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Defects and impurities are often decisive in determining the

physical properties of most materials. The process of defect

identification and characterization is typically difficult and

indirect, usually requiring an ingenious combination of differ-

ent experimental techniques. First-principles calculations have

emerged as a powerful microscopic tool that complements

experiments or sometimes even serves as the sole source of

atomistic information due to experimental limitations. Still,

first-principles calculations based on density functional theory

in the local density or generalized gradient approximations

suffer from serious limitations when describing defects in

solids. Recent advances in electronic structure methods, rapid
increases in computing power, and the development of efficient

algorithms indicate a promising future for computational defect

physics. We review recent advances in the theory of defects in

solids from the perspective of first-principles calculations. We

focus in particular on methods that improve the description of

band gaps, leading to results that can be directly compared to

experiments on a quantitative level. We discuss the use of

LDAþU in wide-band-gap materials, screened hybrid func-

tionals, the quasiparticle GW method, and the use of modified

pseudopotentials. Advantages and limitations of these methods

are illustrated with examples.
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1 Introduction First-principles studies of point
defects and impurities in semiconductors, insulators, and
metals have become an integral part of materials research
over the last few decades [1–3]. Point defects and impurities
often have decisive effects on materials properties. A prime
example is doping of semiconductors: the addition of minute
amounts (often at the ppm level) of donor or acceptor
impurities renders the material n type or p type, enabling the
functionality of electronic or optoelectronic devices [4, 5].
Control of doping is therefore essential, and all too often
eludes experimental efforts. Sometimes high doping levels
required for low-resistivity transport are limited by com-
pensation effects; such compensation can be due to point
defects that form spontaneously at high doping. In other
cases, unintentional doping occurs. For instance, many
oxides exhibit unintentional n-type doping, which due to its
prevalence has often been attributed to intrinsic causes, i.e.,
to native point defects. Recent evidence indicates, however,
that the concentration of native point defects may be lower
than has conventionally been assumed, and that, instead,
unintentional incorporation of impurities may cause the
observed conductivity [6]. Last but not least, manymaterials
resist attempts at ambipolar doping, i.e., they can be easily
doped one type but not the other. Again, the oxides (or more
generally, wide-band-gap semiconductors) that exhibit
unintentional n-type doping often cannot be doped p-type.
The question then is whether this is due to an intrinsic
limitation that cannot be avoided, or whether specific doping
techniques might be successful.

Aside from the issue of doping, the study of point defects
is important because they are involved in the diffusion
processes and act to mediate mass transport, hence
contributing to equilibration during growth, and to diffusion
of dopants or other impurities during growth or annealing
[7–9]. In addition, an understanding of point defects is
essential for characterizing or suppressing radiation damage,
and for analyzing device degradation.

Experimental characterization techniques are available,
but they are often limited in their application [10–12].
Impurity concentrations can be determined using secondary
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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ion mass spectrometry (SIMS), but some impurities (such as
hydrogen) are hard to detect in low concentrations. Point-
defect concentrations are even harder to determine. Electron
paramagnetic resonance is an excellent tool that can provide
detailed information about concentrations, chemical iden-
tity, and lattice environment of a defect or impurity, but it is a
technique that requires dedicated expertise and possibly for
that reason has few practitioners [12]. Other tools, such as
Hall measurements or photoluminescence, can provide
information about the effect of point defects or impurities
on electrical or optical properties, but cannot by themselves
identify their nature or character. For all these reasons, the
availability of first-principles calculations that can accu-
rately address atomic and electronic structure of defects and
impurities has had a great impact on the field.

Obviously, to make the information obtained from such
calculations truly useful, the results should be as reliable and
accurate as possible. Density functional theory (DFT)
[13, 14] has proven its value as an immensely powerful
technique for assessing the structural properties of defects
[1]. (In the remainder of this article, we will use the term
‘‘defects’’ to generically cover both native point defects and
impurities.) Minimization of the total energy as a function of
atomic positions yields the stable structure, including all
relaxations of the host atoms, and most functionals
[including the still most widely used local density approxi-
mation (LDA)] all yield results within reasonable error bars
[15]. Quite frequently, however, information about
electronic structure is required, i.e., the position of defect
levels that are introduced in the band gap of semiconductors
or insulators. Since DFT in the LDA or generalized gradient
approximation (GGA) severely underestimates the gap, the
position of defect levels is subject to large error bars and
cannot be directly compared with experiment [16–18]. In
turn, this affects the calculated formation energy of the
defect, which determines its concentration. This effect on the
energy is still not generally appreciated, since it is often
assumed that the formation energy is a ground-state property
for which DFT should give reliable results. However, in the
presence of gap levels that can befilledwith varying numbers
of electrons (corresponding to the charge state of the defect),
the formation energy becomes subject to the same type of
errors that would occur when trying to assess excitation
energies based on total energy calculations with N or Nþ 1
electrons. Recently, major progress has been made in
overcoming these inaccuracies, and the approaches for
doing so will be discussed in Section 2.

Another type of error that may occur in defect
calculations is related to the geometry in which the
calculations are performed. Typically, one wishes to address
the dilute limit in which the defect concentration is low and
defect–defect interactions are negligible. Green’s functions
calculations would in principle be ideal, but in practice have
proven quite cumbersome and difficult to implement.
Another approach would be to use clusters, but surface
effects are almost impossible to avoid, and quantum
confinement effects may obscure electronic structure.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Nowadays, point defect calculations are almost universally
performed using the supercell geometry, in which the defect
is embedded within a certain volume of material which is
periodically repeated. This has the advantage of maintaining
overall periodicity, which is particularly advantageous when
using plane-wave basis sets which rely on Fast Fourier
Transforms to efficientlymove between reciprocal- and real-
space representations. The supercells should be large enough
to minimize interactions between defects in neighboring
supercells. This is relatively straightforward to accomplish
for neutral defects, but due to the long-range nature of the
Coulomb interaction, interactions between charged defects
are almost impossible to eliminate. This problem was
recognized some time ago, and a correction was suggested
based on a Madelung-type interaction energy [19]. It had
been observed, however, that in many cases the correction
was unreliable or ‘‘overcorrected,’’ making the result less
accurate than the bare values [20]. Recently, an approach
based on a rigorous treatment of the electrostatic problemhas
been developed that outlines the conditions of validity of
certain approximations and provides explicit expression for
the quantities to be evaluated [21]. Issues relating to
supercell-size convergence are addressed in detail in the
article by Freysoldt et al. [22] in this volume.

We note that it is not the intent of the present paper to
provide a comprehensive review of the entirety of this large
and growing field. Rather, we attempt to introduce the main
concepts of present-day defect calculations illustrated with a
few select examples, and do not aspire to cover the countless
important contributions to the field by many different
research groups.

2 Formalism and computational approach The
key quantities that characterize a defect in a semiconductor
are its concentration and the position of the transition levels
(or ionization energies) with respect to the band edges of the
host material. Defects that occur in low concentrations will
have a negligible impact on the properties of the material.
Only those defects whose concentration exceeds a certain
threshold will have observable effects. The position of the
defect transition levels with respect to the host band edges
determines the effects on the electrical and optical properties
of the host. Defect formation energies and transition levels
can be determined entirely from first principles [1], without
resorting to any experimental data for the system under
consideration.

2.1 Defect formation energies and concentra-
tions In the dilute limit, the concentration of a defect is
determined by the formation energy Ef through a Boltzmann
expression:
c ¼ Nsitesexp �Ef
�
kBT

� �
: (1)
Nsites is the number of sites (including the symmetry-
equivalent local configurations) on which the defect can be
incorporated, kB is the Boltzmann constant, and T the
www.pss-b.com
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temperature. Note that this expression assumes thermodyn-
amic equilibrium. While defects could also occur in none-
quilibrium concentrations, in practice most of the existing
bulk and epitaxial film growth techniques operate close to
equilibrium conditions. Equilibration of defects is actually
unavoidable if the diffusion barriers are low enough to allow
easy diffusion at the temperatures of interest. In addition,
even if kinetic barriers would be present, Eq. (1) is still
relevant because obviously defects with a high formation
energy are less likely to form.

Defect formation energies can be written as differences
in total energies, and these can be obtained from first
principles, i.e., without resorting to experimental
parameters. The dependence on the chemical potentials
(atomic reservoirs) and on the position of the Fermi level in
the case of charged defects is explicitly taken into account [1,
5]. This is illustrated here with the specific example of an
oxygen vacancy in a 2þ charge state in ZnO. The formation
energy of V2þ

O is given by:
www
Ef V2þ
O

� �
¼ Etot V

2þ
O

� �
�Etot ZnOð Þ þ mO þ 2EF; (2)
where EtotðVq
OÞ is the total energy of the supercell

containing the defect, and EtotðZnOÞ is the total energy
of the ZnO perfect crystal in the same supercell. EF is the
energy of the reservoir with which electrons are exchanged,
i.e., the Fermi level. The O atom that is removed is placed in
a reservoir, the energy of which is given by the oxygen
chemical potential mO. Note that mO is a variable,
corresponding to the notion that ZnO can in principle be
grown or annealed under O-rich, O-poor, or any other
condition in between. It is subject to an upper bound given
by the energy of an O atom in an O2 molecule. Similarly, the
zinc chemical potential mZn is subject to an upper bound
given by the energy of a Zn atom in bulk Zn. The sum of mO

and mZn corresponds to the energy of ZnO, which is the
stability condition of ZnO. An upper bound onmZn, given by
the energy of bulk Zn, therefore leads to a lower bound on
mO, and vice versa. The chemical potentials thus vary over a
range given by the formation enthalpy of the material being
considered. Formation enthalpies are generally well
described by first-principles calculations. For instance,
the calculated formation enthalpy of �3.50 eV for ZnO [8]
is in a good agreement with the experimental value of
�3.60 eV [23].

Note that it is, in principle, the free energy that
determines the defect concentration, and one should in
principle take into account vibrational entropy contributions
in Eq. (1). Such contributions are usually small, on the order
of a few kB, and there is often a significant cancellation
between vibrational contributions in the solid and in the
reservoir [1]. In rare instances, inclusion of vibration entropy
has a distinct impact on which configuration is most stable
for a given defect or impurity [24], but it hardly ever has a
significant effect on the overall concentration. The reader is
referred to Ref. [1] for a detailed discussion on the
calculation of defect formation energies fromfirst principles.
.pss-b.com
2.2 Transition levels or ionization energies
Defects in semiconductors and insulators can occur in
different charge states. For each position of the Fermi level,
one particular charge state has the lowest energy for a given
defect. The Fermi-level positions at which the lowest-energy
charge state changes are called transition levels or ionization
energies. The transition levels are thus determined by
formation energy differences:
e q=q0ð Þ ¼
Ef Dq;EF ¼ 0ð Þ�Ef Dq0 ;EF ¼ 0

� �

q0�qð Þ ; (3)
where EfðDq;EF ¼ 0Þ is the formation energy of the defect
D in the charge state q for the Fermi level at the valence-
band maximum (EF¼ 0). These are thermodynamic
transition levels, i.e., atomic relaxations around the defect
are fully included; for Fermi-level positions below eðq=q0Þ
the defect is stable in charge state q, while for Fermi-level
positions above eðq=q0Þ, the defect is stable charge state q0.
The thermodynamic transition levels are not to be confused
with the single-particle Kohn–Sham states that result from
band-structure calculations for a single charge state. They
are also not to be confused with optical transition levels
derived, for example, from luminescence or absorption
experiments. In this case, the final state may not be
completely relaxed, and the optical transition levels may
significantly differ from the thermodynamic transition
levels, as discussed in Ref. [1].

For a defect to contribute to conductivity, it must be
stable in a charge state that is consistent with the presence of
free carriers. For instance, in order to contribute to n-type
conductivity, the defect must be stable in a positive charge
state and the transition level from the positive to the neutral
charge state should occur close to or above the conduction-
band minimum (CBM). A defect is a typical shallow donor
when the transition level for a positive to the neutral charge
state [e.g., the eðþ=0Þ level], as defined based on formation
energies, lies above the CBM. In this case, a neutral charge
state in which the electron is localized in the immediate
vicinity of the defect cannot bemaintained if the correspond-
ing electronic level is resonant with the conduction band;
instead, the electron will be transferred to extended states,
but may still be bound to the positive core of the defect in a
hydrogenic effective-mass state. Similarly, shallow accep-
tors are defects in which the transition level from a negative
to the neutral charge state [e.g., the eð�=0Þ level] is near or
below the VBM. If the latter, the hole can be bound to the
negative core of the defect in a hydrogenic effective-mass
state [1, 25].

2.3 Practical aspects The total energies in Eq. (2) are
often evaluated by performing DFT calculations within the
LDA or its semi-local extension, the GGA [26, 27]. Defects
are typically calculated by using a supercell geometry, in
which the defect is placed in a cell that is a multiple of the
primitive cell of the crystal. The supercell is then
periodically repeated in three-dimensional space. The use
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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of supercells also has the advantage that the underlying band
structure of the host remains properly described, and
integrations over the Brillouin zone are replaced by
summations over a discrete and relatively small set of
special k-points. Supercell-size corrections for charged
defects are addressed in Refs. [21] and [22]. Convergence
with respect to the supercell size, number of plane waves in
the basis set, and the number of special k-points should
always be checked, to make sure that the quantities that are
derived are representative of the isolated defect.

The number of atoms or electrons in the calculations is
limited by the available computer power. For typical defect
calculations, supercells containing 32, 64, 128, 216, and 256
atoms are used for materials with the zinc-blende structure,
whereas supercells containg 32, 48, 72, and 96 atom cells are
used formaterials in thewurtzite structure. These fairly large
cell sizes call for efficient computational approaches.
Ultrasoft pseudopotential [28–30] and projector-augmen-
ted-wave [31] methods to separate the chemically active
valence electrons from the inert core electrons have proven
ideal for tackling such large systems. First-principles
methods based on plane-wave basis sets have been
implemented in many codes such as the Vienna Ab initio
Simulation Program (VASP) [32–34], ABINIT [35, 36], and
Quantum Expresso [37].
3 The DFT-LDA/GGA band-gap problem and
possible approaches to overcome it The LDA and
the GGA in the DFT are plagued by the problem of large
band-gap errors in semiconductors and insulators, resulting
in values that are typically less than 50% of the experimental
values [38–42]. It has often been assumed that the band-gap
problem is not an issue when studying defects in semi-
conductors, since each individual calculation for a specific
charge state of the defect could be considered to be a ground-
state calculation. However, this notion is not correct, in the
same way that the assumption that LDA calculations could
yield reliable total-energy differences between N-electron
versus (Nþ 1)-electron systems is not correct [16]. Indeed,
the change in the number of electrons elicits the issue of the
lack of a discontinuity in the exchange-correlation potential,
which is at the root of the band-gap problem [38–42].
Similarly, the formation energy expressed in Eq. (2) involves
changes in the occupation of defect-induced states. In other
words, if a specific charge state of a defect involves
occupying a state in the band gap, and the band gap is
incorrect in DFT–LDA/GGA, then the position of the defect
state and hence the calculated total energy will suffer from
the same problem [8, 16]. Careful practitioners have always
been aware of this problem and refrained from drawing
conclusions that might be affected by these uncertainties.
The problem is exacerbated, of course, in the case of wide-
band-gap semiconductors in which the band-gap errors can
be particularly severe; for example, in ZnO the LDA band
gap is only 0.8 eV, compared to an experimental value of
3.4 eV.
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
In the remainder of this section we address several
approaches that have been, or are being, developed to
overcome these problems.

3.1 LDARU for materials with semicore
states Many of the wide-band-gap materials of interest
have narrow bands, derived from semicore states, that play
an important role in their electronic structure [43]. For
example, in ZnO narrow bands derived from the Zn 3d states
occur at �8 eV below the valence-band maximum (VBM)
and strongly interact with the top of the valence band derived
fromO2p states. Inclusion of the Zn d states as valence states
(as opposed to treating them as core states) is therefore
important for a proper description of the electronic structure
of ZnO, as it affects structural parameters, band offsets, and
deformation potentials [44, 45]. The DFT–LDA/GGA does
not properly describe the energetic position of these narrow
bands due to their higher degree of localization, as compared
to the more delocalized s and p bands. One way to overcome
this problem is to use an orbital-dependent potential that adds
an extra Coulomb interaction U for these semicore states, as
in the LDAþU (or GGAþU) approach [46, 47].

In the LDAþU the electrons are separated into localized
electrons for which the Coulomb repulsion U is taken into
account via aHubbard-like term in amodel Hamiltonian, and
delocalized or itinerant electrons that are assumed to be well
described by the usual orbital-independent one-electron
potential in the LDA. Although this approach had been
developed and applied for materials with partially filled d
bands [46, 47], it has been recently demonstrated that it
significantly improves the description of the electronic
structure of materials with completely filled d bands such as
GaN and InN, as well as ZnO and CdO [44, 45].

An important issue in the LDAþU approach is the choice
of the parameter U. It has often been treated as a fitting
parameter, with the goal of reproducing either the exper-
imental band gap or the experimentally observed position of
the d states in the band structure. Neither approach can be
justified, because (a) LDAþU cannot be expected to correct
for other shortcomings of DFT-LDA, specifically, the lack of
a discontinuity in the exchange-correlation potential, and (b)
experimental observations of semicore states may include
additional (‘‘final state’’) effects inherent in experiments
such as photoemission spectroscopy. An approximate but
consistent and unbiased approach has been proposed in
which the calculated U for the isolated atom is divided
(screened) by the optical dielectric constant of the solid
under consideration [44]. Tests on a number of systems have
shown that applying LDAþU effectively lowers the energy
of the narrow d bands, thus reducing their couplingwith the p
states at the VBM; simultaneously, it increases the energy of
the s states that compose the CBM, due to the improved
screening by the more strongly bound d states, leading to
further opening of the band gap. Such improvements have
been described in detail in the case of ZnO, CdO, GaN, and
InN [44, 45].
www.pss-b.com
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Figure 1 (online color at: www.pss-b.com) Formation energy as a
function of Fermi level for an oxygen vacancy (VO) in ZnO.
(a) Energies according to the LDA/LDAþU scheme described in
Section 3.1. (b) Energies according to the HSE approach [51]. The
lower curve in each plot indicates Zn-rich conditions, and the upper
curveO-rich conditions. The position of the transition level e(2þ/0)
is also indicated. (c) Charge density of the V0

O gap state, which is
occupied with two electrons. The isosurface corresponds to 10% of
the maximum.
One can take advantage of the partial correction of the
band gap by the LDAþU to study defects. Based on an
extrapolation of LDA and LDAþU results, one can obtain
transition levels and formation energies that can be directly
compared with experiments. Such extrapolation schemes
have been applied in other contexts as well; they are based on
evaluation of defect properties for two different values of the
band gap followed by a linear extrapolation to the
experimental gap. A number of empirical extrapolation
approaches were described by Zhang et al. [48], for instance
based on use of different exchange and correlation potentials
or different plane-wave cutoffs. Such extrapolation schemes
are most likely to be successful if the calculations that
produce different band gaps are physically motivated,
ensuring that the shifts in defect states that give rise to
changes in formation energies reflect the underlying physics
of the system.

An extrapolation based on LDA and LDAþU calcu-
lations, as described in Refs. [8] and [17], has been shown to
be particularly suitable for describing defect physics in
materials with semicore d states. The LDAþU produces
genuine improvements in the electronic structure related to
the energetics of the semicore states; one of these effects is an
increase in the band gap. The shifts in defect-induced states
betweenLDAandLDAþU reflect their relative valence- and
conduction-band character, and hence an extrapolation to the
experimental gap is expected to produce reliable results.
Such an approach has led to accurate predictions for point
defects in ZnO, InN, and SnO2 [8, 49, 50]. Figure 1(a) shows
the result of this extrapolation scheme for the case of oxygen
vacancy in ZnO. The success of this approach can be
attributed to the fact that the defect states can in principle be
described as a linear combination of host states, under the
assumption that the latter form a complete basis. A defect
state in the gap region will have contributions from both
valence-band states and conduction-band states. The shift in
transition levels with respect to the host band edges upon
band-gap correction reflects the valence- versus conduction-
band character of the defect-induced single-particle states. In
the case of a shallow donor, the related transition level is
expected to shift with the conduction band, i.e., the variation
of the transition level is almost equal the band gap correction.
For a shallow acceptor, the position of the transition level
with respect to the valence band is expected to remain
unchanged.

3.2 Hybrid functionals The use of hybrid func-
tionals has been rapidly spreading in the study of defects in
solids. In particular, hybrid functionals have proven reliable
for describing the electronic and structural properties of
defects in semiconductors. The method consists of mixing
local (LDA) or semi-local (GGA) exchange potentials with
the non-local Hartree–Fock exchange potential. The corre-
lation potential is still described by the LDAorGGA.Hybrid
functionals have been successful in describing structural
properties and energetics of molecules in quantum chem-
istry, with Becke’s three-parameter exchange functional
www.pss-b.com
(B3) with the Lee, Yang, and Parr (LYP) correlation
(B3LYP) being the most popular choice [52]. However,
the use of B3LYP for studying defects in solids has been
limited due to its shortcomings in describing metals and
narrow-gap semiconductors [53]. This issue is particularly
important since formation enthalpies of metals usually enter
the description of the chemical potential limits in the defect-
formation-energy expressions (cf. Eq. (2)).

The introduction of a screening length in the exchange
potential by Heyd, Scuseria, and Ernzerhof (HSE) [54, 55]
and its implementation in a plane-wave code [56] have been
instrumental in enabling the use of hybrid functionals in the
study of defects in semiconductors. In the HSE the exchange
potential is divided in short- and long-range parts. In
the short-range part, the GGA exchange of Perdew, Burke,
and Ernzerhof (PBE) [27] potential is mixed with non-local
Hartree–Fock exchange potential in a ratio of 75/25. The
long-range exchange potential as well as the correlation is
described by the PBE functional. The range-separation is
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 2 (online color at: www.pss-b.com) (a) Formation energy
asa functionofFermi level foranoxygenvacancy(VO) inTiO2 in the
Ti-rich limit, according to Ref. [62]. (b) Local lattice relaxations
aroundV2þ

O . The positions of the atoms in the perfect crystal are also
indicated (faded).
implemented through an Error function with a characteristic
screening length set to�10 Å [55], the variation ofwhich can
also affect band gaps [57]. The screening is essential for
describing metals and insulators on the same footing. The
HSE functional has been shown to accurately describe band
gaps for many materials [56, 58]. We should note, however,
that since the Hartree–Fock potential involves four-center
integrals its implementation in plane-wave codes results in a
high computational cost, and currently hybrid functional
calculations take at least an order of magnitude more
processing time than standard LDA calculations for systems
with the same number of electrons.

As an example of hybrid functional calculations for
defects in semiconductors, we show in Fig. 1(b) the
formation energy as a function of Fermi level for the oxygen
vacancy (VO) in ZnO using the HSE functional [51]. These
calculations were performed by setting themixing parameter
to 37.5% so to reproduce the experimental value of the band
gap of ZnO. We note that the position of the transition level
e(2þ/0) with respect to the band edges is in remarkably good
agreement with the value obtained using the LDA/LDAþU
approach in Fig. 1(a). On the other hand, the absolute values
of the formation energies are quite different, with the HSE
results being more than 2 eV lower than the LDA/LDAþU
results. This difference can be attributed to the effects of the
HSE on the absolute position of the VBM in ZnO. In the
LDA/LDAþU approach,U is applied only to the d states and
the gap is corrected due to the effects of the coupling between
the O 2p Zn d states, and the improved screening of the Zn 4s
by the d states. Within this approach, it was assumed that the
LDAþU would result in a correct position of the VBM. The
HSE results show, however, that the position of the VBM on
an absolute energy scale is affected by the inclusion of
Hartree–Fock exchange [59]. That is HSE also corrects (at
least in part) the self-interaction error in the LDA or GGA,
which is still present in the LDAþU results, and this
correction is significant for the O 2p bands that make up the
VBM in ZnO. In Ref. [59] it was found that the VBM in ZnO
is shifted down by 1.7 eV in HSE calculations, compared to
PBE.

Other examples of the use of HSE include calculations
for Si and Ge impurities in ZnO, which revealed that these
impurities are shallow double donors when substituting on
the Zn sites in ZnO, with relatively low formation energies
[59]. Si can occur as a background impurity in ZnO, and
these results indicate that it may give rise to unintentional n-
type conductivity. Another example relates to p-type doping
in ZnO. It has been long believed that incorporating N on the
O site would lead to p-type ZnO. However, the effectiveness
of N as a shallow acceptor dopant has never been firmly
established. Despite many reports on p-type ZnO using N
acceptors, the results have been difficult to reproduce, raising
questions about the stability of the p-type doping and the
position of theN ionization energy. Recent calculations forN
in ZnO have shown that N is actually a very deep acceptor
with a transition level at 1.3 eV above the VBM [60].
Therefore, it has been concluded that N cannot lead to p-type
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ZnO. For comparison and as a benchmark, HSE calculations
correctly predicted that N in ZnSe is a shallow acceptor when
substituting on Se sites, in agreement with experimental
findings.

Hybrid functional calculations have also been performed
for oxygen vacancies in TiO2. Despite the fact that oxygen
vacancies have frequently been invoked in the literature on
TiO2, their identification in bulk TiO2 has remained elusive.
First-principles calculations based on LDA or GGA suffer
from band-gap problems and are unable to describe the
neutral or the positively charged vacancy (Vþ

O) in TiO2 [61,
62]. In LDA or GGA, the Kohn–Sham single-particle states
related to VO are above the CBM, causing the electron(s)
from V0

O or Vþ
O to occupy the CBM. Calculations based on

the HSE, on the other hand, show that locally stable
structures of V0

O and Vþ
O exist, in which the occupied

single-article states lie within the band gap and the defect
wave functions are localized within the vacancy. However,
the formation energies of V0

O and Vþ
O are always higher in

energy that of V2þ
O [62] as shown in Fig. 2(a); The atoms

around V2þ
O relax outward as indicated in Fig. 2(b). Thus,

oxygen vacancies are predicted to be shallow donors in TiO2.
This is in contrast to GGAþU calculations which indicate
that VO is a deep donor with transition levels in the gap [63].
The problem with GGAþU calculations for TiO2 is that the
conduction band in TiO2 is derived from the Ti d states. The
LDA/GGAþU approach was designed to be applied to
narrow bands with localized electrons; hence its success
when applied to semicore d states. The d states that constitute
the conduction band of TiO2, in contrast, are fairly
delocalized, as evidenced by the high conductivity of this
material. Applying LDA/GGAþU will always lead to an
energy lowering of the occupied states, since that was what
the approach was designed to do. Therefore, when the LDA/
GGAþU approach is applied to a case in which electrons
occupy the conduction band of TiO2, localization will result.
However, it is hard to distinguish whether this is a real
physical effect or an artefact due to the nature of the LDA/
GGAþU approach. We therefore feel that LDA/GGAþU
www.pss-b.com
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should not be applied in cases where the states are
intrinsically extended states, such as the d states that make
up the conduction band of TiO2.

An important issue regarding the use of hybrid func-
tionals is the amount of Hartree–Fock exchange potential that
is mixed with the GGA exchange [64]. Although a value of
25% was initially proposed, there is no a priori justification
for this amount and this single value is not capable of correctly
describing all semiconductors and insulators. For instance, in
ZnO the experimental value of the band gap is obtained with
HSE onlywhen amixing parameter of 37% is used. InGaN, a
mixing parameter of 31% is necessary, and for MgO 32%.
Since the position of transition levels in the band gap depends
on the band-gap value, quantitative predictions require that
the functional accurately describes band gaps, and an
adjustment of the mixing parameter is the most straightfor-
ward way to achieve this.

3.3 Many-body perturbation theory in the GW
approximation Quasiparticle calculations in the GW
approximation produce band structures that are in close
agreement with experiments [65]. However, at present the
calculation of total energies within theGW formalism [66] is
still a subject of active research and currently not available
for studying defects in solids. We note that the GW
quasiparticle energies are defined as removal and addition
energies. In the case of defects, the GW quasiparticle
energies that appear in the band gap correspond to the
transition levels, provided that the geometry of the defects
remains unchanged. For instance, the highest occupied
quasiparticle state in a calculation for a defect in charge state
q represents the e(qþ 1/q) level, and the lowest unoccupied
state represents the e(q/q� 1) level for a fixed geometry of
the defect. It is possible to combine these transition levels
determined from GW calculations with relaxation energies
from LDA or GGA calculations to extract thermodynamic
transition levels for defects in semiconductors and insula-
tors. Recent GW calculations for the self-interstitial in Si
have demonstrated the effectiveness of this approach [67].

The LDA or GGA underestimates the formation energy
of the self-interstitial in Si by more than 1 eV compared
to values extracted from self-diffusion experiments.
Calculations based on Quantum Monte Carlo can yield
more accurate formation energies but are very expensive
computationally. Calculating removal and addition energies
for Si self-interstitials inGW and combining with relaxation
energies from LDA calculations lead to formation energies
that are in good agreement with Quantum Monte Carlo
results [69]. The only assumptionwas that LDAgives correct
formation energies for charge state configurations with no
occupied states above the VBM, such as the 2þ charge state
of the Si self-interstitial in the tetrahedral configuration. A
similar approach has been used to study oxygen-related
defects in SiO2 [68].

As a drawback in the GW approach, it has been recently
argued that for systems with semicore d states such as ZnO a
very large number of unoccupied bands is necessary for a
www.pss-b.com
proper description of the band structure [70]. This result, if
confirmed, indicates thatGW calculations for defects in these
systems may be prohibitivly expensive in practice. This
unusually large number of unoccupied states required is
likely related to the underbinding of the semicore d states
which, as discussed in Section 3.1, can make a significant
contribution to the band-gap error.

3.4 Modified pseudopotentials In the pseudopo-
tential formalism, once a separation between valence
electrons and the inert core electrons is adopted, there is
still some flexibility in constructing the ionic cores. Indeed,
within this approach, there is no unique scheme for
generating pseudopotentials, and a number of different
generation schemes have been proposed over the years, often
aimed at creating computationally efficient, ‘‘softer’’
potentials which can be described with a smaller plane-
wave basis set. This flexibility can in principle be exploited
to generate potentials that produce a more accurate band
structure. However, past attempts did not succeed in
producing such improvements while still maintaining a
proper description of atomic structure and energetics [71].

A new approach was recently proven to be remarkably
successful in describing nitride semiconductors [72, 73]. It
was based on a proposal by Christensen, first implemented
within the linearized muffin-tin orbital method [74], to add a
highly localized (delta-function-like) repulsive potential
centered on the atomic nucleus of each atom. Such a potential
only affects s states, and since the CBM in compound
semiconductors has largely cation s character one expects an
upward shift of the corresponding eigenstates. At the same
time, the highly localized character of the added potential
leads one to expect only minimal changes in other aspects of
the pseudopotential. These expectations were indeed borne
out in the case of GaN and InN, where the modified
pseudopotentials produced atomic structures and energetics
that are as reliable as those obtainedwith standard potentials,
but simultaneously producing band structures in very good
agreement with experiment [73]. Even though the fitting
procedure only aimed to produce the experimental value of
the direct gap, the modified potentials actually produced
improvements for other aspects of the band structure as well,
including the position of higher-lying indirect conduction-
bandminima as well as the position of semicore d states [73].
This leads us to believe that the seemingly ad hoc
modifications introduced by the repulsive potential are
capturing some essential physics, justifying the expectation
that similarly good results can be obtained for other
materials. An application of the modified pseudopotentials
to the calculation of the electronic structure of nitride
surfaces produced results in very good agreement with
experiment [72, 75].

4 Summary Wehave discussed recent progress in first-
principles approaches to study defects in semiconductors and
insulators. Emphasis was given to methods that overcome the
band-gap problem in traditional DFT in the LDA; such
� 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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approaches include LDAþU, hybrid functionals, GW, and
modified pseudopotentials. While the LDAþU approach is
very efficient computationally, it should be limited to systems
with semicore states for which LDA provides a poor
description. Furthermore, the LDAþU only partially corrects
the band gap, and futher extrapolation is needed. The HSE
hybrid functional on the other hand is general and has been
demonstrated to be a reliable method that result in accurate
band gaps and seems to be describing the properties of defects
correctly. The HSE functional contains two parameters, the
Hartree–Fock mixing ratio and the screening length, which
offer someflexibility in obtaining correct bandgaps; however,
the consequences of changes in these parameters on the
physics of the system has not been fully explored yet. TheGW
method offers a formal approach for describing excited-state
properties and defect physics, but its applicability is limited by
the lack of an efficient way to extract total energies.
Combining GW excitation energies with LDA/GGA relaxa-
tion energies offers a promising way to address thermodyn-
amic transition levels. Finally, modified pseudpotentials is an
ad hoc but remarkably reliable approach, which has been
demonstrated very effective at describing the properties of
nitride semiconductors.

Acknowledgements We acknowledge fruitful collabo-
rations and discussions with C. Freysoldt, G. Kresse, J. Lyons,
J. Neugebauer, P. Rinke, M. Scheffler, A. Singh, N. Umezawa, and
J. Varley. This work was supported by the NSF MRSEC Program
underAwardNo.DMR05-20415, by theUCSBSolid StateLighting
andEnergyCenter, andby theMURIprogramof theArmyResearch
Office under Grant No. W911-NF-09-1-0398. It made use of the
CNSI Computing Facility under NSF grant No. CHE-0321368 and
Teragrid.

References

[1] C. G. Van de Walle and J. Neugebauer, J. Appl. Phys. 95,
3851 (2004).

[2] D. A. Drabold and S. K. Estreicher (eds.), Theory of Defects
in Semiconductors (Springer-Verlag, Berlin, 2007).

[3] M. Asato, T. Mizuno, T. Hoshino, K. Masuda-Jindo, and K.
Kawakami, Mater. Sci. Eng. A 312, 72 (2001).

[4] H. J. Queisser and E. E. Haller, Science 281, 945 (1998).
[5] C. G. Van de Walle, D. B. Laks, G. F. Neumark, and S. T.

Pantelides, Phys. Rev. B 47, 9425 (1993).
[6] A. Janotti and C. G. Van de Walle, Rep. Prog. Phys. 72,

126501 (2009).
[7] S. Limpijumnong and C. G. Van de Walle, Phys. Rev. B 69,

035207 (2004).
[8] A. Janotti and C. G. Van de Walle, Phys. Rev. B 76, 165202

(2007).
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