D - ~ A ) - ' ( c - ~ ~ ~ D - ~ ~ ) .  When p 
tends to  zero this direction tends to v = (A~D-~A)- 'C .  Note that, as in 
the other algorithms, v is convenient for sparse matrix computation if A 
is sparse. It can be computed as the solution of (A'D-~A)v= C, which 
can be solved as an expanded sparse system in the unknowns u and v: 

U-D-'Av=O A'D-'u=c. 

The latter arises in the solution of a familiar least-squares problem: mini- 
mize Ilull subject to ATD-'u = c, where the nearest point to the origin in 
the affine subspace [ u: ATD-'U = CJ  is sought. The components of v serve 
as Lagrange multipliers in this least-squares problem. Thus, the effort per 
iteration here is also dominated by a least-squares problem of the same 
size and structure. Interestingly, the dual linear programming problem 
can be represented in the form: maximize bTD-'U subject to A T ~ - l u  = c 

and u 2 0 .  This representation reflects a scaling transformation on the 
dual problem which is similar but not identical to the VMF transforma- 
tion. The dual problem in the original form is to minimize b Ty subject to 
Ary = c and y r 0. The VMF transformation would be to divide each yk 
by its current value, whereas here we multiply each yi by the correspond- 
ing current value of A ~ X -  6,. 

The algorithm proposed by Barnes [19] turns out to produce the same 
direction of movement as the VMF algorithm, even though it is stated 
differently. Given a, Barnes considers a certain ellipsoid E centered at 
a and contained in the feasible domain. He chooses as the direction of 
movement the one where the minimum of the linear function crx over 
E is found. The ellipsoid E can be described as the intersection of the 
full-dimensional ellipsoid E = [x: 11 D -'x- ell I 1 ) (where D = diag(ak), as 
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above) with the affine space (x: A x =  6) .  It is easy to verify that l? is con- 
tained in the nonnegative orthant, hence E is contained in the feasible 
domain. The equivalence to the VMF direction is by substituting x=  Dx'. 
The Barnes direction in the transformed space is obtained by minimizing 
the function cTDx' over the ball E' defined as the intersection of the full- 
dimensional ball E' = ( x ' :  (XI -  ell 5 1 ) with the subspace (x': ADx' = 6 ) .  
Obviously, this direction is independent of the radius of the ball. In other 
words, the same direction is obtained if the ellipsoid l? is replaced by an 
ellipsoid E ( t )  = (x: )ID-'x-ell I t )  for any positive t. Thus, the property 
that the ellipsoid E is contained in the feasible domain is irrelevant. 

A variation on Karmarkar's algorithm, proposed in [Ill], can be ex- 
plained as follows. Karmarkar's algorithm is based on a projective trans- 
formation that maps the linear objective function into a fractional one. 
If the optimal value is zero then the function may be replaced by its nu- 
merator. However, the minima of the fractional function and its numer- 
ator over the inner ball usually do  not coincide. In the original space, the 
inverse image of the inner ball is an ellipsoid (assuming the feasible do- 
main is bounded, as in Karmarkar's formulation). If that ellipsoid is in- 
deed a good approximation to the feasible domain then a good direc- 
tion should be obtained by minimizing the objective function cTx over 
it. Thus, the problem of minimizing cTx subject to Ax = b and x 2 0 is 
approximated by the problem of minimizing cTx subject to Ax=  b  and 
xTD-'[I- (n - 1)-'eeT]D-'x I 0. With a vector X of Lagrange multi- 
pliers for the linear equations and a scalar multiplier q attributed to the 
boundary of the ellipsoid, we obtain the following system of equations: 

( D - ~ - w w ~ ) x - A ~ x =  p~ AX= b  

x ~ ( D - ~ -  wwT)x= 0, 

where w = (n - l ) - ' / 2 ~ - ' e .  This system can be solved using ideas already 
described in this section for the analogue of the [76] algorithm. 

9 Simplex methods for network problems 

The simplex algorithm has been used extensively and very successfully to 
solve network problems in practice. We will not review practical experi- 
ence here. On the theoretical side, it was shown in [I621 that exponential 
cases exist within the class of network problems. However, in recent years 
there have been identified simplex algorithms that perform only a poly- 
nomial number of pivot steps when applied to certain network problems. 
This direction is presumed to lead to better understanding of the simplex 
method. It may help finding a polynomial simplex variant or a proof that 
no such one exists. 
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Interesting work on network simplex algorithms was done by Cunning- 
ham [41, 421 (who, according to [73, 171, has done further unpublished 
work on polynomial simplex network algorit hms). Roohy-Laleh [I381 uses 
a primal simplex method for the assignment problem that runs in 0 ( n 3 )  
pivot steps. Hung [72] obtains a number of pivots that is polynomial in 
the size of the problem (i.e., taking the numerical values of the costs in- 
to account). Balinski [17] develops a "signature" method that solves - in 

O((n - 1) ( n  - 2)/2) pivot steps - the assignment problem as a dual sim- 
plex algorithm. Additional works on this problem are [lo, 62, 1541. Ikura 
and Nemhauser [74] derive a dual simplex algorithm for the more gen- 
eral (but yet the uncapacitated) transportation problem. Their algorithm 
solves a sequence of scaled problems (using ideas from [54]). It is not 
strongly polynomial because the upper bound on the number of pivots de- 
pends on the numerical values. A polynomial dual simplex algorithm for 
the minimum cost-flow problem was presented in [128]. So far, it is not 
known whether a strongly polynomial simplex algorithm for the trans- 
portation problem exists. However, Orlin [I261 claims that the original 
Edmonds and Karp scaling algorithm [54] can be made strongly poly- 
nomial with minor modifications. It should be noted that Tardos's al- 
gorithm for the transportation problem [147] is strongly polynomial, al- 
though it is not clear whether a strongly polynomial simplex algorithm 
can be derived from it. 

10 Theory versus practice 

Complexity theory in 1985 does not provide enough insight into the prac- 
tical efficiency of algorithms for linear programming. Even if the issue of 
the distribution of inputs is resolved, the efficiency of an algorithm even 
on a single instance is determined by too many factors. The word "algo- 
rithm" usually refers to the underlying method and not to the detailed 
implementation. Thus, for example, the particular method of solving lin- 
ear equations during a single iteration is not part of the algorithm. How- 
ever, the efficiency of an algorithm in practice depends very heavily on 
the implementation. Obviously, different implementation strategies may 
be efficient for some inputs while others may be efficient for other inputs. 
Thus, when comparing different algorithms, one has to specify what part 
of the implementation strategy is to be considered a part of the algorithm. 
An interesting question at the present is whether interior-point methods 
will prove better for linear programming than the simplex algorithms. 
First, the concepts are not at all well defined. However, the answer will 
probably depend on the development of methods for analyzing the den- 
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sity structure of the matrices involved. It became apparent during the 
12th International Symposium on Mathematical Programming (1985) that 
various interior-point methods converge in a small number of iterations. 
The numbers of pivot steps of simplex algorithms are also predictable to 
a certain extent. The potential for improvement in interior-point methods 
is in the reduction of the effort per iteration. Regarding the simplex meth- 
od, the question of the effort per iteration seems to be better understood 
than the question of reducing the number of steps. 

Reported computational experience is used by practitioners as an indi- 
cator for the efficiency of an algorithm. This approach suffers from many 
known disadvantages. Here we mention briefly only a few of them. 

It is often said that there is a need for a standard set of test problems. 
The idea is that whenever a new algorithm is proposed for a problem, 
people would be able to compare it with previous methods by running it 
(or letting the proposer run it for them) on the test problems. However, 
one should be very careful to separate the research and development of 
the algorithm from the test problems. If there is a fixed small set of test 
problems, there is always the danger that we will improve the implemen- 
tation by choosing the values of parameters to fit the test problems. Soft- 
ware packages typically have a certain degree of heuristicism involved. 
There are simple parameters - such as step sizes, accuracy in performing 
single iterations, and the like - that require some arbitrary choice of val- 
ue by the designer. The choice should not depend on the test problems. 
Whenever sparse matrix computations are involved there is always the 
question of factorization and preconditioning; the performance of an im- 
plementation depends very much on the success of these operations, suc- 
cess that may be attributable to heuristic techniques having nothing to do 
with the theory of linear programming. It is natural that the person who 
models a real-life problem for solution as a linear programming problem 
understands the structure of the problem better than any heuristic com- 
puter program that must analyze this structure. 

During the development of an algorithm, the designer sometimes likes 
to see his algorithm performing well and therefore enjoys running suc- 
cessful instances rather than unsuccesful ones. This distortion of propor- 
tion should not be projected to the phase of testing the final algorithm on 
independent test problems. 

Obviously, a test of a final algorithm should be performed like any 
other controlled experiment. However, even this is not enough. There is 
a fundamental difficulty with testing algorithms that makes this field less 
exact than the classical exact sciences. When results of a computational 
experiment are reported, we usually cannot tell whether there have been 
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prior experiments that produced contradicting results. Thus, the reported 

results may be easily reproducible yet not particularly instructive if the 
experiment itself was selected from a larger concealed set of experiments. 

An even more problematic issue is proprietary material. We may refer 
to [40] for recommendations: 

Occasionally, the solution of a proprietary problem may shed light on 
some aspect of the algorithm which could not be seen otherwise. None- 
theless, we believe that these problems should be referred to in the re- 
port only under special circumstances and with adequate justification. 

. . . Experiments involving the use of proprietary programs should only 
be published because of the presentation of a new strategy or of new the- 
oretical developments. Authors should be willing to reproduce their ex- 
periments for the referees. Where necessary, referees should exercise this 
right. (pp. 199, 201) 

References 

Adler, 1. 1983. "The Expected Number of Pivots Needed to Solve Paramet- 
ric Linear Programs and the Efficiency of the Self-Dual Simplex Method." 
Technical Report, Department of lndustrial Engineering and Operations Re- 
search, University of California-Berkeley. 
Adler, I., and S. E. Berenguer. 1981. "Random Linear Programs." Technical 
Report ORC 81-4, Operations Research Center, University of California- 
Berkeley. 
Adler, I., and S. E. Berenguer. 1981. "Duality Theory and the Random Gen- 
eration of Linear Programs." Technical Report, Department of lndustrial 
Engineering and Operations Research, University of California-Berkeley. 
Adler, I., and S. E. Berenguer. "Generating Random Linear Programs." 
Technical Report, Department of lndustrial Engineering and Operations Re- 
search, University of California-Berkeley. 
Adler, I . ,  R. M. Karp, and R. Shamir. 1983. "A Family of Simplex Variants 
Solving an m x d Linear Program in Expected Number of Pivots Depending 
on d Only." Report UCB CSD 83/157, Computer Science Division, Univer- 
sity of California-Berkeley. 
Adler, I., R. M. Karp, and R. Sharnir. 1983. "A Simplex Variant Solving an 
m x d Linear Program in 0(min(m2, d2 ) )  Expected Number of Pivot Steps." 
Report UCB CSD 83/158, Computer Science Division, University of Cali- 
fornia-Berkeley . 
Adler, I., and N. Megiddo. 1985. "A Simplex Algorithm Whose Average 
Number of Steps Is Bounded between Two Quadratic Functions of the 
Smaller Dimension. " Journal of the Association for Computing Machinery 
32: 871-95. 
Adler, I., N. Megiddo, and M. J .  Todd. 1984. "New Results on the Behavior 
of Simplex Algorithms." Bulletin of the American Mathematical Society 11: 
378-82. 



Complexity of linear programming 259 

(91 Aho, A. V., J. E. Hopcroft, and J. D. Ullman. 1974. The Design andAnaly- 

sis of Computer Algorithm. Reading, Mass.: Addison-Wesley. 

[lo] Akgul, M. 1985. "A Genuinely Polynomial Primal Simplex Algorithm for 

the Assignment Problem." Presented at the 12th Symposium on Mathemati- 
cal Programming, Cambridge, Mass. 

[ l l ]  Anstreicher, K. M. 1985. "Analysis of a Modified Karmarkar Algorithm for 
Linear Programming." Working Paper Series B#84, School of Organization 
and Management, Yale University. 

[12] Aspvall, B., and Y. Shiloach. 1980. "A Polynomial Algorithm for Solving 
Systems of Linear Inequalities with Two Variables per Inequality." SIAM 

Journal on Computing 9: 827-45. 
[13] Avis, D., and V. Chvatal. 1978. "Notes on Bland's Pivoting Rule." Mathe- 

matical Programming Study 8: 24-34. 
[I41 Baathe, O., and P. 0. Lindberg. 1985. "Studies on the Efficiency of the Sto- 

chastic Simplex Method." Presented at the 12th Symposium on Mathemati- 

cal Programming, Cambridge, Mass. 
[15] Balinski, M. L. 1984. "The Hirsch Conjecture for Dual Transportation Poly- 

hedra." Mathematics of Operations Research 9: 629-33. 
[16] ,Balinski, M. L. 1984. "A Good (Dual) Simplex Method for the Assignment 

Problem." Report AD 275.07.84, C.N.R.S., Laboratoire d'Econometrie, 
de 1'Ecole Polytechnique, Paris. 

[17] Balinski, M. L. 1985. "Signature Methods for the Assignment Problem." 
Operations Research 33 : 527-36. 

[18] Balinski, M. L., Th. M. Leibling, and A.-E. Nobs. 1985. "On the Average 
Length of Lexicographic Paths." RO 850415, Department de Mathema- 

tiques, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne- 
Ecublens, Switzerland. 

[I91 Barnes, E. R. 1985. "A Variation on Karmarkar's Algorithm for Solving Lin- 
ear Programming Problems." Research Report No. RC 11136, IBM T. S. 
Watson Research Center, Yorktown Heights, New York. 

[20] Blair, C. E. 1983. "Random Linear Programs with Many Variables and Few 
Constraints." Faculty Working Paper No. 946, College of Commerce and 
Business Administration, University of Illinois-Champaign-Urbana. 

[21] Blair, C. E. 1985. "The Iterative Step in the Linear Programming Algorithm 
of N. Karmarkar." Unpublished manuscript, College of Commerce and Busi- 
ness Administration, University of Illinois-Champaign-Urbana. 

[22] Bland, R. G. 1977. "A Combinatorial Abstraction of Linear Programming." 
Journal of Combinatorial Theory 23 (B): 33-57. 

[23] Bland, R. G. 1978. "New Finite Pivoting Rules." Mathematics of Operations 

Research 3: 103-7. 
[24] Bland, R. G., D. Goldfarb, and M. J .  Todd. 1981. "The Ellipsoid Method: 

A Survey." Operations Research 29: 1039-91. 
[25] Blum, L. G. 1985. "Towards an Asymptotic Analysis of Karmarkar's Algo- 

rithm. Extended abstract. 
[26] Borgwardt, K.-H. 1977. "Untersuchungen zur Asymptotik der mittlcren 

Schriftzahl von Simplexverfahren in der Linearen Oplimierung." Disserla- 



260 Nimrod Megiddo 

tion, Universitat Kaiserlautern. 

[27] Borgwardt, K.-H. 1982. "Some Distribution-Independent Results about the 
Asymptotic Order of the Average Number of Pivot Steps of the Simplex 

Method." Mathematics of Operations Research 7: 41-62. 

[28] Borgwardt, K.-H. 1982. "The Average Number of Steps Required by the 

Simplex Method Is Polynomial." Zeitschrift fur Operations Research 26: 
157-77. 

[29] Borgwardt, K.-H. 1985. "Average Behavior of the Simplex Algorithm: Some 
Improvements in the Analysis of the Rotation-Symmetr y-Model." Presented 
at the 12th Symposium on Mathematical Programming, Cambridge, Mass. 

[30] Borodin, A., J. von zur Gathen, and J .  E. Hopcroft. 1982. "Fast Parallel 
Matrix and GCD Computations." Information and Control 52: 241-56. 

[31] Buck, R. C. 1943. "Partition of Space." American Mathematical Monthly 

50: 541-4. 
[32] Cavalier, T. M., and A. L. Soyster. 1985. "Some Computational Experience 

and a Modification of the Karmarkar Algorithm." Presented at the 12th 
Symposium on Mathematical Programming, Cambridge, Mass. 

[33] Chandru, V., and B. P. Kochar. 1985. "A Class of Algorithms for Linear 
Programming." Presented at the 12th Symposium on Mathematical Pro- 
gramming, Cambridge, Mass. 

[34] Charnes, A., T. Song, and M. Wolfe. 1984. "An Explicit Solution Sequence 
and Convergence of Karmarkar's Algorithm." Unpublished manuscript, 
University of Texas-Austin. 

[35] Chvatal, V. 1983. Linear Programming. New York: W. H. Freeman and Co. 
[36] Clarkson, K. 1984. "Linear Programming in O ( r 1 ( 5 / 2 ) ~ 3 ~ ' )  Time." Unpub- 

lished manuscript, Department of Computer Science, Stanford University. 
[37] Clausen, J. "Recent Results on the Complexity of the Simplex Algorithm." 

Presented at the 12th Symposium on Mathematical Programming, Cam- 
bridge, Mass. 

[38] Cline, A. K. 1970. "Uniform Approximation as a Limit of L, Approxima- 
tions." Ph.D. thesis, University of Michigan. 

[39] Cline, A. K. 1972. "Rate of Convergence of Lawson's Algorithm." Mathe- 

matics of Computation 26: 167-76. 
(401 Crowder, H., R. S. Dembo, and J .  M. Mulvey. 1979. "On Reporting Com- 

putational Experience with Mathematical Software." A C M  Transactions on 

Mathematical Soft ware 5: 193-203. 
[41] Cunningham, W. H. 1976. "A Network Simplex Method." Mathematical 

Programming 11: 105-16. 
[42] Cunningham, W. H. 1979. "Theoretical Properties of the Network Simplex 

Method." Mathematics of Operations Research 4: 196-298. 
[43] Dantzig, G. B. 1963. Linear Programming and Exrensions. Princeton, N.J.: 

Princeton University Press. 
[44] Dantzig, G. B. 1980. "Expected Number of Steps for a Linear Program with 

a Convexity Constraint." Technical Report SOL 80-3, Systems Optimization 
Laboratory, Department of Operations Research, Stanford University. 



Complexity of linear programming 26 1 

[45] de Ghellinck, G., and J.-Ph. Vial. 1985. "An Extension of Karmarkar's Al- 

gorithm for Solving a System of Linear Homogenous Equations on the Sim- 

plex." Discussion Paper No. 8538, C.O.R.E., Catholic University of LOU- 
vain, Belgium. 

[46] Dobkin, D. P., and S. P. Reiss. 1980. "The Complexity of Linear Program- 
ming." Theoretical Computer Science 11: 1-18. 

[47] Dunham, R., D. G. Kelly, and J .  W. Tolle. 1977. "Some Experimental Re- 
sults Concerning the Expected Number of Pivots for Solving Randomly 
Generated Linear Programs." Report TR 77-16, Operations Research and 
Systems Analysis Department, University of North Carolina-Chapel Hill. 

[48] Dyer, M. E. 1984. "Linear Time Algorithms for Two- and Three-Variable 
Linear Programs." SIAM Journal on Computing 13: 31-45. 

[49] Dyer, M. E. 1984. "An O ( n )  Algorithm for Multiple-choice Knapsack Lin- 
ear Program." Mathematical Programming 29: 57-63. 

[SO] Dyer, M. E. 1984. "On a Multidimensional Search Technique and Its Appli- 
cation to the Euclidean One-Center Problem." Department of Mathematics 
and Statistics, Teesside Polytechnic, Middlesbrough, Cleveland TSl 3BA, 
United Kingdom. 

[51] Eaves, B. C., and U. G. Rothblum. 1985. "A Theory of Extending Algo- 
rithms for Parametric Problems." Technical Report RE5685, Department of 
Operations Research, Stanford University. 

[52] Eaves, B. C., and H. Scarf. 1976. "The Solution of Systems of Piecewise 
Linear Equations." Mathematics of Operations Research 1: 1-27. 

[53] Edmonds, J. 1967. "Systems of Distinct Representatives and Linear Alge- 

bra." Journal of Research of the National Bureau of Standards 71 B: 241-5. 
[54] Edmonds, J., and R. M. Karp. 1972. "Theoretical Improvements in Algo- 

rithmic Efficiency for Network Flow Problems." Journal of the Association 

for Computing Machinery 19: 248-64. 
[55] Fiacco, A. V., and G. P. McCormick. 1968. Nonlinear Programming: Se- 

quential Unconstrained Minimization Techniques. New York: J .  Wiley and 
Sons. 

[56] Frank, A., and E. Tardos. 1985. "An Application of Simultaneous Approxi- 
mation in Combinatorial Optimization." In Proceedings of the 26th Annual 

IEEE Symposium on Foundations of Computer Science (1985), pp. 459-63. 
Los Angeles: lEEE Computer Society Press. 

[57] Frisch, K. R. 1955. "The Logarithmic Potential Method of Convex Program- 
ming." Unpublished manuscript, University lnstitute of Economics, Oslo, 
Norway. 

[58] Fujishige, S. 1985. "An 0 ( m 3  log m )  Capacity-Rounding Algorithm for the 
Minimum-Cost Circulation Problem: A Dual Framework of the Tardos Al- 
gorithm." Technical Report No. 254 (85-3), Institute of Socio-Economic 
Planning, University of Tsukuba, Sakura, lbaraki 305, Japan. 

[59] Gay, D. M. 1985. "A Variant of Karmarkar's Linear Programming Algo- 
rithm for Problems in Standard Form." Presented at the 12th Symposium on 
Mathematical Programming, Cambridge, Mass. 



262 Nimrod Megiddo 

[60] Gill, P. E., W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright. 
1985. "On Projected Newton Barrier Methods for Linear Programming and 
an Equivalence to Karmarkar's Projective Method." Technical Report SOL 
85-11, Systems Optimization Laboratory, Department of Operations Re- 
search, Stanford University. 

[61] Gill, P. E., W. Murray, and M. H. Wright. 1981. Practical Optimization. 
New York: Academic Press. 

[62] Goidfarb, D. 1985. "Dual Simplex Algorithms for the Assignment Problem." 
Presented at the 12th Symposium on Mathematical Programming, Cam- 
bridge, Mass. 

[63] Goldfarb, D., and W. Sit. 1979. "Worst Case Behavior of the Steepest Edge 
Simplex Method." Discrete Applied Mathematics 1: 277-85. 

[64] Grotschel, M., L. Lovasz, and A. Schrijver. 1981. "The Ellipsoid Method 
and Its Consequences in Combinatorial Optimization." Combinatorica 1: 
169-97. 

[65] Grotschel, M., L. Lovasz, and A. Schrijver. 1984. "Corrigendum to Our 
Paper 'The Ellipsoid Method and Its Consequences in Cornbinatorial Opti- 
mization'." Combinatorica 4: 291-5. 

[66] Grunbaum, B. 1%7. Convex Polytopes. New York: Wiley. 
[67] Haimovich, M. 1983. "The Simplex Algorithm Is Very Good! - On the Ex- 

pected Number of Pivot Steps and Related Properties of Random Linear 
Programs." Technical Report, Columbia University. 

[68] Haverly, C. A. 1985. "Behavior of the Simplex and Karmarkar Algorithms." 
Presented at the 12th Symposium on Mathematical Programming, Cam- 
bridge, Mass. 

[69] Hoffman, A. J., M. Mannos, D. Sokolowsky, and N. Wiegmann. 1953. 
"Computational Experience in Solving Linear Programs." J. Soc. Indust. 

Applied. Math. 1: 17-33. 
[70] Howe, R. 1983. "Linear Complementarity and the Average Volume of Sim- 

plicial Cones." Cowles Foundation Discussion Paper No. 670, Yale Uni- 
versity. 

[71] Huard, P. 1967. "Resolution of Mathematical Programming with Nonlinear 
Constraints by the Method of Centers." In J .  Abadie (ed.), Nonlinear Pro- 

gramming, pp. 207-19. Amsterdam: North-Holland. 
(721 Hung, M. S. 1983. "A Polynomial Simplex Method for the Assignment Prob- 

lem. " Operarions Research 3 1 : 595-600. 
[73] Ikura, Y., and G. L. Nemhauser. 1982. "An Efficient Primal Simplex Algo- 

rithm for Maximum Weighted Vertex Packing on Bipartite Graphs." Annals 
of Discrete Mathematics 16: 149-68. 

[74] Ikura, Y., and G. L. Nemhauser. 1983. "A Polynomial-Time Dual Simplex 
Algorithm for the Transportation Problem." Technical Report No. 602, 

School of Operations Research and Industrial Engineering, Cornell Uni- 
versity. 

[75] Iri, M. 1985. "Another 'Simple and Fast' Algorithm for Linear Program- 
ming." Presented at the 12th Symposium on Mathematical Programming, 
Cambridge, Mass. 



Complexity of linear programming 263 

[76] Iri, M., and H. Imai. 1985. "A Multiplicative Penalty Function Method for 
Linear Programming - Another 'New and Fast' Algorithm." Research Mem- 

orandum RMI 85-04, Department of Mathematical Engineering and Instru- 
mentation Physics, University of Tokyo, Tokyo, Japan. 

[77] Jeroslow, R. G. 1973. "Asymptotic Linear Programming." Operations Re- 

search 21: 1128-41. 

[78] Jeroslow, R. G. 1973. "The Simplex Algorithm with the Pivot Rule of Maxi- 
mizing Criterion Improvement." Discrete Mathematics 4: 367-77. 

[79] Karmarkar, N. 1984. "A New Polynomial-Time Algorithm for Linear Pro- 

gramming." In Proceedings of the 16th Annual A C M  Symposium on Theory 

of Computing (1984), pp. 302-11. New York: ACM. Revised version in Com- 

binaforica 4: 373-95. 
[80] Karmarkar, N. K. 1985. "Further Developments in the New Polynomial Time 

Algorithm for Linear Programming." Presented at the 12th Symposium on 
Mathematical Programming, Cambridge, Mass. 

[81] Karmarkar, N. K., and L. P. Sinha. 1985. "Application of Karmarkar's Al- 
gorithm to Overseas Telecommunications Facilities Planning." Presented at 

the 12th Symposium on Mathematical Programming, Cambridge, Mass. 
[82] Karp, R. M., and C. H. Papadimitriou. 1980. "On Linear Characterizations 

of Combinatorial Optimization Problems." In Proceedings of the 2lst An- 

nual IEEE Symposium on Foundations of Computer Science (1980), pp. 1-9. 
Los Angeles: lEEE Computer Society Press. 

[83] Khachiyan, L. G. 1979. "A Polynomial Algorithm in Linear Programming." 
Soviet Math. Dokl. 20: 191-4. 

[84] Khachiyan, L. G. 1980. "Polynomial Algorithms in Linear Programming." 
USSR Computational Mathematics and Mathematical Physics 20: 53-72. 

[85] Klee, V., and G. J. Minty. 1972. "How Good Is the Simplex Algorithm?" In 
0. Shisha (ed.), Inequalities I I I ,  pp. 159-75. New York: Academic Press. 

1861 Klee, V., and D. W. Walkup. 1967. "The d-Step Conjecture for Polyhedra 
of Dimension d < 6." Acta Math. 117: 53-78. 

[87] Kojima, M. 1985. "Determining ,Basic Variables of Optimum Solutions in 
Karmarkar's New LP Algorithm." Research Report No. B-164, Department 
of Information Sciences, Tokyo Institute of Technology, 0-Okayama, Me- 
guro-ku, Tokyo, Japan. 

[88] Kolata, G. 1979. "Mathematicians Amazed by Russian's Discovery." Science 

(2 November): 545-6. 
[89] Kolata, G. 1982. "Mathematician Solves Simplex Problem." Science (2 July): 

39. 
[90] Kolata, G. 1984. "A Fast Way to Solve Hard Problems." Science (21 Septem- 

ber): 1379-80. 
[91] Kortanek, K. O., D. N. Lee, and M. Shi. 1985. "An Application of a Hybrid 

Algorithm for Semi-Infinite Programming." Presented at the 12th Symposi- 
um on Mathematical Programming, Cambridge, Mass. 

[92] Kozlov, M. K., S. P. Tarasov, and L. G. Khachiyan. 1979. "Polynomial 
Solvability of Convex Quadratic Programming." Dokl. Akad. Nauk SSSR 
5: 1051-3. 



Nimrod Megiddo 

Kuhn, H., and R. E. Quandt. 1963. "An Experimental Study of the Simplex 
Method." American Mathematical Society, Proc. Symp. Appl. Math. 15: 
107-24. 

Lawson, C. L. 1961. "Contributions to the Theory of Linear Least Max- 
imum Approximation." Ph.D. thesis, University of California-Los An- 

geles. 

Lee, D. T., and F. F. Preparata. 1984. "Computational Geometry - A Sur- 

vey." IEEE Transactions on Computers C-33: 1072-1101. 
Lemke, C. E. 1965. "Bimatrix Equilibrium Points and Mathematical Pro- 
gramming." Management Science 11: 681-9. 
Lenstra, A. K., H. W. Lenstra, Jr., and L. Lovasz. 1982. "Factoring Poly- 
nomials with Rational Coefficients." Math. Ann. 26: 515-34. 
Lenstra, H. W., Jr. 1983. "Integer Programming with a Fixed Number of 

Variables." Mathematics of Operations Research 8: 538-48. 
Levin, A. Yu. 1965. "On an Algorithm for Convex Minimization." Soviet 

Mathematics Doklady 160. 
[I001 Liebling, Th. M. 1973. "On the Number of Iterations of the Simplex Meth- 

od." In R. Henn, H. Kunzi, and H. Schubert (eds.), Methods of Operation 

Research 17: 284-64. 
[I011 Lustig, I. 1985. "A Practical Approach to Karmarkar's Algorithm." Tech- 

nical Report SOL 85-5, Systems Optimization Laboratory, Department of 
Operations Research, Stanford University. 

[I021 Mangasarian, 0. 1984. "Normal Solutions of Linear Programs." Mathe- 

matical Programming Study 22: 206-16. 

[I031 Marsten, R. E., and D. F. Shanno. 1985. "On Implementing Karmarkar's 

Algorithm." Presented at the 12th Symposium on Mathematical Program- 

ming, Cambridge, Mass. 
[I041 May, J., and R. Smith. 1982. "Random Polytopes: Their Definition, Gen- 

eration, and Aggregate Properties." Mathematical Programming 24: 39-54. 
[I051 Megiddo, N. 1982. "Is Binary Encoding Appropriate for the Problem- 

Language Relationship?" Theoretical Computer Science 19: 337-41. 
[I061 Megiddo, N. 1982. "Polylog Algorithms for LP with Application to Ex- 

ploding Flying Objects." Unpublished manuscript, Carnegie-Mellon Uni- 
versity. 

[I071 Megiddo, N. 1983. "Towards a Genuinely Polynomial Algorithm for Linear 
Programming." SIAM Journal on Computing 12: 347-53. 

[lo81 Megiddo, N. 1983. "Linear-Time Algorithms for Linear Programming in 
R3 and Related Problems." S I A M  Journal on Computing 12: 759-76. 

[I091 Megiddo, N. 1984. "Linear Programming in Linear Time When the Dimen- 
sion Is Fixed." Journal of the Association for Computing Machinery 31: 
114-27. 

[I 101 Megiddo, N. 1984. "Dynamic Location Problems." To appear in Pro- 

ceedings of the Third International Symposium on Locational Decisions. 

Thompson's Island, Mass. 
[I 1 I] Megiddo, N. 1984. "A Variation on Karmarkar's Algorithm." Unpublished 

manuscript. 



Complexity of linear programming 265 

[I121 Megiddo,.N. 1985. "Partitioning with Two Lines in the Plane." Journal of 

Algorithms 6: 430-3. 

[I 131 Megiddo, N. 1985. "A Note on the Generality of the Self-Dual Simplex Al- 
gorithm with Various Starting Points." Methods of Operations Research 

49: 271-5. 
[I 141 Megiddo, N. 1986. "On the Expected Number of Linear Complementarity 

Cones Intersected by Random and Semi-Random Rays." Mathematical Pro- 

gramming 35: 225-35. 
[I151 Megiddo, N. 1986. "Improved Asymptotic Analysis of the Average Num- 

ber of Steps Performed by the Self-Dual Simplex Algorithm." Mathemati- 

cal Programming 35: 140-72. 
[I 161 Megiddo, N., and T. Ichimori. 1985. "A Two-Resource Allocation Problem 

Solvable in Linear-Time.'' Mathematics of Operations Research 10: 7-16. 

[I171 Mitra, G., M. Tamiz, J.  Yadegar, and K. Darby-Dowman. 1985. "Experi- 
mental Investigation of an Interior Search Algorithm for Linear Program- 
ming." Presented at the 12th Symposium on Mathematical Programming, 

Cambridge, Mass. 
[I 181 Motzkin, T. S. 1955. "The Probability of Solvability of Linear Equalities." 

In H. A. Antosiewicz (ed.), Proceedings of the Second Symposium in Lin- 

ear Programming, pp. 607-11. USAF: National Bureau of Standards and 
Directorate of Management Analysis. 

[I 191 Murty, K. G. 1978. "Computational Complexity of Complementary Pivot 
Methods." Mathematical Programming Study 7: 61-73. 

[I201 Murty, K. G. 1980. "Computational Complexity of Parametric Linear Pro- 
gramming." Mathematical Programming 19: 213-19. 

[I211 Murty, K. G. 1985. "A New Interior Variant of the Gradient Projection 

Method for Linear Programming." Technical Paper 85-18, Department of 
Industrial and Operations Engineering, University of Michigan. 

[I221 Murty, K. G., and Y. Fathi. 1984. "A Feasible Direction Method for Linear 
Programming." Operations Research Letters 3 :  121-7. 

[I 231 Nazareth, J . L. "Karmarkar's Method and Homotopies with Restarts." 
Manuscript, CDSS, P.O. Box 4908, Berkeley, Calif. 94704. 

[I241 Orden, A. 1976. "Computational lnvestigation and Analysis of Probabilis- 
tic Parameters of Convergence of a Simplex Algorithm." In Progress in 

Operations Research 11, pp. 705-15. Amsterdam: North-Holland. 
[I251 Orden, A. 1980. "A Step Towards Probabilistic Analysis of Simplex Con- 

vergence." Mathematical Programming 19: 3-13. 

[I261 Orlin, J .  B. 1984. "Genuinely Polynomial Simplex and Nonsimplex Algo- 
rithms for the Min-Cost Flow Problem." Working Paper 1615-84, Sloan 

School of Management, Massachusetts Institute of Technology. 
[I271 Orlin, J .  B. 1985. "A Dual Version of Tardos' Algorithm for Linear Pro- 

gramming." Working Paper 1686-85, Sloan School of Management, Mass- 
achusetts Institute of Technology. 

[I281 Orlin, J .  B. 1985. "A Polynomial Time Dual Simplex Algorithm for the 
Minimum Cost Flow Problem." Presented at the 12th Symposium on Math- 
ematical Programming, Cambridge, Mass. 



266 Nimrod Megiddo 

[I291 Orlin, J. B. "On the Simplex Algorithm for Networks and Generalized Net- 
works." Mathematical Programming, to appear. 

[I301 Padberg, M. W. 1985. "A Different Convergence Proof of the Projective 
Method for Linear Programming." Unpublished manuscript, New York 
University. 

[I311 Padberg, M. W. 1985. "Solution of a Nonlinear Programming Problem 

Arising in the Projective Method for Linear Programming." Unpublished 

manuscript, New York University. 
[I321 Padberg, M. W., and M. R. Rao. 1980. "The Russian Method and Integer 

Programming." GBA Working Paper, New York University. 

[I331 Pan, V. Y. 1983. "On the Computational Complexity of Solving a System 

of Linear Inequalities." Department of Computer Science, State University 
of New York. 

[134] Pan, V., and J .  Reif. 1985. "Efficient Parallel Solution of Linear Systems." 
In Proceedings of the 17th Annual ACM Symposium on Theory of Com- 

puting (1985), pp. 143-52. New York: ACM. 
[I351 Pickel, P. F. 1985. "lmplementing the Karmarkar Algorithm Using Simplex 

Techniques." Presented at the 12th Symposium on Mathematical Program- 
ming, Cambridge, Mass. 

[136] Rice, J. R., and K. H. Usow. 1968. "The Lawson Algorithm and Exten- 
sions." Mathemarics of Computation 22: 118-27. 

(1371 Rinaldi, G. 1985. "The Projective Method for Linear Programming with 
Box-Type Constraints." Report R.119, lnstituto di Analisi dei Sistemi ed 
lnformatica del CNR, Viale Manzoni 30, 00815 Roma. 

[I381 Roohy-Laleh, E. 1981. "lmprovements to the Theoretical Efficiency of the 
Network Method." Ph.D. thesis, Carleton University. 

[139] Ross, S. M. 1981. "A Simple Heuristic Approach to Simplex Efficiency." 
Department of lndustrial Engineering and Operations Research, University 
of California-Berkeley. 

[I401 Saigal, R. 1983. "On Some Average Results for Random Linear Comple- 
mentarity Problems." Department of lndustrial Engineering, Northwestern 
University. 

[141] Saigal, R. 1983. "An Analysis for the Simplex Method." Preliminary Re- 
port, Department of lndustrial Engineering, Northwestern University. 

[I421 Shamir, R. 1984. "The Efficiency of the Simplex Method: A Survey." De- 
partment of lndustrial Engineering and Operations Research, University 
of California-Berkeley. 

11431 Shostak, R. 1981. "Deciding Linear lnequalities by Computing Loop Resi- 
dues." Journal of the Association for Computing Machinery 28: 769-79. 

[I441 Smale, S. 1983. "On the Average Number of Steps of the Simplex Method 
of Linear Programming." Mathematical Programming 27: 241-62. 

[I451 Smale, S. 1983. "The Problem of the Average Speed of the Simplex Meth- 
od." In A. Bachem, M. Grotschel, and B. Korte (eds.), Mathematical Pro- 
gramming: The State of the Art, pp. 530-9. Berlin: Springer-Verlag. 

[I461 Stone, R. E. 1980. "Khachiyan's Algorithm with Finite Precision." Working 
Paper SOL 80-1, Department of Operations Research, Stanford University. 



Complexity of linear programming 267 

[147] Tardos, E. 1984. "A Strongly Polynomial Minimum Cost Circulation Algo- 

rithm." Report No. 84356-OR, Institut fur Oconometrie und Operations 

Research, University of Bonn. Forthcoming in Combinatorica. 

11481 Tardos, E. 1985. "A Strongly Polynomial Algorithm to Solve Combina- 
torial Linear Problems." Report No. 84360-OR, lnstitute for Econometrics 
and Operations Research, University of Bonn. 

[149] Todd, M. J. 1983. "Polynomial Expected Behavior of a Pivoting Algorithm 
for Linear Complementarity and Linear Programming Problems." Techni- 
cal Report No. 595, School of Operations Research and Industrial Engi- 
neering, Cornell University. 

[I501 Todd, M. J., and B. P. Burrell. 1985. "The Ellipsoid Algorithm Generates 
Dual Variables." Mathematics of Operations Research 10: 688-700. 

[I511 Todd, M. J., and B. P. Burrell. 1985. "An Extension of Karmarkar's Algo- 
rithm for Linear Programming Using Dual Variables." Technical Report 
No. 648, School of Operations Research and Industrial Engineering, Cor- 
nell University. 

[I521 Tomlin, J .  A. 1985. "An Experimental Approach to Karmarkar's Projective 
Method for Linear Programming." Report, Ketron, Inc., Mountain View, 
Calif. 94040. 

11531 Traub, J. F., and H. Wozniakowski. 1982. "Complexity of Linear Pro- 
gramming." Operations Research Letters 1: 59-62. 

[154] Tufecki, S. 1985. "A Polynomial Dual Simplex Algorithm for Assignment 

and Transportation Problems." Manuscript, University of Florida. 
11551 Ursic, S. 1982. "The Ellipsoid Algorithm for Linear Programming in Ex- 

act Arithmetic." In Proceedings of the 23rd Annual IEEE Symposium on 

Foundations of Computer Science (1982), pp. 321-6. Los Angeles: lEEE 
Computer Society Press. 

11561 Vanderbei, R. J., M. J. Meketon, and B. A. Freedman. 1985. "A Modifica- 
tion of Karmarkar's Linear Programming Algorithm." Report, AT&T Bell 
Laboratories, Holmdel, N. J .  07733. 

[I571 Vershik, A. M., and P. V. Sporyshev. 1983. "An Estimate of the Average 
Number of Steps in the Simplex Method, and Problems in Asymptotic In- 
tegral Geometry." Soviet. Math. Dokl. 28: 195-9. 

[I581 Wan, Y.-H. 1983. "On the Average Speed of the Lemke's Algorithm for 
Quadratic Programming." Department of Mathematics, State University of 
New York-Buffalo. 

[159] Yamnitsky, B., and L. A. Levin. 1982. "An Old Linear Programming Algo- 
rithm Runs in Polynomial Time." In Proceedings of the 23rd Annual IEEE 

Symposium on Foundations of Computer Science (1982), pp. 327-8. Los 
Angeles: IEEE Computer Society Press. 

[I601 Ye, Y. 1985. "K-Projection and the Cutting-Objective Methods for Linear 
Programming." Presented at the 12th Symposium on Mathematical Pro- 
gramming, Cambridge, Mass. 

11611 Yudin, D. B., and A. S. Nemirovsky. 1976. "lnformational Complexity and 

Effective Methods for Solving Convex Extremum Problems." Economics i 
Mat. Metody 12. 



268 Nimrod Megiddo 

[162] Zadeh, N. 1973. "A Bad Network Problem for the Simplex Method and 
Other Minimim Cost Flow Algorithms." Mathematical Programming 5: 
255-66. 

11631 Zadeh, N. 1980. "What Is the Worst Case Behavior of the Simplex Algo- 
rithm?" Technical Report No. 37, Department of Operations Research, 
Stanford University. 

[I641 Zemel, E. 1984. "An O(n) Algorithm for Multiple Choice Knapsack and 
Related Problems." Information Processing Letters 18: 123-8. 


