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Research in cell biology greatly relies on cell-based in vitro assays and models that

facilitate the investigation and understanding of specific biological events and processes

under different conditions. The quality of such experimental models and particularly the

level at which they represent cell behavior in the native tissue, is of critical importance

for our understanding of cell interactions within tissues and organs. Conventionally, in

vitro models are based on experimental manipulation of mammalian cells, grown as

monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress

and discoveries achieved with flat biology models, our ability to translate biological

insights has been limited, since the 2D environment does not reflect the physiological

behavior of cells in real tissues. Advances in 3D cell biology and engineering have

led to the development of a new generation of cell culture formats that can better

recapitulate the in vivo microenvironment, allowing us to examine cells and their

interactions in amore biomimetic context. Modern biomedical research has at its disposal

novel technological approaches that promote development of more sophisticated and

robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats,

organotypic cultures, and organs-on-chips. Even though such systems are necessarily

simplified to capture a particular range of physiology, their ability to model specific

processes of human biology is greatly valued for their potential to close the gap between

conventional animal studies and human (patho-) physiology. Here, we review recent

advances in 3D biomimetic cultures, focusing on the technological bricks available to

develop more physiologically relevant in vitro models of human tissues. By highlighting

applications and examples of several physiological and disease models, we identify the

limitations and challenges which the field needs to address in order to more effectively

incorporate synthetic biomimetic culture platforms into biomedical research.

Keywords: tissue engineering, scaffold, hydrogel, 3D biology, organoid, organ-on-a-chip

INTRODUCTION

Cell culture systems represent an indispensable tool for a wide range of biomedical studies.
Harrison’s first experiments, early in the twentieth century, on development of frog nerve fibers in a
dish, the establishment of aseptic technique and subculturemethods by Carrell and Ebeling in 1920s
and the successful isolation and maintenance of the first immortalized human cell line (HeLa cells)
by Gey in the 1950s, made it possible to grow cells in artificial environments, laying the foundation
for cell and molecular biology (Taylor and Taylor, 2014; Jedrzejczak-Silicka, 2017; Simian and
Bissell, 2017). Cell culture has come a long way since then and is now a vital and invaluable tool for
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a vast array of applications, both in academic and industrial
settings, including drug development, cancer research and tissue
engineering (Przyborski, 2017; Kapałczyńska et al., 2018). In such
studies, two-dimensional (2D) cell culture systems dominate,
continuing to improve our perception and understanding of cell
biology. These cell systems rely mainly on adherent cultures,
where cells grow as a monolayer attached to a plastic or
glass substrate. Although easy and convenient, 2D cultures
exhibit numerous disadvantages. Firstly, they are simplistic
imitations of the in vivo situation, where cells grow within a
complex three-dimensional (3D) microenvironment. The lack of
this environmental context and structural architecture excludes
physical cues for cell-cell and cell-matrix communication, critical
for several cellular processes (e.g., mitosis, self-renewal, and
differentiation). These physical constraints also impede cells from
organizing naturally and spreading vertically, forcing them to
flatten out and grow as monolayers (Fitzgerald et al., 2015;
Przyborski, 2017). In turn, gene expression, production of
proteins and cytoskeletal structure are altered, resulting in loss
of the diverse cell phenotype and thus of the physiological
cellular behavior and function (Birgersdotter et al., 2005; Luca
et al., 2013; Fontoura et al., 2020). In addition, the absence of
oxygen and nutrient gradients in monolayer cultures disrupts
cell response to physiological stimuli, further inhibiting basic
cellular processes and intercellular crosstalk, while the lack of
a heterogeneous cell population in 2D models hinders their
potential to form more complex tissue- or organ-like structures.
These inherent limitations and shortcomings of 2D cell systems
ultimately lead to failures in understanding cell behavior in
healthy or diseased states (Duval et al., 2017). The research
community is now beginning to seek alternative technologies
that will facilitate development of models able to more closely
mimic the complexity of whole tissues in vitro (Fitzgerald et al.,
2015; Przyborski, 2017; Kapałczyńska et al., 2018). To this
end, 3D cell cultures can provide a well-controlled in vivo-
like microenvironment specifically tailored to each application
(Chen, 2016; Koledova, 2017; Owens et al., 2017; Przyborski,
2017; Kapałczyńska et al., 2018; Jensen and Teng, 2020).

Although it is thought that the inception of 3D biology was
in the 1970s (Schwarz and Bissell, 1977; Bissell, 1981; Bissell
and Barcellos-Hoff, 1987), where cells were cultivated in floating
collagen gels or agar, in fact, the phrase “three-dimensional cell
culture models” was first coined in the studies of Barchelos-
Hoff in 1989 and Petersen in 1992, who developed assays to
distinguish between healthy and malignant breast epithelial cells
grown in laminin-rich matrices (Hamburger and Salmon, 1977;
Bissell, 2017; Simian and Bissell, 2017). These studies were
followed by a body of research on new technologies focused on
enhancing the morphological and physiological relevance of cell
culture systems. The increasing number of publications since
then, utilizing such cell culture platforms, or suggesting new
ones, highlights the transition of the field into 3D cell culture
in order to improve the capabilities of experiments performed
in vitro (Bissell, 2017; Przyborski, 2017; Devarasetty et al., 2020).
Over the years, 3D cell culture has become a generalized term,
often used to point out the disparities between conventional
and new cell culture technologies. Therefore, it is important

to clearly define what is meant—or should be meant—by this
term. Broadly speaking, we define 3D cell culture as an in vitro
tissue-specific microenvironment that enables individual cells to
grow, maintaining their 3D shape and functions, as well as to
interact with their surroundings and a heterogeneous population
of neighboring cells, establishing sufficient signaling networks. In
this environment exogenous interference and support should be
minimized (e.g., automatedmedia perfusion) to reduce stress and
unnatural cell responses and rather enable growth of different cell
types to foster the development of more realistic culture systems
(Abbott, 2003; Huh et al., 2011; Shamir and Ewald, 2014). 3D cell
culture is also used to describe tissue- and organ-like structures
emerging from the combination of 3D cell biology with Tissue
Engineering (TE) principles. In these studies, researchers are
focused on reconstructing organ structure and function ex vivo
(Figure 1), to produce more reliable and physiologically relevant
human-like 3D in vitro models (Khademhosseini and Langer,
2016; Caddeo et al., 2017), following the basic TE premise: the
appropriate cell types (e.g., primary cells, stem cells) are seeded
in biodegradable structures fabricated to mimic the target organ
or tissue (i.e., scaffolds) and are supplied with the appropriate
cocktail of substances essential for tissue generation (e.g., growth
factors and signaling molecules; Langer and Vacanti, 1993).
Such tissue-engineered human equivalents represent a promising
alternative to the current state-of-the-art and particularly to
animal models, which often fail to recapitulate human conditions
due to differences in the overall physiology and in the molecular
and signaling mechanisms involved in the onset and progression
of diseases. This is evidenced by the high failure rates of
drugs and therapies to enter clinical trials to get approval from
regulatory agencies despite successful tests in animals, underlying
the challenges in translating such data to human systems. Besides
their greater translational relevance, the development of tissue-
engineered in vitro models has recently taken off thanks to
ethical and economic arguments (Rouwkema et al., 2011; Caddeo
et al., 2017). Although the use and welfare of animals in science
is protected by national and international legislation (e.g., the
principle of 3Rs), there are still vibrant discussions and room
for improvements as well as strong encouragement for reduction
and replacement. This is also encouraged by an economic
point of view, since the actual costs for drug or treatment
candidates to become clinical products are huge and the process
is time-consuming and labor intensive (Rouwkema et al., 2011;
Fitzgerald et al., 2015).

In this review, we focus on bioengineering approaches
that seek to integrate TE with 3D cell biology toward more
sophisticated and reliable 3D human tissue equivalents, with the
potential to (i) enhance the predictive value of preclinical studies,
(ii) improve the way we study physiology and pathology and thus
to address biological questions that so far necessitated animal
models, and (iii) bridge the gap between current (pre-)clinical
research tools and human systems by assisting and advancing
drug development processes in terms of science, bioethics
and economy (Rouwkema et al., 2011; Fitzgerald et al., 2015;
Caddeo et al., 2017). Current trends in the field suggest that
the choice of the culture format/technology/device that will
support the tissue equivalent should take into account the

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 January 2021 | Volume 8 | Article 620962

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Moysidou et al. Advances in Engineering Human Tissue Models

FIGURE 1 | Engineering human tissue equivalents in vitro: the main premise for the successful development of tissue equivalents is to understand the structural and

functional role of each counterpart of the native tissue and to carefully choose the range of features necessary to recapitulate the specific characteristics of the native

tissue for each application. Then, the appropriate source of cells can be identified and modulated, if necessary, to capture the desired functionality. In parallel, the most

appropriate substrate format can be designed and engineered to match the physicochemical properties and architecture of the native tissue under the conditions of

interest and to facilitate coupling with the appropriate biochemical and biophysical cues mimicking the in vivo niche. Created with BioRender.com.

constituent parts of the organ(s) to be modeled and the extent
to which the in vivo complexity will be recapitulated. Various
techniques and culture formats have been developed to meet
these requirements, however a single format/technology/device
that meets the requirements/needs of all 3D cell culture assays
does not exist, and indeed should not exist, given the diversity in
the morphology and functions of all the different organs/tissues
researchers are emulating for different applications (Shamir and
Ewald, 2014; Knight and Przyborski, 2015). Based on the format,
3D cell culture platforms can generally be categorized as scaffold-
free or scaffold-based systems. Scaffold-based approaches utilize
natural or synthetic materials to provide support in the form of a
matrix that creates the desired tissue-specific microenvironment
for optimal cell growth and differentiation and natural ECM
deposition, while preserving the native tissue architecture
(Fitzgerald et al., 2015; Przyborski, 2017). Decellularised scaffolds
have also been used to culture cells in vitro by removing cells
from whole tissues/organs or from the scaffold biomaterial
surface after culturing cells on it for sufficient time for native

ECM deposition. This way the structural and functional matrix
proteins (e.g., collagen, fibronectin, hyaluronic acid, and laminin)
remain intact while the exact composition varies according to
the origin of tissue/organ or the cells seeded (Fitzgerald et al.,
2015). Another category where cell growth and differentiation
is supported by biomimetic matrices is hydrogels, which are
networks of cross-linked hydrophilic polymers with the unique
capability to absorb and retain copious amounts of water without
dissolving but rather swelling. Similar to scaffolds, hydrogels
can be made from natural or synthetic materials and cross-
linked by either physical or chemical means. Due to their
particularly soft nature, they are well-suited for soft tissue in vitro
models (Fitzgerald et al., 2015; Przyborski, 2017). In contrast,
scaffold-free culture systems seek the formation of multicellular
masses without exogenous input as a framework, but rather by
encouraging cells to form aggregates, secrete their own ECM
and then self-assemble into 3D microstructures (Przyborski,
2017). This categorization however is quite generalized since the
progress in, and convergence of, related disciplines have made
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possible the generation of new, improved, andmore sophisticated
tools for 3D biomimetic cultures. Currently, novel biofabrication
methods (e.g., 3D printing) andmicroscale technologies (e.g., soft
lithography), can be combined with advanced biological systems
such as organoids and stem cells, resulting in more complex
culture systems, tailored for specific applications. In the following
sections, we first provide an overview of the current technological
bricks available to develop tissue-engineered human models by
summarizing the advancements in cell biology, materials science
and bioengineering. Then, through examples of the current state-
of-the-art, we identify and discuss the advantages, limitations and
challenges the field needs to address in order for in vitro TE
models to be successfully implemented in biomedical research.

BUILDING BLOCKS FOR DEVELOPING
HUMAN TISSUE EQUIVALENTS

Cell Sources for in vitro Tissue Engineering
To successfully design and develop tissue equivalents, it is useful
to understand the anatomical and functional characteristics of
the tissue of interest, as well as the role and interaction of its
constituent parts (Caddeo et al., 2017). Although the end goal is
to create organ and tissue equivalents with enhanced biomimicry
in the lab, it is important to acknowledge the reductionist
nature of these models. In fact, 3D human tissue equivalents
are intentionally and necessarily reductionist, carefully designed
to capture a specific range of the in vivo physiology over time,
fit for a specific application. Therefore, a crucial step in the
design process is to identify the appropriate factors that must be
incorporated in order to model different in vivo situations (Chen,
2016). To this end, the source and the number of cells must be
carefully chosen as this will determine the ability of the model to
capture in vitro the desired characteristics of the native tissue at
the cell culture level and then establish what the system might or
might not recapitulate and to what extent (Chen, 2016; Caddeo
et al., 2017).

Stem Cells
Until recently, TE approaches relied almost exclusively on
established cell lines and primary cells. Despite the advantages
of using cell lines (e.g., easy to use, inexpensive, unlimited
availability, reproducibility, no need of ethics approval), they are
not considered ideal sources for modeling human conditions
since they do not exhibit normal features, often drifting from
the genetic and phenotypic profile of the tissue of origin (Carter
and Shieh, 2015a). Primary cells are more representative of the
morphological and functional features of the tissue they are
derived from, but they can be difficult to obtain and maintain
for long-term experiments. Moreover, they have low proliferation
rates and must be used in early passage stages because they
lose their structural, functional, and self-renewal properties as
they undergo senescence processes. Reproducibility of results
is an additional issue when using primary cells and donor-to-
donor variations must be taken into account (Benam et al., 2015;
Caddeo et al., 2017).

To overcome these limitations, stem cells are now being
employed for reconstructing tissue/organ structure and function

in vitro, due to their unique capabilities to self-renew (stemness)
and to differentiate toward one or more specialized cell types
(potency), representing a versatile source of cellular substitutes
for a wide range of applications (Avior et al., 2016; McKee
and Chaudhry, 2017; Rowe and Daley, 2019). Until recently,
the only source of stem cells for biomedical research was
human-derived embryonic stem cell lines (ESCs). However, the
discovery of human induced pluripotent stem cells (iPSCs) in
2007 (Takahashi et al., 2007) substantially altered the field of
biomedical research. iPSCs are engineered stem cells generated
directly from adult (differentiated) somatic cells by introducing
a set of pluripotency-associated genes into cells, or through
chemical reprogramming or protein delivery (Khademhosseini
and Langer, 2016; Caddeo et al., 2017). These cells exhibit
similar stemness and potency characteristics as ESCs and, under
certain conditions and depending on their origin, they can
differentiate toward various cell types. Among other applications,
human iPSCs offer an unlimited supply of cells for in vitro TE,
disease modeling, cell therapy and pharmaceutical applications.
Importantly, as these stem cells can be derived from patients
with specific pathology, patient-derived hiPSCs are now used
to more accurately model disease and to improve diagnostics
and drug discovery, laying the foundations for novel methods
of personalized medicine (Cyranoski, 2018; Rowe and Daley,
2019). Despite the great potential of iPSCs to bridge the gap
between preclinical studies, animal models and clinical studies,
it is important to note that currently most iPSC-derived cell
types exhibit immature phenotypes, while some pathologies
cause such damage in adult somatic cells that the iPSCs derived
from such tissues would not be informative (Benam et al., 2015;
Cyranoski, 2018). Ongoing research on establishing protocols
for the maturation of iPSC-derived specialized cell types will
likely address these challenges via applying different biochemical
and biophysical stimuli. TE strategies could be useful in these
efforts by providing the appropriate microenvironment (e.g.,
biomimetic scaffolds) and cues (e.g., ECM rich in growth factors)
to guide differentiation and maturation (Benam et al., 2015).

Finally, another type of stem cells that have gained a
lot of attention as a cell source for TE are mesenchymal
stem/stromal cells (MSCs), mainly due to their therapeutic
potential (Rosenbaum et al., 2008; Khademhosseini and Langer,
2016). MSCs are a specific subtype of multipotent stem cells,
diversely distributed in the human body including bone marrow,
adipose, perinatal tissues, blood, periodontal ligament, and
skeletal muscles, from most of which they can be isolated
(Rosenbaum et al., 2008; McKee and Chaudhry, 2017; Ullah et al.,
2019). Despite having the same capabilities as pluripotent stem
cells, MSCs can differentiate toward only a few specific cell types,
such as osteogenic, chondrogenic, and adipogenic cell types,
depending on the nature and maturity of the tissue of origin
(Rosenbaum et al., 2008; McKee and Chaudhry, 2017). Their
homing capability has made them very attractive candidates
for a wide breadth of preclinical and clinical applications,
including tissue regeneration, wound healing, and treatment of
autoimmune diseases (Khademhosseini and Langer, 2016; Ullah
et al., 2019). Upon injury, MSCs are naturally released in the
circulation and migrate to the damaged tissue where they secrete
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a pool of cytokines, growth factors and other bioactive molecules
with immunomodulatory and angiogenic effects, thus creating a
microenvironment that promotes tissue repair and regeneration
(Ullah et al., 2019). For in vitro TE, MSCs represent a useful
resource, mainly due to their ease in isolation, manipulation
and differentiation, compared to the longer and more elaborate
iPSCs protocols.

Organoids
The advent of human pluripotent stem cells marked the starting
point of the development of “organs in a dish,” also known
as organotypic cultures or organoids, a major breakthrough of
the past decade (Dutta et al., 2017; Lancaster and Huch, 2019).
The term “organoid” is not new; it was used in the 1950s
and 1960s to describe structures in cell culture systems that
resembled organs (Duryee and Doherty, 1954; Schneider et al.,
1963; Wolter, 1967) and more recently in studies where 3D cell
aggregates, called spheroids, were defined as organoids despite
the fact that they were not fully representative of the native
tissue (Dutta et al., 2017). The term has become popularized
in in vitro biology and evolved to generally refer to tissues or
structures that resemble an organ, losing its precision (Dutta
et al., 2017; Lancaster and Huch, 2019). A more specific working
definition that fulfills the basic definition of organoids was
recently proposed, along with several criteria: “(1) a 3D structure
containing cells that establish or retain the identity of the
organ being modeled; (2) the presence of multiple cell types,
as in the organ itself; (3) the tissue exhibits some aspect of
the specialized function of the organ; and (4) self-organization
according to the same intrinsic organizing principles as in
the organ itself ” (Lancaster and Huch, 2019). These properties
render organoids suitable formats/tools for modeling organ
architecture in vitro. Because iPSC-derived organoids follow in
vivo like development, their morphology closely recapitulates the
native organ structure, making them particularly apt for studies
looking at developmental organogenesis, while tissue-specific
adult stem cell organoids are mostly suited for studying tissue
homeostasis and maintenance, since naturally in the body they
are key players in these processes (Fatehullah et al., 2016; Yin
et al., 2016; Lancaster and Huch, 2019).

Currently, several protocols exist for the development of
organoids for various organs, derived either from pluripotent
stem cells (ESCs and iPSCs) or from organ-specific adult stem
cells (ASCs) and progenitor cells (Takebe and Wells, 2019).
The establishment of a protocol for a long-term, well-defined,
and stable culture of murine intestinal organoids in 2009 by
Sato et al. (2009) and subsequent adaptation of the protocol
and modifications of the growth factor cocktail in the original
organoid culture medium allowed the generation of human
organoids from various tissues, such as stomach (Bartfeld et al.,
2015), liver (Takebe et al., 2013), esophagus (Li et al., 2018),
lung (Dye et al., 2015), and ovaries (Kessler et al., 2015; see Kim
et al., 2020, for an extended review). Organoids now represent
a powerful tool for a wide spectrum of biomedical applications
ranging from basic cell biology studies, organogenesis and tissue
homeostasis to disease modeling (see Lancaster and Huch,
2019, for an extended review), drug/therapy development, and

regenerative medicine (Schweiger and Jensen, 2016; Brassard and
Lutolf, 2019). However, there are several general shortcomings
and challenges in the development and application of organoids,
as well as in the interpretation and translation of the derived
data. An important issue is the reproducibility and consistency
of organoids from batch to batch. The initial culture conditions
and the environment in which organoids grow are of paramount
importance for their self-organization and the development of
the desired emergent tissue (Brassard and Lutolf, 2019). To date,
most organoid systems rely on animal-derived ECMs, such as
Matrigel, supplemented with growth factors and endogenous
signaling molecules (e.g., Wnt, Noggin, and R-spondin). Even
thoughMatrigel works as an artificial niche, mimicking the native
tissue environmental cues, its poorly understood composition,
heterogenous nature, and batch-to-batch variability hinders the
reproducibility and robustness of the organoid systems, often
leading to heterogeneity in size, shape, and viability, even
between organoids in the same culture (Fatehullah et al., 2016;
De Souza, 2018; Brassard and Lutolf, 2019; Lancaster and Huch,
2019; Kim et al., 2020). In addition, although these organotypic
cultures are highly biologically relevant, they alone do not
necessarily recapitulate the dynamics present in the human
system. For example, the majority of organoid culture systems
lack essential components of their living counterparts, such as the
enteric nervous system, the immune system, as well as luminal
flow and peristalsis (In et al., 2016; Tsakmaki et al., 2017; De
Souza, 2018; Kim et al., 2020). Also, lack of vascularization in
organoid cultures means that their growth and development
depends on diffusion of nutrients from the surrounding media.
While this might not be an issue for small organoids, in
cases of some larger organoids the diffusion of nutrients is
limited, resulting in dramatic necrosis in their interior and
hence compromising the long-term viability of the system and
the validity of the results (McMurtrey, 2016; Grebenyuk and
Ranga, 2019; Lancaster and Huch, 2019). To overcome this
limitation, culturing organoids under flow within microfluidic
chips has been proposed recently, as a means to induce
vascularization and hence to improve the morphological and
functional characteristics of the bioengineered tissues (Homan
et al., 2019).

The tremendous potential of organoid culture systems
could not go unnoticed by tissue engineers. Firstly, since
organoid systems are designed and developed to recapitulate
the environment and properties of the stem cell niche and the
tissue progeny with indefinite culture potential, they represent an
alternative, more accessible, and scalable source for harnessing
stem cells (Yin et al., 2016). Employment of molecular technology
and organoids in the service of in vitro TE can further
enhance the potential of these systems in mimicking the in
vivo conditions. In particular, genes within organoids can be
manipulated using tools, such as CRISPR/Cas-9, to either correct
mutations and restore physiological function or to introduce
mutations and model various disease phenotypes (Dutta et al.,
2017; Lancaster and Huch, 2019; Kim et al., 2020), again
providing an alternative source of cells with broad applicability
and amenable to manipulation. Additionally, since organoids
may contain more than one tissue representative cell type, they
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can be used as a single cellular input for tissue-engineered
equivalents, allowing them to better capture the cellular diversity
of the living counterparts (Kasendra et al., 2018).

Stem cells and organoids are a versatile source of cells for
in vitro TE applications, thus the convergence of these fields
can be mutually beneficial. On one hand the use of human-
derived cellular parts enhances the relevance of tissue-engineered
equivalents, both in terms ofmimicry and data interpretation. On
the other hand, tissue engineering provides a broad toolbox to
study stem cells and organoids and to address challenges related
to engineering the appropriate niche for controlling the culture
conditions. It also provides the extrinsic instruction patterns to
robustly and elaborately direct self-organization processes. This
way TE approaches can aid stem cells and organoids in realizing
their full potential as in vitro tools for biomedical research
(Benam et al., 2015; Chen, 2016; McKee and Chaudhry, 2017;
Brassard and Lutolf, 2019).

Materials for in vitro Tissue Engineering
Alongside the appropriate cell type(s), another fundamental
element for effectively engineering tissue equivalents is the
choice of the suitable biomaterial(s). In the classic TE paradigm,
pre-engineered 3D supports/scaffolds, made from natural or
synthetic materials, are used as templates for cell attachment,
growth and differentiation toward functional living constructs
(Vacanti, 2006). As scaffolds act as a synthetic ECM, modifying
the biomaterial building blocks to mimic the native tissue
ECM is a major challenge. In the body, ECM is a 3D
network that consists of various macromolecules, including
proteins and polysaccharides, responsible for tissue support and
maintenance, cell-cell and cell-ECM communication, diffusion
of nutrients metabolites and growth factors. In addition, ECM
mediates signaling pathways from soluble factors and other
sources, regulating various cellular behaviors, such as migration,
adhesion, proliferation, and differentiation (Frantz et al., 2010;
Theocharis et al., 2016; Afewerki et al., 2019; Figure 2). In this
context, the role of biomaterials for tissue engineered equivalents
is to provide cells with the appropriate framework/template
to adhere, proliferate, differentiate, maturate, secrete ECM and
form the necessary cell-cell, and cell-scaffold interactions that
will enable them to auto-organize as they would in vivo
(Przyborski, 2017; Afewerki et al., 2019; Figure 3). The choice of
biomaterial depends on the application and the physiological or
pathophysiological conditions the tissue model aims to emulate
(Caddeo et al., 2017). However, there are many other properties
that need to be considered when selecting biomaterials, including
biocompatibility, strength and elasticity, porosity, molecular
gradients and mass transport of nutrients and growth factors,
oxygenation, adhesion or signaling sites, surface roughness,
shape, type (e.g., scaffold or hydrogel), and source (Sitarski et al.,
2018), in order tomore realistically recapitulate the cues naturally
occurring in the native tissue.

A broad range of materials is now available for the fabrication
of various types of substrates, the properties of which can be
tailored at the micro- and nano-scale to match the requirements
of specific applications (Huang et al., 2017; Nikolova and
Chavali, 2019; Cembran et al., 2020). A characteristic property

of TE scaffolds that particularly affects primary cell-matrix
interactions as well as cell behavior and fate upon seeding,
is its topography. It is well-known that micro-topography (1–
100µm) is responsible for cell recruitment, adhesion, orientation
and gene expression, while the submicron and nano- features
strongly influence the cytoskeletal arrangement (Hayes and
Richards, 2010). Tailoring surface topography of biomaterials has
been shown to support and enhance differentiation of MSCs
toward specific lineages (Abagnale et al., 2015). Mechanobiology
studies have revealed that, amongst other cues, cells are also
responsive to the material stiffness (Discher et al., 2005),
which can affect intracellular signaling cascades that trigger cell
adhesion, phenotype maintenance, cytoskeletal reconstruction,
and even stem cell differentiation (Engler et al., 2006; Mao
et al., 2016; Cao et al., 2017; Kumar et al., 2017; Vining and
Mooney, 2017; Darnell et al., 2018). Therefore, selection of
biomaterials with the appropriate stiffness is not only important
for matching the native tissue mechanical properties, but can be
also used as a tool to control cell phenotypes and thus modulate
cell behavior (Khademhosseini and Langer, 2016; Ledo et al.,
2020b). Furthermore, materials can undergo several chemical
modifications, to improve their physicochemical properties as
well as to enable incorporation of biologically relevant molecules
and signals necessary for guiding and regulating cell response.
For example, proteins from the ECM (e.g., hyaluronic acid,
collagen, fibronectin etc.) can be blended or grafted to the
material surface to improve cell behavior, by acting as matrix-
associated biological cues, regulating cell attachment (e.g.,
via integrin-mediated binding), as well as proliferation and
infiltration within the scaffold (Baker and Chen, 2012). For
instance, incorporation of well-known cell binding motifs from
ECM-derived proteins, such as RGD (arginine-glycine-aspartate)
peptide, can enhance cell spreading, and viability in hydrogels
(Gallagher et al., 2020).

Biomaterials may be prepared of natural polymers such
as collagen, laminin, and hyaluronic acid, or from synthetic
materials such as polyethylene glycol (PEG), propylene glycol
diacetate (PGDA), polyvinylidene fluoride (PVDF), or co-
polymers (Afewerki et al., 2019; Nikolova and Chavali, 2019).
Thus, they can be categorized as natural, synthetic, or hybrid
biomaterials (see Table 1 for examples of biomaterials and
applications). In most cases, naturally derived biomaterials are
amino acid-based or sugar-based biopolymers which can be
components of the natural ECM (e.g., collagen, laminin, elastin,
and fibrinogen) or not (e.g., chitin, silk fibroin, chitosan, and
alginate; Silva et al., 2017; Ahadian et al., 2018). Such materials
represent an attractive source for in vitro TE applications, due
to their microstructure, stability, biocompatibility, and ability to
present cells with natural adhesion sites, as well as due to the
possibility to tailor and control their properties via physical or
chemical treatments (i.e., cross-linking) or by blending themwith
other biopolymers (Guarino et al., 2016; Ullah and Chen, 2020) to
better recapitulate in vitro the physiological milieu. A commonly
used natural biomaterial in 3D biomimetic cultures and tissues
is collagen, as it is a major component of the natural ECM and
it is among the main structural proteins of most connective
tissues (Ahadian et al., 2018; Sorushanova et al., 2019). The
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FIGURE 2 | Levels of organization within tissues. The major building block of tissues are cells. Cell membranes are equipped with a wide range of proteins that help

them sense and respond to cues in their microenvironment. Cells also interact with other cells and the surrounding ECM network. This ECM network comprises of

various macromolecules (e.g., proteins, polysaccharides) and soluble factors (e.g., growth factors) immobilized in its structure, which promote cell-cell and cell-ECM

interactions. This way ECM establishes a favorable niche for cells to grow, spread, differentiate, and perform various functions and also to work together with other

cells to form more complex structures toward tissues with specific functionalities. Created with BioRender.com.

FIGURE 3 | Cell-biomaterial interactions within tissue engineered equivalents. TE substrates constitute an artificial ECM, encompassing in vivo-like, tissue-specific

biochemical, and biophysical cues. This niche provides a favorable microenvironment for cells to adhere, proliferate, differentiate, maturate, and deposit their own

ECM, as well as to communicate and to establish the necessary cell-cell, and cell-ECM interactions that will enable them to auto-organize as they would in vivo.

Modulation of the niche properties can also guide cell bahaviour toward the desired phenotypic output. Created with BioRender.com.
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TABLE 1 | Examples of biomaterials, fabrication methods and cell sources for skin, brain, heart, lung, intestine, bone, and liver biomimetic cultures.

Material(s) and format Fabrication method Cell source References

Skin biomimetic cultures

Collagen hydrogel Gelation/3D bioprinting Fibroblasts, melanocytes (MCs), and

keratinocytes (KCs)

Min et al., 2018

Fibroblasts and KCs Lee et al., 2009

Alginate/Carboxymethyl cellulose/Nanofibrillated cellulose

(ALG/CMC/NFC) bioinks

Human skin fibroblasts (hSF) Zidarič et al., 2020

Collagen I scaffolds Gelation/vitrification Normal human skin fibroblasts (NhSF),

Normal human dendritic cells (NHDC),

Normal human epidermal keratinocytes

(NHEK)

Uchino et al., 2009

Silk Fibroin/Collagen (SF/COL) scaffolds Freeze-drying Primary neonatal foreskin fibroblast (NH),

hiNSCs

Vidal et al., 2019

Polycaprolactone (PCL), Polycaprolactone/Collagen

(PCL/COL), Polycaprolactone/Poly (L-lactic acid) (PCL/PLLA),

Polycaprolactone/Poly (L-lactic acid)/Collagen

(PCL/PLLA/COL) scaffolds

MSCs Rahmani et al., 2018

Polycaprolactone/Aloe vera (PCL/AV),

Polycaprolactone/Curcumin (PCL/CUR),

Polycaprolactone/Aloe Vera/Tetracycline hydrochloride

(PCL/AV/TCH) scaffolds

Electrospinning Human dermal fibroblasts Ezhilarasu et al., 2019

Gelatin methacrylate/Nanofibrils (GelMa/NF),

Gelatin/Nanofibrils

Rnjak et al., 2009

Milk protein/Polycaprolactone (MP/PCL) scaffolds Human keratinocytes Hewitt et al., 2019

Synthetic Elastin (SE) hydrogels Human dermal fibroblasts, Human

keratinocytes

Mao et al., 2018

Brain biomimetic cultures

Collagen gels Gelation Neuroblastoma cell line (SK-N-BE) Villasante et al., 2017

Alginate/Collagen hydrogels hiPSCs Moxon et al., 2019

Gelatin hydrogels coated with Collagen IV/Fibronectin hiPSC, human brain microvascular

endothelial cells (BMECs)

Faley et al., 2019

Silk fibroin scaffold/Collagen I hydrogels Silk extraction/Salt-leaching hiPSCs Rouleau et al., 2020

Liquid crystal elastomers (LCE) scaffolds Salt-leaching SH-SY5Y Prévô et al., 2018

Silk fibroin (SF) scaffolds Freeze-drying hiNSCs Cairns et al., 2020

Pol(vinyl alcohol)/Sodium alginate (PVA/SA) fibers Multilayer Coaxial Laminar Flow hiPSCs Zhu et al., 2017

(Continued)
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TABLE 1 | Continued

Material(s) and format Fabrication method Cell source References

Sodium Alginate/Gelatin (SA/Gel) based bioinks Gelation/3D bioprinting SH-SY5Y, hiPSCs Fantini et al., 2019

Gelatin Methacrylate (GelMa),

Glycidyl/Methacrylate/Hyaluronic acid (GM/HA) hydrogels

Neural Stem Cells (NSCs) Tang et al., 2020

Methacrylated Alginate (AlgMA) hydrogels Neuroblastoma cell line (SK-N-BE) Monferrer et al., 2020

Poly(desaminotyrosyl tyrosine ethyl ester carbonate) (pDTEc)

nanofibers

Electrospinning Neural reprogrammed stem cells (RN-iPS) Carlson et al., 2016

Polycaprolactone (PCL) scaffolds Human neural progenitor stem cells

(hNPCs)

Jakobsson et al., 2017

Polyethylene diacrylate (PEGDA) scaffolds UV polymerization Murphy et al., 2020

Heart biomimetic cultures

Collagen nanofibers Electrospinning Human Bone marrow mesenchymal stem

cells (hBM-MSC)

Joshi et al., 2018

Poly(vinylidene fluoride)/Trifluoroethylene (PVDF/TrFE)

scaffolds

hiPSCs, Cardiomyocytes (CMs) Adadi et al., 2020

Collagen fibers Melt electro-wiring Human umbilical cord vein smooth muscle

cells (HUVSMCs)

Saidy et al., 2019

Alginate (Alg) hydrogel nanofibers, Alginate/Gelatin

(Alg/GelF/MA) hydrogel nanofibers

Wet-electrospinning Mesenchymal stem cells enhanced with

enhanced green fluorescent protein

(hEGFP-MSCs)

Majidi et al., 2018

Gelatin hydrogels Gelation/3D bioprinting hMSCs Tijore et al., 2020

Hyaluronic Acid/Arginin-Glycine-Aspartic Acid (HA/RGD)

hydrogels

Gallagher et al., 2020

Gelatin Methacrylate (GelMa) bioinks HUVECs, CMs Zhang et al., 2016b

Gelatin Methacrylate/Polyethylene diacrylate (GelMa-PEGDA)

bioinks

Induced multipotent stem cells (iMSCSs) Nachlas et al., 2020

Gelatin/Gellan Gum (GG) hydrogels hiPSC-CMs Koivisto et al., 2019

Poly(vinyl alcohol) (PVA) scaffolds Freeze-drying Dattola et al., 2019

Polycaprolactone films (MacPCL) Layer-by-layer assembly, Laser perforation hMSCs Zhang et al., 2019

Matrigel coated fiber matrices Two-photon polymerization hiPSC-CMs Wang C. et al., 2020

Lung biomimetic cultures

Collagen hyaluronate (CHyA-B) scaffolds Freeze-drying Bronchial epithelium cells (Calu-3) O’Leary et al., 2016

Poly(L-lactide-co-glycolide)/Gelatin (PLGA/Gel),

Poly(L-lactide-co-glycolide)/Sodium bicarbonate (PLGA-SBC)

microparticles

Lung adenocarcinoma cells (A549) Kuriakose et al., 2019

(Continued)
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TABLE 1 | Continued

Material(s) and format Fabrication method Cell source References

Hyaluronic Acid-Furan/ Modified methylcellulose with reactive

thiols (HA-Furan/MC-SH) hydrogels

Gelation Smooth muscle cells (SMCs) Tam et al., 2019

Poly(vinyl chloride)(PVC) sheets Lung adenocarcinoma cells (A549) Simon et al., 2016

Polyethylene terephthalate (PET) nanofibers Electrospinning Human airway smooth muscle (HASM) Morris et al., 2014

Polyethylene terephthalate (PET) scaffolds Lung fibroblasts (MRC5) Htwe et al., 2015

Polyurethanes/polyhedral oligomeric silsesquioxane

(PU/POSS) scaffolds

3D bioprinting Human bone marrow mesenchymal stem

cells (hBM-MSCs)

Wu et al., 2020

Intestine biomimetic cultures

Collagen scaffolds Gelation Caco-2 Kim et al., 2014

Propylacrylamide (pNIPAM) hydrogels Caco-2, HT29-MTX, hiNSCs Dosh et al., 2017

Silk fibroin (SF) scaffolds Freeze-drying Shaban et al., 2018

Manousiouthakis et al., 2019

Human colonoid culture Roh et al., 2019

Collagen scaffolds Curing/gelation Caco-2 Yu et al., 2012

Polyethylene diacrylate (PEGDA)/Acrylic acid/Fibronectin and

composite scaffolds

3D bioprinting Creff et al., 2019

Polyethylene diacrylate/Alginate acid (PEGDA/AA) scaffolds UV photo-polymerization Castaño et al., 2019

Polyethylene terephthalate (PET) nanofibrous scaffolds Electrospinning Patient et al., 2019

Bone biomimetic cultures

Ulvan/gelatin (UG) scaffolds Gelation/Freeze-drying Human adipose-derived mesenchymal

stem cells (hADMSCs)

Tziveleka et al., 2020

Alginate/Gelatin (Alg/Gel) scaffolds 3D bioprinting hMSCs Zhang et al., 2020

Polycaprolactone/Calcium-polyphosphate (PCL/Ca-polyP)

microspheres

Human osteoblast-like cells (SAOS-2) Neufurth et al., 2017

Alginate/Gelatin (Alg/Gel) scaffolds coated with graphene

oxide (GO)

hADSCs Li et al., 2020

Polycaprolactone/Poly(L-lactic acid)/Hyaluronic Acid

(PLA/PCL/HA) scaffolds

Human osteocarcinoma cell line (MG63) Hassanajili et al., 2019

Gelatin Methacrylate (GelMA)-VEGF hydrogels MSCs Byambaa et al., 2017

Keratin sponges Casting Human osteoblast-like cells (SAOS-2) Bloise et al., 2020

Poly(L-lactic acid)/Dimethyl sulphoxide (PCL/DMSO) scaffolds 3-Dimensional plotting system (3DPS) Human bone marrow stromal cells

(hBMSCs)

Seok et al., 2020

(Continued)
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TABLE 1 | Continued

Material(s) and format Fabrication method Cell source References

Poly(L-lactic acid) (PCL), Poly(L-lactic acid)/Silicate-containing

hydroxyapatite (PCL-siHA) scaffolds

Electrospinning hMSCs Shkarina et al., 2018

Poly(3,4- ethylene dioxythiophene)/Collagen (PEDOT/COLL)

scaffolds

Freeze-drying Neural crest stem cells (NCSCs) Iandolo et al., 2020

Polypyrrole crosslinked (PPY/XCS) scaffolds hADMSCs /HUVECs Zhang et al., 2018

Tricalcium phosphate/Alginic acid/Graphene Oxide

(TCP/AA/GO) scaffolds

Polymerization/3D bioprinting Human osteoblast cells (hOB) Boga et al., 2018

Magnesium-β-Tricalcium Phosphate Composite (Mg-TCP)

scaffolds

Gelation/ 3D bioprinting hMSCs, HUVECs Gu et al., 2019

Liver biomimetic cultures

Collagen gels Gelation Human hepatocarcinoma cells (HepG2) Yip and Cho, 2013

Glycyrrhizin /Alginate/Calcium (GL/Alg/Ca) hydrogels Gelation/Freeze-drying Tong et al., 2018

Chitosan/Gelatin (CS/Gel) scaffolds Zhang et al., 2016c

Bioprinting/Gelation/ Freeze-drying Gong et al., 2014

Decellularized extracellular matrix (dECM)based hydrogels 3D bioprinting Ma et al., 2018

Gelatin Methacrylate (GelMA) hydrogels Human hepatocarcinoma cells

(HepG2/C3A)- HUVECs

Massa et al., 2017

Gelatin Methacrylate/Decellularized extracellular matrix

(GelMa/dECM) bioinks

Human induced hepatocytes (hiHep) Mao et al., 2020

Collagen/Hyaluronic Acid (COL/HA) bioinks Activated hepatic stellate cells (aHSC) Mazzocchi et al., 2019

Poly(L-lactide-co-glycolide)/Collagen I (PLGA/COL I)

nanofibrous scaffolds

Electrospinning Primary human hepatocytes Brown et al., 2018

Poly(ethylene glycol)/Alginate/Gelatin (PAG) cryogel matrices Cryogelation Human hepatocarcinoma (Huh-7), HepG2 Kumari et al., 2016

Inverted colloidal crystal (ICC) hydrogel scaffolds UV photo-polymerization Huh-7 Kim M. H. et al., 2016

Polycaprolactone (PCL) micro-scaffolds Selective Laser Sintering HepG2, HUVECs Pang et al., 2020

Created with BioRender.com.
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prevalence of collagen in human tissues, its excellent properties
(e.g., low immunogenicity, biocompatibility, biodegradability,
hydrophilicity, easy processing, good encapsulation response,
etc.; Ahadian et al., 2018; Liu X. et al., 2019) and the
advances in preparation and cross-linking methods to boost
its physicochemical properties have enabled the fabrication
of various types of collagen-based bioactive substrates (e.g.,
scaffolds, gels, fibers, and sponges; Uchino et al., 2009; Yip and
Cho, 2013; Patel et al., 2019; Sorushanova et al., 2019; Ferro
et al., 2020). Skin substitute studies, for instance, have extensively
employed this natural material for wound healing purposes (Min
et al., 2018), while collagen hydrogels have also been shown
to effectively support and enhance the growth and survival of
primary cortical neurons in a 3D mimetic environment (Evans
et al., 2019).

Blends of natural materials with other biomolecules or
synthetic polymers are also commonly used for the recapitulation
of the tissue milieu, as a means to overcome drawbacks
related with the poor mechanical properties of some natural
polymers [e.g., collagen (Ullah et al., 2018), gelatin (Han et al.,
2014)], the low solubility in water [e.g., keratin (Wang et al.,
2016)], their limited biostability (Pedron et al., 2013; Ryan
and O’Brien, 2015), as well as source availability, and their
uncontrollable biodegradation (Pradhan et al., 2020). In fact,
such blends allow for enhancement of the mechanical properties
and for better control over the biochemical properties of the
engineered substrates according to the requirements of the
tissue under development. For example, addition of elastin
to porous collagen scaffolds was shown to reduce stiffness
and enhance viscoelasticity, while inducing a more contractile-
like smooth muscle cell phenotype (Ryan and O’Brien, 2015).
Combination of collagen with HA was shown recently to yield
a bioink/hydrogel suitable for 3D printing liver tissue constructs
containing primary human hepatocytes and liver stellate cells,
that were viable and functional for over 2 weeks and able
to respond to drugs (Mazzocchi et al., 2019). In addition,
PLGA nanofibrous scaffolds treated with type I collagen or
fibronectin, as the minimal essential ECM components of the
liver microenvironment, were able to accommodate long-term
in vitro support, maintenance, and function of primary human
hepatocytes (Brown et al., 2018).

Another commonly used material is gelatin-polysaccharide
composite hydrogels (Afewerki et al., 2019). The chemical
similarities of gelatin to the native tissue ECM, its
biocompatibility, low antigenicity, cost-effectiveness, and
combination with polysaccharides have been shown to produce
composite hydrogels with enhanced ECM biomimicry levels,
increased mechanical resilience (Afewerki et al., 2019);
hydrophilicity (Jansen et al., 2005); and antimicrobial and
anti-inflammatory properties (Wang et al., 2007), thus highly
promising materials for 3D cell culture and TE applications
(Afewerki et al., 2019). This was exemplified by the study of
Guan et al., who showed that porous gelatin-chitosan scaffolds,
loaded with hyaluronic acid and heparan sulfate, offer a valuable
option for neural tissue engineering as they form a suitable 3D
microenvironment for the adhesion, growth and differentiation
of neural stem and progenitor cells (Guan et al., 2013).

Engineering Methods to Reconstitute
Tissue Architecture in vitro
The choice of the most suitable biomaterial is coupled with the
fabrication method, as this can also influence the final properties
of the 3D matrix supporting the engineered tissue (Mabrouk
et al., 2020). Various fabrication methods have been utilized
so far, spanning from freeze-drying (Mabrouk et al., 2020) and
physical/chemical cross-linking reactions (Hu et al., 2019), for
scaffold and hydrogel preparation, respectively, to microscale
technologies, such as soft-lithography for microfluidic channel
fabrication (Khademhosseini et al., 2006).

Conventional scaffold fabrication approaches have relied
on techniques such as freeze-drying (Figure 4A), solvent
casting/particulate leaching (SCPL) (Figure 4B), melt molding
and gas foaming with which different porosity levels can
be achieved (Wang et al., 2006). Due to the simplicity of
established protocols and the relatively low-cost and tunability
of scaffold porosity and geometry, these techniques are the
standard for fabricating scaffolds (Mabrouk et al., 2020).
However, several drawbacks have been reported, including
cases of low interconnectivity of the porous network, irregular
pore sizes, use of organic solvents with possible toxic effects
and lack of precise control over the overall mechanical
properties (El-Kady et al., 2012; Hribar et al., 2014). In an
attempt to overcome these limitations, several groups employed
electrospinning (Figure 4C) to fabricate various 3D matrices
from both natural or synthetic materials and blends, as this
method has been shown to provide better control over the
mechanical properties (e.g., porosity and tensile strength), the
geometry and the micro- and nano-topography of the fibrous
scaffolds (Cui et al., 2010). Htwe et al. (2015) fabricated
electrospun polyethylene terephthalate (PET)-based nanofibrous
scaffolds, with similar geometry to human lung extracellular
matrix, to form 3D cultures of lung fibroblasts as a biologically
relevant tool for the investigation of such cells in the pathogenesis
of lung inflammation via activating the NF-κB signaling
pathway (Htwe et al., 2015). In addition, electrospun PET-
based 3D nanofibrous scaffolds, coated with collagen and
mimicking the basement membrane structure, were shown to
successfully support an in vitro model of the human intestinal
barrier that exhibited superior performance as a drug-testing
platform compared to conventional models (Patient et al.,
2019).

Over the last few years, additive manufacturing (AD)
approaches have also gained a lot of attention as an alternative
fabrication route to organize cells in 3D due to their potential
to provide precise spatiotemporal control over biophysical
and biochemical cues necessary to reproduce a biomimetic
microenvironment (Murr, 2016; Bose et al., 2020; Nikolaev
et al., 2020; Sun et al., 2020). AD approaches include techniques
such as three-dimensional printing (3DP) (Figures 4D,E), light-
assisted bioprinting (Trautmann et al., 2018), fused deposition
modeling (FDM), selective laser sintering (SLS), that, along with
advances in biomaterials and bioinks, enable precise deposition
of materials into custom shapes and patterns to replicate complex
tissue architectures, not possible using conventional techniques,
and with high control and reproducibility (Melchels et al., 2012;
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FIGURE 4 | Fabrication methods for engineering 3D scaffold-based biomimetic models in vitro. (A) Fabrication process of 3D hybrid scaffolds based on PEDOT:PSS

and multi-walled carbon nanotubes (MWCNT) composites via freeze-drying. Reproduced from Jayaram et al. (2019) under the Creative Commons Attribution license.

(B) Preparation of porous Liquid Crystal Elastomers (LCE), as biodegradable brain tissue scaffolds, via salt-leaching. Reproduced from Prévô et al. (2018). (C)

Electrospinning of Polyvinylpyrrolidone/Poly(glycerol sebacate) fibrous scaffolds for skin tissue engineering. Reproduced from Keirouz et al. (2019). 3DP techniques for

engineering (D) skin and (E) bone tissue equivalents. Reproduced from Byambaa et al. (2017) and Min et al. (2018), respectively.

Cui et al., 2017). Moreover, AD approaches, and specifically 3DP
techniques, based on coupling multimaterial printing with high
performance bioinks (i.e., hydrogel solutions that act both as cell
carriers, and structural components to control and direct cell
activity and fate; Chimene et al., 2020) and biomolecules have
been developed to obtain highly customisable, biofunctional, and
mechanically compliant scaffolds (Chimene et al., 2016). The
potential of bioprinting for building such biorelevant models is
highlighted in various recent studies, seeking to develop highly
biomimetic and functional tissues for disease modeling and
drug testing (Kolesky et al., 2014; Horvath et al., 2015; Lee A.
et al., 2019; Lee H. et al., 2019; Theodoridis et al., 2019; Daly
et al., 2020). However, there are still challenges and limitations
to be addressed before this novel approach is fully adopted by
researchers. For example, not all biomaterials are compatible
with AD fabrication methods for the recapitulation of some
complex micro- and nano-features, while printing modules and

parameters, such as print speed, print pressure, and temperature
as well as cell density in the bioink, can influence the cell-
material dynamics during the printing process (Zhang and
Wang, 2019). Nevertheless, as new methods for modulating
biomaterial properties (e.g., new cross-linking mechanisms),
along with advances in printing technologies—both software
and hardware—are developed, we expect to see advances in the
convergence of AD manufacturing and in vitro TE with the
potential to leverage physicochemical cues and hence facilitate
the development of more robust tissue equivalents.

Finally, a highly promising and popular method for building
tissue equivalents, which has been favored by the emergence of
the aforementioned AD manufacturing technology, is modular
tissue engineering (Ouyang et al., 2020). Contrary to the top-
down approach of the traditional TE paradigm, this bottom-up
approach is based on fabricating living building blocks using
cells (optionally together with biomolecules and/or biomaterials)
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which are then assembled to create more biomimetic customized
tissue models (Nichol and Khademhosseini, 2009; Ouyang
et al., 2020). Various methods of building and assembling
these modular tissue blocks are being explored, including
3DP/bioprinting (Graham et al., 2017; Liu T. et al., 2019;
Subbiah et al., 2020), micropatterning (De Gregorio et al., 2018),
microfabrication of cell-ladden hydrogels (Onoe et al., 2013; Jeon
et al., 2019; Figure 4E) and scaffolds (de Rutte et al., 2019),
and self-assembly (Kato-Negishi et al., 2013; see Ouyang et al.,
2020, for an extended review). Among other advantages, bottom-
up tissue engineering approaches have gained a lot of attention
because they offer a new means to generate vascularized tissues
via modular assembly of pre-formed vascularized tissue blocks,
a major challenge for tissue engineering at present (Nichol and
Khademhosseini, 2009;Marga et al., 2012; Ouyang et al., 2020). In
some cases, the versatility of these living tissue blocks allows not
only for the modular assembly of vascularized tissues and organs
(Homan et al., 2019), but also for the assembly of other complex
tissue types (Miller et al., 2012; Magnan et al., 2020). It would
be interesting to see if this strategy for vascularization of tissues
could be also applied to promote innervation of biofabricated
tissues and organs (Das et al., 2020).

Engineering Methods to Recapitulate the
Physicochemical Properties of the Native
Niche
As discussed above, progress inmaterials science and engineering
has enabled the development of functional/smart (bio)materials
and platforms for TE applications by aiding the reconstruction
and control of an environment that mimics key features of
the natural niche. In the in vivo situation, cells have the
capacity to generate, sense, integrate, and respond to systemic
and local mechano-chemical cues and through interactions
with neighboring cells and the surrounding ECM, they
collectively generate tissues/organs with impressive structure and
functionality (Brassard and Lutolf, 2019). Therefore, besides
the appropriate source of cells and the materials with the
appropriate physicochemical properties and microstructure, the
exposure to biochemical and biophysical cues is of paramount
importance for engineering tissues in vitro (Caddeo et al., 2017;
Bao et al., 2018; Chen et al., 2019). Biophysical cues include
bulk properties (e.g., viscoelasticity, stiffness, and porosity), as
well as surface properties (e.g., roughness, guidance cues, charge,
and wetting characteristics), while biochemical cues, besides the
chemical structure, and composition of the materials, also refer
to the presence of gradients of nutrients, signaling molecules,
or even reprogramming factors, such as mRNA (Ledo et al.,
2020a). In the following section, we discuss recent advances
in reconstructing several niche properties and key aspects of
the natural biochemical and mechanical signals, known to
influence fundamental cellular processes, as well as methods of
delivering such stimulants, to simulate the chemical signaling
and biological pathways of the native environment and thus
promote physiological cell growth and differentiation within the
engineered tissue models.

Chemical/Biochemical Stimuli
In vivo, cellular responses are influenced by various
spatiotemporal biochemical signals (Caddeo et al., 2017;
Park et al., 2019). Within tissues, concentration gradients for
soluble components, nutrients, metabolites as well as oxygen
and pH exist and are essential for exerting pressures that can
stimulate or inhibit basic cellular processes (Przyborski, 2017).
The proximity of vasculature and blood vessels, the diffusion
of molecules through the surrounding ECM and the metabolic
activity of the organ/tissue, which regulate oxygen tension,
nutrient consumption and cellular waste secretion and removal,
affect these natural gradients and in turn the maintenance of
physiological levels of chemotaxis and homeostasis (Langhans,
2018).

Since most tissue-engineered constructs lack a vascular
network, cells rely for their survival on diffusion of nutrients
and oxygen through the construct (Rouwkema et al., 2009).
Along with cell culture media, the engineered (bio-)materials
and ECM components of the 3D tissue equivalent can act as a
reservoir of such molecules, as well as for soluble components
that can enhance, stimulate or inhibit specific cellular functions
and guide cells toward the desired output (Caddeo et al.,
2017; Afewerki et al., 2019). Essentially, cell culture media is
a cocktail of molecules and compounds that range from basic
nutrients necessary for cell growth to biochemical stimulants
with more specialized role, depending on the needs of the
cell line(s) in culture (Table 2). For example, glucose is widely
used as the main source of energy for cell metabolism, while
serum (e.g., fetal bovine serum) forms the basis of culture
media as the cocktail of hormones, growth factors and protease
inhibitors, supplemented with buffering systems, inorganic salts,
amino acids and proteins/peptides that promote cell growth
and viability, while also control pH and osmolality of the
cell culture environment (Yang and Xiong, 2012; Carter and
Shieh, 2015b; Salazar et al., 2016). A type of biomolecule in
media formulations with more specialized role is growth factors
(GFs). GFs are used as culture media additives due to their
key role in multiple signaling pathways between cells and their
environment as well as in fundamental cellular processes. For
instance, bone morphogenetic proteins (BMPs) stimulate bone
cell differentiation, vascular endothelial growth factors (VEGFs)
stimulate blood vessel differentiation (angiogenesis), while GFs,
such as epidermal growth factor (EGF), regulate a wide variety
of functions in both epithelial and mesenchymal cells (De et al.,
2013; Yao and Asayama, 2017). In addition to providing a
biochemical link for enhancing cell communication (Gonçalves
et al., 2013), addition of GFs in the cellular microenvironment is
necessary for the reconstruction of the native tissue niche, where
they are part of an extensive cross-talk between cell membrane
receptors and ECM components (Brizzi et al., 2012). This is
particularly important in the case of stem cells as well as for
the derivation and maintenance of various types of organoids
(Urbischek et al., 2019) the self-organization and maturation
processes of which require a spatially homogeneous cocktail of
specific growth factors (e.g., R-spondins and Noggin) and other
signaling molecules (Brassard and Lutolf, 2019).
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TABLE 2 | Common biomolecules in conventional cell culture media.

Types of biomolecules Role Example

Carbohydrates Source of energy Glucose

Galactose

Amino acids Protein synthesis,

Secondary source of energy,

Regulation of cell proliferation and density,

Stimulation of growth and enhancement of

cell viability

L-glutamine

L-cysteine

L-Lysine

Proteins and peptides Binding of water, salts, free fatty acids, hormones,

and vitamins

Removal of toxic substances,

Protection against proteolysis,

Promotion of cell attachment

Albumin

Transferrin

Fibronectin

Aprotinin

Growth factors Cell signaling and communication,

Mediation of processes such as proliferation,

differentiation, wound healing, and tissue maturation

Bone morphogenetic proteins (BMPs)

Vascular endothelial growth factors (VEGFs)

Epidermal growth factor (EGF)

Cytokines Cell Signaling and communication

Stimulation of cells toward differentiation pathways

Modeling hematoimmune response of tissues

Interleukins (IL)

Tumor necrosis factor a (TNF-a)

Vitamins Cell growth and proliferation

Enzyme co-factors

Vitamin B group

Another class of biomolecules used to engineer the in vitro
niche and mimic native signaling networks is cytokines. Apart
from their modulatory role in the hematoimmune system,
cytokines produced by a broad range of cells (e.g., lymphocytes,
endothelial cells, and fibroblasts),—depending on the type and
state of cell—, have also been found immobilized in the ECM,
forming a complex functional network within the body, exerting
systemic effects that go beyond their immunomodulatory role
(Morán et al., 2013). Hence, they are now being employed to
engineer the microenvironment of tissue equivalents, not only as
agents that enrich the cell culture media, but also as components
of the (bio)material blends used to support the 3D culture
system. For example, in a perfusion-based bioreactor model of
human bone marrow, addition of hematopoietic cytokines (i.e.,
thrombopoietin, stem cell factor, and Fms-related tyrosine kinase
3 ligand) significantly aided the establishment of a xeno-free
environment that in turn favored the expansion of hematopoietic
stem cells (Bourgine et al., 2018), while controlled release of
BMP and VEGF blended in bone-mimetic substrates was shown
to exert a synergistic effect on stimulation of osteoblasts (Bao
et al., 2017). Finally, it is worth noting the efforts on substituting
animal derived-sera with human (Muraglia et al., 2017; Heger
et al., 2018) or synthetic serum (Ejiri et al., 2015; Patel et al.,
2015), as these have been shown to better support cell growth and
behavior in 3D without compromising the results (Heger et al.,
2018). In addition, standardization of such sera formulations will
facilitate the development of completely animal-free cell systems
and tissue equivalents, better capturing the native biochemical
environment of specific cell types (Ejiri et al., 2015).

Physical/Biophysical Stimuli
Besides biochemical cues, each cell within the native tissu
e is subject to a unique mechanical environment defined

by gradients of intracellular and extracellular forces, the
interactions with neighboring cells and the surrounding
ECM (Caddeo et al., 2017; Brassard and Lutolf, 2019). Via
mechanotransduction mechanisms, cells respond to these
biophysical stresses and transduce the mechanical stimuli into
biochemical signals, modifying their behavior (e.g., proliferation
rate, shape, and migration). In addition, cells rearrange their
cytoskeleton and cell membrane positioning and produce
and exert endogenous contractile forces in the surrounding
microenvironment, remodeling the ECM. This dynamic
reciprocity of biophysical cues is constantly reshaping cells
and the native niche structure and is associated with different
cellular functions and tissue homeostasis (Xu et al., 2009;
Humphrey et al., 2014; Kratochvil et al., 2019). Along with
the physical properties and microarchitectural features of the
tissue engineering materials, it has now been established that
experimental platforms of tissue equivalents should acknowledge
and incorporate the physiological biophysical variables to
successfully imitate in vitro the dynamic interplay between cells
and their exterior (Humphrey et al., 2014; Przyborski, 2017).

Over the last couple of decades, efforts are focusing on better
understanding the effects of mechanical stimuli on cells and
on addressing the challenges of reconstituting biophysical cues
of physiological and diseased conditions in vitro. Of particular
interest is the application of fluid shear stress that several tissues
and cells within the body experience (Delon et al., 2019). For
example, blood flow and pressure exert on endothelial cells one
of the greatest forces within mammalian organisms (1–5 Pa)
(Baeyens et al., 2016). In response to these forces, endothelial cells
alter their morphology and orientation, which in turn regulates
vessel physiology, function, and remodeling activity accordingly.
In addition, endothelial cells transduce the frictional blood
flow force into biochemical signals via specialized mechanisms
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that shape the ability of the vascular system to effectively
perfuse all tissues. Alterations in the nature of these forces or
in the mechanotransduction mechanism have been shown to
contribute to major vasculature diseases (Kamiya and Ando,
1996; Kadohama et al., 2007; Baeyens et al., 2016; Chistiakov
et al., 2017). Epithelial cells also experience fluid shear stress (e.g.,
peristalsis in the intestine), which affects both their structure and
function. Several in vitro studies have revealed the importance
of this mechanical cue in the formation of microvilli in the apical
surface of various epithelial cell types, including intestinal (Delon
et al., 2019), lung (Stucki et al., 2018), and placental (Miura
et al., 2015), highlighting the importance of incorporating such
biophysical cues in bioengineering applications.

The effects of biophysical cues in advancing the relevance
of in vitro cellular and tissue models has also been explored in
the context of stimulating cells to enhance their functional and
phenotypical characteristics or to trigger the differentiation of
stem cells toward the desired lineage. Mechanical stretching has
long been an attractive experimental strategy for controlling
cell growth, gene expression, lineage commitment, and
differentiation and thus successfully engineering mechanically
functional tissues, such as cardiac, lung, vasculature, and bone
(Diederichs et al., 2010; Riehl et al., 2012). For example, cyclic
stretch was shown to enhance the viability and functional
maturation of 3D cardiac tissue constructs based on human
embryonic stem cell-derived cardiomyocytes seeded on gelatin-
based scaffolds (Mihic et al., 2014). In another study, Fang, et al.
highlight the potential of mechanical stretch for enhancing stem
cell behavior and regulating their fate. By applying cyclic stretch
to human adipose-derived stem cells (hADSCs), the authors
found that stretching significantly promoted the proliferation,
adhesion, and migration of hADSCs, it suppressed apoptosis and
adipogenesis, while it enhanced osteogenesis (Fang et al., 2019).

Besides mechanical cues, biophysical cues also involve
electrical or magnetic fields, ultrasound stimulation and
photostimulation (Ding et al., 2017; Chen et al., 2019). Due to the
strong presence of bioelectricity (e.g., cell membrane potential,
trans-epithelial potential found in all types of epithelial tissues)
and its effects on in vivo systems, electrical stimulation has drawn
a lot of attention for its potential benefits in tissue engineering
(Balint et al., 2013; see McCaig et al., 2005, for an extended
review on bioelectricity). Several in vitro studies have revealed
the effects of electrical stimulation on various biological events
both on cellular and tissue level, spanning from improved cellular
migration and differentiation to enhanced wound healing and
nerve regeneration (Vodovnik et al., 1992; Llucià-Valldeperas
et al., 2015; Snyder et al., 2017; Srirussamee et al., 2019). In the
recent years, these effects have also been explored in 3D culture
setups. For example, Kumar et al., studied the effect of external
dynamic electric field as a guiding cue for osteoblasts seeded on
3D printed porous titanium alloy scaffolds. Their findings suggest
that the presence of electric field, under dynamic conditions, had
a positive effect on proliferation, growth, and expression level
of prominent adhesion and cytoskeletal proteins, as well as on
cell-cell interactions (Kumar et al., 2016; Iandolo et al., 2020).
However, the emergence of electroactive polymers as a new
class of smart materials has brought to the fore the potential of

combining materials suitable for TE with electrical stimulation.
Early work on 2D cell culture assays based on polypyrrole, for
example, has shown that such materials can support the growth,
proliferation, and differentiation of mammalian cells (Zelikin
et al., 2002) as well as stimulation of neurite outgrowth (Schmidt
et al., 1997) or enhancement of osteogenic commitment of bone
marrow stromal cells (Shastri et al., 1999) upon application
of electrical fields. Moreover, carbon nanotubes (CNTs) have
been shown to promote cardiomyocyte maturation (Martinelli
et al., 2012) as well as to enhance the performance of engineered
neurons and neural networks (Cellot et al., 2009; Fabbro
et al., 2012), among other applications. Nowadays, it is well
established that such materials can act both as substrates for
cell attachment and tissue growth and as bioactive elements for
regulating cellular activities within 3D tissue culture systems
(Balint et al., 2013; Chen et al., 2019). The use of conducting
materials in regulating stem cell function through electrical
stimulation in 3D microenvironments was exemplified recently
by co-culturing human adipose-derived MSCs (hADMSCs) and
umbilical vein endothelial cells (HUVECs) in an electrically
conducting polypyrrole/chitosan scaffold, demonstrating
enhanced autocrine signaling, promoting the cellular functions
of the co-culture system (Zhang et al., 2018). In another
study, Zhu et al. developed carbon nanofibrous scaffolds with
enhanced electrical conductivity and mechanical flexibility
and demonstrated that sufficient support of stem cell-derived
neuron-like cells, while application of biphasic electrical
stimulation enhanced differentiation and maturation of these
cells, as evidenced by the upregulation of the relevant neuronal
biomarkers (Zhu et al., 2018). Finally, earlier this year, Iandolo
et al. developed highly porous electroactive PEDOT:PSS and
collagen type I composite scaffolds that supported neural crest-
derived stem cell (NCSC) culture and osteogenic differentiation,
without the need for scaffold pre-conditioning. The modulation
of mechanical and electrical properties induced by collagen
blending provided a new means for directing cell fate and
response, as well as a tool for cell-based monitoring and
stimulation applications (Iandolo et al., 2020).

Spatiotemporal Delivery and Control of Biochemical

and Biophysical Cues in Engineered Tissue

Equivalents
As discussed in previous sections, advancements in fabrication
technologies and material engineering have enabled the
development of tissue engineering substrates that can present
cells with the necessary cues to finely elicit a plethora of cellular
functions and signaling mechanisms (Leijten et al., 2017).
However, our understanding of cell-material interactions so far
has been based mainly on static culture systems, while the in vivo
array of biochemical and biophysical signals changes over space
and time. Even thoughmimicking natural gradients in 3D culture
platforms is possible, the thickness of the culture construct, as
well as the competition of cells, can limit the diffusion of
nutrients, oxygen, growth factors, and other signaling molecules
and due to inhomogeneous distribution, cells located in the
middle of the construct might not have access to sufficient
supply of those molecules and thus behave differently from cells
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that are closer to the engineered tissue surface (Levorson et al.,
2011; Caddeo et al., 2017). In turn, this results in non-uniform
cell proliferation and matrix deposition and in inhomogeneous
tissue formation (Gholipourmalekabadi et al., 2016). Therefore,
a lot of focus has now shifted to developing culture platforms
that can dynamically recapitulate in vitro the native tissue
spatio-temporal variation of signals. Such engineered platforms
have the potential to facilitate better understanding and to
provide more degrees of flexibility and control over cell function
and fate and thus to eventually build tissues that better emulate
the dynamics of the in vivo conditions (Leijten et al., 2017).

From the materials engineering point of view, even
though numerous matrix-based techniques for delivering
physicochemical cues, such as blending cell-adhesive
ligands within scaffold materials (Gallagher et al., 2020) or
micropatterning growth factors in hydrogels (Jeon et al., 2018),
have been shown to improve cell behavior, this approach lacks
the possibility to fine-tune and precisely control the timing of
delivery, which is also important for cell survival and fate. In the
case of MSCs, for instance, it has been shown that the RGD cell-
adhesive motif is essential for stem cell survival at the early stages
of 3D culture in PEG hydrogels, while removal of ligands at
later stages does not compromise the viability of cells, but rather
improves their differentiation (Kloxin et al., 2009). To overcome
limitations in delivering natural cues in a spatiotemporal
manner the development of dynamic biomaterials that allow for
reversible modulation of the physicochemical properties and on-
demand release of the desired molecules via either cell-mediated
or user-mediated mechanisms, represents a promising strategy
(Willerth et al., 2008; Leijten et al., 2017; Schneeberger et al., 2017;
Cimmino et al., 2018; Kratochvil et al., 2019; Xu et al., 2020). A
characteristic example where the delivery of physicochemical
cues is mediated by cell activity is remodelable 3D hydrogels.
Madl et al. showed recently that in elastin-like protein hydrogels,
prior to chemically-induced differentiation, a critical amount
of matrix remodeling is necessary to maintain the stemness
and to enhance the differentiation capacity of neural progenitor
cells into astrocytes and mature neurotransmitter-responsive
neurons, via a mechanism regulated by cadherin cell–cell
contacts and catenin-mediated activation of Yes-Associated
Protein (YAP) expression (Madl et al., 2019). These findings
highlight the potential of bioresponsive materials as attractive
tissue engineering platforms that enable both expansion and
subsequent differentiation of stem cells toward the desired tissue
within a single cell culture setup. On the other hand, materials
can be engineered to respond to user-directed stimuli as a means
to fine-tune the presentation of spatiotemporal cues to cells and
thus to direct and modulate interactions within the biological
system (Cimmino et al., 2018). An example of this approach is
the use of protease-cleavable peptides in 3D materials, as shown
in a recent publication by Guo et al. The researchers, combining
bio-orthogonal click chemistry and protein engineering,
developed PEG-based multi-layered hydrogels with spatially-
defined regions of immobilized proteins, where exogenous
application of enzymes for triggering the temporal release and
removal of select proteins was shown to be a promising tool
for controlling cellular microenvironments (Guo et al., 2017).

Due to their spatiotemporal tunability, materials responsive to
light, temperature or electrical fields have also been called for, to
allow triggering of the release of ECM-presented cues from a 3D
substrate to the cell culture microenvironment, thus directing
advanced cellular fates within tissue engineering platforms
(Wylie et al., 2011; Deforest and Tirrell, 2015; Cimmino et al.,
2018; Ruskowitz and Deforest, 2018; Kratochvil et al., 2019;
Shadish et al., 2019).

Sophisticated bioreactor systems can be used to fine-tune
culture parameters and to reproduce an in vitro tissue-
specific physiological microenvironment capable of overcoming
diffusion limits and oxygenation for better control or even
coupled delivery of chemical and mechanical cues (Levorson
et al., 2011; Hansmann et al., 2013; Schmid et al., 2018).
For example, a bioreactor system developed by Zohar et al.
enabled the investigation of the direct flow-induced shear stress
on vascularization of poly(L-lactic acid)/poly(lactic-co-glycolic
acid) (PLLA/PLGA) scaffolds and showed that flow conditions
enhance vascular network formation and maturation (Zohar
et al., 2018). Charoensook et al. created a bioreactor-based
functional in vitro model of the neuromuscular junction by
cultivation of transdifferentiated myocytes and stem cell-derived
motoneurons, where electrical stimulation resulted in improved
maturation and function of motoneurons and myocytes, as well
as exhibiting physiological response to drugs, thus suggesting its
potential as a pharmacological screening platform and controlled
studies of neuromuscular diseases (Charoensook et al., 2017).
Furthermore, an all-in-one bioreactor approach facilitated the
reconstruction and control of a more physiologically relevant 3D
cardiac tissue microenvironment by combining, within a single
chamber, electrical stimulation of the cardiac tissue, bidirectional
interstitial fluid flow and on-line monitoring, and analysis of
tissue functionality during culture (Visone et al., 2018).

One of the most promising technologies for bridging the
gap between in vitro and in vivo systems is organs-on-chips
(OOCs), alternatively called microphysiological in vitro models.
OOCs technology has emerged from the combination of recent
advances in microengineering and fluidic physics with trends
in growing cells in 3D, allowing for the development of
models that more faithfully recapitulate key features of specific
human tissues and their interactions (Ramadan and Zourob,
2020). The design of the vast majority of OOC models are
based on (micro-)fluidic devices, fabricated by soft-lithographic
techniques, with continuously perfused chambers inhabited by
living cells arranged in a biomimetic manner, while facilitating
precise control over delivery of nutrients and spatiotemporal
tuning of oxygen and pH gradients (Bein et al., 2018; Ronaldson-
Bouchard and Vunjak-Novakovic, 2018). Among the added
benefits of using such systems are the continuous supply of
nutrients and removal of waste, the unparalleled, independent
control over multiple key factors of the cell system, the possibility
for in situ, high precision and automated monitoring and sample
analysis, as well as the ability to interface different cellular
compartments for enhanced cell cross-talk and exchange of
signaling molecules and growth factors. But, what creates an
enormous potential for enhancing the physiological relevance of
the in vitro cell systems, spurring new, unforeseeable applications
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of this technology, is the combination of a biomimetic niche
with accurate, precise, and coupled delivery of more complex
biochemical and biophysical cues (Bein et al., 2018; Ramadan
and Zourob, 2020). Even though most of the attention OOCs
have gained is focused on pharmacology and pre-clinical drug
screening applications, as low-cost and animal-free alternative
tool (Ramadan and Zourob, 2020), it is clear that the principle
behind this technology lines perfectly with the TE paradigm and
scope: convergence of cells with the advanced chip technology-
biomaterials and delivery of physiologically relevant cues toward
more robust tissue equivalents. As a result, various research
groups around the world, both in the academic and industrial
sectors, have developed a broad range of OOCs, mimicking the
human gut (Ramadan and Jing, 2016; Kasendra et al., 2018; Shin
et al., 2019), liver (Delalat et al., 2018; Jang et al., 2019), kidney
(Jang et al., 2013; Chang et al., 2017; Yin et al., 2020), lung (Huh
et al., 2012; Stucki et al., 2018; Felder et al., 2019), blood-brain
barrier (Kilic et al., 2016; Wevers et al., 2018), bone (Marturano-
Kruik et al., 2018), and vasculature (Schimek et al., 2013; Jeon
et al., 2015) in both healthy and pathophysiological conditions,
such as infection (Villenave et al., 2017; Ortega-Prieto et al., 2018)
and cancer (Ayuso et al., 2016; Hassell et al., 2017; Hao et al., 2018;
Carvalho et al., 2019), as well as for the interaction of multiple
organs, as first showcased by Shuler et al. and more recently
by others, toward multi-organ and whole-body microsystems
(Miller and Shuler, 2016; Vernetti et al., 2017; Edington et al.,
2018; Herland et al., 2020), to study collective responses to drugs
or disease inducing agents and inter-organ communication.

APPLICATIONS OF 3D BIOMIMETIC
CULTURES AND TISSUE EQUIVALENTS

Modeling Human Health and Disease
The transformation of the field toward more in-vivo-like
human models is still ongoing, facilitated by the technological
advancements in 3D cell platforms. Their deployment in early
biomedical applications has already given prominence to the
usefulness and validity of suchmodels, leading to a paradigm shift
in our understanding of human cell and tissue biology (Chen,
2016; Przyborski, 2017). Several studies over the past decades
have showcased the powerful potential of 3D in vitro models
in addressing questions specific to the human biology that are
challenging, if not impossible, to answer with animal models and
conventional biological assays. Additionally, increasing evidence
suggests that such models are highly valuable for modeling
pathophysiological conditions to study the disease onset and
progression mechanisms, to identify pathogenic factors and
potential therapeutics in the pre-clinical and clinical level (Chen,
2016).

As discussed earlier, the advent of human organoids as
systems strikingly similar to the in vivo environment has
provided researchers with the unique opportunity to recreate
the human physiology and architecture in vitro (Kim et al.,
2020). A study that laid the foundation for the use of organoids
for biomedical applications, was the generation of cerebral
organoids in 2013. Lancaster and Knoblich used hiPSCs to

establish an organoid culture system with various discrete,
independent brain regions, including the cerebral cortex with
progenitor populations, that give rise to mature and functional
cortical neuron subtypes, recapitulating the formation of neural
tissue in human brain development stages. In addition to
this healthy brain tissue, they used patient-specific iPSCs and
developed cerebral organoids that bore clear characteristics of
the microcephaly neurodevelopmental disorder. This system
helped them to address questions about the disease in a way
that would not have been possible by growing neurons in
flat surfaces or by engineering mouse models, due to lack of
the necessary niche and interspecies differences, respectively
(Lancaster et al., 2013; Figure 5A). Since then, organoids have
played a prominent role in enhancing our understanding
of various biological phenomena, including development and
organogenesis (Karzbrun et al., 2018; Trisno et al., 2018; Vyas
et al., 2018; Rossi et al., 2019; Shi et al., 2020), infectious biology
(Forbester et al., 2015; Leslie et al., 2015; Karve et al., 2017;
Heo et al., 2018; Lamers et al., 2020), cancer (Li et al., 2018;
Nagle et al., 2018; Fusco et al., 2019; Ooft et al., 2019), and other
diseases. Among others, the recent study by Sachs et al. on long-
term expanding lung organoids clearly shows the versatility of
these experimental tissue formats in faithfully recapitulating the
adult epithelial airway structure and function from both healthy
individuals and from patients with cystic fibrosis, lung cancer,
and viral infections (Sachs et al., 2019). Finally, the valuable
contribution of organoids in disease modeling is also showcased
by the great efforts to build novel biomedical resources where
samples from minimal amounts of tissue biopsies are used to
generate patient-derived organoids, stored for future research,
known as living biobanks (Sachs et al., 2018; Yan et al., 2018;
Kim et al., 2020; Nelson et al., 2020; Simpson et al., 2020). The
potential of such biomedical resources for modeling disease and
investigating therapeutic strategies, even at the personalized level,
is nicely exemplified in a study published earlier this year that
presents methods for generating and biobanking patient-derived
glioblastoma organoids (GBOs) that recapitulate and preserve
the cellular and mutational diversity of the corresponding
glioblastomas, reflecting inter- and intra-tumoral heterogeneity,
holding great promise as a precision medicine tool for diagnosis
and treatment (Jacob et al., 2020).

In parallel, the growing body of literature over the past years
reflects the tremendous effort and progress in bioengineering
tissue equivalents that allow for interfacing with vasculature
and enable more in-depth investigation of tissue structure,
homeostasis and pathophysiology, as well as communication
between tissues and their surroundings. As discussed in the
previous sections, successful engineering of tissues in vitro
requires careful consideration of the cell sources, the type of
material and the fabrication method as well as of the integration
of the relevant biophysical and biochemical cues, all of which
highly depend on the native tissue structure and function and
on the biological question to be addressed with the model.
For example, the delineation of tissue compartments and the
regulation of the passage of ions and solutes by epithelia and
endothelia are of particular importance for the recreation of
such barrier tissues. While early strategies, relied on permeable
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FIGURE 5 | Biomimetic models of human (patho-)physiology. (A) Schematic representation of the cerebral organoid generation method (left) and immunohisto-

chemistry image of a cerebral organoid section, revealing its complex morphology with regions containing neural progenitors (SOX2, red) and neurons (TUJ1, green)

(right). Adapted from Lancaster et al. (2013). (B) Schematic illustration of the two-channel microfluidic Organ Chip device with an oxygen gradient (color scale) (left),

schematic representation of the Intestine Chip with its embedded oxygen sensing unit (middle), and microscopy images of the Intestine Chip showing the morphology

of the intestinal epithelium and endothelium morphology in the respective channels (right). Adapted from Jalili-Firoozinezhad et al. (2019). (C) Schematic illustration of

a microfluidic chip culture device for modeling the blood-retinal barrier, with integrated TEER measurement electrodes. Reproduced from Yeste et al. (2018). (D)

Schematic of the nephron convoluted proximal tubule and illustration of the bioprinting process steps, with corresponding images, in the fabrication of 3D convoluted

perfusable proximal tubules (top), confocal microscopy 3D renderings of the bioprinted convoluted renal proximal tubule (bottom). Reproduced from Homan et al.

(2016) under the Creative Commons CC BY license. (E) Images of the AngioChip scaffold (top) and schematics of the assembly of the bioreactor and of the

vascularized tissue (bottom and right). Reproduced from Zhang et al. (2016a). (F) illustration of a 3D human brain-like model for modeling HSV infection (top), Images

of the brain model showing b-III tubulin (TUJI1), and beta amyloid (Ab) immunostaining (middle), and scanning electron micrographs revealing the effects of HSV-1

infection on the brain-like tissue constructs (bottom). Adapted from Cairns et al. (2020) under the Creative Commons Attribution-Non Commercial license.

supports to separate the apical and basal compartments of the
barrier-forming monolayers (Lea, 2015; Pearce et al., 2018),
microphysiological systems and OOC approaches are taking
this concept a step further, by exploiting novel bioengineering
techniques to create compartmentalized barrier models with a
more biomimetic interface between endothelial and epithelial
tissues, combined with delivery of essential environmental cues
(Bein et al., 2018). The work of Huh et al. was among the
first attempts to this end. The researchers created a “lung-on-
a-chip” that models human lung function in both normal and
disease states, by co-culturing microvascular endothelial cells
(i.e., bottom, microvascular compartment) and alveolar epithelial
cells (i.e., top, alveolar compartment) in parallel microchannels
separated by a thin semipermeable membrane, that also enabled
the establishment of an air-liquid interface environment, where
cell culture medium was perfused via the microvascular channels
while the alveolar channel was filled with air. Cyclic stretch of the
tissue via application of vacuum to the side compartments of the
parallel channels was shown to successfully mimic the breathing
motion of the lung, while concurrent administration of the
cytokine interleukin-2 (IL-2) to the microvascular channel was
shown to compromise the barrier, reproducing the pulmonary
leakage, which is a characteristic symptom of the pulmonary

oedema (Huh et al., 2012). Versions of human gut-on-a-chip
were also developed with the same device, where the side vacuum
chambers and the application of fluid flow were exploited to
recreate the peristaltic motions, but were also shown to induce
spontaneous formation of the characteristic intestinal villus-
crypts structures (Kim and Ingber, 2013). More recently though,
this system was modified to accommodate the development
of a co-culture of mucus-producing human primary intestinal
epithelium in the same compartment with stable communities of
the human gut microbiota by applying a hypoxia gradient across
the endothelium-epithelium interface, while simultaneously
monitoring oxygen levels and intestinal barrier function (Jalili-
Firoozinezhad et al., 2019; Figure 5B). In a different approach,
Trietsch et al. developed their intestine-on-a-chip model in a
membrane-free manner, where a functional intestinal barrier is
formed in a lateral channel of a microfluidic chip, at the interface
with an ECM gel that supports the basal side of the epithelium
and facilitates access to the perfusion channel on the opposite side
of the intestinal tubules (Trietsch et al., 2017). Another way to
achieve compartmentalization and tissue-tissue interfaces within
OOC systems, bypassing the use of membranes, was proposed by
Yeste et al. who developed a microfluidic device where cells grow
in parallel compartments that are highly interconnected via a grid
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of microgrooves, facilitating heterotypic cell-cell contact, and
paracrine signaling, while integration of electrodes allows for in-
line monitoring of the cell barrier integrity in each compartment.
The device successfully supported the generation, maintenance
and monitoring of a blood-retinal-barrier model, based on
the co-culture of primary retinal endothelial cells (HREC),
a human neuroblastoma cell line (SH-SY5Y), and a human
retinal pigment epithelial cell line (ARPE-19) (Figure 5C),
highlighting the necessity of compartmentalization in enhancing
the robustness of barrier models as well as the added benefits
of integrating in-line monitoring units (Yeste et al., 2018).
OOC technology has also significantly contributed in dissecting
in vitro the mechanisms behind various (patho-)physiological
mechanisms of the brain (Haring et al., 2017). Herland et al.,
for instance, were able to study human neurovascular function
and inflammation in a 3D model of the human blood-brain
barrier (BBB) within a microfluidic chip and to reveal the distinct
contributions of astrocytes and pericytes to neuroinflammation
(Herland et al., 2016). Kilic et al. proposed a brain-on-chip
model suitable for studying the migration of human neural
progenitors in response to chemotactic cues (Kilic et al., 2016),
while Park et al., proposed a microfluidic device for the brain-like
interstitial perfusion of neurospheroids and tested the toxicity of
amyloid-β, showcasing the validity of brain-on-chips inmodeling
and studying neurodegenerative diseases as well (Park et al.,
2015).

Although OOCmodels have been shown to better capture the
in vivo situation, compared to conventional 2D culture formats,
often such models are quasi-3D, forming an intermediate stage
between 2D and 3D cell culture microenvironments rather
than truly biomimetic tissues. To overcome this limitation,
OOC technologies are now going beyond 2D, utilizing gels
and scaffolds as tissue growth templates, toward generating
3D tissue equivalents of high biomimicry (Terrell et al.,
2020), as shown recently in reports on the fabrication of 3D
convoluted, luminal tissue architectures (Massa et al., 2017;
Manousiouthakis et al., 2019; Wang X. et al., 2020). For
instance, 3D human renal proximal tubules were engineered
via combined bioprinting with 3D cell culture and OOC
principles. The tissue construct was housed in perfusable chips
and embedded within an extracellular matrix that supported
the active perfusion, growth, differentiation, and maintenance
of the proximal tubule epithelium for over two months, during
which the nephron-like tissue exhibited significantly enhanced
epithelial morphology and functional properties (e.g., brush
border, basement membrane protein deposition, basolateral
interdigitations, enhanced cell height, megalin expression, and
albumin uptake), as well as in-vivo-like response upon delivery of
nephrotoxin and cyclosporine A (Homan et al., 2016; Figure 5D).
Robust 3D vascular models that more faithfully capture the
natural milieu have also been called for interfacing with different
tissue equivalents (Morgan et al., 2013; Kolesky et al., 2016). In an
attempt to overcome the challenges in the choice of material for
vasculature engineering as well as to address the challenge of co-
cultivating parenchymal cells with vasculature in 3D, Zhang et al.
created the AngioChip. This is a stable biodegradable scaffold
that consists of a perfusable 3D, branched, luminal microchannel

network with thin, flexible but yet mechanically compliant walls,
lined by endothelial cells, and surrounded by a tunable matrix
that supports the assembly of parenchymal cells. In addition, the
walls feature nano-pores and micro-holes that were shown to
enhance permeability, to facilitate efficient molecular exchange,
intercellular crosstalk (Figure 5E), as well as extravasation of
monocytes and endothelial cells upon biomolecular stimulation,
as showcased via the successful vascularization of hepatic
and cardiac tissues. The precise placement of endothelial and
parenchymal cells, in a simple to operate format, the control
of the initial architecture of the vasculature as well as the
potential to fine-tune the vessel permeability to match the
requirements of different organ models, highlight the AngioChip
as a versatile tool for cultivating the vasculature in tissue
engineering platforms (Zhang et al., 2016a). Progress inmodeling
the human brain has also been made with the emergence
of in vitro TE technology. Researchers have long studied
the multi-layered, hierarchical brain architecture and complex
physiology, but recapitulating the entire brain in vitro still
remains a huge challenge, in part because of this complexity
but also due to the complications associated with the available
technology (Lozano et al., 2015). Novel cell sources combined
with new materials and technological platforms have yielded
new tools for building functional brain-like tissues, pushing
further the borders of our understanding of the human brain.
This is also particularly important for neurodevelopmental and
neurodegenerative studies where translation of findings to the
clinic is hindered by interspecies differences (e.g., cognition),
among other factors (Hackam and Redelmeier, 2006; Hartung,
2013). For instance, in a pioneering study Tang-Schomer et al.
developed a 3D brain-like cortical tissue construct using primary
cortical neurons in a silk fibroin/collagen gel composite scaffold
as a support for the 3D axon connections, that was able to
reproduce the compartmentalization of gray and white matter as
well as the in vivo relevant biochemical and electrophysiological
outcomes necessary for the assessment of both brain physiology
and brain disorders (Tang-Schomer et al., 2014). Optimization
of this silk-fibroin scaffolds, along with the development of a
technique to generate expandable and rapidly differentiating
human-induced neural stem cell (hiNSC) lines, has enabled
this group to further advance their approach in building 3D
brain tissue equivalents that allow for long term studies of
neural tissue in various conditions, such as neurodegeneration,
brain tumors and injury (Chwalek et al., 2015; Cairns et al.,
2016; Cantley et al., 2018; Sood et al., 2019; Rouleau et al.,
2020). A remarkable application of this system though was
reported earlier this year where the implication of herpes
simplex virus type I (HSV-1) as a causative agent of Alzheimer’s
Disease was investigated. The 3D bioengineered brain model
was able to reproduce the herpes-induced AD pathophysiology,
encompassing features of the in vivo physiological human
disease, including Aβ plaque formation, neuronal loss, reactive
gliosis, neuroinflammation, and diminished neural network
functionality, reflecting the great progress and the tremendous
potential of 3D TE approaches to address the critical need in
building robust and physiologically relevant 3D human tissues
(Cairns et al., 2020; Figure 5F).
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Drug and Treatment Development
3D biomimetic systems technology facilitates not only
elucidation of disease biology and deeper understanding of
the onset and progression mechanisms, but also identification
and screening of potential drug candidates and therapies.
Implementation of these systems in various stages of drug
discovery and development is considered as a powerful
alternative for addressing the challenges associated with the
poor predictive power of existing preclinical models that,
more often than not, is responsible for the high attrition
rates of clinical trials (Roth and Singer, 2014; Caddeo et al.,
2017; Ronaldson-Bouchard and Vunjak-Novakovic, 2018). 3D
biomimetic cultures in the format of spheroids, organoids,
hydrogels and scaffolds that more closely capture the disease
physiology have already demonstrated the validity of this
technology for drug development, screening, and toxicology
assays (Sobrino et al., 2016; Wan et al., 2016; Villasante et al.,
2017; Plummer et al., 2019; Han et al., 2020). However, OOCs
in particular have gained a lot of attention for their potential
to produce more predictive and accurate data by resolving
the discrepancies in drug safety and efficacy observed between
models currently used in preclinical and clinical stages of drug
testing and hence accelerate the translational process (Haring
et al., 2017; Low and Tagle, 2017; Ronaldson-Bouchard and
Vunjak-Novakovic, 2018). The precise control of multicellular
activities, the spatiotemporal distribution/delivery of relevant
cues and the interface between different tissue types that OOCs
offer has been exploited for the evaluation of novel anticancer
therapies (Sontheimer-Phelps et al., 2019), among others
(Ribas et al., 2016; Mittal et al., 2018). For example, Bai et al.
demonstrated that a microfluidic platform, interfacing lung
or bladder carcinoma aggregates with vessel-like structures,
can serve as an in vivo-like surrogate for anti-invasive and
anti-metastatic drug screening, revealing the role of signaling
pathways involved in the drug action mechanism (Bai et al.,
2015). More recently, a-tumor-on-a-chip platform, where the
efficiency and toxicity of gemcitabine-loaded nanoparticles on
Matrigel-embedded human colon cancer cells in contact with a
3D vessel-like colonic endothelium was successfully evaluated,
was proposed as a precision onco-nanomedicine tool (Carvalho
et al., 2019; Figure 6A). Despite the fact that oxygenation, a
highly important parameter for the cancer microenvironment,
is not taken into account in terms of monitoring and evaluation,
both studies reflect the important developments made toward
more accurate and precise screening of cancer therapeutics
utilizing OOCs.

OOC platforms are also highly relevant for testing drug
permeability and transport across the blood-brain-barrier (BBB).
This distinctive tissue structure is made up of neurons,
astrocytes, oligodendrocytes, microglia, smooth muscle cells,
brain epithelial and endothelial cells, and pericytes embedded
in the brain extra-cellular matrix (ECM), and bears the
responsibility of maintaining brain homeostasis by supporting
the neuronal activity and by tightly regulating the passage
of metabolites, drugs, and other solutes from the peripheral
blood into the central nervous system (Griep et al., 2013;
Wang et al., 2017; Vatine et al., 2019). As OOC approaches

allow for better compartmentalization and efficient assembly
of the corresponding cellular components and environmental
cues, thus more realistic reconstitution of the native tissue
(Booth and Kim, 2012; Adriani et al., 2017; Wang et al.,
2017; Campisi et al., 2018; Vatine et al., 2019), their utility in
modeling various features of the BBB and their implementation
in preclinical drug evaluation studies has gained a lot of attention
recently, particularly for testing whether a drug designed to treat
neurological diseases can actually cross the BBB to reach its target
(Ronaldson-Bouchard and Vunjak-Novakovic, 2018). This was
showcased byWang et al. who proposed the fabrication of a BBB–
on-a-chip with integrated TEER sensors for in situmonitoring of
the barrier tissue integrity (Figure 6B). Even though the authors
utilized primary astrocytes derived from rats, in a co-culture
with human iPSC-derived brain microvascular endothelial cells
(BMECs), their BBB microfluidic chip was able to generate drug
permeability data comparable with in vivo values (Wang et al.,
2017). In a different application, a compartmentalized, multilayer
OOC device was shown to successfully maintain and monitor
functional human white adipose tissue and fatty acid metabolism
while also being applicable for testing tissue responsiveness to
therapeutic compounds, useful for diabetes, and obesity studies
(Rogal et al., 2020; Figure 6C).

Ultimately, what renders 3D biomimetic tissues and
particularly OOCs even more attractive alternatives for drug
and therapy development is their ability to be linked via their
endothelium/vascular channel, in a way that mimics the drug
distribution within the body, toward multi-organ systems
for simulating pharmacokinetic and pharmacodynamic drug
responses (Prantil-Baun et al., 2018; Ronaldson-Bouchard and
Vunjak-Novakovic, 2018). This possibility has been recently
explored by various studies, where different tissues were
fluidically coupled to model the in-vivo-like organ interactions
(Zhang et al., 2009; Maschmeyer et al., 2015a,b; Tsamandouras
et al., 2017). A very recent characteristic example of such a
multi-organ system was reported earlier this year, comprising
organ-on-chip models of the gut, liver and kidney. The models
were linked by their endothelium-lined channels through a
robotic system circulating a common blood substitute that
represents the systemic circulation, stored in a fluid-mixer
reservoir that represents the arteriovenous (Figure 6D). The
systemwas then used tomodel first-pass absorption, distribution,
metabolism, excretion and toxicity of nicotine and cic-platin and
quantitatively predict pharmacodynamics, and pharmacokinetic
parameters, with results matching clinical data (Herland et al.,
2020). In the same concept, Vernetti et al. coupled human
MPS models representing the major absorption, metabolism
and clearance organs (the jejunum, liver, and kidney) along
with skeletal muscle and neurovascular models and evaluated
the organ-specific processing, pharmacokinetic, and toxicity
of terfenadine, trimethylamine (TMA)—as a potentially toxic
microbiome metabolite—and vitamin D3. Their findings were
consistent with clinical data, while they also discovered that
trimethylamine-N-oxide (TMAO) can pass through the BBB
(Vernetti et al., 2017; Figure 6E).

Without a doubt, this technology has the potential to
transform drug discovery and development. However, there
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FIGURE 6 | Novel in vitro human models for drug screening and testing applications. (A) 3D map image of the colorectal tumor-on-a-chip system features (top) and

schematic of the chip design and culture setup (bottom). Adapted from Carvalho et al. (2019) under the Creative Commons Attribution-Non Commercial license. (B)

Schematic illustration of a BBB-on-a-chip platform and assembly steps (top left), image of the assembled device (top right), cross-section of the assembled platform

(middle), and zoom-in panel illustrating the device and cell culture setup (bottom). Reproduced from Wang et al. (2017). (C) Design of the human WAT-on-a-chip

confocal image of the tissue construct generated in the device. Reproduced from Rogal et al. (2020) under the Creative Commons CC BY license. (D) Design and

photographs of a first pass multi-organ chip system (top) and diagram of the fluidic coupling of the gut, liver, and kidney chips, containing vasculature compartments,

and of the arteriovenous (AV) reservoir via an automated liquid handling instrument. Reproduced from Herland et al. (2020). (E) Schematic representation of the four

organ systems used for the functional coupling of a human microphysiology system: intestine, liver, vascularized kidney, and BBB, including the neurovascular unit.

Reproduced from Vernetti et al. (2017) under the Creative Commons Attribution International License.

are still several challenges that should be addressed before the
field realizes its tremendous potential. For example, with a few
exceptions, most scaffold/hydrogel-based 3D models and OOCs
primarily utilize cell lines, which in some cases may drift from
the normal genotypic and phenotypic profile of the tissue of
origin (Carter and Shieh, 2015a). Populating next-generation
models with more relevant cells, such as iPSCs and organoid-
derived patient specific cells can help overcome this limitation
and better capture the tissue phenotype and thus to better
mimic drug responses. This should be in line with the biological
question the model is trying to address, recapitulating the specific
features of the pathophysiology of interest. In addition, current
OOC and MPS systems are fabricated predominantly with
polydimethylsiloxane (PDMS), due to its ease-of-use, elasticity,
optical transparency, and low-cost microfabrication. But issues
related to the absorption of small hydrophobic molecules by
this material severely compromise the validity of such systems
in drug screening studies, pushing for transition to alternative,
non-absorptive materials (Campbell et al., 2020). Also, 3D
tissue equivalents and OOCs, as more sophisticated and multi-
parametric models, require close control and synchronism of
these different parameters to achieve the necessary functionality,

particularly when long-term viability is the case (Sontheimer-
Phelps et al., 2019). Moreover, in multi-organ systems, besides
in-vivo-like sequential coupling of each counterpart, scaling must
also be taken into account, to match flow volume and rate with
cultured tissue mass in order to mimic the native conditions
and to achieve the required level to support functionality
(Wikswo et al., 2013; Bhatia and Ingber, 2014; Ronaldson-
Bouchard and Vunjak-Novakovic, 2018; Ramadan and Zourob,
2020). Finally, for this technology to live up to its potential
and to be successfully implemented in the drug development
process, it is necessary to move from the proof-of-concept
laboratory models toward more widely available prototypes to
facilitate high-throughput screening and further validation that
the models effectively mimic in vivo drug responses. Since OOCs
is a multidisciplinary field, the overall progress of this technology
and its implementation in drug development, among other
applications, heavily relies on parallel advancements in the field
of cell biology, materials, microengineering, and microfluidics.
Toward this direction, the introduction of commercially available
systems is already taking place, promoting the production
of more automated, user-friendly OOCs, and will definitely
help resolve current limitations (Zhang and Radisic, 2017).
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Nevertheless, to more efficiently employ this technology, more
deep understanding of cell-material and cell-cell interactions
and functions, as well as better understanding of the effects
of biochemical and biophysical stimuli on the overall tissue
structure and function is required.

Sensing and Monitoring
As discussed during the previous sections, novel technologies
for 3D TE in vitro offer unprecedented control over various
parameters for the development and maintenance of the tissue
equivalent of interest. In addition to fine-tuning the biological
system parameters, this technology allows for the integration
of in-line sensors that report not only on system parameters
(e.g., flow rate, O2 levels, and pH), but also provide feedback
on cellular activity, thus facilitating the study of a broad range
of physiological phenomena (Bhatia and Ingber, 2014). Despite
their inherent limitations, the majority of current approaches rely
heavily on optical transducers, such as fluorescence microscopy,
which is more a qualitative assay, that requires labeling (Kim S.
et al., 2016; Sobrino et al., 2016), combined with downstream
analysis of effluents to detect changes in gene expression and
metabolite production (Curto et al., 2017; Roh et al., 2019).
The use of invasive probes and the terminal nature of these
assays, which sometimes requires harsh and lengthy protocols
for sample preparation prior to imaging and analyzing, can
be bypassed by advanced imaging techniques. For example,
Raman spectroscopy has emerged as a suitable tool for non-
invasive, in situ quality control of cells and substrates, as well as
for real-time monitoring of physiologically relevant metabolites
(Pudlas et al., 2011; Zbinden et al., 2020). Two-photon excitation
microscopy is also being employed now as an alternative to
confocal microscopy for 3D and deep tissue imaging, obviating
the need for sectioning of 3D tissue-engineered constructs that
sometimes can compromise the sample quality (Gioiella et al.,
2016; Hume et al., 2018).

Besides new imaging assays, electrical transducers have been
also shown to provide a wealth of real-time information
through non-invasive and dynamic interfacing with biological
systems (Rivnay et al., 2018). A well-established tool for rapid
monitoring of cells in vitro, especially for drug toxicology
studies, is Electrochemical Impedance Spectroscopy (EIS), with
which it is possible to obtain information about cell adhesion,
proliferation, and differentiation over time. In fact, EIS is
widely used for monitoring Transepithelial/Transendothelial
Electrical Resistance (TEER), a commonly used parameter to
quantitatively characterize the function and integrity of tissue
barriers with fast, non-invasive measurements (Benson et al.,
2013; De León et al., 2020). van der Helm et al. recently developed
an intestinal OOC with integrated electrodes that allowed
for transepithelial barrier function and tissue differentiation
monitoring via impedance spectroscopy, while combination with
electrical simulation showed that this method can be adapted
within any organ-on-chip to better monitor cell activity and
to also enable comparisons between different platforms (van
der Helm et al., 2019; Figure 7A). Integration of electrical
transducers has also been reported recently in 3D biomimetic
cultures (Pas et al., 2017; Zhang et al., 2017; Curto et al., 2018;

Jahnke et al., 2019; Li et al., 2019). Kalmykov et al., for example,
developed an “organ-on-e-chip” where they interfaced human
cardiac spheroids with 3D self-roll biosensor arrays, which
operated either as microelectrodes for EIS monitoring or as field-
effect transistors, enabling acquisition of continuous multiplex
recordings that allowed for real-time monitoring of cardiac
tissue maturation (Kalmykov et al., 2019; Figure 7B). A high-
density multi-electrode array was also proposed for real-time
and automated impedimetric monitoring of cell migration out
of human breast microtumours (Jahnke et al., 2019; Figure 7C).
Despite the great progress made, most of these models fail
to achieve intimate electrode-cell coupling which is necessary
to accurately record a signal, since they utilize electrodes that
are designed for planar culture of cells and are thus ill-
adapted for monitoring complex 3D tissues (Inal et al., 2017;
Jahnke et al., 2019). To overcome this limitation, conducting
polymer scaffolds can be used instead, as evidenced recently by
their remarkable performance as tissue building blocks (Wan
et al., 2015; Guex et al., 2017; Iandolo et al., 2020). However,
what makes these materials more attractive as TE substrates
is that in addition to more seamless integration with complex
cell cultures, they also allow for more intimate cell-electrode
coupling, necessary for accurate signal transduction, and hence
more effective monitoring of cell status and tissue formation
(Inal et al., 2017; del Agua et al., 2018; Jayaram et al., 2019).
We recently explored the potential of these materials for in vitro
TE applications and organ-on-chip platforms. In particular, we
fabricated tubular 3D macroporous electroactive scaffolds, based
on the conducting polymer poly(3,4-ethylenedioxythiophene)
doped with poly(styrene sulfonate) (PEDOT:PSS), the electrical,
mechanical and biochemical properties of which we were able
to fine-tune. We then integrated these tubular PEDOT:PSS
scaffolds into a transistor configuration (i.e., transistor in a
tube: Tubistor) and showed proof of principle for continuous
monitoring of a simple 3D co-culture of mammalian cells over
a period of 4 days. The real-time electrical readouts, cross-
validated with optical analysis, enabled us to closely monitor
cellular activity and even distinguish between cell adhesion and
barrier tissue formation in a non-destructive, label-free manner,
highlighting the added benefits of integrating in-line sensing
components within engineered tissues for building more robust
and sophisticated TE models (Pitsalidis et al., 2018; Figure 7D).

CONCLUSIONS AND OUTLOOK

The implementation of TE concepts and methods into
biomimetic tissue models, originally directed at regenerative
medicine applications, is an accelerating trend. As summarized
here, 3D in vitro models of various human tissues and organs
have been successfully developed, thanks to the synergistic
progress and advances in all disciplines that converge to give rise
to more sophisticated tissue and disease models with enhanced
structural and functional accuracy. Although many challenges
are yet to be resolved, the advent of hiPSCs and organoids
has, without a doubt, provided bioengineers with unlimited
sources of tissue-specific cells, genetic engineering of which
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FIGURE 7 | Biomimetic in vitro models of human tissues with integrated sensing and monitoring units. (A) Design and operation principles of a gut-on-chip device,

along with the equivalent electrical circuit used for impedance monitoring of the intestinal barrier and the corresponding simulations. Reproduced from van der Helm

et al. (2019) under the Creative Commons Attribution-Non Commercial License. (B) A 3D confocal microscopy image of 3D cardiac spheroid labeled with Ca2+

indicator dye (Fluo-4, green fluorescence) encapsulated by a self-roll biosensor array for electrical recordings; organ-on-e-chip (left) and 2D map of the

microelectrodes of the biosensor array (right). Reproduced from Kalmykov et al. (2019) under the Creative Commons Attribution-Non Commercial license. (C) Image

and design of a novel multi-well high-dense microelectrode array for cell migration studies (top), cell migration pattern for mitomycin C treated human breast cancer

cells on the microelectrode array (bottom left), and comparative magnification to mitomycin C untreated cells (red circles mark electrodes) (bottom right). Adapted from

Jahnke et al. (2019) under the Creative Commons Attribution International License. (D) Schematic representation of the setup of a 3D transistor in a tube (Tubistor),

based on electroactive scaffolds (left), for hosting and concurrently monitoring 3D cell cultures. Reproduced from Pitsalidis et al. (2018) under the Creative Commons

Attribution-Non Commercial license.

enables further modifications (e.g., insert/delete mutations
in healthy/diseased cells) to guide phenotypic behaviors.
This provides an excellent opportunity for transforming
drug development routes by accelerating the process, and
generating data more accurate and relevant to human systems.
In addition, the use of patient-specific cells facilitates studies
of rare diseases, as well as precision and personalized medicine
approaches for the development of drugs and therapies
optimized for specific patient biology. Smart biomaterials
have now been designed to more faithfully recapitulate
the chemical, mechanical and topographical properties of
the complex human tissues and their microenvironment.
Advanced fabrication methods have additionally enabled
arrangement of tissue counterparts and environmental cues
with unprecedented control and accuracy. These features have
combined to generate complex biological structures of high
fidelity, matching the in vivo situation. A key challenge remains
however: monitoring and characterization of such models still
relies predominantly on end-point, invasive assays, delaying
the validation of results, particularly for drug screening, and
toxicology studies. Integration of electrical components in tissue
engineering platforms can help resolve this limitation. Such
tools enable dynamic, non-invasive and continuous monitoring
of cells, offering rapid insight into different biological events

within these systems. Standardization of components such
as media formulation is a non-trivial additional challenge,
for maintaining the survival and function of multiple cell
types, which combined with spatiotemporal delivery of
tissue-specific and application-specific (i.e., homeostatic or
pathophysiological conditions) environmental cues, offer a
novel means for dynamically controlling and directing tissue
generation and maturation in vitro. Without a doubt in vitro
tissue engineered systems have shown great promise for
revolutionizing many aspects of biomedical research. As more
sophisticated and human relevant in vitro models appear in
literature, in parallel with commercialization of platforms for
hosting such models, we expect to see a paradigm shift in our
understanding of human biology as well as in disease diagnosis
and treatment.
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