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Abstract 
During last decade we have developed and applied optical 
remote sensing instrumentation for in situ remote surveillance 
and quantification of the aerofauna. The sparse structure of 
aerofauna makes optical focusing challenging, but we solved 
this issue through applying the century old Scheimpflug 
condition. With this approach we have managed to reduce 
size, cost and complexity of atmospheric lidars and 
accomplished an effective tool for ecological entomology 
capable of counting thousands of insects per hour. Because of 
the high sensitivity and resolution in time and space, we can 
retrieve target modulation signatures in the kHz range for 
target classification purposes. As opposed to the cm waves in 
entomological radar, we rely on near infrared light around 
one micron. This allow superior beam quality, negligible 
ground clutter and applications close over ground or within 
vegetation structure. Near infrared light can assess both 
molecular and microstructural properties of the target through 
differential absorption and depolarization. Here we give the 
background of entomological lidar, summarize our recent 
progress and put it in context with contemporary work. We 
outline applications, ongoing activities and state of the art. 
We discuss future prospects and challenges. 

1. Background 
Following WWII development of radar, radar ornithology1,2 
and later radar entomology3,4 emerged in the last century.  
This century entomological lidar emerged5-8 with time-of-
flight lidars at kHz rates developed in Montana. Our group in 
Lund started out using a slower atmospheric lidar at hand9-12 
in particular explorer feasibility of fluorescence lidar. We 
later also developed kHz methods13,14. As opposed to insect 
sampling with sweep nets and traps (see e.g.15) remote 
sensing has the advantages of being non-intrusive, non-
perturbing and with known biases and detection ranges and 
limits. Further, remotely sensed insects are to some extend 
classified automatically16,17, whereas analysis of caught 
insects is tedious but provide more details18,19.  Most radar 
entomology studies have targeted high migrating insects by 
vertical profiling.  The size ratio between a large aircraft and 
insects is roughly the same at the wavelength ratio between 
microwaves in radar and infrared light and as opposed to 
microwaves, laser and optics offer great beam qualities 
allowing investigations of entomological ecology close over 
ground or within forest without ground clutter. Lidar and 
photonics methods also offer assessment of molecular and 
microstructural information through absorption, fluorescence 

and depolarization processes. Applications of entomological 
lidar includes monitoring abundance and dispersal of 
agricultural and forestry pest, disease vectors for humans and 
livestock and not least assessing biodiversity of pollinators. 
We will here give an overview of the recent progress in the 
field. 
 

2. Instrumentation 
2.1 Passive lidar  

As in passive radar20, insects can be sensed optically using 
existing radiation sources such as the sun for diurnal 
species21, the moon22 or thermal infrared emission23 for 
nocturnal species. Sunlight offer a range of wavelengths from 
UV to IR and some 1kWm-2 of power. We started out 
developing the remote dark-field method21 which gives lidar 
like signals across the spectrum without need of laser 
development. This method is based on directing a telescope 
at a remote black cavity and collect the light scattered from 
airborne insects. We demonstrated powder tagging and dark-
field modulation spectroscopy24 and heading assessment by 
quadrant detection13 (corresponding to beam wobbling in 
radar). The method can also be employed at several spectral 
bands at kHz rates for determining body and wing 
melanisation25,26. For some time we attempted passive 
ranging27 but only recently provided a solution using 
quadrant detection28. 

2.2 Time-of-Flight entomological lidar  

Equivalently to radar, conventional lidar is based on 
transmission of ns long laser pulses and recording the 
backscattered intensity with fast detectors and RF electronics 
as a function of round-trip delay. Applied systems ranges 
from slow conventional multiband systems10,29,30 to fast 
single band systems8,31. 

2.3 Scheimflug lidar  
Similarly to bistatic radar, atmospheric Scheimpflug lidars 
utilise transmitted and receiver separated by a small baseline 
of roughly a meter13,32-35. The Scheimpflug principle allow 
infinite focal depth with large apertures14, therefore weak 
signals from insect scattering can be retrieved at kHz rates. 
The average emitted power can greatly exceed pulsed lidars 
despite the much smaller and inexpensive lasers. The systems 
can efficiently collect high number of observations32,34 (See. 
Fig.1). Scheimpflug lidars can be expanded to retrieve 
several spectral bands31,36,37 or polarisation modes33,35. For 
example for assessing melanin (See Fig.2). Scheimpflug lidar 
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can also retrieve fluorescence38 with applications for insect 
powder tagging10,24,39, however violet light may affect the 
insects40. 

  
Fig.1. Fraction of entomological data from a Scheimpflug lidar. The 
lidar was profiling bees over a clover field, the hive was situated 
180 m from the lidar. Bees oscillates around 200 Hz indicated by 
red color code (data from FaunaPhotonics). 

 
Fig.2. Dual band remote in insect observation using a short-wave 
infrared Scheimpflug lidar, the melanisation of body and wings can 
be derived (adapted from31). 

 
Fig.3. a) Polarimetric image of a dry ♂ Anopheles Coluzzii 
mosquito, 808 nm, 162° backscatter. b) Aspect dependent 
backscatter cross sections with- and without wings (oscillatory part). 
c) Corresponding extinction cross section, note the different scale 
(adapted from41). 

 2.4 Reference measurements  

Effort was put into quantifying and understanding optical 
backscatter- and extinction-cross sections for insects for 
comparison and feasibility of remote target classification. In 

analogy with early radar referencing42 the Montana group 
recorded polarimetric backscatter of pinned bees7. Our group 
recorded oscillatory cross sections of free flying insects43,44 
including spectral and polarisation modes feasible for lidar. 
We also applied hyper spectral imaging45, goniometry46 and 
polarisation imaging41 of pinned insects (See Fig.3). 
Referencing can also be done by releasing known insects into 
the lidar beam in field47 or sampling insect along the beam 
with a trap48.  

3. Methods, purpose and outcome. 
3.1 Organism sizing  

If the lidar beam-FoV overlap function can be determined, 
e.g., by a molecular Rayleigh echo and assumptions of 
homogeneous atmosphere32, then backscatter intensities can 
be converted into Lidar Cross Sections in mm2. Whereas 
RCS related to liquid water mass, Lidar Cross Section was 
defined as the projected area had the target been a 100% 
Lambertian reflector such as a Teflon beat. In practice insect 
reflectance in near infrared34,41, 808 nm, is in the order of 
20%, the reflectance in short wave infrared45, 1320 nm, is in 
the order of 80% whereas specular reflectance46 could reach 
5000%. Despite this, organism sizing allow estimation of the 
aerofauna biomass spectrum32 and insect and predating 
vertebrate can display a bimodal biomass spectrum34. 
Biomass spectra are popular in marine science,  

3.2 Modulation spectroscopy for target classification  

The wing beat cycle causes backscatter and extinction cross 
section to oscillate with a fundamental tone and a harmonic 
spectrum. This spectrum has proven valuable for target 
classification16,49,50 or even biodiversity assessment51. The 
methods are directly applicable for entomological lidar 
applications but the work is mainly based on so called E-traps 
somewhat simpler than lidar and often operating in extinction 
mode. The drawback is that the counts per day are much 
lower than lidar32,34,50. Much of this work involve advanced 
machine learning but even the fundamental tone can 
differentiate species, e.g.52. Some challenges are that the tone 
is temperature dependent53,  that harmonic spectrum is aspect 
dependent28,43,44 and that identification of the fundamental 
tone is difficult54. Modulation spectroscopy can be expanded 
by additional spectral and polarisation bands (See Fig.4). 

 
Fig.4. Frequency components of co- and de-polarised backscatter 
from a Drosophila Melanogaster at 808 nm. The high harmonics are 
from glossy wings and therefore co-polarised (for instrument details 
see44).  
 
3.3 Powder tagging  

Insect can be tagged optically using fluorescent powders 
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from the printing and advertising community, and several 
colours can be used simultaneously.  This is referred to as 
mark-without-recapture studies and yield the greatest 
certainty about target identity. Social insects such as bees can 
be auto-tagged by installing a tray in the hive exit. Powdered 
individuals can be detected remotely either by sunlight24 or 
violet lasers10,29,38. Applications of tagging include landscape 
dispersal studies, population size estimates and verifications 
of classification, e.g., by modulation spectroscopy. 
Corresponding tagging in radar entomology is accomplished 
by harmonic radar by attaching electrical diodes to the 
insects55.  

3.4 Heading assessment  

Heading assessment is important for understanding dispersal 
and migration properties, not least from epidemiological 
aspects of economic and medical entomology. It can be 
accomplished in radar by polarisation anisotropy56, beam 
wobbling or tracking57. In optics heading can be assessed by 
quadrant detectors13,26,58, heading could also be inferred by 
transit times33 or even and odd harmonics43 however specular 
contributions from wings deviates from this model28. 

3.5 Tracking individuals  

Reported entomological lidar studies typically report single 
timings and positions of many individuals, whereas tracking 
approaches report many timings and positions of a single 
individual. Tracking radar ornithology is widespread57 
whereas report from radar entomology are limited55. In optics 
efficient tracking can be accomplished by static passive 
systems23,59, although active lock-in servo systems have been 
reported60. 

4. Doppler assessment of movements  

Movements of animals and their bodypart may yield small 
shift in backscatter photon energy, this have been 
demonstrated with weather radars61 and micro Doppler radar 
technology62. The reports on applications of widespread 
Doppler lidars are limited63. 

4. Conclusion, challenges and outlook 
We have revised the development of entomological lidar 
instrumentation and compared it to radar. We have 
demonstrated aspects of modulation signatures, dual band 
and polarimetric insect scattering. We have discussed various 
types of studies and outcome. A current challenge is that 
there are no table values for scatter cross sections of the 
millions of insect species. Entomological lidar scientists 
should be encouraged to calibrate and standardize cross 
sections for comparison and not report arbitrary units. Future 
work could benefit from improved reference measurement, 
and linking lidar recording both to modulation spectroscopy50 
and museum 3D insect libraries64.  
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