
Advances in Functional Decomposition:

Theory and Applications

ANDRÉS MARTINELLI

Doctoral Dissertation

Department of Electronic, Computer, and Software Systems
School of Information and Communication Technology

Royal Institute of Technology (KTH)

Stockholm, Sweden 2006

TRITA-ICT/ECS AVH 06:06
ISSN 1653-6363
ISRN KTH/ICT/ECS AVH-06/06--SE

KTH-ICT-ECS
SE-164 40 Stockholm

SWEDEN

Akademisk avhandling som med tillst̊and av Kungl Tekniska högskolan fram-
lägges till offentlig granskning för avläggande av doktorsexamen torsdagen
den 12 oktober 2006 kl 9.00 i Sal E, KTH-Forum, plan 5, Isafjordsgatan 39,
Kista, Stockholm.

c© Andrés Martinelli, 2006

iii

Abstract

Functional decomposition aims at finding efficient representations for Boolean
functions. It is used in many applications, including multi-level logic synthesis,
formal verification, and testing.

This dissertation presents novel heuristic algorithms for functional decomposi-
tion. These algorithms take advantage of suitable representations of the Boolean
functions in order to be efficient.

The first two algorithms compute simple-disjoint and disjoint-support decom-
positions. They are based on representing the target function by a Reduced Or-
dered Binary Decision Diagram (BDD). Unlike other BDD-based algorithms, the
presented ones can deal with larger target functions and produce more decomposi-
tions without requiring expensive manipulations of the representation, particularly
BDD reordering.

The third algorithm also finds disjoint-support decompositions, but it is based
on a technique which integrates circuit graph analysis and BDD-based decomposi-
tion. The combination of the two approaches results in an algorithm which is more
robust than a purely BDD-based one, and that improves both the quality of the
results and the running time.

The fourth algorithm uses circuit graph analysis to obtain non-disjoint decom-
positions. We show that the problem of computing non-disjoint decompositions can
be reduced to the problem of computing multiple-vertex dominators. We also prove
that multiple-vertex dominators can be found in polynomial time. This result is
important because there is no known polynomial time algorithm for computing all
non-disjoint decompositions of a Boolean function.

The fifth algorithm provides an efficient means to decompose a function at
the circuit graph level, by using information derived from a BDD representation.
This is done without the expensive circuit re-synthesis normally associated with
BDD-based decomposition approaches.

Finally we present two publications that resulted from the many detours we
have taken along the winding path of our research.

Contents

Contents iv

List of Figures vii

List of Tables ix

Acknowledgments xi

1 Introduction 1

1.1 Context and Motivation . 3

2 Background 11

2.1 Basic Notation . 11

2.2 Sets, Relations, and Functions 11

2.3 Decision Diagrams . 13

3 Previous work 19

3.1 Functional Decomposition . 19

3.2 Functional Decomposition Algorithms 22

3.3 Logic Synthesis . 24

4 Contributions in this Dissertation 29

4.1 BDD Based Disjoint-Support Boolean Decomposition 31

4.2 Hybrid Disjoint-Support Decomposition 43

4.3 Circuit Based Non-Disjoint Decomposition 47

4.4 Efficient Circuit Re-Synthesis 52

4.5 On the Relation of Bound Sets and Best Orderings 59

4.6 From Nature to Electronics: Kauffman Networks 63

iv

v

4.7 Conclusion and Open Problems 66

5 Complete List of Publications 67

Papers 71

A A BDD-Based Fast Heuristic Algorithm for Disjoint De-
composition 73

A.1 Introduction . 75

A.2 Previous work . 76

A.3 New heuristic algorithm . 78

A.4 Experimental results . 83

A.5 Conclusion . 86

B Roth-Karp Decomposition of Large Boolean Functions with
Application to Logic Design 87

B.1 Introduction . 89

B.2 Previous work . 91

B.3 Generalized cut algorithm . 93

B.4 Experimental results . 95

B.5 Conclusions . 97

C Disjoint-Support Boolean Decomposition Combining Func-
tional and Structural Methods 99

C.1 Introduction . 101

C.2 Previous work . 103

C.3 Preliminaries . 104

C.4 Circuit-based proper cut decomposition 106

C.5 BDD-based decomposition . 107

C.6 Experimental results . 108

C.7 Conclusion . 110

D On the Relation Between Non-Disjoint Decomposition and
Multiple-Vertex Dominators 113

D.1 Introduction . 115

D.2 Previous work . 116

D.3 Relation between non-disjoint decomposition and multiple-
vertex dominators . 118

vi CONTENTS

D.4 Computing all multiple-vertex dominators of a fixed size in
polynomial time . 119

D.5 Experimental results . 120
D.6 Conclusion . 122

E Bound Set Selection and Circuit Re-Synthesis for Area/
Delay Driven Decomposition 123
E.1 Introduction . 125
E.2 Bound Set Selection . 126
E.3 Transformation Algorithm . 127
E.4 Conclusion and Future Work 129

F Bound-Set Preserving ROBDD Variable Orderings May
Not Be Optimum 131
F.1 Introduction . 133
F.2 Counterexample . 134
F.3 Conclusion . 136

G Kauffman Networks: Analysis and Applications 139
G.1 Introduction . 141
G.2 Kauffman Networks . 143
G.3 Redundancy Removal . 146
G.4 Partitioning . 149
G.5 Computation of Attractors 150
G.6 Simulation Results . 151
G.7 Applications . 153
G.8 Conclusion and Future Work 156

Bibliography 159

Index 175

List of Figures

1.1 Major synthesis steps in the design of digital integrated circuits. 8

2.1 Example BDDs for the same Boolean function. 15

2.2 Example MDDs for the same function. 17

3.1 Simple disjoint decomposition. 19

3.2 Disjoint-support decomposition. 21

3.3 Decomposition chart for an example Boolean function. 22

4.1 Cutting a BDD. 32

4.2 Abstract view of a BDD slice. 34

4.3 Slicing a BDD. 35

4.4 Disjoint-Support Slicing. 37

4.5 BDDs for function a(b+c+d+e)+ābcde for two different variable
orderings. 38

4.6 Pseudo code of the Kernel algorithm. 41

4.7 Calculating the sub-function g and mappings σ1 and σ2. 41

4.8 Calculating the MDD for function g from the MDDs of g1 and g2. 42

4.9 Proper cut points. 45

4.10 Pseudo-code of the algorithm ProperCut. 46

4.11 Nodes {vg1 , vg2} are a common multiple vertex dominator for the
set of inputs {x1, x2, x3} . 48

4.12 Non-disjoint support decomposition of the function represented
in Figure 4.11 . 49

4.13 Binary decision diagrams representing the function f = (x′

0+x′

1)(x
′

2x
′

3)+

x2(x3(x
′

0 ⊕ x1) + x′

4) + x0x1x
′

4 and an example decomposition. The

bound set is {x1, x2, x3}, and the free set {x3, x4}. 54

4.14 Binary encoding of function g. 57

vii

viii List of Figures

4.15 The structure of Gf for any of the best variable orderings. 61
4.16 Solid and dotted arrows show solved and open problems, respec-

tively. 65

A.1 Example of a decomposition tree. 80
A.2 Pseudo code of the IntervalCut procedure. 82

B.1 Pseudo code of the GeneralizedIntervalCut procedure. 95

C.1 Pseudo-code of the algorithm ProperCut. 107
C.2 Pseudo-code of the GeneralizedIntervalCut algorithm. 108
C.3 Runtime comparison for the combined versus BDD-based ap-

proaches. 109

F.1 Two cases of ROBDDs for g with the smallest number of nodes
labeled by h1, h2, h4. 135

F.2 ROBDD for different orderings. 137

G.1 Example of a Kauffman network. The state of a vertex vi at
time t + 1 is given by σvi

(t + 1) = fvi
(σvl

(t), σvr (t)), where vl

and vr are the predecessors of vi, and fvi
is the Boolean function

associated to vi. 144
G.2 The algorithm for finding redundant vertices in Kauffman networks.146
G.3 Reduced network GR for the Kauffman network in Figure G.1. . 147
G.4 State transition graph of the Kauffman network in Figure G.3.

Each state is a 5-tuple (σ(v1)σ(v2)σ(v5)σ(v7)σ(v9)). 149
G.5 Example of a network implementing the 2-input AND. 154
G.6 (a) Reduced network for the Kauffman network in Figure G.5.

(b) Its state transition graph. Each state is a pair (σ(v4)σ(v5)).
There are two attractors: A1 = {01, 10} and A2 = {11}. 154

G.7 An alternative reduced network for the 2-input AND. 155
G.8 (a) Reduced network for the Kauffman network in Figure G.5,

after three mutation described in Section G.7 has been applied.
(b) Its state transition graph. Each state is a pair (σ(v3)σ(v5)).
There are two attractors: A1 = {01, 10} and A2 = {00, 11}. . . . 155

List of Tables

A.1 Experimental results; ”−” indicates that information for the
benchmark is not provided; ”>” indicates that information is
only provided for one of the outputs. 84

B.1 Experimental results; time is reported in seconds and includes
ROBDD building and minimization times. The case when k = 1
represents classical (Boolean) bound sets, as defined in Section B.1. 96

C.1 Experimental results. Notice that ‘proper cuts’ and disjoint-
support case ‘k=1’ represent different simple disjoint decompo-
sitions, found in the first and the second phase respectively, and
should be counted separately. 111

D.1 Benchmark results. 121

G.1 Simulation results. Average values for 1000 networks. ”∗” indi-
cates that the average is computed only for successfully termi-
nated cases. 152

ix

Acknowledgments

Thanks to all my colleagues at the Department of Electronic, Computer
and Software systems at KTH, for so many interesting discussions and re-
freshing cups of tea. Thanks to Lena Beronius, for all her patience and her
help in making the paperwork look human. Thanks to my first supervisor,
Mads Dam, for his generosity. Thanks to Babak Sadighi, from the Swedish
Institute of Computer Science, for always believing in me.

Thanks to my dearest old friends Pablo Giambiagi, Lars-Åke Fredlund
and Elaine Vieira. I would not have survived this journey without them.

My deepest, and warmest thanks to my four mothers: Patricia Mac
Elroy, Marina Villegas, Rosita Wachenchauzer, and Elena Dubrova. Patricia
is my mum, and I am the person I am today because of her. Marina is my
scientific mother; she showed me early in life that pursuing a scientific career
was certainly a wonderful prospect. Rosita is my computer science mother,
who introduced me to the delicious intricacies of theoretical computing.
Elena is my supervisor, and I reached this point because of her patience,
support, encouragement and good will. This thesis is dedicated to them.

xi

Chapter 1

Introduction

This dissertation is a collection of papers I have published during my work
as a PhD student at KTH. All, except the last one, are concerned with the
manipulation of Boolean functions typically used to model problems at the
logic synthesis step of the integrated circuit design flow. The last one is a
peep into the future, as it proposes an idea that will surely put to the test
our current conceptions and assumptions about computing devices.

From a “historical” perspective, many of the ideas presented in this dis-
sertation were born “on the move”, while I was traveling with other members
of my research group. The idea for Paper C came to our minds while travel-
ing by boat to Grinda island in Stockholm’s archipelago. Summer is always
a good time in Sweden to take the whole group to a more inspiring envi-
ronment for a group meeting. We were so absorbed into the discussion that
we missed the boat stop at Grinda, and had to get off on the next stop,
Göllna island; which turned out to be even better for a day’s trip. This
paper, and the algorithm presented therein, are known within our group by
the nickname Grinda.

Another idea which was born “on the fly” was the one that resulted in
Paper G. We were returning from the DATE 2005 conference in Munich.
Inspired by the presentations on emergent technologies, we realized that in
Kauffman networks we had a starting point for creating a computational de-
vice based on the gene regulatory networks of living cells. Until that moment
we had only been looking into the subject from a biologist’s perspective, and
trying to help with the simulation of Kauffman networks of large size.

The idea that has traveled with us the longest is the one presented in

1

2 CHAPTER 1. INTRODUCTION

Paper F. About four years ago, we found a mistake in a proof of a statement
related to best orderings for a Binary Decision Diagram. Since then we
struggled to find an alternative proof. This topic, although related, was
not the main line of our work, so we mostly discussed it during conference
trips, over a beer, and on bowling or billiard sessions which we often did
together. Maxim Teslenko looked devastated the morning he showed up
with a counter-example overthrowing this hypothesis that was believed to
be true in the CAD community for over fifteen years.

This is not to say that all these ideas came to us easily, without hard
work. They would not have come unless we had done a lot of reading
and processing of piles of existing literature, nor would they have come if
there had not been an excellent communication and mutual understanding
among us as members of a research group. The ideas were born in a kind
of environment that encouraged, and I would dare say was fundamental, for
productive research work.

Now that this dissertation brings a certain kind of closure to my life, a
sensation of a circle completed, I only hope to be able to keep sharing the
kind of experiences that brought me to this point. And may good research
and generous colleagues be a constant in my future life.

1.1. CONTEXT AND MOTIVATION 3

1.1 Context and Motivation

This dissertation revolves around the concept of a discrete function, partic-
ularly what is known as a Boolean function. It focuses on the problem of
breaking apart such a function as a composition of hopefully simpler func-
tions.

Functional Decomposition

What do we mean by functional decomposition?

In a general sense, functional decomposition refers to the various ways in
which a function can be defined in terms of building blocks. This is different
from the well known tabular definitions, like the truth table or the Karnaugh
map depicted below.

a b f(a, b)

0 0 0
0 1 0
1 0 1
1 1 0

(a) Truth table

f(a,b):

0 0

1 0a

b

(b) Karnaugh map

These are definitions of a function “by extension”. As such, they suffer from
the most basic problem when dealing with discrete functions: they are very
large. These representations explicitly assign a particular output value to
each of the possible combinations of input values. When we consider that
a given Boolean function of n variables accepts 2n different combinations of
input values, we start realizing the problem.

It is known, however, that a certain set of basic functions can be used
in a “compositional” way to build any other possible (and more complex)
function 1.

1This is known since Boole’s ground breaking “Laws of thought” [27], published in
1858.

4 CHAPTER 1. INTRODUCTION

Let us see a common set of basic functions or operators that can represent
any complex Boolean function.

1. The identity function.

a f(a) = a

0 0
1 1

2. The negation, or “not” function
(noted as a bar).

a f(a) = ā

0 1
1 0

3. The conjunction, or “and” func-
tion (noted as a dot).

a b f(a, b) = a · b
0 0 0
0 1 0
1 0 0
1 1 1

In terms of these simple elements, the function described before in our
truth table example can be represented as

f(a, b) = a · b̄.

This is a mathematical “composition” of some basic operators, something
that can be more clearly seen if we change the shorthand algebraic notation
to a more verbose functional style,

f(a, b) = and(a,not(b)).

We have actually performed a “decomposition” of a function into simpler
components: “and”, “not”, and single variables a and b.

We can use other sets of “operators”. For example,

1.1. CONTEXT AND MOTIVATION 5

1. The identity function.

a f(a) = a

0 0
1 1

2. The negation, or “not” function.

a f(a) = ā

0 1
1 0

3. The disjunction, or “or” function
(noted as +).

a b f(a, b) = a + b

0 0 0
0 1 1
1 0 1
1 1 1

In this case, our example function will be represented as the following
“composition” of the single variables a and b, with the “or” and “not”
operators:

f(a, b) = not(or(not(a), b)).

Or, in shorthand algebraic notation:

f(a, b) = ā + b.

Note that these are two different representations of the same Boolean func-
tion.

Any given function can be decomposed in many ways2, depending on
how we choose the basic building blocks. Even for the same building blocks
we may have different ways to express a function. For example, for the first
set of operators:

f(a, b) = a · b̄ = a · ¯̄̄b = a · a · b̄ = · · · .

Within the specific context of this dissertation we will call “decompo-
sition” or “functional decomposition” to that kind of decomposition which
expresses a function with respect to certain building blocks, but we will not

2Actually in an infinite number of ways.

6 CHAPTER 1. INTRODUCTION

make any particular assumptions on the complexity or variety of our build-
ing blocks. For example, a four variable function f may be decomposed
as

f(w, x, y, z) = h(w, g(x, y, z))

or

f(w, x, y, z) = h(g1(w, x), g2(y, z))

or

f(w, x, y, z) = h(g1(w, x, y), g2(x, y, z))

for certain functions h, g, g1 and g2 of arbitrary complexity.

We will categorize our decompositions into different classes depending
on the depth of the nesting in the resulting formula (“two level” or “multi-
level”), the sharing of variables among the different support sets (“disjoint”
or “non-disjoint”), the means by which they were obtained (“Algebraic”
or “Boolean”), or others. The first two decompositions in our example
above are what we call “disjoint” decompositions, while the third one is
what we call a “non-disjoint” decomposition. Each of the specific classes of
decomposition we target in our work will be introduced later on, when we
review the contributions of this dissertation.

Whichever the application domain is, the cost of using algorithms that
in some way manipulate or depend on discrete functions seriously depends
on the “complexity” of those functions. Decomposition techniques are rec-
ognized to reduce such complexity, even though the exact meaning of a
“complex” function varies along the different domains of application. It is
not the aim of this dissertation to discuss the suitability of decomposition in
this respect, but rather to address the practical issues involved in producing
such decompositions for logic synthesis applications.

Finding different decompositions for a given function is known to be a
hard problem. Hard in the sense that we will always encounter a particular
function whose analysis will exceed our time or space constraints. Finding
all useful decompositions is, in most cases, unfeasible for large functions, so
different approaches will each produce only a subset of decompositions in a
reasonable time or within a reasonable space. It is this difficulty that calls
for a battery of new and improved heuristics and algorithms to tackle the
problem of decomposition in the most efficient way.

1.1. CONTEXT AND MOTIVATION 7

Logic Synthesis

Logic synthesis is a step in the computer-aided design (CAD) flow of inte-
grated circuits. It plays a significant role in determining the overall circuit
quality. In this section we establish a context for this problem, and briefly
review previous synthesis efforts.

Very Large Scale Integration (VLSI) technology has been the key enabler
for implementing modern digital systems. Today’s microprocessors, memo-
ries, and application-specific integrated circuits (ASICs) are the beneficiaries
of a steady doubling, over the last thirty years, of transistor counts every 18
months (known as Moore’s law). This unprecedented increase in integration
levels has led to dramatic reductions in production costs and significant in-
creases in performance and functionality. The design of such highly complex
systems was also critically dependent on the use of CAD tools in all steps of
the design process: synthesis, optimization, analysis, and verification. This
dissertation addresses one of the synthesis steps in this automatic design
flow, namely the creation of a low-level structural description of a design
from a more abstract form. The major synthesis steps in this design flow
are depicted in Figure 1.1.

The starting point of design synthesis is typically a textual description of
the desired functional behavior, written in an appropriate hardware descrip-
tion language (HDL). At this level, the design is specified in terms of abstract
data manipulation operations which are organized into larger blocks using
control constructs. High-level synthesis transforms such a description into
an appropriate structural representation at the register-transfer level (RTL).
Typical RTL components include data storage elements (registers, memo-
ries, etc.), functional modules (adders, shifters, etc.), and data steering logic
(buses, multiplexers, etc.). The next major synthesis step creates multi-level
logic gate realizations for each of the combinational (i.e. memory-less) parts
of the RTL description.

Such multi-level logic synthesis is the primary application area of this
dissertation. The primitive building blocks used in such synthesis are typ-
ically 3- to 4-input single-output cells from a precharacterized technology
library. The final synthesis step generates a complete layout of the design
by placing and routing its gate-level implementation, and by synthesizing a
suitable power/ground distribution grid and a clock tree. Each of the above
synthesis steps (high-level, logic, and physical) involves a multiple-objective
optimization that seeks an appropriate trade-off among the design’s area,

8 CHAPTER 1. INTRODUCTION

System Level

Register Transfer Level

Gate Level

Logic Synthesis

Transistor Level

Layout Level

Mask Level

High level specification language

(VHDL, Verilog, SystemC)

Figure 1.1: Major synthesis steps in the design of digital integrated circuits.

delay, testability, and more recently, power consumption. Area minimiza-
tion leads to increased chip yields, and hence lower costs, as smaller circuits
can be manufactured more reliably, and are easier to fit on a chip; smaller
circuits also often have decreased delay. Delay minimization creates faster
circuits which are essential in high-performance computing applications. Im-
proving the testability properties of a circuit can lead to higher reliability
and reduced testing costs. Finally, minimizing power consumption has be-
come crucial with the proliferation of hand-held and portable computing
devices, and is becoming a major issue in high-performance designs as well.
These design objectives interact in complex ways. Synthesizing a circuit
that optimizes across a set of these objectives is a difficult task due to the

1.1. CONTEXT AND MOTIVATION 9

tremendously large space of potential solutions. Finding a solution in this
space that meets the specified objectives may, therefore, be computationally
expensive, if not impossible. In the face of such complexity, most synthesis
approaches resort to a serialization of the design creation process by ap-
proximating, or entirely ignoring, some of the contributing components of
the various optimization objectives. For example, in physical synthesis, lay-
out generation is serialized into the steps of placement, global routing, and
detailed routing. Placement is done by making certain assumptions about
the routing requirements and the resulting placement solution becomes a
constraint for the subsequent routing optimization. In most cases, this is an
acceptable strategy that yields good layouts. In some cases, however, the
placement constraints preclude the successful routing of the design or lead
to routing solutions that do not meet the delay objectives. In such cases,
it is necessary to iterate the placement/routing steps until an acceptable
solution meeting all objectives is found. This same serialization paradigm is
currently the predominant way for dealing with the complexity of multi-level
logic synthesis. Specifically, the synthesis process is split into two phases:
a technology-independent global restructuring of the RTL logical specifica-
tions followed by a technology mapping of the resulting structure to a spec-
ified cell library. The technology-independent optimizations work on logic
representations that do not directly model, and hence are unconstrained by,
the particular primitive building blocks in this library. The technology map-
ping phase, on the other hand, is constrained by the structure produced in
the technology-independent phase and can only achieve local optimizations
as it makes choices to produce the gate-level implementation. Iteration
between these two phases may, therefore, be necessary to satisfy all opti-
mization objectives, especially delay. There are two fundamental concepts
influencing research in multi-level synthesis, as well as synthesis in general:
derivation of flexibility in the implementation of a design, and exploiting this
flexibility when optimizing the implementation. One source of flexibility is
the incomplete specification of a design, or the parts within it. Thus, the
implementation changes remain consistent with the specification. The other
source of flexibility is invariant transformations which leave the behavior
of the actual implementation unchanged. Most research has been done re-
garding the second source of flexibility as it perceived to be a more difficult
problem and to have a more significant impact on the design quality.

Chapter 2

Background

This chapter presents the general mathematical background needed for this
dissertation. Background material that is specific to a particular chapter is
introduced in the corresponding chapter.

2.1 Basic Notation

We let M = {0, 1, . . . ,m − 1} be an arbitrary finite set of values, and a
set of Boolean values is denoted by B = {0, 1}. We use early lower-case
letters a, b, c, a1, a2, etc. to denote elements over a finite set, and lower-case
letters f, g, h, g1, g2, etc to denote functions. We use x1, x2, . . . , xn to denote
variables that functions may depend on. We use capital letters A,B,C, etc
for vectors or sets, and usually denote the elements of the set by indexed
lower-case letters. For example, the elements of a set A are denoted as a1,
a2, etc.

2.2 Sets, Relations, and Functions

There are many excellent books providing comprehensive coverage of set
theory. Among those are two classic works by Fraenkel [71] and Halmos [79];
they are suggested for further reading, as this section provides only the
minimum notation and definitions needed to motivate further concepts.

11

12 CHAPTER 2. BACKGROUND

Sets

A set is a collection of objects called elements, or members. If a is a member
of set A then we write a ∈ A; similarly subset membership is denoted with
A ⊆ B, whenever for every element in x ∈ A we have also x ∈ B. If A is a
proper subset (or strict subset) of B, i.e. A ⊆ B and A 6= B, we denote it
by A ⊂ B. The number of elements in set A will be denoted by |A|.

A partition P of a given set S is a set P = {S0, . . . , Sn−1} such that
⋃n−1

i=0 Si = S and ∀i, j, i 6= j, Si ∩ Sj = ∅.

Relations

Let A and B be sets. A binary relation R between A and B is a subset
of the Cartesian product A × B. We use the notation aRb to denote that
(a, b) ∈ R.

Binary relations represent relationships between the elements of two sets.
A more general type of relation is the n-ary relation, which expresses rela-
tionships among elements of more than two sets. However, this dissertation
uses only binary relations, and therefore we do not introduce n-ary relations.
In the following, we use the term relation to mean binary relation.

Relations from a set A to itself are of special interest. A relation on the
set A is a relation from A to A, i.e. a subset of A×A.

Let R be a relation on A and let P be a property of binary relations (such
as reflexivity, symmetry, or transitivity). The closure of R with respect to
P is the smallest relation containing R that has property P .

A relation on a set A is called an equivalence relation if it is reflexive,
symmetric, and transitive. Let R be an equivalence relation on A. The set
of all elements b of A such that bRa for an element a ∈ A is called the
equivalence class of a. The equivalence classes of R form a partition of A.

Functions

A function f : A → B from A to B is a relation, which has the property
that every element a ∈ A is the first element of exactly one ordered pair
(a, b) of the relation. So, a function f : A → B assigns to each element
a ∈ A a unique element b = f(a) in B, called the image of a. A is called
the domain of f and B is called the co-domain of f . The range of f is the
set of all images of elements of A.

2.3. DECISION DIAGRAMS 13

A function f : A → B can be specified by using a rule a 7→ f(a),
assigning to each element a ∈ A, its image f(a) in B.

The composition of two functions f : A → B and g : C → D, where
D ⊆ A is denoted by g ◦ f , where (g ◦ f)(x) = f(g(x)).

A function f : A → B is called injective when different elements of A

always have different images or, in other words, if and only if a 6= b implies
that f(a) 6= f(b).

A function f : A → B is called surjective when the range is the whole
co-domain B or, in other words, if and only if for every element b ∈ B there
is an element a ∈ A with f(a) = b.

A function f : A → B is called bijective when there is a one to one
correspondence between elements of A and B or, more specifically, if and
only if it is both injective and surjective.

Two functions f : A → B1 and g : A → B2 are isomorphic if, and only
if, there exists a bijection φ : B2 → B1 such that f(X) = φ(g(X)).

A surjective function g : A → B2, B2 ⊆ B1, is said to be a projection
of f : A → B1 if, and only if, for all x, y ∈ A, g(x) 6= g(y) ⇒ f(x) 6= f(y).
Alternatively, g is a projection of f if, and only if, there exists a surjective
function σ : B1 → B2, such that g = f ◦ σ.

Functions can be used to model set membership. For a subset B of set
A such a function is defined as a mapping χ : A→ {0, 1} such that χ(a) = 1
if a ∈ B, and χ(a) = 0 otherwise. We refer to this type of function as the
characteristic function of the corresponding set.

In a similar manner, functions can be used to model partitions of a
set. For a partition P = {S0, . . . , Sn−1} of a set A (see Section 2.2), such a
function is defined as a mapping χ : A→ {0, . . . , n−1} such that χ(a) = i if,
and only if, a ∈ Si. We also refer to this type of function as the characteristic
function of the corresponding set, without risk of confusion.

Observe that for a partition P = {S0, . . . , Sn−1}, every characteristic
function χ induces an equivalence relation ≡χ defined as s ≡χ s′ if, and only
if, χ(s) = χ(s′). The sets S0, . . . , Sn−1 represent all the equivalence classes
of ≡χ.

2.3 Decision Diagrams

This section gives an introduction to Binary and Multi-Valued Decision
Diagrams.

14 CHAPTER 2. BACKGROUND

Binary Decision Diagrams

Binary Decision Diagrams (BDDs) are rooted, directed acyclic graphs. They
were originally proposed by Lee [101] and Akers [2], but were later popular-
ized by Bryant [36], who refined the data structure and presented a number
of algorithms for their efficient manipulation. A BDD is associated with a
finite set of Boolean variables and represents a Boolean function over these
variables. We denote the BDD that represents a function f as F .

The vertices of a BDD are usually referred to as nodes. A node v is
either non-terminal , in which case it is labeled with a Boolean variable
var(v) ∈ {x1, . . . , xn}, or terminal , in which case it is labeled with either
0 or 1. Each non-terminal node v has exactly two children, then(v) and
else(v). A terminal node has no children. The value of the Boolean function
f , represented by BDD F , for a given valuation of its Boolean variables
can be determined by tracing a path from its root node to one of the two
terminal nodes. At each node v, the choice between then(v) and else(v) is
determined by the value of var(v): if var(v) = 1, then(v) is taken (denoted
graphically as a solid edge in the graph), if var(v) = 0, else(v) is taken
(denoted graphically as a dashed edge in the graph). Every BDD node v

corresponds to some Boolean function fv . The terminal nodes correspond
to the trivial constant functions f0 = 0, f1 = 1. For a function f , variable
xi, and Boolean value b, the cofactor f |xi=b is found by substituting the
value b for variable xi:

f |xi=b = f(x1, . . . , xi−1, b, xi+1, . . . , xn).

An important property of BDDs is that the children of a non-terminal node
v correspond to cofactors of function fv . That is, for every non-terminal
node v, fthen(v) = fv|var(v)=1 , and felse(v) = fv|var(v)=0. We will also refer
to the cofactor of a BDD node v, with the understanding that we mean the
BDD node representing the cofactor of the function represented by node v.

A BDD is said to be ordered (OBDD) if there is a total ordering of
the variables such that every path through the BDD visits nodes according
to the ordering. Let index(x) ∈ {1, . . . , n + 1}, where x ∈ {x1, . . . , xn}
represent such a total ordering. Then for every child v′ of a non-terminal
node v, either v′ is a terminal node or

index(var(v)) < index(var(v′)).

Notice that when we specify a variable ordering 〈x0, x1, . . . , xn−1〉, we im-
plicitly define index(v) = i, if and only if var(v) = xi.

2.3. DECISION DIAGRAMS 15

When referring to the OBDD representing the function f as F , the vari-
able associated with the top node v of F is represented also as topVar(F)
(i.e. topVar(F) = var(v)).

A reduced OBDD (ROBDD) is one which contains no redundant nodes,
i.e. a non-terminal node labeled with the same variable and with identical
children as some other non-terminal node, or a terminal node labeled with
the same value as some other terminal node, or non-terminal nodes having
two identical children.

Any OBDD can be reduced to an ROBDD by repeatedly eliminating,
in a bottom-up fashion, any instances of duplicate and redundant nodes. If
two nodes are duplicates, one of them is removed and all of its incoming
pointers are redirected to its duplicate. If a node is redundant, it is removed
and all incoming pointers are redirected to its unique child.

6
x

5
x

4
x

4
x4

x

3
x

3
x

3
x

2
x

1
x

1
x

2
x

1
x

0 1 0 1 1

(a) BDD

1
x

2
x

3
x

4
x

5
x

6
x

4
x

3
x

2
x

2
x

1
x

0 1 0 1 1

(b) OBDD

1
x

2
x

3
x

4
x

5
x

6
x

4
x

3
x

0 1

(c) ROBDD

Figure 2.1: Example BDDs for the same Boolean function.

Figure 2.1 shows three equivalent data structures, a BDD, an OBDD,
and an ROBDD, each representing the same Boolean function, f . Tracing
paths from the root node to the terminal nodes of the data structures, we
can see, for example, that f(0, 0, 1, 0, 0, 1) = 1 and f(0, 1, 0, 1, 1, 1) = 0. The
most commonly used of these three variants is the ROBDD and this will
also be the case in this thesis. For simplicity, and by convention, from this
point on we will refer to ROBDDs simply as BDDs.

It is important to note that the reduction rules for BDDs described in the
previous paragraphs have no effect on the function being represented. They

16 CHAPTER 2. BACKGROUND

do, however, typically result in a significant decrease in the number of BDD
nodes. More importantly still, as shown by Bryant [36], for a fixed ordering
of the Boolean variables, BDDs are a canonical representation. This means
that there is a one-to-one correspondence between BDDs and the Boolean
functions they represent.

The canonical nature of BDDs has important implications for efficiency.
For example, it makes checking whether or not two BDDs represent the same
function very easy. This is an important operation in many situations, such
as the implementation of iterative fixed-point computations. In practice,
these reductions are taken one step further. Many BDD packages (e.g.
CUDD [144]) will actually store all BDDs in a single, multi-rooted graph
structure, known as the unique-table, where no two nodes are duplicated.
This means that comparing two BDDs for equality is as simple as checking
whether they are stored in the same place in memory.

It is also important to note that the choice of an ordering for the Boolean
variables of a BDD can have a tremendous effect on the size of the data
structure, i.e. its number of nodes. Finding the optimal variable ordering,
however, is known to be computationally expensive [25]. For this reason,
the efficiency of BDDs in practice is largely reliant on the development of
application-dependent heuristics to select an appropriate ordering, e.g. [73].
There also exist techniques such as dynamic variable reordering [131], which
can be used to change the ordering for an existing BDD in an attempt to
reduce its size.

One of the main appeals of BDDs is the efficient algorithms for their
manipulation which have been developed, e.g. [36, 37, 30]. A common BDD
operation is the ITE (“If Then Else”) operator, which takes three BDDs,
F , G and H, and returns the BDD representing the function fFfG + f̄FfH.
The ITE operator can be implemented recursively, based on the property
ITE(F ,G,H)|xk=b = ITE(F|xk=b,G|xk=b,H|xk=b).

Multi-Valued Decision Diagrams

Multi-Valued Decision Diagrams (MDDs) are also rooted, directed, acyclic
graphs [89]. An MDD is associated with a set of k variables, x1, . . . , xk, and
an MDDM represents a function fM : Mx1 × . . .×Mxk

→M, where Mxi
is

the finite set of values that variable xi can assume, and M is the finite set of
possible function values. It is usually assumed that Mxk

= {0, . . . ,mk − 1}
and M = {0, . . . ,m − 1} for simplicity. Note that BDDs are the special

2.3. DECISION DIAGRAMS 17

case of MDDs where M = B and Mxi
= B for all i. MDDs are similar

to the “shared tree” data structure described in [163]. Like BDDs, MDDs
consist of terminal nodes and non-terminal nodes. The terminal nodes are
labeled with an integer from the set M. A non-terminal node m is labeled
with a variable var(m) ∈ {x1, . . . , xk}. Since variable xi can assume values
from the set Mxi

, a non-terminal node m labeled with variable xi has |Mxi
|

children, each corresponding to a cofactor fm|xi=c, with c ∈ Mxi
. We refer

to the child c of node m as childc(m), where fchildc
(m) = fm|var(m)=c.

Every MDD node corresponds to some integer function. The BDD notion of
ordering can also be applied to MDDs, to produce ordered MDDs (OMDDs).
A non-terminal MDD node m is redundant if all of its children are identical,
i.e., if childi(m) = childj(m) for all i, j ∈Mvar(m). Two non-terminal MDD
nodes m1 and m2 are duplicates if var(m1) = var(m2) and childi(m1) =
childi(m2) for all i ∈ Mvar(m). Based on the above definitions, we can
extend the notion of reduced BDDs to apply also to MDDs. It can be
shown [89] that reduced OMDDs (ROMDDs) are a canonical representation
for a fixed variable ordering. Finally, like BDDs, the number of ROMDD
nodes required to represent a function may be sensitive to the chosen variable
ordering. Example MDDs are shown in Figure 2.2, all representing the same

0 1 2

3
x

2
x

2
x

1
x

1
x

1
x

(a) MDD

0 1 2

3
x

2
x

1
x

2
x

1
x

(b) ROMDD

Figure 2.2: Example MDDs for the same function.

function over three variables, x1, x2, x3 with m1 = m2 = m3 = 4 and m = 3.
The value of the function is zero if none of the variables has value 1, one
if exactly one of the variables has value 1, and two if two or more of the

18 CHAPTER 2. BACKGROUND

variables have value 1. Figure 2.2(a) shows an MDD that is not ordered nor
reduced, and Figure 2.2(b) shows the ROMDD for the function, for the given
variable ordering. Unless otherwise stated, the remainder of the dissertation
will assume that all MDDs are ROMDDs.

Chapter 3

Previous work

3.1 Functional Decomposition

Research in the subject of Boolean function decomposition is almost as old
as digital circuit engineering. The first major investigation on decomposition
was carried out by Ashenhurst [7] in 1959. The basis for the different types
of decompositions studied in his work is the simple disjoint decomposition,
of type

f(X) = h(g(Y), Z) (3.1)

for Boolean functions f : B
|X| → B, g : B

|Y | → B, h : B
|Z|+1 → B. Such

a decomposition exists trivially for Y given by any singleton set xi or the
whole set X = {x1, x2, . . . , xn}.

When f , g and h are Boolean functions then, the original function f

specifying an n-input, 1-output 2-valued circuit is replaced by the specifi-
cations of two 2-valued circuits, one having |Y | inputs and one output, and
the other having |Z|+ 1 inputs and one output (see Figure 3.1).

f h

g

Figure 3.1: Simple disjoint decomposition.

19

20 CHAPTER 3. PREVIOUS WORK

If Ωn is an upper bound on the cost of realizing a Boolean function of n

variables, then the total cost of realizing these two new circuits is bounded
above by Ω|Y |+Ω(1+|Z|). Because the cost bound Ωn usually increases nearly
exponentially with n [138], the discovery of any nontrivial decomposition of
the form (3.1) greatly reduces the cost of realizing f .

The notion of a bound set is fundamental in decomposition theory.

Definition 3.1.1: Any set of variables Y such that f has a decomposition of
type (3.1) is called a bound set for f .

Once a decomposition of type (3.1) has been selected, either g, h, or both
may be similarly decomposed, giving one of the following complex disjoint
decomposition types [90]:

multiple : f(X,Y,Z) = h(g(X), k(Y), Z),
iterative : f(X,Y,Z) = h(g(k(X), Y), Z),

(3.2)

or more generally tree-like decompositions as in

f(X,Y,X,W) = h(g(k(X), Y), l(Z),W).

Ashenhurst’s fundamental contribution is a theorem that states that any
Boolean function has a unique disjoint tree-like decomposition such that all
possible simple disjoint decompositions of f can be derived from it. He
proved that any n-variable Boolean function that is non-degenerate, i.e.
which actually depends on all n variables to determine its output, has a
composition tree, which is a decomposition reflecting all bound sets, and
thus a “most decomposed” one. Hence, the realization of the given function
in correspondence with its composition tree (with suitable assumption about
the cost of logic elements) should have a cost that is close to minimal. In
the sixties it was even conjectured that such an implementation must be a
minimal one. However, Paul [126] found a counterexample showing a circuit,
derived by a technique other than decomposition, that has smaller cost than
the one implementing the composition tree. Such examples seem to be very
rare.

Curtis [48] and Roth and Karp [130] extended Ashenhurst theory to
decompositions of type

f(X) = h(g(Y), Z) (3.3)

with g, h being multiple-valued functions of type g : B
|Y | → M and h :

M×B
|Z| → B. The function g can be alternatively encoded by k = ⌈log2 m⌉

3.1. FUNCTIONAL DECOMPOSITION 21

Boolean functions g1, g2, . . . , gk, giving a decomposition of the form

f(X) = h(g1(Y), . . . , gk(Y), Z) (3.4)

often referred to as a disjoint-support decomposition (see Figure 3.2). In this
thesis we call any of these decomposition types a disjoint-support decompo-
sitions, and may use the multi-valued form or the binary-encoded form as
needed.

f h

g

Figure 3.2: Disjoint-support decomposition.

Disjoint-support decompositions define a more general notion of bound
set, the k-bound set.

Definition 3.1.2: The set Y is said to be a k-bound set , with k > 1, if k is
the minimum value for which there exists a decomposition

f(X) = h(g(Y), Z) (3.5)

where g are h are surjective functions of type

g : B
|Y | →M

and

h : M× B
|Z| → B,

with M = {0, . . . , k − 1}.
Ashenhurst’s main theorem does not extend directly to multiple-valued

functions (a counterexample can be found in [60]), which means that there
is no unique disjoint tree-like disjoint-support decomposition for this type
of functions in general. However, Von Stengel [154] has defined a class
of multiple-valued functions for which an analogous of Ashenhurst’s main
theorem holds.

22 CHAPTER 3. PREVIOUS WORK

A Non-disjoint support decomposition of a Boolean function f is a rep-
resentation of type

f(X,Y,Z) = h(g1(X,Y), . . . , gk(X,Y), Y, Z) (3.6)

where X,Y,Z are sets of variables partitioning the support set of f , and h

and gi are Boolean functions of type gi : B
|X∪Y | → B, i ∈ {1, . . . , k}, and

h : B
|Y ∪Z|+k → B.

3.2 Functional Decomposition Algorithms

The classical method for recognizing a bound set is based on representing
the function by a decomposition chart [7, 48]. The decomposition chart for
f(Y,Z) is a two-dimensional table where the columns represent the variables
from the set Y and the rows the variables from the set Z. Then Y is a bound
set if and only if the chart has column multiplicity at most 2, i.e. there are
at most 2 distinct columns in the chart.

Figure 3.3 shows such a chart for a Boolean function, for the partitioning
of variables {{x1, x2}, {x3}}, where the set {x1, x2} is indeed a bound set.

x1 x2

00 01 10 11
x3 0 0 1 1 0

1 1 0 0 1

Figure 3.3: Decomposition chart for an example Boolean function.

In the case of disjoint-support decompositions, the k-bound sets can be
determined by a decomposition chart by relaxing the requirement of having
exactly 2 different columns, to allow a number of columns up to k [90].

In the case of non-disjoint support decomposition, a Boolean function
with n variables has a simple non-disjoint decomposition of type

f(X,Y,Z) = h(g(X,Y), Y, Z)

if each of its 2|Y | decomposition charts representing sub-functions fY (X,Z)
has at most two distinct columns. The 2|Y | charts are obtained by fixing the
variables of Y to all combination of their values from B

n.

3.2. FUNCTIONAL DECOMPOSITION ALGORITHMS 23

Shortly after their introduction, decomposition charts were abandoned
in favor of cube representation [90], and computing column multiplicity on
charts was replaced by computing compatible classes for a set of cubes.
Two assignments x̂1, x̂2 ∈ B

|X| are said to be compatible with respect to the
reference function f(X,Y) if, for all ŷ ∈ B

|Y | such that f(x̂1, ŷ) and f(x̂2, ŷ)
are defined, f(x̂1, ŷ) = f(x̂2, ŷ) [90]. The set X is a k-bound set if and only
if B

|X| can be partitioned into k′ ≤ k mutually compatible classes [90]. If
f(X) is completely specified, i.e. total, then compatibility is an equivalence
relation and k is the number of equivalence classes. It is easy to see a one-
to-one correspondence between a column in a decomposition chart and a
compatible class.

Due to the exponential size of decomposition charts and cube repre-
sentations, early decomposition algorithms were rarely applied to functions
modeling large practical circuits. Instead, algebraic methods were used [33].
A milestone work in this subject is due to Brayton and McMullen [33],
whom in 1982 introduced the notion of kernels, and proposed a method
for fast algebraic decomposition based on this notion. The same technique,
with minor modifications, is still used today in many systems for multi-level
optimization [29, 112, 136].

Binary Decision Diagrams made it possible to develop new algorithms for
decomposition, feasible for much larger functions than previously possible.
In a BDD, the column multiplicity can be easily computed by moving the
variables Y to the upper part of the graph and counting the number of
children below the boundary line, usually called cut line. The decomposition
f(X) = h(g(Y), Z) exists if and only if there are only two children below
the cut line [132].

This approach has been adopted by a number of BDD-based decom-
position algorithms [132, 99, 41, 135]. Stanion and Sechen [146] used the
cut technique to find quasi-algebraic decompositions of the form f(X) =
g(Y) ⋄ h(Z), where “⋄” is any binary Boolean operation and |Y ∩ Z| =
k for some k ≥ 0. This type decomposition is often referred to as bi-
decomposition [159, 119].

Decomposition algorithms following a BDD-cut strategy proved to be or-
ders of magnitude faster than those based on decomposition charts and cube
representations. However, they require a reordering of the BDD to move the
target set of variables to the top of the graph or to check bi-decompositions
for partitions which are not consistent with the variable order. As an al-
ternative, a number of methods use the fact that BDDs themselves are a

24 CHAPTER 3. PREVIOUS WORK

decomposed representation of the function and exploit their structure, rather
than cut, to find disjoint decompositions. Karplus [91] extended the classical
concept of dominator on graphs [103] to 0,1-dominators on BDDs. A node
v is a 0-dominator if every path from the root to the terminal node labeled
0 contains v. A node v is a 1-dominator if every path from the root to the
terminal node labeled 1 contains v. If v is a 1-dominator, then the function
represented by the BDD possesses a conjunctive (AND) decomposition. If v

is a 0-dominator, then the function can be decomposed disjunctively (OR).
This idea was extended by Yang et al [161] to XOR-type decompositions
and to more general type of dominators. Minato and De Micheli [118] pre-
sented an algorithm which computes disjoint decompositions by generating
an irreducible sum-of-product form for the function from its BDD and ap-
plying factorization. The algorithm of Bertacco and Damiani [15] makes a
single traversal of the BDD to identify the decomposition of the co-factors
and then combine them to obtain the decomposition for the entire function.
The algorithm is impressively fast; however, as Sasao has observed in [133],
it fails to compute some of the disjoint decompositions. This problem was
corrected by Matsunaga [113], who added the missing cases in [15] allowing
to treat the OR/XOR functions correctly. The algorithm [113] appears to
be the fastest of existing exact algorithms for finding all disjoint decompo-
sitions.

In recent years, dominators reappeared also as the foundation of different
decomposition techniques, working on function representations that rely on
less constrained circuit graph structures than BDDs. Dominators have been
applied to combinational equivalence checking [56], under the name of proper
cuts, and to testing [137, 17] and design for low power [43], under the names
of headlines or supergates.

3.3 Logic Synthesis

The quest for the automatic synthesis of logic circuits has a long history. In
this section we highlight prominent milestones from the last five decades of
research and development in this area. We divide the presentation into three
parts: early theoretical work in the fifties and sixties, widespread adoption
in the seventies and eighties, and modern research efforts.

3.3. LOGIC SYNTHESIS 25

Early Work

Two-Level Synthesis Synthesis algorithms were first sought for the two-
level logic minimization problem. Quine [127] proposed the first solution to
this problem in the 1950s; his method was subsequently improved by Mc-
Cluskey [114], and has since become known as the Quine-McCluskey two-
level minimization procedure. The essence of this procedure is a systematic
exploration of the search space of two-level circuits seeking a realization
with minimal area. The enumerative nature of such an approach makes it
exponentially complex in both space and time, and limits its applicability
to relatively small functions with, typically, a dozen or fewer inputs. The
advantage of two-level forms is that they can be directly implemented in
VLSI using programmable logic structures, such as PLAs and PALs [69],
whose areas and delays can be estimated with high accuracy. However, gen-
eral use of two-level synthesis is hampered by the computational infeasibility
of optimally synthesizing large functions in two levels, and by the practical
technological limits on the maximum fan-in and fan-out of logic gates. In
addition, it can be easily shown that certain multi-level realizations are both
smaller and faster than the corresponding optimal two-level forms. Despite
these shortcomings, exact and approximate two-level synthesis is sometimes
used as a step in multi-level synthesis algorithms.

Multi-Level Synthesis Research in multi-level synthesis emerged soon
after the initial solutions to the two-level minimization problem were stated.
Similar in spirit to those of the two-level problem, the original multi-level
approaches were based on a systematic exploration of the solution search
space. The dominant view at that time was that two-level circuits were
a special case of multi-level circuits, and that the algorithmic solution to
the former should generalize to solve the latter. The fundamental notion in
multi-level synthesis is that of functional decomposition, studied in this dis-
sertation. As mentioned earlier in Section 3.1, Ashenhurst [7] was the first to
derive a condition for checking whether a Boolean function has a non-trivial
simple disjoint decomposition. His observation laid the foundation for classi-
cal decomposition theory, which was shortly generalized by Curtis [48], and
Roth and Karp [130], to handle other, more complex, decomposition forms.
These works represent the first accounts of complete multi-level synthesis
algorithms. The general approach was a search procedure that examined
all possible decompositions lexicographically, pruning the search by some

26 CHAPTER 3. PREVIOUS WORK

simple lower bounds on circuit cost, and terminating when a minimum-cost
realization was found. Several other enumeration techniques for multi-level
synthesis were explored in the 1960s. Hellerman [81] proposed an algorithm
that enumerated all directed acyclic graphs, and tested whether each gen-
erated graph implements the desired function. The advances in two-level
minimization motivated Lawler [100] to generalize the notion of two-level
prime implicants to the multilevel case. His approach showed how these
multi-level implicants can be used to obtain “absolutely minimal” factored
forms. Gimpel [75] proposed an optimal algorithm for synthesis of three-level
networks in terms of NAND gates. Gimpel’s approach is similar in spirit
to the work of Lawler: it generalized the two-level enumeration approach to
three levels. Davidson presented a branch-and-bound algorithm for NAND
network synthesis [50]. The algorithm constructs a network realization by a
sequence of local decisions starting from the primary outputs, and incremen-
tally introduces new gates. Most of this early work on multi-level synthesis,
while theoretically significant, failed to achieve the elusive goal of generating
optimal circuits. The complexity of exhaustively enumerating the solution
space limited the applicability of these approaches to very small circuits,
and rendered them impractical for general-purpose synthesis.

Practical Synthesis

The growing complexity of VLSI in the late seventies necessitated new scal-
able synthesis techniques that sought approximate, rather than optimal,
multi-level circuit solutions. Most synthesis tools in use today are based
on the premise that the search for optimal solutions is intractable, and are
designed, instead, to find acceptable sub-optimal realizations. These tools
typically operate on a multi-level representation of the functions being syn-
thesized, continually transforming it until a satisfactory solution is found,
and can be roughly classified into two broad categories based on the granu-
larity of transformations used. Local transformation approaches modify the
current “solution” incrementally by making appropriate changes in its im-
mediate neighborhood. In contrast, global transformation approaches seek
good multi-level topologies by making large-scale changes to the implemen-
tation structure while disregarding technological considerations; a second
“mapping” phase insures compliance of the resulting multi-level structure
with technology constraints. The algorithms presented in this dissertation
fall in this category.

3.3. LOGIC SYNTHESIS 27

Local Transformation approaches Local optimization methods per-
form rule-based transformations, which are a set of ad hoc rules that are
applied iteratively to patterns found in the network of logic gates. In the lo-
cal optimization method each rule introduces a transformation by replacing
a small sub-graph of several gates in the network with another sub-graph
which is functionally equivalent but has a simpler realization according to
some cost function. Initially the network consists of AND, OR, INV gates,
decoders, multiplexers, adders, etc. After the simplification step these prim-
itives are translated into an interconnection of INV to NAND gates through
a sequences of transformations. Technology specific transformations are
then applied as a final step in the process. Such transformations have lim-
ited optimization capability since they are local in nature, and do not have
global view on the design. Examples of systems based on this approach are
LSS [49] and LORES/EX [85].

Global Transformations approaches The computational limitations of
the classical theory for functional decomposition motivated the develop-
ment of algorithms which are effective in partitioning complex logic func-
tions. These ideas are based on the notion of algebraic factorization applied
to sum-of-products (SOP) expressions; the technique is described in [33]
and [34]. Algebraic decomposition techniques have experienced the most
success to date in the field of multilevel synthesis. They are capable of
handling large combinational blocks, and produce very good results for con-
trol logic. However, representing logic of higher level abstraction with SOP
forms makes it difficult to explore the structural flexibility of the original
description. It can lead to the loss of a compact description of the origi-
nal equations, and algebraic decomposition is too restrictive to rediscover
their structure. Examples of systems which rely on the algebraic techniques
are MIS [32], SOCRATES [9], and more recently SIS [136]. In more re-
cent years much attention has been also given to AND-XOR decomposi-
tions [151, 42, 57, 63]. The advent of Binary Decision Diagrams and their
variants rekindled interest in classical decomposition techniques. In recent
years researchers have successfully applied Roth and Karp decomposition
in FPGA synthesis [41, 98, 124, 134, 158]. These approaches decompose a
function recursively until each of the generated sub-functions meets a given
fan-in constraint, typically 5. However, since fan-in count is the only no-
tion of node complexity in these approaches, they do not extend easily to a

28 CHAPTER 3. PREVIOUS WORK

library-specific synthesis. A number of approaches have also been developed
which explore the structure of the decision diagram representation of a given
function [15, 160, 162, 57].The close relation between BDDs and multiplexer
circuits has also lead to several approaches to synthesis of pass transistor
logic (PTL) [16, 38, 42, 107]; they are primarily based on a mapping of
decomposed BDDs to PTL.

Chapter 4

Contributions in this

Dissertation

This chapter reviews the subject matter of the seven publications that make
the core of this dissertation. It complements the material given in the pub-
lications with additional examples, and includes all proofs omitted in the
papers. It also presents an unpublished result which extends the technique
described in Paper B.

Section 4.1 introduces the first two algorithms, which produce simple-
disjoint and disjoint-support decompositions. They are based on represent-
ing the target function as a Binary Decision Diagram. Unlike other algo-
rithms using similar techniques, the ones presented in this thesis can deal
with large target functions and produce more decompositions, without re-
quiring expensive manipulations of the representation, particularly BDD
reordering.

Different ways of representing a function often lead to very different de-
composition alternatives. Two of these alternatives are explored in this dis-
sertation, based on analyzing the circuit graph representation of the target
function.

The algorithm presented in Section 4.2 produces disjoint-support decom-
positions, like the ones obtained by the first two algorithms, but it is based
on a technique which integrates circuit graph analysis and BDD-based de-
composition. The combination of the two approaches results in a technique
which is more robust than the ones based purely on BDD, and that improves
both the performance and the quality of the results obtained.

29

30 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

Our fourth algorithm, which efficiently computes non-disjoint support
decompositions is introduced in Section 4.3.

Section 4.4 presents our fifth algorithm, which provides an efficient means
to decompose a function at the circuit graph level, by using information
derived from a BDD representation, without requiring expensive circuit re-
synthesis.

We end this review of contributions by presenting two publications that
resulted from the many detours we have taken along the winding path of
our research.

Section 4.5 presents a result of a more theoretical nature. It answers a
long standing question regarding the relation between the bound sets of a
Boolean function and the “best” variable orders for its BDD representation.

Lastly, a leap into the future closes this list of contributions. In section
4.6 we introduce a novel model of computation, which opens a whole new
line of research in the area of molecular circuit implementation, and will
surely challenge our knowledge of functional decomposition.

4.1. BDD BASED DISJOINT-SUPPORT BOOLEAN... 31

4.1 BDD Based Disjoint-Support Boolean

Decomposition

Since the development of BDDs, research on decomposition algorithms got
a new life. BDDs allow for larger and more complicated functions to be
decomposed. However, regardless of how fast an algorithm is, we are always
dealing with a problem that grows exponentially with respect to the number
of variables of a function. In Paper A, on page 73, we explore an interesting
extension to traditional cut methods on BDDs, allowing us to check if any
interval of consecutive variables on a BDD is a bound set, without requiring
expensive reordering of the BDD variables. This algorithm works specifically
for simple disjoint decompositions. Later on, and inspired by this idea, we
extend this result to disjoint-support decompositions in Paper B, on page
87.

Cutting In order to avoid expensive chart or compatible classes compu-
tations, Lai, Pan and Pedram [99] devised a BDD method for checking if
a certain set of variables Y ⊂ X form a bound set for a function f(X).
It is based on the property that there exist functions fi : B

|Z| → B, with
Y ∪ Z = X and Y ∩ Z = ∅ such that

f(X) =
2|Y |−1
∑

i=0

αi(Y)fi(Z) (4.1)

where Y = {x1, x2, . . . , x|Y |}, αi(Y) = xi1
1 xi2

2 . . . x
i|Y |

|Y | , where ij is the j-th bit

of the binary expansion of i, and x0
i = x̄i, x1

i = xi. The number of different
functions in the set {f0, . . . , f2|Y |−1} is clearly equivalent to the number of
compatible classes, or to the number of different columns in a decomposition
chart for f (see Section 3.2).

Let F be the BDD representing f with respect to the variable ordering
〈x1, x2, . . . , xn〉. For a given cut level c, 1 ≤ c < n, the “upper” part of
the BDD F is the set of nodes v such that index(v) ≤ c. Respectively, the
“lower” part of F is the set of nodes v such that index(v) > c. We denote
by cutF (c) the boundary line between these to parts. Whenever the BDD
F is clear from the context we write cut(c) instead of cutF (c).

32 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

a

b

c

d

1 0

1

2

3

4

cut

v

u

f

(2)

(a)

a

b

c

d

1 0

g

h

g

u

v

(b)

Figure 4.1: Cutting a BDD.

If the set of consecutive1 variables Y is at the top of the BDD F , the
nodes adjacent to and below cut(|Y |) represent the functions fi for all i.
Since BDDs are canonical, the number of these nodes is exactly the num-
ber of different functions in the set {f0, . . . , f2|Y |−1} corresponding to equa-
tion (4.1). Thus, the set Y is a bound set for f , if and only if there are at
most two nodes adjacent to and below cut(|Y |).

Figure 4.1 gives an intuitive idea of this method. The gray line in Fig-
ure 4.1(a) shows cut(2), and the nodes adjacent to and below the cut are
encircled in gray. In this example {a, b} is a bound set for

f(a, b, c, d) = a + b + c + d.

With respect to equation (4.1), the cut nodes u and v represent

f1 = f2 = f3 = 1,

and
f0 = c + d.

Also note that each function αi is represented by a path from the root to a
node below the cut, e.g. α0 = a0 b0 = ā b̄ is represented by the dotted path
from the root to node v.

1Consecutive with respect to the BDD variable order. For example, for the ordering
〈x1, x2, . . . , xn〉, the set {x2, x3, x4} is a set of consecutive variables, but the set {x2, x4}
is not.

4.1. BDD BASED DISJOINT-SUPPORT BOOLEAN... 33

The sub-functions g and h of decomposition f(a, b, c, d) = h(g(a, b), c, d)
are easily obtained from the BDD as shown in Figure 4.1(b):

g(a, b) = a + b,

h(g, c, d) = g + c + d.

Slicing Although cutting a BDD renewed the hopes of practical appli-
cation of Boolean decomposition, it has one essential drawback: the set
of variables to be checked has to be at the top of the BDD. For exam-
ple, a BDD with variable ordering 〈x1, x2, . . . , xn〉 only allows us to check
the sets {x1, x2}, {x1, x2, x3}, {x1, x2, x3, x4} and so on. If this is not the
case, the BDD must be reordered. Not only is reordering computation-
ally expensive, but it can also lead to an ordering of the variables that
causes the BDD to blow up in size, and thus calculating the cut becomes
unfeasible. Bryant shows in [36] a classical example. The BDD for the
function f = x1x2 + · · · + x2n−1x2n has 2n + 2 nodes for the variable or-
der 〈x1, x2, . . . , x2n−1, x2n〉, whereas the size increases to 2n+1 nodes for the
order 〈x1, x3, . . . , x2n−1, x2, x4, . . . , x2n〉.

In Paper A we attacked the reordering problem by devising a method
that is similar to the “cutting” method in the previous section, but which
allows to check if any interval of consecutive variables of a BDD forms a
bound set for the function f . Since it is not limited to ranges of variables
starting at the top of the BDD, in contrast to the previous method, it allows
to check O(n2) bound set candidates instead of O(n) without requiring re-
ordering. We call this method slicing , since two cuts are required to delimit
the interval of variables to check (a slice of the BDD).

Recall from the previous section that if we partition the support set of f

into two disjoint sets Y and Z, we can represent f as shown in equation (4.1).
Consider an abstract picture of a BDD F of an n-variable function f(X)
shown in Figure 4.2. Two cut lines on levels a and b of the BDD are denoted
by cut(a) and cut(b), a, b ∈ {0, . . . , n}, a < b. Let Y be the set of variables
which lies between the cut lines, Z1 be the set of variables above cut(a) and
Z2 be the set of variables below cut(b). We have X = Y ∪ Z, Y ∩ Z = ∅,
and Z = Z1 ∪ Z2, Z1 ∩ Z2 = ∅.

Let cut set(a) denote a set of nodes v ∈ F with indexes a < index(v) ≤ b

which are children of the nodes of F above the cut(a). Let Fv stand for the
BDD rooted at v ∈ cut set(a). Then, cut set(bv) is the set of nodes u ∈ Fv

34 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

{
{
{

Z1

Z2

Y

cut(a)

cut(b)

cut_set(a)

v

cut_set(b)v

0 1

F
v

F
v

Figure 4.2: Abstract view of a BDD slice.

with indexes b < index(u) ≤ n + 1 which are children of the nodes of Fv

above the cut(b).
Let αv(Z1) be a function representing the sum of all paths of F leading

to a node v ∈ cut set(a). Then f can be co-factored with respect to αv as

f(X) =
∑

∀v∈cut set(a)

αv(Z1) · f |αv(Y,Z2). (4.2)

If |cut set(bv)| = 2, then Y is a bound set for f |αv , and f |αv can be decom-
posed as

f |αv(Y,Z2) = hv(gv(Y), Z2), (4.3)

for some hv : B
|Z2|+1 → B and gv : B

|Y | → B. The function gv is represented
by the BDD rooted at v whose terminal nodes are obtained by replacing the
two nodes of cut set(bv).

Using this notation, we can formulate the following theorem.

Theorem 1. A set of variables Y is a bound set for f(X) if, and only if:

1. for all v ∈ cut set(a), Y is a bound set for the co-factor f |αv(Y,Z2)
in (4.2), and

4.1. BDD BASED DISJOINT-SUPPORT BOOLEAN... 35

2. for all pairs v, u ∈ cut set(a), sub-functions gv(Y) and gu(Y) in (4.3)
are either equivalent, or complement of each other.

Proof. See the proof of Theorem 8 of Paper A, on page 73 of this thesis.
The formulation of Theorem 1 differs from the one of Theorem 8, but their
essence is the same.

Figure 4.3 illustrates this theorem. In this example {b, c} is a bound
set for F (a, b, c, d) = a ⊕ (b + c) ⊕ d. The gray lines in Figure 4.3(a) show
the “slice” delimited by cut(1) and cut(3). The sub-functions g and h of the
decomposition are easily obtained from the BDD, as shown in Figure 4.3(b).

1

2

3

4

cut(1)a

b

c

d

10

cut(3)

b

c

d

f

(a)

b

c

a

d

10

d

g g

0 1

g

h

(b)

Figure 4.3: Slicing a BDD.

Since two functions are equivalent, or complement of each other if, and
only if, their BDD representations are graph isomorphic up to the terminal
nodes, this method can be implemented very efficiently. See Paper A on
page 73 for details on the algorithm and experimental results.

Disjoint-Support Slicing In Paper B, we have generalized the result of
Paper A to disjoint-support decompositions.

Consider again Figure 4.2. If, for some node v ∈ cut set(a), we have
|cut set(bv)| = k, then Y is a k-bound set for f |αv in (4.2) and f |αv can be

36 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

decomposed as
f |αv(Y,Z2) = hv(gv(Y), Z2), (4.4)

for some hv : B
|Z2|×M→ B and gv : B

|Y | →M, where M = {0, 1, . . . , k−1}.
The function gv is represented by the MDD rooted at v whose k terminal
nodes are obtained by replacing the nodes of cut set(bv).

We can extend Theorem 1 to the k-bound set case as follows:

Theorem 2. A set of variables Y is a k-bound set for f(X) if:

1. for all v ∈ cut set(a), Y is a k-bound set for the co-factor f |αv(Y,Z2)
in (4.2), and

2. for all pairs v, u ∈ cut set(a), sub-functions gv(Y) and gu(Y) in (4.4)
are isomorphic.

We present a proof of the disjoint-support slicing technique which is not
included in Paper B.

Proof. Since Y is a k-bound set for all f |αv , each of f |αv can be decomposed
as in (4.4). Furthermore, since all sub-functions gv(Y) are isomorphic, we
can also decompose f |αv as

f |αv (Y,Z2) = hv(g(Y), Z2). (4.5)

where g(Y) = φv(gv(Y)) for some bijection φv : M→M.
From (4.2) and (4.5) we can conclude that f can be represented as

f(X) = h(g(Y), Z),

with h =
∑

∀v∈cut set(a) αv · hv. Thus, Y is a k-bound set for f(X).

As with the slicing method shown in the previous section, the conditions
stated in Theorem 2 can be checked very efficiently on an MDD represen-
tation of the function. Figure 4.4 illustrates this method. In this example
{b, c, d} is a 3-bound set for

F (a, b, c, d, e) = a(b(d̄ + e) + b̄ce) + ābde + b̄c̄(a + e).

The gray lines in Figure 4.4(a) show the “slice” delimited by cut(1) and
cut(4). The sub-functions g and h can be easily obtained from the MDD, as
shown in Figure 4.4(b). The pseudo-code for a SLICE algorithm is shown

4.1. BDD BASED DISJOINT-SUPPORT BOOLEAN... 37

1

2

3

4

a cut(1)

10

e5

bb

dd

cc

cut(4)

f

(a)

a

h

b

g

d

c

g

10

e

g

1

2 2
1

210

(b)

Figure 4.4: Disjoint-Support Slicing.

on Paper B, Figure B.3. .
Note, however, that in contrast with Theorem 1, the conditions formu-

lated in Theorem 2 are sufficient, but not necessary, for a set of variables to
be a k-bound set. The isomorphism condition in this generalization is too
strong, and good decomposition candidates may be lost depending on the
particular variable ordering 2. There is a solution to this problem, and we
present it in the next section.

Disjoint-Support Slicing Revisited Although the slicing method de-
scribed in the previous section is useful in practice, it may overlook certain
decompositions that are desirable. For example, the function

f(a, b, c, d, e) = a(b + c + d + e) + ā(bcde)

has a disjoint-support decomposition

f(a, b, c, d, e) = h(a, g(b, c, d), e)

that will be found by the slicing algorithm if the variable order is 〈b, c, d, e, a〉,
but will not be found if the variable order is 〈a, b, c, d, e〉. Figure 4.5 illus-

2Note, however, that the slicing method detects classical bound sets in any position.
The problem arises when looking for k-bound sets, with k > 2.

38 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

b

c c

d d

e e

a

0 1

(a)

a

b

c

d

e

d

c

b

0 1

(b)

Figure 4.5: BDDs for function a(b + c + d + e) + ābcde for two different
variable orderings.

trates this example. It shows the BDDs representing function f for two
different variable orderings. Figure 4.5(a) shows the BDD for the ordering
〈b, c, d, e, a〉. The gray dashed line shows that the slicing method (in this
case reduced to a simple cut) detects the 3-bound set {b, c, d}. When the
set {b, c, d} is in the middle, as shown in Figure 4.5(b), the slice method
does not recognize it as a 3-bound set. This is due to the requirement of
Theorem 2 that the two sub-graphs induced by the slice have to be pair-
wise isomorphic. In the example, the sub-graphs determined by the slice in
Figure 4.5(b), between the gray dashed lines, are not isomorphic.

Lets formulate necessary and sufficient conditions for the existence of a
k-bound set. Let f : B

|Y ∪Z| → B, Y ∩ Z = ∅, and M = {0, . . . , k − 1} for
some k > 1.

Theorem 3. A set of variables Y is a k-bound set for f(Y,Z) if, and only
if, there is a function g : B

|Y | →M such that

1. for all ẑ ∈ B
|Z|, f(Y, ẑ) is a projection of g, and

2. for all ŷ1, ŷ2 ∈ Y we have

g(ŷ1) = g(ŷ2)⇔ f(ŷ1, z) = f(ŷ2, z).

4.1. BDD BASED DISJOINT-SUPPORT BOOLEAN... 39

Proof.

⇒) By the definition of k-bound set, there are functions g : B
|Y | → M and

h : M × B
|Z| → B such that f(Y,Z) = h(g(Y), Z). Then, for every

ẑ ∈ B
|Z|, f(Y, ẑ) = h(g(Y), ẑ). The function h(g, ẑ) is a surjective

mapping from M into B. Therefore, by the definition of projection,
f(Y, ẑ) is a projection of g. The second condition follows from the
surjectivity of g and the minimality of the set M.

⇐) We can write

f(Y,Z) =
∑

ẑ∈B|Z|

αẑ(Z)f(Y, ẑ) (4.6)

where

αẑ(Z) =

{

1 if Z = ẑ

0 otherwise

By hypothesis, for all ẑ ∈ B
|Z|, f(Y, ẑ) is a projection of g, i.e. there

are functions σẑ : M→ B such that σẑ(g(Y)) = f(Y, ẑ). So, replacing
in (4.6),

f(Y,Z) =
∑

ẑ∈B|Z|

αẑ(Z)σẑ(g(Y)).

If we make
h(g, Z) =

∑

ẑ∈B|Z|

αẑ(Z)σẑ(g)

then,
f(Y,Z) = h(g(Y), Z).

The second condition guarantees that the size of M is minimal. There-
fore, by definition of k-bound set, Y is a k-bound set for f .

A straightforward corollary to Theorem 3 states our result in a manner
similar to that of Theorems 1 and 2:

Corollary 1. A set of variables Y is a k-bound set for f(X) if, and only
if:

1. for all v ∈ cut set(a), Y is a kv-bound set for the co-factor f |αv(Y,Z2)
in (4.2) with kv ≤ k, and

40 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

2. there exists a function g : B
|Y | → M with the smallest set M, such

that each sub-function gv(Y) induced by the decomposition (4.4) is a
projection of g.

This corollary shows that there is a straightforward algorithm to compute
a disjoint-support decomposition form a BDD representation of a function,
if we can compute the MDD for the sub-function g(Y) from the MDDs of its
projections gv(Y). Such computation is possible by means of the following
technique.

In order to simplify the exposition of the algorithm, we will assume that
all our MDDs will have Boolean variables, but an arbitrary number of con-
stant nodes. These MDDs are usually referred to as multi-terminal BDDs.
The algorithm Kernel allows us to compute a function g : B

|X| →M given
g1 : B

|X| → M1 and g2 : B
|X| → M2, based on their respective representa-

tions as MDDs. Figure 4.6 shows a recursive implementation of the Kernel
algorithm in pseudo-code, using an MDD data structure as implemented in
the Colorado University Decision Diagram package (CUDD [144])3.

The procedures const?, mk-const, Else, Then, ITE, and TopVar
are provided with the CUDD package, and implement the following func-
tions:

• const?(G) checks whether the BDD G is a constant or not;

• mk-const(k) returns a BDD representing a constant function of value
k.

• Else(G) returns the else child of G (see Section 2.3);

• Then(G) returns the then child of G (see Section 2.3);

• ITE(v,G,H) returns a BDD representing the function vfG + v̄fH;

• TopVar(G) returns the top variable of BDD G.
Figures 4.7 and 4.8 give an illustration of this procedure, based on the

example at the beginning of this section (Figure 4.5(b)). Figure 4.7 shows
an example of the computation of sub-function g and mappings σ1 and σ2,
such that g ◦ σ1 = g1 and g ◦ σ2 = g2, for the functions given in tabular
form. Figure 4.8 shows an example of the application of algorithm Kernel
to obtain the MDD for function g from the MDDs of g1 and g2.

3Strictly speaking, the CUDD package calls these multi-terminal BDDs Algebraic De-

cision Diagrams or ADDs.

4.1. BDD BASED DISJOINT-SUPPORT BOOLEAN... 41

algorithm Kernel(G,G′)
if const?(G) and const?(G’)

return mk-const(get-number(G,G’))
if const?(G)

top var = TopVar(G’)
c0 = Kernel(G, Else(G’))
c1 = Kernel(G, Then(G’))

else if const?(G’)
top var = TopVar(G)
c0 = Kernel(G’, Else(G))
c1 = Kernel(G’, Then(G))

else

if TopVar(G) < TopVar(G’)
top var = TopVar(G)
c0 = Kernel(G’, Else(G))
c1 = Kernel(G’, Then(G))

else if TopVar(G) > TopVar(G’)
top var = TopVar(G’)
c0 = Kernel(G, Else(G’))
c1 = Kernel(G, Then(G’))

else

top var = TopVar(G)
c0 = Kernel(Else(G’), Else(G))
c1 = Kernel(Then(G’), Then(G))

return ITE(top var, c1, c0)
end

Figure 4.6: Pseudo code of the Kernel algorithm.

g1 g2 g

000 0 0 0
001 0 1 1
010 0 1 1
011 0 1 1
100 0 1 1
101 0 1 1
110 0 1 1
111 1 1 2

three different pairs:
00 7→ 0
01 7→ 1
11 7→ 2

ր

ց

σ1

0 7→ 0
1 7→ 0
2 7→ 1

σ2

0 7→ 0
1 7→ 1
2 7→ 1

Figure 4.7: Calculating the sub-function g and mappings σ1 and σ2.

42 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

g1 : B
3 → {0, 1}

0 1

b

c

d

g2 : B
3 → {0, 1}

01

b

c

d

7→

g : B
3 → {0, 1, 2}

c

d

1

(01)

c

d

0

(00)

2

(11)

b

Figure 4.8: Calculating the MDD for function g from the MDDs of g1 and
g2.

4.2. HYBRID DISJOINT-SUPPORT DECOMPOSITION 43

4.2 Hybrid Disjoint-Support Decomposition

In previous sections we have shown that it is possible to devise BDD-based
heuristics which quickly find many disjoint-support decompositions, and
which can handle large functions. However, one problem with such tech-
niques is that the decompositions that can be obtained do not necessarily
simplify the function. For example, a circuit implemented as the two co-
factors of a Shannon decomposition joined by a multiplexer is usually not
optimal.4

Another problem is that, in contrast to simple disjoint decompositions,
that are “too few”, disjoint-support decompositions are “too many”. So, an
algorithm which first generates all decompositions and then decides which
of them simplify the function is not feasible for large functions.

In Paper C, on page 99 we present our approach to overcome these prob-
lems. First, a set of proper cut points is identified in a circuit representation
of the function by applying a structural decomposition method. Then, the
circuit is partitioned along these cut points into a set of smaller sub-circuits,
which are treated independently. This procedure allows us to reduce the
search space for disjoint-support decompositions at the next stage, in which
we apply a BDD-based technique similar to the ones presented earlier. Fi-
nally, the overall decomposition is determined by combining the intermediate
results.

Preliminaries

Let C = (V,E) denote a directed acyclic graph representing a single-output
circuit, where V represents a set of gates and primary inputs. A particular
vertex root ∈ V is marked as the circuit output. The set of edges E ⊆ V ×V

describes the nets connecting the gates. We will call this type of graph a
circuit graph.

The cone of influence of a vertex v, is a subset of V containing all the
vertices from which v is reachable.

A vertex v dominates another vertex w in V if every path from w to root

contains v [103]. We call v a dominator of w. Vertex v is the immediate
dominator of w, denoted by v = idom(w), if v dominates w and every other

4Shannon decomposition is a special case of decomposition, where f(x, Y) = x̄·g0(Y)+
x · g1(Y), where g0(Y) = f(0, Y), g1(Y) = f(1, Y) and x 6∈ Y .

44 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

dominator of w dominates v. Every vertex v ∈ V except root has a unique
immediate dominator [108]. The edges {(idom(w), w) | w ∈ V − {root}}
form a directed tree D rooted at root, which is called the dominator tree of
C. A reduced dominator tree [95] DR contains all vertices v ⊆ D such that:

1. v is a primary input or

2. ∃u ∈ DR such that v = idom(u).

A vertex is called a proper cut if it dominates all primary input vertices in
its cone of influence.

Circuit-Based Decomposition

The concept of proper cuts was first introduced in combinational equivalence
checking [56]. It was later applied to testing [137, 17] and design for low
power [43] where it is known under the alternative names of headlines or
supergates. The definition of proper cut states that every path from any
primary input in the cone of influence of a proper cut v to the root contains
v. This guarantees that all re-converging paths in the circuit are completely
enclosed within the cone and, therefore, that those primary inputs belong
to a bound set (see Figure 4.9). The primary input vertices and the root
vertex are trivial proper cuts, i.e. they always exist.

We have chosen to use at the first stage of our algorithm a circuit-based
technique, rather than a BDD-based one, because manipulating circuits is
much faster. Therefore, for functions with no proper cuts, the presented
technique does not bring a significant overhead. The running time of our
algorithm is normally similar, or even faster, than the running time of a
BDD-based algorithm.

The algorithm presented in Paper C for finding proper cuts is based on
the concept of a reduced dominator tree constructed by using an extension
of the Lengauer-Tarjan algorithm [103] for finding dominators in a graph.

It is straightforward to prove that a proper cut is always a vertex of the
reduced dominator tree DR.

Lemma 1. A vertex v ∈ V is a proper cut only if v ∈ DR.

Figure 4.9 gives an example. The circuit shown represents ((d⊕ e)(ab +
āc)) + (ab + āc)f . Notice the two proper cut points, and their respective
cones of influence in gray. They correspond to bound sets {d, e} and {a, b, c}
respectively.

4.2. HYBRID DISJOINT-SUPPORT DECOMPOSITION 45

f

d e

b a c

Figure 4.9: Proper cut points.

The pseudo-code of the algorithm ProperCut which uses a reduced
dominator tree DR to identify the set of proper cuts P [95] is shown in
Figure 4.10.

ProperCut processes the circuit from the inputs toward the output
in topological order. The array T [v] contains vertices u ∈ DR with open
re-convergences. At the primary inputs, T [v] is initialized to an empty set.
Then, at each following vertex v, T [v] is updated to the union of T [vi] for all
vertices vi in its fan-in. If v is in the reduced dominator tree, then the set
Doms(v) of vertices having v as an immediate dominator is removed from
T [v] and, after performing the proper cut checking, v is added to T [v]. This
substitution of Doms(v) vertices by their dominator allows us to keep the
size of T [v] small and, what is more important, let’s us keep the support-set
of T [v] dependent on vertices having v as an immediate dominator only,
rather than vertices on previous topological levels.

46 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

algorithm ProperCut(V, E, root);
DR, Doms = Dominator(V, E, root)
for each v ∈ V in topological order do

if v ∈ Inputs then

T [v] = ∅;
else

T [v] =
S

vi∈F I(v) T [vi];

if v ∈ DR then

T [v] = T [v] − Doms(v);
if T [v] = ∅ then

P = P ∪ {v};
T [v] = T [v] ∪ {v};

return P

end

Figure 4.10: Pseudo-code of the algorithm ProperCut.

BDD-based Decomposition

After the set of proper cuts is identified, the circuit is partitioned along
these cut points into a set of smaller sub-circuits which are processed in-
dependently using the BDD-based decomposition technique presented in
section 4.1. The algorithm successively goes through all possible linear in-
tervals of variables of a BDD and, for each interval, checks whether it is a
bound set or not. In this way many decompositions are found very quickly,
without expensive variable reordering.

The integration of circuit-based and BDD-based techniques results in an
algorithm which is more robust than the pure BDD-based method regarding
both quality of the result and running time. Our experiments on benchmark
circuits suggest that the resulting algorithm has a significant potential for a
large number of circuits. For details on these results, see Paper C, included
on page 99 in this thesis.

4.3. CIRCUIT BASED NON-DISJOINT DECOMPOSITION 47

4.3 Circuit Based Non-Disjoint Decomposition

We have shown in Paper C that we can extract a lot of information about
decompositions from the structure of a circuit graph. Following a similar
route, Paper D, on page 113, presents a result that relates a different type of
decomposition, the non-disjoint support decomposition, to certain structural
properties of a circuit graph.

Multiple-Vertex Dominators

Recall the definition of a circuit graph and single vertex dominator from
Section 4.2. Many graphs do not contain any single-vertex dominators ex-
cept for the primary inputs and root. It is more common that a vertex is
dominated by a set of vertices.

A set of vertices {v1, . . . , vk} is a multiple-vertex dominator of size k [5]
(also called generalized dominator [77]) for a vertex u, if (1) every path
from u to root contains some vi, and (2) for every vi, there exist at least
one path from u to root which contains vi and does not contain any other
vj, i, j ∈ {1, . . . , k}, i 6= j. A set of vertices {v1, . . . , vk} is a common
multiple-vertex dominator for a set of vertices U ⊆ V − {v1, . . . , vk}, if, for
every u ∈ U , there exist W ⊆ {v1, . . . , vk} such that W is a multiple-vertex
dominator for u.

Theorem 4. Suppose a circuit graph C = (V,E) represents a Boolean func-
tion f(X,Y,Z), where X,Y,Z are sets of variables partitioning the support
set of f . Let VX , VY , VZ ⊂ V be sets of primary input vertices corresponding
to the variables of the sets X,Y,Z. Let vg1 , . . . , vgk

∈ V be a set of vertices
such that:

1. {vg1 , . . . , vgk
} is a common multiple-vertex dominator for VX ,

2. (VX ∪ VY) ⊂ ⋃k
i=1 I(vgi

), where I(vgi
) is the cone of influence of vgi

.

Then, there exist a decomposition of f of type

f(X,Y,Z) = h(g1(X,Y), . . . , gk(X,Y), Y, Z) (4.7)

where Boolean functions gi are the functions rooted by the vertices vgi
, ∀i ∈

{1, . . . , k}, of C.

48 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

1
z

3
x

2
x

1
x

2
y

1
y

1
gv

2
gv

vf

Figure 4.11: Nodes {vg1 , vg2} are a common multiple vertex dominator for
the set of inputs {x1, x2, x3}

Figures 4.11 and 4.12 illustrate this theorem. Figure 4.11 shows an
abstracted circuit graph representing a Boolean function f(X,Y,Z), where
X = {x1, x2, x3}, Y = {y1, y2}, Z = {z1}. The output (root) node is
marked vf . The nodes {vg1, vg2} are a common multiple vertex dominator
for the set of inputs X; the domination relation is depicted by the light gray
bell shaped area. The cones of influence of each of these nodes (reaching
X ∪ {y1} and X ∪ {y2} respectively) are shown in dark gray. The theo-
rem shows that, under these conditions, function f can be decomposed as
h(g1(X, y1), g2(X, y2), Y, Z), where h : B

|Y ∪Z|+2 → B, g1 : B
|X∪{y1}| → B

and g2 : B
|X∪{y2}| → B. The resulting decomposition is illustrated in Fig-

ure 4.12.

We present a proof of Theorem 4 which is not included in Paper D.

Proof. Let M = {vg1 , . . . , vgk
} be the common multiple-vertex dominator.

Let G be the set of all nodes from which M is reachable (the gray areas
in Figure 4.11), G =

⋃k
i=1 I(vgi

), and let H denote all the nodes in the
circuit graph C that do not belong to G, i.e. H = V −G (the white area on
Figure 4.11). Transform the graph C following the next three steps:

4.3. CIRCUIT BASED NON-DISJOINT DECOMPOSITION 49

vh

1
gv

2
gv

1
z

1
y

2
y

1
y 3

x
2
x

1
x

3
x

2
x

1
x

2
y

Figure 4.12: Non-disjoint support decomposition of the function represented
in Figure 4.11

1. Pick an edge of the graph, (v, u) ∈ E, such that u ∈ H, v ∈ G, and
v 6∈M .

2. Make an isomorphic copy of the sub-graph induced by I(v), and call
w the root of this copy.

3. Remove edge (v, u) from the graph, and add an edge (w, u)

After these steps, the transformed graph still represents f , since isomorphic
sub-graphs always represent the same Boolean function. Moreover, the sub-
graph created in step 2 does not contain any primary input vertices in VX .
If this was not the case, it would contradict the fact that M is a common
multiple-vertex dominator for VX , since it would imply there is a path from
a node in VX to the root which does not contain any vertex in M .

Lets repeat the steps 1–3 above until no more edges can be picked. In
the end, we will have a circuit graph C ′ that still represents function f , but
in which every path from a node v in G to the root contains a node in M .
Lets call vh the root of C ′. The graph is now similar to the one shown in
Figure 4.12. We can “split” the graph C ′ by creating k new primary input
vertices g1,g2,. . .,gk, and replacing every edge (vgi

, u), 1 ≤ i ≤ k, with an

50 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

edge (gi, u). The resulting graph has k + 1 root nodes {vh, vg1 , . . . , vgk
},

representing functions {h, g1, . . . , gk} in equation (4.7).

Theorem 4 allows us to reduce the problem of computing non-disjoint
decompositions to the problem of computing multiple-vertex dominators. In
the next section, we show that the problem of computing all multiple-vertex
dominators of a fixed size can be solved in polynomial time.

Computing Multiple-Vertex Dominators

It is possible to compute all single-vertex dominators for a directed graph
in time less than quadratic in the number of vertices. For example, the
well-known Lengauer-Tarjan algorithm [103] has the worst-case complexity
O(n · log n). However, algorithms for computing all multiple-vertex domi-
nators for a directed graph have exponential worst case complexity [77]. A
subset of immediate multiple-vertex dominators can be computed in O(n2)
time [5], but immediate dominators are not particularly interesting from
the decomposition point of view. Good decompositions require multiple-
vertex dominators of a small size k which are common for large sets VX .
The following theorem shows that it is possible to compute multiple-vertex
dominators of a fixed size in polynomial time.

Theorem 5. If there exists an O(τ(n)) algorithm for computing all single-
vertex dominators, then there exists an O(nk−1τ(n)) algorithm for com-
puting all multiple-vertex dominators of size k.

Proof. See Paper D, included in this thesis on page 113.

If the Lengauer-Tarjan algorithm [103] is used for computing single-
vertex dominators, then the set of multiple-vertex dominators can be ob-
tained in O(nk log n) time. Clearly, the simple algorithm constructed in the
proof will not be feasible for large circuit graphs if k > 2. However, for small
k, even this straightforward approach gives good results. Many practical ap-
plications of decomposition require only small values of k (e.g. multi-level
logic synthesis [136, 161], or FPGA technology mapping [132, 41]).

Our experiments support the claim that the problem of computing non-
disjoint decompositions of Boolean functions can be solved efficiently using
multiple-vertex dominators. They also show that the technique can decom-
pose functions for which BDDs cannot be build, such as the 16-bit multiplier

4.3. CIRCUIT BASED NON-DISJOINT DECOMPOSITION 51

C6288 from the IWLS’02 benchmark set. The details of the experiments can
also be found in Paper D, included in this thesis on page 113.

52 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

4.4 Efficient Circuit Re-Synthesis

Paper E, on page 123, presents a technique to transform the original circuit
implementing f(X,Y) into a circuit implementing the decomposed repre-
sentation h(g(X), Y). Previous algorithms [161, 99, 111] computed circuits
for the decomposed representation from BDDs of g and h, by applying var-
ious BDD-to-circuit transformation techniques. The algorithm presented in
Paper E uses BDDs only for an analysis of the decomposition. The actual
synthesis of the circuits for g and h is done by restricting the original circuit
with respect to a given assignment of input variables. This guarantees that
the sizes of the circuits of g and h are strictly smaller than the size of the
original circuit.

In the sequel, let X be a bound set for f and let Gg and Gh be BDDs rep-
resenting the functions g and h in the decomposition f(X,Y) = h(g(X), Y).
These BDDs are computed by the slicing method introduced in Section 4.1.

Constructing the circuit for h

Suppose x̂ is an assignment of variables of X leading to the 0-terminal node
in Gg. Then g(x̂) = 0, and thus f(x̂, Y) = h(g(x̂), Y) = h(0, Y). Therefore,
a circuit implementing the co-factor h0 = h(0, Y) can be obtained from
the circuit implementing f by applying the assignment x̂ to the inputs X

and propagating the constants through the circuit using the usual reduction
rules:

• If an OR (AND) gate has one of its inputs assigned to 1 (0), it is
replaced by constant 1 (0);

• If an OR (AND) gate has one of its inputs assigned to 0 (1), this input
is removed.

Similarly, the circuits implementing co-factors hi(Y), i ∈ {1, 2, . . . , k−1},
can be obtained by propagating an assignment of variables of X leading to
i-terminal node of Gg. Recall that g is a function of type g : {0, 1}|X| →
{0, 1, ..., k − 1}, so Gg is a multi-terminal BDD with k terminal nodes.

In general, different assignments x̂ result in different circuits for hi(Y).
To maximize the sharing of common logic of the i circuits implementing
co-factors hi(Y), i ∈ {0, 1, . . . , k − 1}, i assignments x̂i are chosen so that
they differ in the fewest number of bit positions.

4.4. EFFICIENT CIRCUIT RE-SYNTHESIS 53

The decomposition h(g(X), Y) is obtained by combining the co-factors
in a Shannon expansion as follows:

h(g(X), Y) =

k−1
∑

i=0

gi1
1 (X)gi2

2 (X) . . . gir
r (X)hi(Y) (4.8)

where (i1, i2, . . . , ir) is the binary expansion of i, r = ⌈log2 k⌉, and the term

g
ij
j is defined by

g
ij
j =

{

gj if ij = 1

gj otherwise

for j ∈ {1, 2, . . . , r}.
The circuit implementing expression (4.8) is constructed by feeding the

co-factors hi(Y) into a multiplexer with k control inputs g1(X), g2(X), . . . , gr(X).

As an example, consider the BDD shown in Figure 4.13. This BDD
represents the function

f = (x′
0 + x′

1)(x
′
2x

′
3) + x2(x3(x

′
0 ⊕ x1) + x′

4) + x0x1x
′
4.

The cut line shows that {x0, x1, x2} is a bound set for f . Let’s see how
to structurally decompose function f with the information provided by its
BDD representation. We have to find assignments of {x0, x1, x2} such that
the path represented by each of the assignments reaches each of the sub-
functions {h0, h1, h2}. In this case, when x0 = 1, x1 = 1, and x2 = 1 we
reach sub-function h1. This means that by making such assignment and
propagating the constants, we will obtain function h1:

h1 = f [x0 ← 1, x1 ← 1, x2 ← 1]

= (1′ + 1′)(1′x′
3) + 1(x3(1

′ ⊕ 1) + x′
4) + 1 1x′

4

= x3 + x′
4.

Similarly, when x0 = 1, x1 = 1, and x2 = 0 we reach sub-function h0:

h0 = f [x0 ← 1, x1 ← 1, x2 ← 0]

= (1′ + 1′)(0′x′
3) + 0(x3(1

′ ⊕ 1) + x′
4) + 1 1x′

4

= x′
4.

54 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

0
x

1
x

3
x

2
x

4
x

1
x

2
x

2
x

3
x

1 0

(a) BDD representation for f

ր

ց

0
x

1
x

2
x

1
x

2
x

2
x

1

0

2

(b) Function g

3
x

4
x

3
x

1 0

(c) Function h

Figure 4.13: Binary decision diagrams representing the function f = (x′

0
+

x′

1)(x
′

2x
′

3) + x2(x3(x
′

0 ⊕ x1) + x′

4) + x0x1x
′

4 and an example decomposition. The
bound set is {x1, x2, x3}, and the free set {x3, x4}.

4.4. EFFICIENT CIRCUIT RE-SYNTHESIS 55

When x0 = 1, x1 = 0, and x2 = 0 we reach sub-function h2:

h2 = f [x0 ← 1, x1 ← 0, x2 ← 0]

= (1′ + 0′)(0′x′
3) + 0(x3(1

′ ⊕ 0) + x′
4) + 1 0x′

4

= x′
3.

Finally, we construct h. Thus,

h(g0, g1, x3, x4) = g′0g
′
1h0 + g′0g1h1 + g0g

′
1h2 + g0g1h2

= g′0(g
′
1x

′
4 + g1(x3 + x′

4)) + g0x
′
3

= g′0(g1x3 + x′
4) + g0x

′
3.

In the next section, we will consider the problem of constructing the cir-
cuits for the functions g1(X), g2(X), . . . , gr(X) encoding the k-valued func-
tion g(X).

Constructing the circuit for g

Suppose that ŷ is an assignment of variables of Y such that hi(ŷ) 6= hj(ŷ)
for some i, j ∈ {0, 1, . . . , k− 1}, i 6= j. Then f(X, ŷ) = h(g(X), ŷ) where the
co-factor h(g(X), ŷ) is neither constant 0, nor constant 1, i.e. it depends on
g(X).

Since h is a function of type {0, 1, ..., k − 1} × {0, 1}|Y | → {0, 1}, the co-
factor h(g(X), ŷ) is a function of type {0, 1, ..., k − 1} → {0, 1}. Note that,
for k = 2, h(g(X), ŷ) is either an identity, or a complement. Since, for a
given bound set X, the function g(X) is unique up to complementation [7],
both g(X) and g(X) can be used for the decomposition. Thus, at this step,
the problem of constructing the circuit for g(X) is solved for k = 2. For
larger values of k, the following strategy is used.

The k-valued function g(X) can be expressed as

g(X) =
k−1
∑

i=0

i · gi(X)

where gi : {0, 1, . . . , k − 1}|X| → {0, 1} are multiple-valued literals defined
as:

gi(X) =

{

1 if g(X) = i

0 otherwise

56 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

For a given encoding of the k possible values of g(X), each of the func-
tions g1(X), g2(X), . . . , gr(X), r = ⌈log2 k⌉, encoding g(X), can be repre-
sented as a sum of some literals gi(X)’s. For example, if k = 4 and the en-
coding is 0 = (00), 1 = (01), 2 = (10), 3 = (11), then g1(X) = g2(X)+g3(X)
and g1(X) = g1(X) + g3(X).

Consider a decomposition chart of h(g(X), Y) with columns representing
k values of g(X) and the rows representing all combinations of the variables
of Y . Any non-constant row of h(g(X), Y) represents a sum of some literals
gi(X), i ∈ {0, 1, . . . , k − 1}.

In the best case, there exist rows in the decomposition chart correspond-
ing directly to the encoded functions g1(X), g2(X), . . ., gr(X). If h(g(X), ŷ)
= gj(X) for some assignment ŷ of the variables of Y , then the circuit imple-
menting gj(X) can be obtained from the circuit implementing f by applying
the assignment ŷ to the inputs Y and propagating the constants.

In the worst case, the literals gi(X), i ∈ {0, 1, . . . , k − 1}, need to be
computed by ANDing selected rows of h(g(X), Y). Afterwards, the functions
g1(X), g2(X), . . ., gr(X) are obtained as a combination of gi(X).

Let us return to the example started on page 53. In order to obtain
function h, according to the explanation above, we produce a table that
shows the values taken by the sub-functions h0, h1, and h2 for different
values of the variables in the free set {x3, x4}.

x3 x4 0 1 2
0 0 1 1 1
0 1 0 0 1 ← g0

1 1 0 1 0 ← g1

1 0 1 1 0

The row marked g0 allows us to discriminate the paths that go to h0 or
to {h1, h2}. Similarly, the row marked g1 allows us to discriminate the paths
that go to h2 or to {h0, h1}. This is enough to discriminate the paths going
to each of the three hi functions: when g0 = 1 we select h0, when g0 = 0
and g1 = 0 we select h1, when g0 = 0 and g1 = 1 we select h2 (see the paths
marked with thick lines in fig. 4.13(b)). In order to obtain the function g0,
we make x3 = 0, x4 = 1 and propagate the constants (Fig. 4.14(a))

4.4. EFFICIENT CIRCUIT RE-SYNTHESIS 57

x0

x1 x1

x2 x2x2

1 0

0

(a) g0

x0

x1 x1

x2 x2x2

0 1

0

(b) g1

Figure 4.14: Binary encoding of function g.

g0 = f [x3 ← 0, x4 ← 1]

= (x′
0 + x′

1)(x
′
20

′) + x2(0(x
′
0 ⊕ x1) + 1′) + x0x11

′

= (x′
0 + x′

1)x
′
2.

In a similar way, we obtain g1 by making x3 = 1, x4 = 1 and by propagating
the constants (Fig. 4.14(b))

g1 = f [x3 ← 1, x4 ← 1]

= (x′
0 + x′

1)(x
′
21

′) + x2(1(x
′
0 ⊕ x1) + 1′) + x0x11

′

= (x′
0 ⊕ x1)x2.

To summarize, the re-synthesis technique described in this section works
by structurally partitioning the original circuit representation according to
the information provided by the partitioned BDD blocks. After all the blocks
have been recovered, the BDDs are not needed and can be discarded. The
resulting circuit is proportional to the original circuit representation, and
not to the intermediate BDD representation. This is an advantage because
BDDs can grow exponentially in some cases, and therefore decomposition
algorithms which synthesize the circuit directly from BDDs may cause an
exponential increase in the circuit’s size. To cope with this space explosion,

58 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

each block of the partitioned circuit has to be re-synthesized before further
processing. The extra re-synthesis, on the other hand, may impose a pro-
hibitive time/space penalty on the design flow. The presented approach is
free from these problems.

4.5. ON THE RELATION OF BOUND SETS AND BEST... 59

4.5 On the Relation of Bound Sets and Best

Orderings

The result we present in Paper F, on page 131, is of theoretical interest,
and answers a long standing question regarding the relation between the
bound sets of a Boolean function and the best variable orderings for its
corresponding BDD representation.

BDDs have proved to be an efficient data structures for representation
and manipulation of Boolean functions for logic synthesis, testing and ver-
ification. Although a function may require, in the worst case, a BBD of
size exponential in the number of variables, many practical functions have
a representation which is linear in the number of variables [30].

As we mentioned in Section 2.3, a major concern with BDDs is that the
size of the graph varies for different variable orderings and, for some func-
tions, it is highly sensitive to the ordering. For example, BDDs representing
adders have exponential number of nodes in the worst case and linear num-
ber of nodes in the best case. Hence, care must be taken to select a suitable
ordering for the variables, minimizing the size of the graph.

The problem of computing a best variable ordering is known to be co-
NP-complete [72], and therefore heuristic algorithms are used in practice.
Many ordering heuristics analyze the structure of the logic circuit, imple-
menting the function under consideration, and use its underlying topology
to determine a best ordering [30, 110]. However, if there is no circuits to
refer to, finding a good order is more difficult. It happens, for example,
when computing the set of reachable states of a finite state machine from
an initial state. Many intermediate BDDs are generated and, if no suitable
ordering is found, their size may grow too large and exceed the peak memory
limit.

If there is no circuit to refer to, then some properties of the function must
be used to guide the ordering of the variables. Several different strategies
have been investigated in this respect. In [88], it has been observed that
symmetric variables tend to be adjacent in the best orderings. A number
of heuristics for finding best orderings utilizing this property have been
developed, including [122] and [125]. However, a counterexample has been
shown in [125] of a function for which no order with the symmetric variables
adjacent is best.

In [117], it has been shown that minimizing width of a ROBDD often

60 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

leads to a reduction in the number of nodes. The width on a given level of a
ROBDD is defined as a number of distinct nodes in the lower block that are
adjacent to the boundary between the two blocks. Minimal-width strategy
has been used in the heuristic for finding a best variable ordering from [117].
However, in [64] a counterexample has been shown, giving a function for
which no minimal-width ordering is best.

In [87], it was suggested to keep adjacent the variables from the bound
sets of the function which are explicitly given by its composition tree. Re-
call from Section 3.1 that the composition tree of a Boolean function is a
structure reflecting all its non-overlapping bound sets.

We call an ordering preserving all bound sets from a composition tree
bound-set preserving .

Let 〈X〉 denote a set of variable orderings induced by all possible per-
mutations over the set X. Then, the main result of [87] is given by the
following theorem:

Theorem 6 ([87]). If f : B
n → B has a decomposition of type

f(X) = g(h1(Y1), h2(Y2), . . . , hk(Yk));

where {Yi}, 1 ≤ i ≤ k, is a partition of X = {x1, . . . , xn}, the functions hi

are of type hi : B
|Yi| → B, and function g is of type g : B

k → B, then there
exists a variable ordering belonging to the set 〈〈Y1〉, 〈Y2〉, . . . , 〈Yk〉〉 which is
best.

Our Paper F presents a counter-example to Theorem 6. The counter-
example is constructed by showing a function f which has a decomposition
of type

f = g(h1(Y1), h2(Y2), h3(Y3), h4(Y4), xm);

where {Y1, Y2, Y3, Y4, xm} is a partition of X; and g is a function

g = h3(h4(h
′
2 + x′

m) + h′
1xm) + h′

3(h4xm + h1(h2 ⊕ xm)),

where hi(Yi) =
∨

j∈Yi
xj , i ∈ {1, 2, 4}, h3(Y3) = (h31(Y31)⊕ xk)

′, h31(Y31) =
∨

j∈Y31
xj , Y31 = Y3 − {xk}, and “⊕” stands for XOR. We also require that

the BDDs for h1, h2, and h4 are much larger than the BDD for h3,

|Gh1 | = |Gh2 | = |Gh4| >> |Gh3|.

4.5. ON THE RELATION OF BOUND SETS AND BEST... 61

1
h

31
h

31
h

31
h

2
h

m
x

m
x

m
x

m
x

m
x

m
x

k
x

k
x

k
x

k
x

4
h

0 1

Figure 4.15: The structure of Gf for any of the best variable orderings.

Under these conditions, the set of all bound-set-preserving orderings of the
BDD Gf is given by

〈〈Y1〉, 〈Y2〉, 〈〈Y31〉, xk〉, 〈Y4〉, xm〉.

We show, however, that the set of best variable orderings for this function
is

(〈Y1〉, 〈Y2〉, 〈Y31〉, xm, xk, 〈Y4〉).

None of these orderings is bound-set-preserving, thus contradicting the
claim in [87]. The structure of Gf for any of these best variable orderings

62 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

is illustrated in Figure 4.15. In this figure, the nodes shaped as a triangle
represent sub-graphs that are omitted for clarity, and the circular nodes
represent variables in the usual manner.

4.6. FROM NATURE TO ELECTRONICS: KAUFFMAN... 63

4.6 From Nature to Electronics: Kauffman

Networks

Paper G, on page 139, is a look into the future. It presents an algorithm that
improves the state-of-the-art in the analysis of Random Boolean Networks
(RBN s). RBNs are used in a number of applications in biology and physics,
including cell differentiation, immune response, evolution, gene regulatory
networks and neural networks.

The paper also presents an idea on how this genetic system could be used
as a new and general model of computation. The compositional properties
of this model, that we have just started to uncover, will certainly challenge
our knowledge of functional decomposition.

Motivation

The exponential improvement in speed and integration of silicon transis-
tor technology is expected to slow down as devices approach nanometer
dimensions [116]. The search for functional nanometer-scale structures led
to the exploration of alternative computation schemes. A number of de-
vices based on gating the flow of electrons have been proposed, includ-
ing quantum dots [76], organic molecules [152], carbon nanotubes [156],
nanowires [84], and the motion of single atoms or molecules [68]. Other
computation schemes, operating on different principles, include electrons
confined in quantum dot cellular automatons [104, 6], magnetic dot cellu-
lar automatons [46], and solutions of interacting DNA molecules [105, 31].
Computation can also be performed by purely mechanical means [58, 80],
as in the calculating engine of Babbage [148].

We consider a possibility of a computation scheme based on random
Boolean networks (RBNs). An RBN is a synchronous Boolean automaton
with n vertices. Each vertex has k incoming edges, selected at random, and
an associated Boolean function. Functions are selected so that they evaluate
to the values 0 and 1 with given probabilities p and 1− p, respectively.

Our interest in RBNs is due to their attractive fault-tolerant features.
The parameters of an RBN can be tuned so that the network exhibits self-
organized critical behavior ensuring both stability and evolutionary improve-
ments. On one hand, different kind of faults, e.g. a change in the state of a
particular vertex, or connection, typically cause no variations in network’s

64 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

dynamics. On the other hand, if a sufficient number of mutations is al-
lowed, a network can adopt to the changing environment by re-configuring
its structure.

Background on RBN

RBNs were introduced by Kauffman in 1969 in the context of gene expression
and fitness landscapes [92]. Later, they were applied to the problems of
cell differentiation [83], immune response [94], evolution [28], and neural
networks [8, 4]. They have attracted the interest of physicists due to their
analogy with the disordered systems studied in statistical mechanics, such
as the mean field spin glass [54, 52, 53].

The parameters k and p determine the dynamics of an RBN. If a vertex
controls many other vertices, and the number of controlled vertices grows
in time, the RBN is said to be in a chaotic phase [109]. Typically such a
behavior occurs for large values of k ∼ n. The next states of the RBN are
random with respect to the previous ones. The dynamics of the network
is very sensitive to changes in the state of a particular vertex, associated
Boolean function, or network connections.

If a vertex controls only a small number of other vertices and their num-
ber remains constant in time, the RBN is said to be in a frozen phase [70].
Usually, independently on the initial state, after a few steps, the network
reaches a stable state. This behavior usually occurs for small values of k,
such as k = 0 or 1.

There is a critical line between the frozen and the chaotic phases, when
the number of vertices controlled by a vertex grows in time, but only up
to a certain limit [10]. Statistical features of RBNs on the critical line are
shown to match the characteristics of real cells and organisms [92, 93]. The
minimal disturbances create typically only slight variations in the network’s
dynamics. Only some rare perturbations evoke radical changes.

For a given probability p, there is a critical number of inputs kc below
which the network is in the frozen phase and above which the network is in
the chaotic phase [54]:

kc =
1

2p(1− p)
. (4.9)

4.6. FROM NATURE TO ELECTRONICS: KAUFFMAN... 65

GRN RBN

modeling removal
redundancy

analysis

synthesisredundancy
addition

implementation

RBN
reduced State

space

Figure 4.16: Solid and dotted arrows show solved and open problems, re-
spectively.

Contribution and Future Work

Paper G presents an efficient algorithmic framework for the simulation of
large RBNs. The presented algorithm for computing attractors uses BDDs
to represent the state space of the network implicitly. This allows us to ob-
tain exact results for much larger networks than previously possible. Previ-
ous algorithms could only handle networks with less than 32 non-redundant
vertices [11, 157, 19, 143]. For larger networks, the median instead of the
exact values on the number of attractors was computed by simulation [143].

The ideas we describe are preliminary, and more research is needed to
justify them. Figure 4.16 summarizes what remains to be done. Solid arrows
show the problems which have been solved (partially or completely). These
are the problem of removing redundant vertices from an RBN and the prob-
lems related to the analysis of the state space of an RBN, e.g. computing
attractors.

Dotted arrows show the problems which have not been solved yet. Syn-
thesis is the problem of constructing a reduced RBN which realizes the func-
tionality specified by a given state transition graph. Redundancy addition
is the problem of adding redundancy to a reduced RBN so that resulting
RBN exhibits critical line behavior. Modeling and implementation are the
problems of deriving an RBN model of a given Gene Regulatory Network
(GRN), and designing a GRN corresponding to the behavior of a given RBN,
respectively. The level of understanding of the organizing principles of gene
regulation and signal transduction networks in cells needs to be advanced be-
fore the modeling and implementation problems can be addressed. Then, a
functional nano-scale device operating on the principles of gene interactions
may become a reality.

66 CHAPTER 4. CONTRIBUTIONS IN THIS DISSERTATION

4.7 Conclusion and Open Problems

Each of the seven papers included in this dissertation indicates open prob-
lems and paths to follow that are still relevant after their publication.

In general, and regarding the decomposition algorithms presented herein,
there are two major lines for future work. One of them involves integrating
these algorithms into existing logic synthesis tools in order to explore the
best way to use these techniques in an industrial setting. It is important
to ascertain the influence of early stages in the design flow over the per-
formance and applicability of our techniques, and also to find the ways to
maximize the optimization that following stages may achieve as a result of
our manipulation of the circuit. The other line is, of course, improving the
algorithms themselves. There is still plenty of room for optimization we
have not yet implemented and for improvements on theoretical grounds we
have not yet discovered. In particular, ongoing work includes developing a
more efficient algorithm for computing multiple-vertex dominators.

Regarding the Random Boolean Networks presented in our last paper,
they offer a wealth of new lines of work. Compositionality is not as straight-
forward to define in this context as it is in the case of CMOS based electron-
ics. Due to the particular way inputs and outputs are represented within
this model (inputs are bits, outputs are “fixed points” or sub-graphs) there
is no unique way in which one can define compositionality. It is far from
clear which of these alternative views will yield the best practical results.
In turn, each of these possible definitions of compositionality will lead to
decomposition techniques quite diverse from the ones that have proved so
successful in CMOS technology. There is indeed an exciting research future
in this area.

Chapter 5

Complete List of

Publications

The following is the complete list of publications produced during my PhD
studies. A star ⋆ indicates the publications included in this thesis. I also give
the details of my specific contributions to each of the publications marked.

2005

⋆ Kauffman Networks: Analysis and Applications, E. Dubrova, M.
Teslenko, and A. Martinelli. In Proceedings of the IEEE International
Conference on Computer-Aided Design (ICCAD 2005), November 6–
10, 2005, San Jose, CA, USA, pp. 479–484.

I came out with the idea of applying Kauffman networks to logic syn-
thesis. I also contributed my expertise on BDDs to the implementation
of the algorithm for computing attractors.

An Efficient Structural Technique for Boolean Decomposition, A.
Martinelli and E. Dubrova. In Proceedings of SPIE – VLSI Circuits
and Systems II, Vol. 5837, June 2005, Sevilla, Spain, pp. 913–918.

Achieving Fault Tolerance by Cost Bound Decomposition, A. Mar-
tinelli and E. Dubrova. In Proceedings of the Swedish System-on-Chip
Conference (SSoCC’05), April 18–19, 2005, Tammsvik, Sweden.

⋆ Bound Set Selection and Circuit Re-Synthesis for Area/delay
Driven Decomposition, A. Martinelli and E. Dubrova. In Proceed-

67

68 CHAPTER 5. COMPLETE LIST OF PUBLICATIONS

ings of the Design and Test in Europe Conference 2005 (DATE’05),
interactive presentation, March 7–11, 2005, Munich, Germany, pp.
430–431.

The idea as well as the implementation of the algorithm in this paper
are mine.

⋆ Bound-set Preserving ROBDD Variable Orderings May Not
Be Optimum, M. Teslenko, A. Martinelli, and E. Dubrova. In IEEE
Transactions on Computers, Vol. 54, number 2, pp. 236–238, February
2005.

The problem addressed by the paper was investigated by the three au-
thors over a long period of time (about four years). The counterexam-
ple itself is due to the first author, M. Teslenko.

2004

⋆ On Relation Between Non-Disjoint Decomposition and Multiple-
Vertex Dominators, E. Dubrova, M. Teslenko, and A. Martinelli. In
Proceedings of IEEE International Symposium on Circuits and Sys-
tems (ISCAS 2004), May 23–26, 2004, Vancouver, Canada, pp. 493–
496.

The idea of this paper was originated by the first author, E. Dubrova.
Together with the second author, M. Teslenko, I contributed to the im-
plementation of the algorithm and conducted experiments to evaluate
it.

⋆ Disjoint-Support Boolean Decomposition Combining Functional
and Structural Methods, A. Martinelli, R. Krenz, and E. Dubrova.
In Proceedings of the IEEE Asia and South Pacific Design Automation
Conference 2004 (ASP-DAC 2004), January 27–30, 2004, Yokohama,
Japan, pp. 183–189.

I proposed the idea of using the combined approach, and produced the
tool which integrated the functional and structural algorithms. I also
implemented the functional algorithm, while the structural one was
implemented by R. Krenz.

69

2003

Roth-Karp Decomposition Combining Functional and Structural
Techniques, R. Krenz, A. Martinelli, and E. Dubrova. In Proceedings
of International Workshop on Logic Synthesis 2003 (IWLS’03), pp.
18–23, Laguna Beach, CA, May 2003.

⋆ A BDD-Based Fast Heuristic Algorithm for Disjoint Decompo-
sition, T. Bengtsson, A. Martinelli, and E. Dubrova. In Proceedings
of the IEEE Asia and South Pacific Design Automation Conference
2003, (ASP-DAC 2003), Kitakyushu, Japan, January 2003, pp. 191–
196.

My contributions to this paper are implementing the presented heuris-
tic, together with Tomas Bengtsson, and providing my own implemen-
tation of the exact decomposition algorithm which is used in the exper-
imental results section to evaluate the heuristic.

2002

⋆ Roth-Karp Decomposition of Large Boolean Functions with
Application to Logic Design, A. Martinelli, T. Bengtsson, E. Dubrova,
and A. J. Sullivan. In Proceedings of NORCHIP 2002 (NORCHIP’02),
Copenhagen, Denmark, November 2002, pp. 183–189.

This paper is based on my generalization of the approach from the paper
in IWLS’02 cited below. I also implemented most of the code.

A Fast Heuristic Algorithm for Disjunctive Decomposition of
Boolean Functions, T. Bengtsson, A. Martinelli, and E. Dubrova.
In Proceedings of International Workshop on Logic Synthesis 2002,
(IWLS’02), pp. 51–57, New Orleans, Louisiana, USA, June 2002.

Papers

71

Paper A

A BDD-Based Fast Heuristic
Algorithm for Disjoint

Decomposition

Tomas Bengtsson, Andrés Martinelli, Elena Dubrova. Published in the “Pro-
ceedings of the IEEE Asia and South Pacific Design Automation Conference
2003” (ASP-DAC 2003), January, 2003, Kitakyushu, Japan, pp. 191–196.

A BDD-Based Fast Heuristic Algorithm for Disjoint

Decomposition

Tomas Bengtsson∗ Andrés Martinelli† Elena Dubrova†

Abstract

This paper presents a heuristic algorithm for disjoint decomposition of a Boolean
function based on its ROBDD representation. Two distinct features make the algo-
rithm feasible for large functions. First, for an n-variable function, it checks only
O(n2) candidates for decomposition out of O(2n) possible ones. A special strategy
for selecting candidates makes it likely that all other decompositions are encoded
in the selected ones. Second, the decompositions for the approved candidates are
computed using a novel IntervalCut algorithm. This algorithm does not require re-
ordering of ROBDD. The combination of both techniques allows us to decompose
the functions of size beyond that possible with the exact algorithms. The experimen-
tal results on 582 benchmark functions show that the presented heuristic finds 95%
of all decompositions on average. For 526 of those functions, it finds 100% of the
decompositions.

A.1 Introduction

The disjoint decomposition of a Boolean function is a representation of type
f(X) = h(g(Y), Z) with Y and Z being sets of variables partitioning the set
X. Disjoint decomposition has many applications in computer science and
discrete mathematics, including logic synthesis (decomposition of Boolean
functions), reliability theory (decomposition of coherent systems [22]), game

∗Jönköping University, Embedded systems/ING, Jönköping, Sweden
†Royal Institute of Technology, IMIT/KTH, Stockholm, Sweden

75

76 APPENDIX A. A BDD-BASED FAST HEURISTIC ...

theory (decomposition of simple n-persons games [139]) and combinatorial
optimization problems over graphs and networks (see [121] for an overview).

This wide range of applications makes it important to have efficient algo-
rithms for finding all, or at least some, decompositions for a given structure.
Fast decomposition algorithms are known for binary relations and graphs
[23, 47, 78]. For Boolean functions, however, the existing methods either
involve the solution of an NP-complete problem (as in [20]) or have expo-
nential running time [55, 141, 142, 150]. More recent ROBDD-based decom-
position algorithms, including [15, 118, 113], show much better average-time
performance.

This paper presents a heuristic algorithm targeting to find all disjoint
decompositions of an n-variable Boolean function represented by a ROBDD.
The heuristic is based on two properties: (1) all decompositions of a Boolean
function (which can be O(2n)) can be uniquely described by a certain subset
of decompositions A (which is only O(n)); (2) there exist a best variable
ordering for a ROBDD in which the variables Y from any decomposition
f(X) = h(g(Y), Z) belonging to A are adjacent.

If we had such a best ordering, we could examine all its linear intervals
to find which Y results in a decomposition f(X) = h(g(Y), Z). However,
computing best orderings is infeasible for large functions. The algorithm
presented in this paper is heuristic because it starts from a “good” ordering
which is not necessarily keeping the variables Y adjacent. The experimental
results show that if sifting ordering algorithm [131] is used to get a “good”
initial order, then our heuristic finds 95% of all decompositions on average.
The presented heuristic algorithm is also able to decompose functions which
are too large for the exact algorithms.

A.2 Previous work

The first major investigation on the subject was carried out by Ashen-
hurst [7]. He studied simple disjoint decomposition f(X) = h(g(Y), Z) for
Boolean functions f, g, h : Bn → B, where B = {0, 1}. Ashenhurst’s fun-
damental contribution is a theorem which states that any Boolean function
has a unique disjoint tree-like decomposition such that all possible simple
disjoint decompositions of f are exhibited.

Curtis [48] and Roth and Karp [130] extended Ashenhurst theory to
the decomposition of type f(X) = h(g(Y), Z) with g,H being multiple-

A.2. PREVIOUS WORK 77

valued functions of type g B|Y | → M and h M × B|Z| → B, where M =
{0, 1, ...,m − 1}. The function g can be encoded by k = ⌈log2 m⌉ Boolean
functions g1, g2, . . . , gk, giving a decomposition of the form

f(X) = h(g1(Y), . . . , gk(Y), Z),

often referred to as Roth-Karp decomposition. Unfortunately Ashenhurst’s
main theorem does not extend directly to multiple-valued functions (for a
counterexample see chapter 4 of [60]). A consequence of this is that there
is no unique disjoint tree-like Roth-Karp decomposition. Von Stengel [154]
has defined a class of multiple-valued functions for which Ashenhurst’s main
theorem holds.

Early algorithms for decomposition used decomposition charts [7], [48].
The decomposition chart for f(Y,Z) is a two-dimensional table where the
columns represent all combinations of the variables from the set Y and the
rows represent all combinations of the variables from the set Z. The set Y

is a bound set if and only if the chart has column multiplicity at most two,
i.e. there are at most two distinct columns in the chart [7].

In a short time, decomposition charts were abandoned in favor of cube
representation [90]. The task of computing column multiplicity on charts
was replaced by the task of computing compatible classes for a set of cubes.
Two assignments x1, x2 ∈ B|Y | are said to be compatible with respect to the
reference function f(Y,Z) if, for all y ∈ B|Z| such that f(x1, y) and f(x2, y)
are defined, f(x1, y) = f(x2, y) [90]. The set Y is a bound set if and only if
B|Y | can be partitioned into k ≤ 2 mutually compatible classes [90]. If f(X)
is completely specified, then compatibility is an equivalence relation and k is
the number of equivalence classes. It is easy to see the one-to-one mapping
between a column in a decomposition chart and a compatible class.

Due to the exponential size of decomposition charts and cube representa-
tions, early decomposition algorithms were rarely applied to large practical
circuits. Instead, algebraic methods were used [33]. ROBDDs [36] made pos-
sible developing new algorithms for decomposition, feasible for much larger
functions than previously possible.

In a ROBDD, the column multiplicity can be easily computed by moving
the variables Y to the upper part of the graph and checking the number of
children below the boundary line, usually called cut line. The decomposition
f(X) = h(g(Y), Z) exists if and only if there are only two children below
the cut line [132].

78 APPENDIX A. A BDD-BASED FAST HEURISTIC ...

This approach has been adopted by a number of BDD-based decompo-
sition algorithms [132, 99, 41, 135]. Stanion and Sechen [146] used cut to
find quasi-algebraic decomposition of the form f(X) = g(Y) ⊙ h(Z), where
”⊙” is any binary Boolean operation and |Y ∪ Z| = k for some k ≥ 0. This
type decomposition is often referred to as bi-decomposition [159, 119].

BDD-based decomposition algorithms following cut-strategy proved to
be orders of magnitude faster than those based on decomposition charts and
cube representations. However, they require reordering of variables of BDD
to move the variables on the top or to check bi-decompositions for partition-
ings which are not consistent with the variable order. As an alternative, a
number of methods use the fact that BDDs themselves are a decomposed
representation of the function and exploit the structure of BDDs, rather
than cut, to find disjoint decompositions. Karplus [91] extended the clas-
sical concept of dominator on graphs [103] to 0,1-dominators on BDDs. A
node v is a 1-dominator (0-dominator) if every path from the root to one
(zero) terminal node contains v. If v is a 1-dominator, then the function rep-
resented by the BDD possesses a conjunctive (AND) decomposition. If v is a
0-dominator, then the function can be decomposed disjunctively (OR). This
idea was extended by Yang et al [161] to XOR-type decompositions and to
more general type of dominators. Minato and De Micheli [118] presented an
algorithm which computes disjoint decompositions by generating irreducible
sum-of-product for the function from its BDD and applying factorization.
The algorithm of Bertacco and Damiani [15] makes a single traversal of
the BDD to identify the decomposition of the co-factors and then combine
them to obtain the decomposition for the entire function. The algorithm is
impressively fast; however, as Sasao has observed in [133], it fails to com-
pute some of the disjoint decompositions. This problem was corrected by
Matsunaga [113], who added the missing cases in [15] allowing to treat the
OR/XOR functions correctly. The algorithm [113] appears to be the fastest
of existing exact algorithms for finding all disjoint decompositions.

A.3 New heuristic algorithm

The new heuristic algorithm is based on the following two properties.

Proposition 1. All disjoint decompositions of an n-variable Boolean func-
tion can be uniquely described by a certain subset of disjoint decompositions
A. The size of A is O(n).

A.3. NEW HEURISTIC ALGORITHM 79

Proposition 2. There exist a best variable ordering for a ROBDD for f in
which the variables Y from any decomposition f(X) = h(g(Y), Z) belonging
to A are adjacent.

Property 1 follows from the results of [154]. We describe these results
briefly in Section A.3. Property 2 follows from the main theorem of [59].

The presented algorithm examines all linear intervals of variables from
a given ordering of a ROBDD and, for each interval Y , checks whether it is
a bound set. The procedure IntervalCut described in Section A.3, is used
to perform the checking as well as to compute the functions g and h in the
resulting decomposition f(X) = h(g(Y), Z).

Properties of the disjoint decomposition

This section describes the properties of the disjoint decomposition from
[154], implying Property 1. The formulation of the definitions and theo-
rems is adjusted to the notation of this paper.

Definition A.3.1: A bound set Y of f(X), Y ⊂ X, is strong if any other
bound set of f(X) is either a subset of Y , a super-set of Y , or disjoint to Y .

The partial order induced by set theoretical inclusion between pairs of
strong bound sets of f defines a tree.

Definition A.3.2: The decomposition tree T (f) of f(X) is a tree whose nodes
represent all strong bound sets of f(X), related by inclusion. Any node has
two labels:
(a) a type, which is either “prime” or “full”,
(b) an associated function.

The following Theorem shows how decompositions of a function can be
derived from its decomposition tree and characterizes the functions associ-
ated with the nodes. It also states that the decomposition tree is unique
for a given function (up to isotopy/isomorphy). Remind that two Boolean
functions are isotopic if they are identical up to complementation of vari-
ables or function values. Two binary operations ◦ and • are isomorphic if
there is a bijection φ : B → B such that φ(a ◦ b) = φ(a) • φ(b).

Theorem 7. Let T (f) be the decomposition tree of a Boolean function f(X)
with support set X. Let Y1, . . . , Yk be the children of the root X. Then f(X)
has a decomposition of type

f(X) = h(g1(Y1), g2(Y2), . . . , gk(Yk))

80 APPENDIX A. A BDD-BASED FAST HEURISTIC ...

21

1,2

1...4

1...6

3 4

5 6

e

g h

P

F

F

a b

c d

Figure A.1: Example of a decomposition tree.

for functions gi : B|Yi| → B (1 ≤ i ≤ k) and h : Bk → B where

(a) h is non-decomposable if X is labeled “prime”,

(b) h is an associative and commutative Boolean operation if X is labeled
“full”,

(c) h is unique up to isotopy in (a) and up to isomorphy in (b).

An example of a decomposition tree is shown in Figure A.1. Abbrevia-
tions “P” and “F” stand for labels “prime”, and “full”, respectively. Letters
a, b, c, d, e, g, h denote the functions associated with the nodes, whereas •
and ◦ denote operations. In accordance with the tree, the complete disjoint
decomposition of the function is

f(x1, . . . , x6) = (c(a(x1), b(x2)) ◦ d(x3) ◦ e(x4)) • g(x5) • h(x6)

with • and ◦ being associative and commutative Boolean operations. a, b,
c, d, e, g, h are non-decomposable Boolean functions. In this case all those
functions except c are unary Boolean functions (identity or complement).

Theorem 7 shows that the decompositions associated with strong bound
sets uniquely represent all disjoint decompositions of a function. These are
the decompositions A of Property 1. It was proved in [120] that the number
of strong bound sets of an n-variable Boolean function is O(n), while the
number of all bound sets is O(2n).

A.3. NEW HEURISTIC ALGORITHM 81

IntervalCut procedure for finding bound sets

Let V be a set of nodes of a ROBDD G of an n-variable function f(X).
Every non-terminal node v ∈ V has an associated variable index, index(v) ∈
{1, . . . , n}. The index of the root node is 1. In order to have a unified
notation in the proof of the main result, we assume that the terminal nodes
also have an index, which is n + 1.

Suppose that all nodes with index ≤ i are in the upper part of the graph
and all nodes with index > i are in the lower part of the graph, for some
i ∈ {1, . . . , n}. The boundary line between the upper and lower parts of
the graph is called cut(i). If the number of nodes with index > i which
are children of the nodes above the cut(i) is two, then the set of variables
Y = {x1, . . . , xi} is a bound set [99].

One possibility to check whether a set of variables Y is a bound set
is to move the variables Y to the top of the ROBDD and then check the
number of children below cut(|Y |), as in [99, 41]. However, re-ordering is
computationally expensive. Instead, we have developed a procedure, called
Interval Cut which checks whether a given linear interval of variables of a
ROBDD is a bound set without reordering. To describe the procedure, we
first introduce some definitions.

Suppose the variables Y lie between two cuts, cut(a) and cut(b), such
that a < b, a, b ∈ {0, . . . , n}. Let cut set(a) denote a set of nodes v ∈ G with
indexes a < index(v) ≤ b which are children of the nodes above the cut(a)
of G. Let Gv stand for a ROBDD rooted at some v ∈ cut set(a). Then,
cut set(bv) is the set of nodes u ∈ Gv with indexes b < index(u) ≤ n + 1
which are children of the nodes of Gv above the cut(b). If |cut set(bv)| = 2,
then gv is a Boolean function represented by the sub-graph rooted at v whose
terminal nodes are obtained by replacing the two nodes of cut set(bv). The
resulting gv is unique up to complementation.

Using this notation, we can describe the pseudo code of the algorithm
IntervalCut(G, a, b) as shown in Figure A.2. Next, we prove that it com-
putes the decompositions correctly.

Theorem 8. Algorithm IntervalCut(G, a, b) computes a decomposition
f(X) = h(g(Y), Z) in O(|cut set(a)| ·max(|gv |)) time, v ∈ cut set(a).

Proof: Let Y be the variables between cut(a) and cut(b), Z1 be the
variables above cut(a) and Z2 be the variables below cut(b). We have Z1 ∪
Z2 = Z and Y ∪ Z = X.

82 APPENDIX A. A BDD-BASED FAST HEURISTIC ...

IntervalCut(G, a, b)
input: ROBDD G of f(X), two cuts cut(a) and cut(b), a < b, a, b ∈ {0, . . . , n}.
output: ”not a bound set” if the set of variables Y between cut(a) and cut(b)
is not a bound set of f(X); functions g and h if Y is a bound set resulting in
f(X) = h(g(Y), Z).

for all v ∈ cut set(a)
if (|cut set(bv)| > 2)

return(”not a bound set”);
for all v1, v2, . . . , vk ∈ cut set(a)

if (gvi
6= gvi+1

) /* up to complementation */
return(”not a bound set”);

h = substitute each sub-graph gv, ∀v ∈ cut set(a), by a node;
g = gv;
return(g, h);

Figure A.2: Pseudo code of the IntervalCut procedure.

Let kv(Z1) be a function which is a sum of all the paths leading to a
node v ∈ cut set(a). Then f can be co-factored with respect to kv as

f(X) =
∑

∀v∈cut set(a)

kv(Z1) · f |kv
(Y,Z2) (A.1)

If |cut set(bv)| = 2, then Y is a bound set for f |kv
so it can be decomposed

as
f |kv

(Y,Z2) = hv(gv(Y), Z2) (A.2)

for some hv, gv . Furthermore, if for all v ∈ cut set(a) the functions gv are
equal up to complementation, then we can denote gv by g and write (A.2)
as

f |kv
(Y,Z2) = hv(g(Y), Z2) (A.3)

From (A.1) and (A.3) we can conclude that f can be represented as

f(X) = h(g(Y), Z)

with h =
∑

∀v∈cut set(a) kv · hv.
Let max(|gv |) be the size of the largest sub-graph representing gv , for

some v ∈ cut set(a). Since substitution of a ROBDD by a node is a
constant-time operation, the complexity of the pseudo code in Figure A.2 is
O(|cut set(a)| ·max(|gv|)).

A.4. EXPERIMENTAL RESULTS 83

�

A.4 Experimental results

To make a thorough evaluation of the presented heuristic, we have imple-
mented an exact decomposition algorithm1 from [67] and applied both, exact
and heuristic versions, to iwls93 benchmark set. For all single outputs, for
which the exact algorithm did not time out2, 582 in total, we have computed
the total number of strong bound sets found by each algorithm. In the first
set of experiments, we used sifting ordering algorithm [131] to get a good ini-
tial order for ROBDDs. The heuristic algorithm has succeeded to find 95%
of all the decompositions on average. For 526 of those 582 single-output
functions, it found 100% of the decompositions. In the second set of exper-
iments, we switched the sifting off, and build ROBDDs using the breadth
first traversal order from the benchmark’s circuit description. For 191 func-
tions out of 582 the result got worse (by 57% on average). Nevertheless, the
heuristic still found all the decompositions for 365 functions.

We have also applied the presented heuristic to the benchmarks reported
in [118], [15] and [113]. The results are summarized in Table A.1. Column 4
shows how many non-trivial strong bound sets are found for each benchmark
by our algorithm. Every output is handled as a separate function. The
number given in Column 4 is the total sum of bound sets for all the outputs.
Columns 5-8 show runtime comparison. Our experiments were run on Sun
Ultra 60 operating with two 360 MHz CPU and with 1024 MB RAM main
storage. The algorithm [118] uses a SUN Ultra 30, [15] uses a PC equipped
with 150 MHz Pentium and 96 MB RAM main storage and [113] uses a PC
with Pentium-II 233Mhz processor.

1We have chosen [67] because this algorithm actually builds decomposition trees. It
computes only O(n) strong bound sets which are the nodes of T (f).

2Time limit 30 min per circuit.

84 APPENDIX A. A BDD-BASED FAST HEURISTIC ...

Table A.1: Experimental results; ”−” indicates that information for the
benchmark is not provided; ”>” indicates that information is only provided
for one of the outputs.

CPU time (sec)

bound presented exact exact exact
name in out sets heuristic alg [118] alg [15] alg [113]

alu2 10 6 3 0.0002 - 0.28 -
alu4 14 8 2 0.0009 - 0.37 0.15
apex1 45 45 83 0.008 59.0 1.01 -
apex2 38 3 16 0.001 5.9 1.14 -
apex3 54 50 23 0.008 44.3 - -
apex4 9 19 4 0.002 - 0.33 -
apex5 114 88 196 0.032 - 2.34 -
apex6 135 99 258 0.008 13.1 2.62 0.41
apex7 49 37 96 0.006 1.7 1.03 0.37
b9 41 21 49 0.001 - - 0.02
C432 36 7 10 0.002 415.4 1.23 0.28
C499 41 32 68 5.2 - 83.47 8.80
C880 60 26 45 0.046 - 2.71 0.92
C1355 41 32 0 5.2 - 91.25 8.87
C1908 33 25 15 0.23 - 7.58 1.42
C3540 50 22 18 2.8 - 21.1 3.48
cmb 16 4 4 0.002 - 0.36 -
CM42 4 10 10 0.0006 - 0.15 -
CM85 11 3 15 0.0003 - 0.27 -
CM150 21 1 1 <0.0001 - 0.51 -
comp 32 3 47 0.002 - 0.71 -
count 35 16 47 0.007 - 0.73 0.01

continued on next page...

A.4. EXPERIMENTAL RESULTS 85

Table A.1 – continued from previous page

CPU time (sec)

bound presented exact exact exact
name in out sets heuristic alg[118] alg [15] alg [113]

dalu 75 16 42 0.015 >0.8 - -
des 256 245 688 0.041 - - 0.36
e64 65 65 63 0.51 - 1.31 -
f51m 8 8 6 0.0004 - 0.26 -
frg2 143 139 532 0.032 19.2 2.86 0.15
k2 45 45 85 0.008 - 1.04 -
lal 26 19 57 0.002 - 0.55 -
misex2 25 18 29 0.003 - 0.57 -
mux 21 1 1 0.0001 - 0.48 -
pair 173 137 725 0.040 - 4.02 7.36
PARITY 16 1 1 0.001 - 0.38 -
rot 135 107 296 0.039 - 22.62 -
seq 41 35 135 0.009 67.8 1.10 -
s298 17 20 15 0.0004 - 0.40 -
s420 35 18 18 0.007 - 0.75 -
s444 24 27 65 0.001 - 0.54 -
s526 24 27 45 0.002 - 0.52 -
s641 54 42 138 0.003 - 1.12 -
s832 23 24 37 0.003 - 0.54 -
s953 45 52 40 0.003 - 20.97 -
s1196 32 32 33 0.002 - 0.71 -
s1238 32 32 33 0.002 - 0.75 -
s1423 91 79 38 0.066 - 12.48 -
s1488 14 25 38 0.002 - 0.36 -
s1494 14 25 38 0.002 - 0.34 -
term1 34 10 65 0.002 - 0.75 -
too large 38 3 17 0.001 >1.0 - 0.09
ttt2 24 21 44 0.002 - 0.55 -

continued on next page...

86 APPENDIX A. A BDD-BASED FAST HEURISTIC ...

Table A.1 – concluded from previous page

CPU time (sec)

bound presented exact exact exact
name in out sets heuristic alg[118] alg [15] alg [113]

vda 39 17 30 0.003 >0.5 0.4 -
x3 135 99 278 0.008 - 2.69 -
x4 94 71 180 0.008 - 1.90 -

A.5 Conclusion

This paper presents a heuristic algorithm for finding disjoint decompositions
of Boolean functions. Benchmark experiments demonstrate the effectiveness
of the described technique.

Future work includes extension of the presented algorithm to Roth-Karp
decomposition. We are also investigating a possibility of combining Inter-
valCut with decomposition algorithms exploiting the structure of BDDs,
like [113].

Acknowledgment

This work was supported in part by IBM Partnership Award.

Paper B

Roth-Karp Decomposition of Large
Boolean Functions with Application

to Logic Design

Andrés Martinelli, Tomas Bengtsson, Elena Dubrova and Andrew J. Sulli-
van. Published in the “Proceedings of the 20st IEEE Norchip Conference
2002” (NORCHIP 2002), Copenhagen, Denmark, November 2002, pp. 183–
189.

Roth-Karp Decomposition of Large Boolean

Functions with Application to Logic Design

Andrés Martinelli∗ Tomas Bengtsson† Elena Dubrova∗

Andrew J. Sullivan‡

Abstract

This paper presents an algorithm for Roth-Karp decomposition of Boolean func-
tions. Roth-Karp decomposition is an extension of classical simple disjoint decom-
position f(X) = h(g(Y), Z) allowing the number of outputs in the extracted logic
block g(Y) to be greater than one. Roth-Karp decomposition has many applications
in CAD, including logic synthesis, testing and verification. Many efficient algo-
rithms for finding all simple disjoint decompositions have been presented. However,
no feasible exact algorithm is known for Roth-Karp decomposition. As a practical
alternative, we propose a heuristic algorithm that quickly finds many, but not all,
Roth-Karp decompositions using a BDD representation of the function. The al-
gorithm does not require time-costly variable reordering of the BDD. An extensive
set of experiments on benchmark functions demonstrates the effectiveness of our
approach.

B.1 Introduction

Most approaches to the logic synthesis of digital systems consist of two
phases: a technology-independent phase that manipulates and optimizes
functions; and a technology-mapping phase that maps functions onto a set of

∗{andres, elena}@imit.kth.se, Royal Institute of Technology, IMIT/KTH, Stockholm,
Sweden

†beto@ing.hj.se, Jönköping University, Embedded systems/ING, Jönköping, Sweden
‡sullia@us.ibm.com, IBM EDA group Fishkill, N.Y., USA

89

90 APPENDIX B. ROTH-KARP DECOMPOSITION ...

gates in a specific target technology. The technology-independent phase for
two-level synthesis, resulting in two-level devices such as programmable logic
arrays, is based on minimization techniques [26]. For multi-level synthesis
decomposition is the essential step in the technology-independent phase,
leading to devices with multi-level structure such as field-programmable gate
arrays [35].

Generally, the problem of decomposition of functions can be formulated
as follows. Given a function f , express it as a composite function of some set
of new functions. Sometimes, a composite expression can be found in which
the new functions are significantly simpler than f . Then the design of a
logic circuit realizing f may be accomplished by designing circuits realizing
the simpler functions of the composite representation, thus reducing the the
overall cost of implementing f .

However, the problem of selecting the “best” decomposition minimizing
the overall cost of realization of a given function appears to be far too difficult
to be solved exhaustively. Therefore, all efforts to apply decomposition
theory to the design of Boolean and multi-valued logic circuits restrict the
decomposition to be obtained to a particular type. In this paper we consider
disjoint decompositions only. The basis for the different types of disjoint
decomposition is the simple disjoint decomposition where a functionf(X),
X = {x1, x2, . . . , xn}, is expressed as a composite function of two functions
g and h, namely

f(X) = h(g(Y), Z) (B.1)

where Y and Z are sets of variables forming a partition of the set of variables
X. If f , g and h are Boolean functions, then in equation (B.1) the original
function f specifying an n-input, 1-output Boolean circuit is replaced by the
specification of two Boolean circuits, one having |Y | inputs and one output,
and the other having 1 + |Z| inputs and one output. Every set of variables
X such that f has a decomposition like (B.1) is called a bound set for f .
Such a decomposition exist trivially for X given by any singleton set xi or
the all-set X.

If Cn is an upper bound on the cost of realizing an Boolean function
of n variables, then the total cost of realizing these two circuits is bounded
above by C|Y |+C(1+|Z|). Because the cost bound Cn usually increases nearly
exponentially with n [138], the discovery of any nontrivial decomposition of
the form (B.1) greatly reduces the cost of realizing f .

B.2. PREVIOUS WORK 91

Unfortunately, the fraction of all Boolean functions of n variables pos-
sessing nontrivial disjoint decompositions of type (B.1) approaches zero as
n approaches infinity [138, p. 90]. Therefore, simple disjoint decomposi-
tion has been extended to a more general type of decomposition, known as
Roth-Karp decomposition [90]. This decomposition has the form

f(X) = h(g(Y), Z)

with f : {0, 1}n → {0, 1}, g : {0, 1}|Y | → {0, 1, . . . ,m−1} and h : {0, 1, . . . ,m−
1} × {0, 1}|Z| → {0, 1}. In such a decomposition the m-valued function
h of Boolean variables can be coded by k = ⌈log2 m⌉ Boolean functions
g1, g2, . . . , gk, giving a decomposition of the form

f(X) = h(g1(Y), g2(Y), . . . , gk(Y), Z) (B.2)

with all functions being Boolean. Methods for choosing good encodings are
presented in [102, 82]. The decomposition (B.2) includes as a subclass the
simple disjoint decompositions (m = 1) mentioned above. As long as f is
a function of more than three variables, such a decomposition can always
be found with g1(Y), g2(Y), . . . , gk(Y) and h each having fewer arguments
than f , for there always exists a decomposition of the form

f(X) = f(Y, xn) = h(g1(Y), g2(Y), xn)

with Y = {x1, . . . , xn−1}. Thus, the decomposition (B.2) allows the simpli-
fication of any Boolean function.

The rest of the paper is organized as follows. Section B.2 reviews pre-
vious work in the area of decomposition. Section B.3 presents the new
algorithm for computing Roth-Karp decomposition. Section B.4 shows the
experimental results. Section B.5 concludes the paper.

B.2 Previous work

The first major investigation on the subject was carried out by Ashen-
hurst [7]. He studied simple disjoint decomposition f(X) = h(g(Y), Z) for
Boolean functions f, g, h : Bn → B, where B = {0, 1}. Ashenhurst’s fun-
damental contribution is a theorem which states that any Boolean function
has a unique disjoint tree-like decomposition such that all possible simple
disjoint decompositions of f are exhibited.

92 APPENDIX B. ROTH-KARP DECOMPOSITION ...

Curtis [48] and Roth and Karp [130] extended Ashenhurst theory to
the decomposition of type f(X) = h(g(Y), Z) with g, h being multiple-
valued functions of type g : B|Y | → M and h : M × B|Z| → B, where
M = {0, 1, . . . ,m − 1}. The function g can be encoded by k = ⌈log2 m⌉
Boolean functions g1, g2, . . . , gk, giving a decomposition of the form f(X) =
h(g1(Y), . . . , gk(Y), Z), often referred to as Roth-Karp decomposition. Un-
fortunately Ashenhurst’s main theorem does not extend directly to multiple-
valued functions (for a counterexample see chapter 4 of [60]). A consequence
of this is that there is no unique disjoint tree-like Roth-Karp decomposition.
Von Stengel [154] has defined a class of multiple-valued functions for which
Ashenhurst’s main theorem holds.

Early algorithms for decomposition used decomposition charts [7], [48].
The decomposition chart for f(Y,Z) is a two-dimensional table where the
columns represent all combinations of the variables from the set Y and the
rows represent all combinations of the variables from the set Z. The set Y

is a bound set if and only if the chart has column multiplicity at most two,
i.e. there are at most two distinct columns in the chart [7].

In a short time, decomposition charts were abandoned in favor of cube
representation [90]. The task of computing column multiplicity on charts
was replaced by the task of computing compatible classes for a set of cubes.
Two assignments x1, x2 ∈ B|Y | are said to be compatible with respect to the
reference function f(Y,Z) if, for all y ∈ B|Z| such that f(x1, y) and f(x2, y)
are defined, f(x1, y) = f(x2, y) [90]. The set Y is a bound set if and only if
B|Y | can be partitioned into k ≤ 2 mutually compatible classes [90]. If f(X)
is completely specified, then compatibility is an equivalence relation and k is
the number of equivalence classes. It is easy to see the one-to-one mapping
between a column in a decomposition chart and a compatible class.

Due to the exponential size of decomposition charts and cube representa-
tions, early decomposition algorithms were rarely applied to large practical
circuits. Instead, algebraic methods were used [33]. ROBDDs [36] made
it possible to develop new algorithms for decomposition, feasible for much
larger functions than previously possible.

In a ROBDD, the column multiplicity can be easily computed by moving
the variables Y to the upper part of the graph and checking the number of
children below the boundary line, usually called cut line. The decomposition
f(X) = h(g(Y), Z) exists if and only if there are only two children below
the cut line [132].

This approach has been adopted by a number of BDD-based decompo-

B.3. GENERALIZED CUT ALGORITHM 93

sition algorithms [132, 99, 41, 135]. Stanion and Sechen [146] used cut to
find quasi-algebraic decomposition of the form f(X) = g(Y)⊙ h(Z), where
”⊙” is any binary Boolean operation and |Y ∪ Z| = k for some k ≥ 0. This
type decomposition is often referred to as bi-decomposition [159, 119].

BDD-based decomposition algorithms following cut-strategy proved to
be orders of magnitude faster than those based on decomposition charts and
cube representations. However, they require reordering of variables of BDD
to move the variables on the top or to check bi-decompositions for parti-
tions which are not consistent with the variable order. As an alternative, a
number of methods use the fact that BDDs themselves are a decomposed
representation of the function and exploit the structure of BDDs, rather
than cut, to find disjoint decompositions. Karplus [91] extended the clas-
sical concept of dominator on graphs [103] to 0,1-dominators on BDDs. A
node v is a 1-dominator (0-dominator) if every path from the root to one
(zero) terminal node contains v. If v is a 1-dominator, then the function rep-
resented by the BDD possesses a conjunctive (AND) decomposition. If v is a
0-dominator, then the function can be decomposed disjunctively (OR). This
idea was extended by Yang et al [161] to XOR-type decompositions and to
more general type of dominators. Minato and De Micheli [118] presented an
algorithm which computes disjoint decompositions by generating irreducible
sum-of-product for the function from its BDD and applying factorization.
The algorithm of Bertacco and Damiani [15] makes a single traversal of
the BDD to identify the decomposition of the co-factors and then combine
them to obtain the decomposition for the entire function. The algorithm is
impressively fast; however, as Sasao has observed in [133], it fails to com-
pute some of the disjoint decompositions. This problem was corrected by
Matsunaga [113], who added the missing cases in [15] allowing to treat the
OR/XOR functions correctly. The algorithm [113] appears to be the fastest
of existing exact algorithms for finding all disjoint decompositions.

B.3 Generalized cut algorithm

Notation

The bound sets used in Roth-Karp decomposition are a more general case
of the notion of classic (Boolean) bound sets defined in Section B.1.

94 APPENDIX B. ROTH-KARP DECOMPOSITION ...

Definition B.3.1: The set {Y } is said to be a k-bound set if there exists a
decomposition

f(X) = h(g(Y), Z) (B.3)

for some functions g, h of type g : {0, 1}|Y | → {0, 1, . . . ,m − 1} and h :
{0, 1, . . . ,m− 1} × {0, 1}Z → {0, 1}, such that 2 ≤ m < 2k.

These bound sets can be determined by decomposition chart or cut meth-
ods, by relaxing the requirement of having exactly 2 different columns (or
2 different cut nodes), to allow a number of columns (or cut nodes) up to
2k [90].

Basic idea of the method

Let V be a set of nodes of a ROBDD G of an n-variable function f(X).
Every non-terminal node v ∈ V has an associated variable index, index(v) ∈
{1, . . . , n}. The index of the root node is 1, and we let the terminal nodes
have also an index, which is n + 1.

Suppose that all nodes with index ≤ i are in the upper part of the graph
and all nodes with index > i are in the lower part of the graph, for some
i ∈ {1, . . . , n}. The boundary line between the upper and lower parts of the
graph is called cut(i).

If the number of nodes with index > i which are children of the nodes
above the cut(i) is at most 2k, for a given k, then, by Definition B.3.1, the
set of variables Y = {x1, . . . , xi} is a k-bound set.

One possibility to check whether a set of variables Y is a bound set is to
move the variables Y to the top of the ROBDD and check the number of chil-
dren below cut(|Y |), as in [99, 41]. However, re-ordering is computationally
expensive. Instead, we have developed a procedure, called Generalized-
IntervalCut which checks whether a given linear interval of variables of a
ROBDD is a k-bound set without reordering of variables. GeneralizedIn-
tervalCut is an extension of IntervalCut algorithm introduced in [13] for
simple disjoint decomposition. To describe the procedure, we first present
some definitions.

Suppose the variables Y lie between two cuts, cut(a) and cut(b), such
that a < b, a, b ∈ {0, . . . , n}. Let cut set(a) denote a set of nodes v ∈ G with
indexes a < index(v) ≤ b which are children of the nodes above the cut(a)
of G. Let Gv stand for a ROBDD rooted at some v ∈ cut set(a). Then,

B.4. EXPERIMENTAL RESULTS 95

GeneralizedIntervalCut(G,k, a, b)
input: ROBDD G of f(X), k ≥ 1, two cuts cut(a) and cut(b), a < b, a, b ∈ {0, . . . , n}.
output: ”not a bound set” if the set of variables Y between cut(a) and cut(b) is not a k-
bound set of f(X); functions g and h if Y is a k-bound set resulting in f(X) = h(g(Y), Z).

for all v ∈ cut set(a)

if (|cut set(bv)| < 2 or |cut set(bv)| > 2k)
return(”not a k-bound set”);

for all v1, v2, . . . , vk ∈ cut set(a)
if (gvi

6= gvi+1
) /* up to isomorphism */

return(”not a bound set”);
h = substitute each subgraph gv, ∀v ∈ cut set(a), by a variable node;
g = gv;
return(g, h);

Figure B.1: Pseudo code of the GeneralizedIntervalCut procedure.

cut set(bv) is the set of nodes u ∈ Gv with indexes b < index(u) ≤ n + 1
which are children of the nodes of Gv above the cut(b).

If |cut set(bv)| = m, 2 ≤ m ≤ 2k, then gv is a m-valued function repre-
sented by the subgraph rooted at v whose terminal nodes are obtained by
replacing the m nodes of cut set(bv) by constants {0, 1, . . . ,m− 1}. The re-
sulting gv is unique up to isomorphism1. Using this notation, we can describe
the pseudo code of the algorithm GeneralizedIntervalCut(G, k, a, b) as
shown in Figure B.3.

B.4 Experimental results

We implemented the presented heuristic and applied it to a large set of
benchmarks. Only some representative results are shown in Table B.1, for
space limitation reasons. The first three columns show information about
the benchmarks: their name, the number of primary inputs and the number
primary outputs. Columns 4 to 9 show the number N of k-bound sets
found for different values of k, and the time spend by our algorithm to find

1Two functions are isomorphic if, and only if, their ROBDD representations are graph
isomorphic up to the constant nodes; i.e. if, and only if, there exists a bijection φ :
{0, . . . , m − 1} → {0, . . . , m − 1} such that f(x) = φ(g(x))

96 APPENDIX B. ROTH-KARP DECOMPOSITION ...

Table B.1: Experimental results; time is reported in seconds and includes
ROBDD building and minimization times. The case when k = 1 represents
classical (Boolean) bound sets, as defined in Section B.1.

bound sets

benchmarks k = 1 k = 2 k = 3

name in out N t (sec) N t (sec) N t (sec)

9symml 9 1 0 0,03 5 0,03 12 0,02
C1355 41 32 0 213,5 32 214,08 62 213,13
C1908 33 25 668 32,4 758 32,45 857 32,54
C3540 50 22 2993 322,24 3039 322,78 2989 324,01
C432 36 7 342 3,65 448 3,65 466 3,67
C499 41 32 0 213,01 32 212,91 62 212,73
C880 60 26 14332 73,09 14246 74,32 14305 74,86
alu2 10 6 55 0,08 65 0,08 72 0,08
alu4 14 8 145 0,37 177 0,4 195 0,37

apex1 45 45 5633 14,55 6028 14,71 6135 14,77
apex2 39 3 6 3,8 31 3,84 68 3,85
apex4 9 19 4 0,28 27 0,27 44 0,28
apex5 117 88 25286 52,88 45349 53,48 62147 53,45
apex6 135 99 147837 64,04 242510 64,76 244018 64,79
apex7 49 37 8764 3,34 11744 3,37 11730 3,35

b9 41 21 2616 1,11 4336 1,13 4858 1,12
cm150a 21 1 1 2,1 3 2,08 9 2,13
cm42a 4 10 7 0,01 7 0,02 7 0,01
cm85a 11 3 27 0,05 56 0,05 62 0,05

cmb 16 4 285 0,06 285 0,06 285 0,05
comp 32 3 147 29,79 267 30,08 266 29,86
count 35 16 734 0,62 2642 0,66 2667 0,65

des 256 245 253580 1000,71 261548 1001,94 257766 1002,46
e64 65 65 47447 12,42 46195 12,23 44883 12,14

f51m 8 8 54 0,03 83 0,03 102 0,05
frg2 143 139 91905 103,15 119457 103,97 120067 103,78
lal 26 19 1514 0,4 2433 0,38 2433 0,39

misex2 25 18 1880 0,38 2259 0,38 2272 0,39
mux 21 1 1 2,01 3 2 9 2,01
pair 173 137 160887 486,98 222231 495,93 276550 503,61

parity 16 1 104 0,04 104 0,04 104 0,04
rot 135 107 200868 493,82 246026 501,45 254197 508,59
seq 41 35 1045 14,44 1735 14,6 2870 14,69

term1 34 10 677 0,58 942 0,62 1368 0,62
too large 38 3 3 2,62 19 2,62 41 2,62

ttt2 24 21 933 0,4 1565 0,4 1599 0,41
vda 17 39 427 0,84 502 0,86 635 0,89
x3 135 99 151793 64,1 242510 64,76 244018 64,8
x4 94 71 35949 20,16 44939 20,28 45201 20,24

B.5. CONCLUSIONS 97

them. The timings include ROBDD building and minimization2 times, and
are expressed in seconds. All the experiments were run on a Sun Ultra 60
operating with two 360 MHz CPU and with 1024 MB RAM main storage.

B.5 Conclusions

We have presented a practical heuristic algorithm that quickly finds many,
although not all, Roth-Karp decompositions. The algorithm works on a
ROBDD representation of the function to be decomposed, without the usual
reordering overhead of other cut-based methods. This paper reflects results
from ongoing work, and the preliminary implementation performance shown
in Section B.4 can be further improved.

Future work includes an extension of the algorithm to non-disjoint de-
composition where Y ∩Z 6= ∅. We are also investigating a possibility of com-
bining GeneralizedIntervalCut with decomposition algorithms exploiting
the structure of BDDs, like [113].

Acknowledgment

This work was supported in part by IBM Partnership Award.

2In order to make the implementation more efficient, we use a fast “sifting” [144]
algorithm to make the ROBDD size smaller.

Paper C

Disjoint-Support Boolean
Decomposition Combining

Functional and Structural Methods

Andrés Martinelli, René Krenz and Elena Dubrova. Published in the “Pro-
ceedings of the IEEE Asia and South Pacific Design Automation Conference
2004” (ASP-DAC 2004), January, 2004, Yokohama, Japan, pp. 597–599.

Disjoint-Support Boolean Decomposition

Combining Functional and Structural Methods

Andrés Martinelli∗ René Krenz∗ Elena Dubrova∗

Abstract

This paper presents an algorithm for disjoint-support decomposition of Boolean
functions which combines functional and structural approaches. First, a set of
proper cut points is identified in the circuit by using dominator relations (structural
method). Then, the circuit is partitioned along these cut points and a BDD-based
decomposition is applied to the resulting smaller functions (functional method). Pre-
vious work on Boolean decomposition used only single methods and did not integrate
a combined strategy. The experimental results show that the presented technique is
more robust than a pure BDD-based approach and produces better-quality decompo-
sitions.

C.1 Introduction

Boolean decomposition is a technique used in many applications, including
multi-level logic synthesis [41, 132], testing [137, 17], formal verification [56],
combinatorial optimization problems over graphs and networks [121].

In general terms, the problem of decomposition of functions can be for-
mulated as follows: Given a function f , express it as a composite function
of some set of new functions. Often, a composite expression can be found
in which the new functions are significantly simpler than f .

∗Royal Institute of Technology, IMIT/KTH, Stockholm, Sweden

101

102 APPENDIX C. DISJOINT-SUPPORT BOOLEAN ...

The basic type of decomposition is the simple disjoint decomposition
where a function f(X) is expressed as a composite function of two functions
g and h, namely

f(X) = h(g(Y), Z) (C.1)

where Y and Z are sets of variables forming a partition of the set of variables
X = {x1, x2, . . . , xn} of f . Every set of variables X for which a decomposi-
tion like (C.1) exists is called a bound set for f .

The fraction of all Boolean functions of n variables possessing simple
disjoint decompositions of type (C.1) approaches zero as n approaches in-
finity [138, p. 90]. Therefore, a more general type of decomposition, known
as disjoint-support (or Roth-Karp [90]) decomposition is usually considered.
Disjoint-support decomposition has the form

f(X) = h(g(Y), Z)

with f : {0, 1}n → {0, 1}, g : {0, 1}|Y | → {0, 1, ...,m−1} and h : {0, 1, ...,m−
1} × {0, 1}|Z| → {0, 1}. The m-valued function h can be encoded by k =
⌈log2 m⌉ Boolean functions g1, g2, . . . , gk, giving a representation of the form

f(X) = h(g1(Y), g2(Y), . . . , gk(Y), Z) (C.2)

with all functions being Boolean. Methods for choosing good encodings
where presented in [102, 82]. Disjoint-support decomposition includes as
a special case non-disjoint decomposition. For example, if V is the set
of overlapping variables of h and g1, then the non-disjoint decomposition
f(X) = h(g1(Y, V), V, Z) can be treated as a disjoint-support decomposition
f(X) = h(g1(Y, V), g2(V), Z), with g2 being the identity function.

It is possible to extend algorithms for simple disjoint decomposition to
the disjoint-support case. For example, [111] presents such an extension
of the algorithm proposed in [13]. It is a BDD-based heuristic algorithm
which quickly finds many disjoint-support decompositions and can handle
large functions. One problem with this approach is that the decompositions
found in this way do not necessarily simplify the function. For example, a
circuit implemented as the two cofactors of a Shannon decomposition joined
by a multiplexor is usually not optimal. Shannon decomposition is a special
case of the decomposition (C.2), with Z = x1, g1(Y) = f(0, x2, . . . , xn),
g2(Y) = f(1, x2, . . . , xn), and h = x′

1g1(Y) + x1g2(Y).
Another problem is that, in contrast to the case of simple disjoint de-

compositions, that are “too few”, disjoint-support decompositions are “too

C.2. PREVIOUS WORK 103

many”. So, an algorithm which first generates all disjoint-support decompo-
sitions and then checks which of them simplify the function is not feasible.

Our approach to overcome these problems is the following. First, a set
of proper cut points is identified in a circuit representation of the function
by applying a structural decomposition method. The circuit is partitioned
along these cut points into a set of smaller sub-circuits which are treated
independently. This allows us to reduce the search space for disjoint-support
decompositions at the next stage, since all bound sets which overlap proper
cut partitions are pruned. Finally, the overall decomposition is determined
by combining the intermediate results.

We have chosen to use at the first stage of our algorithm a circuit-based
technique rather than a BDD-based one, because manipulating circuits is
much faster. Therefore, for functions with no proper cuts, the presented
technique does not bring a significant overhead. The running time of our
algorithm is normally similar, or even faster, than the running time of a
BDD-based algorithm.

The rest of the paper is organized as follows. Section C.2 reviews pre-
vious work. Section C.3 summarizes the notation. Section C.4 presents the
first phase of our algorithm (circuit-based method). Section C.5 presents the
second phase of our algorithm (BDD-based method). Section C.6 shows the
experimental results. Section C.7 concludes the paper and discusses some
open problems.

C.2 Previous work

The concept of proper cuts was first introduced in combinational equivalence
checking [56]. Later it was applied to testing [137, 17] and design for low
power [43] where it is known under the alternative names of headline or
supergate. A vertex v is a proper cut if every path from any primary input
in the cone of influence of v to the root contains v. The presented algorithm
for finding proper cuts is based on the concept of reduced dominator tree
constructed by using an extension of the Lengauer-Tarjan algorithm [103]
for finding dominators in a graph. A proper cut is required to dominate
all the primary inputs in its cone of influence. This guarantees that all
re-converging paths are completely enclosed within the cone and, therefore,
that those primary inputs belong to a bound set.

104 APPENDIX C. DISJOINT-SUPPORT BOOLEAN ...

Disjoint-support decomposition was introduced by Roth and Karp [130].
They defined the notion of compatible classes describing the conditions for
the existence of bound sets. Two assignments x1, x2 ∈ B|Y | are said to be
compatible with respect to the reference function f(Y,Z) if, for all y ∈ B|Z|

such that f(x1, y) and f(x2, y) are defined, f(x1, y) = f(x2, y) [90]. The set
Y is a bound set if and only if B|Y | can be partitioned into k ≤ 2 mutually
compatible classes [90]. If f(X) is completely specified, then compatibility
is an equivalence relation and k is the number of equivalence classes.

A number of BDD-based decomposition algorithms have been developed.
Karplus [91] presented a technique for AND- and OR-type decomposition
based on dominators in BDDs. It was extended by Yang et al [161] to
XOR-type decompositions. Stanion and Sechen [146] target quasi-algebraic
decomposition of the form f(X) = g(Y) ⊙ h(Z), where “⊙” is any binary
Boolean operation and |Y ∪ Z| = k for some k ≥ 0. This type of decom-
position is often referred to as bi-decomposition [132, 159, 119, 45]. Bengts-
son [13] developed a fast heuristic for simple disjoint decomposition which it-
eratively examines all linear intervals of variables of a ROBDD, and for every
interval checks whether it is a bound set. This algorithm has been extended
to disjoint-support decompositions in [111]. Minato and De Micheli [118]
presented an algorithm which computes simple disjoint decompositions by
generating irreducible sum-of-product for the function from its BDD and
applying factorization. The algorithm of Bertacco and Damiani [15] makes
a single traversal of the BDD to identify the simple disjoint decomposition
of the co-factors and then combine them to obtain the decomposition for the
entire function. The algorithm is impressively fast; however, as Sasao has
observed in [133], it fails to compute some of the disjoint decompositions.
This problem was corrected by Matsunaga [113], who added the missing
cases in [15] allowing to treat the OR/XOR functions correctly. The algo-
rithm [113] appears to be the fastest of existing exact algorithms for finding
all simple disjoint decompositions.

C.3 Preliminaries

In this section we summarize the basic notation and definitions used in the
sequel.

Let C = (V,E, root) denote a single-output circuit, where V represents
a set of gates and primary inputs. A particular vertex root ∈ V is marked

C.3. PRELIMINARIES 105

as the circuit output. The set of edges E ⊆ V × V represents the nets
connecting the gates. Each edge (u, v) ∈ E is associated with an inverter
attribute i(u, v) ∈ {0, 1} where i = 1 or i = 0 indicates whether the edge
function is to be complemented or not, respectively.

A vertex v dominates another vertex w 6= v in C if every path from
w to root contains v. Vertex v is the immediate dominator of w, denoted
v = idom(w), if v dominates w and every other dominator of w dominates
v. Every vertex v in C except root has a unique immediate dominator [108].

The edges {(idom(w), w) | w ∈ V −{root}} form a directed tree D rooted
at root, which is called the dominator tree of C. The dominator children
Doms(v) ⊂ V of vertex v are the set of vertices having v as immediate
dominator, i.e., Doms(v) = {u | idom(u) = v}.

A reduced dominator tree [95] DR contains all vertices v ⊆ D such that:

1. v is a primary input or

2. ∃u ∈ DR such that v = idom(u).

The bound sets used in disjoint-support decomposition are a more gen-
eral case of the notion of classical bound sets, as described in Section C.1.

Definition C.3.1: The set Y is said to be a k-bound set if there exists a
decomposition

f(X) = h(g(Y), Z) (C.3)

for some functions g, h of type g : {0, 1}|Y | → {0, 1, . . . ,m − 1} and h :
{0, 1, . . . ,m− 1} × {0, 1}|Z| → {0, 1}, such that 2 ≤ m < 2k.

These bound sets can be determined by decomposition chart or cut meth-
ods, by relaxing the requirement of having exactly 2 different columns (or
2 different cut nodes), to allow a number of columns (or cut nodes) up to
2k [90].

Let V be a set of nodes of a ROBDD G of an n-variable function f(X).
Every non-terminal node v ∈ V has an associated variable index, index(v) ∈
{1, . . . , n}. The index of the root node is 1, and we let the terminal nodes
have also an index, which is n + 1.

Suppose that all nodes with index ≤ i are in the upper part of the graph
and all nodes with index > i are in the lower part of the graph, for some
i ∈ {1, . . . , n}. The boundary line between the upper and lower parts of the
graph is called cut(i).

106 APPENDIX C. DISJOINT-SUPPORT BOOLEAN ...

If the number of nodes with index > i which are children of the nodes
above the cut(i) is at most 2k, for a given k, then, by Definition C.3.1, the
set of variables Y = {x1, . . . , xi} is a k-bound set.

C.4 Circuit-based proper cut decomposition

Let Cv denote the cone of influence of v, i.e. a sub-graph of C including all
the vertices from which v is reachable by a directed path.

Definition C.4.1: A vertex is a proper cut if it dominates all primary input
vertices in its cone of influence.

This guarantees that all re-converging paths are completely enclosed
within the cone and, therefore, that those primary inputs form a bound
set. For all non-primary input vertices w, there exists at least one primary
input vertex u from which w is reachable by a directed path. Therefore,
v = dom(u) implies v = dom(w) for all w ∈ Cv. The primary input vertices
and the root vertex are trivial proper cuts, i.e. they always exists.

It is easy to prove prove that a proper cut is always a vertex of the
reduced dominator tree.

Lemma 2. A vertex v ∈ V is a proper cut only if v ∈ DR.

The pseudo-code of the algorithm ProperCut which uses a reduced
dominator tree to identify the set of proper cuts P is shown in Figure C.1 [95].
We use Lengauer-Tarjan algorithm [103] is used for finding dominators. It
is efficient for large circuits.

ProperCut processes the circuit from the inputs toward the output
in topological order. The array T [v] contains vertices u ∈ DR with open
re-convergences. At the primary inputs, T [v] is initialized to an empty set.
Then, at each following vertex v, T [v] is updated to the union of T [vi] for all
vertices vi in its fan-in. If v is in the reduced dominator tree, then the set
Doms(v) of vertices having v as an immediate dominator is removed from
T (v) and, after performing the proper cut checking, v is added to T [v]. This
substitution of Doms(v) vertices by their dominator allows us to keep the
size of T [v] small and, what is more important, lets us keep the support-set
of T [v] dependent on vertices having v as an immediate dominator only,
rather than vertices on previous topological levels.

C.5. BDD-BASED DECOMPOSITION 107

algorithm ProperCut(V,E, root);
DR,Doms = Dominator(V,E, root)
for each v ∈ V in topological order do

if v ∈ Inputs then
T [v] = ∅;

else
T [v] =

⋃

vi∈FI(v) T [vi];

if v ∈ DR then
T [v] = T [v]−Doms(v);
if T [v] = ∅ then

P = P ∪ {v};
T [v] = T [v] ∪ {v};

return P

end

Figure C.1: Pseudo-code of the algorithm ProperCut.

C.5 BDD-based decomposition

After the set of proper cut points is identified, the circuit is partitioned along
these cut points into a set of smaller sub-circuits which are processed inde-
pendently using the BDD-based decomposition technique similar to [111].

The algorithm successively goes through all possible linear intervals of
variables of a BDD and, for each interval, checks whether it is a bound set or
not. In this way many decomposition are found quickly, without expensive
variable re-ordering.

Suppose the variables Y lie between two cuts, cut(a) and cut(b), such
that a < b, a, b ∈ {0, . . . , n}. Let cut set(a) denote a set of nodes v ∈ G with
indexes a < index(v) ≤ b which are children of the nodes above the cut(a)
of G. Let Gv stand for a ROBDD rooted at some v ∈ cut set(a). Then,
cut set(bv) is the set of nodes u ∈ Gv with indexes b < index(u) ≤ n + 1
which are children of the nodes of Gv above the cut(b).

If |cut set(bv)| = m, 2 ≤ m ≤ 2k, then gv is a m-valued function rep-
resented by the sub-graph rooted at v whose terminal nodes are obtained
by replacing the m nodes of cut set(bv) by constants {0, 1, . . . ,m− 1}. The

108 APPENDIX C. DISJOINT-SUPPORT BOOLEAN ...

resulting gv is unique up to isomorphism1. Using this notation, the pseudo
code of the algorithm GeneralizedIntervalCut(G, k, a, b) is described in
Figure C.2.

algorithm GeneralizedIntervalCut(G, k, a, b)
for each v ∈ cut set(a)

if (|cut set(bv)| < 2 or |cut set(bv)| > 2k)
return (”not a k-bound set”);

for each v1, v2, . . . , vk ∈ cut set(a)
if (gvi

6= gvi+1) /* up to isomorphism */
return (”not a bound set”);

h = substitute each sub-graph gv, ∀v ∈ cut set(a),
by a variable node;

g = gv;
return (g, h);

end

Figure C.2: Pseudo-code of the GeneralizedIntervalCut algorithm.

C.6 Experimental results

All experiments were performed on a PC with a 2GHz Pentium4 CPU and
1024MByte main memory, running Linux Mandrake 8.2. We used a set of
188 combinational circuits from IWLS’02 benchmark set which comprises a
total of 17633 outputs.

Figure C.3 shows a comparison of the running times of the pure BDD-
based approach against the combined one. Each cross in the figure represents
a single output function. Those above the line mark an improvement in
the running time. As one can see, in the majority of cases, the combined
approach is faster. Crosses below the line, representing cases where the
running time of the combined tool is slower, are primarily circuits with no
simple disjoint decomposition (i.e. no proper cuts), where the time spent

1 Two functions are isomorphic if, and only if, their ROBDD representations are
graph isomorphic up to the constant nodes; i.e. if, and only if, there exists a bijection
φ : {0, . . . , m − 1} → {0, . . . , m − 1} such that f(x) = φ(g(x)).

C.6. EXPERIMENTAL RESULTS 109

Time in seconds

10 10 10 10 101010

10

10

10

10

10

10

10

−4 −3 −2 −1 1

−2

−1

0

1

2

−3

−4

0

Combined approach

B
D

D
−

b
a

se
d

 a
p

p
ro

a
ch

2

Figure C.3: Runtime comparison for the combined versus BDD-based ap-
proaches.

on circuit exploration simply adds up as an overhead on the BDD-based
algorithm.

Some representative results, aiming to show the number of disjoint-
support decompositions computed by the combined approach, are given in
Table C.1. The first three columns show information about the benchmarks:
their name, the number of primary inputs and the number of primary out-
puts. Column 4 shows the number of proper cuts found in the first phase
of the algorithm. Columns 5 to 7 show the number of k-bound sets found
in the second phase, for different values of k, as the total sum of the results
for individual outputs.

Notice that although columns 4 and 5 both show simple disjoint decom-
positions, the results they report do not overlap and should be considered
separately. They respectively represent those decompositions found dur-
ing the structural and the BDD-based phases of the algorithm, respectively.
Since the heuristics used in each phase may not find all bound sets, and since
they are dependent on the structure of the circuit and BDD ordering, the
combination of the two can result in one finding bound sets which cannot
be found by the other.

110 APPENDIX C. DISJOINT-SUPPORT BOOLEAN ...

Also notice the cases like cm42a, decod or parity: in these, only zeroes
are reported for the second phase of the algorithm. This is because after
the partitioning along the cut points found in the first phase, the resulting
functions only contain trivial disjoint-support decompositions, so the BDD-
based algorithm is not invoked at all. This is one the reasons for the running
time improvement.

C.7 Conclusion

We present a decomposition technique which integrates circuit-based and
BDD-based decompositions. The combination of the two approaches results
in an algorithm which is more robust than the pure BDD-based method,
regarding both, quality of the result and running time.

Our experiments on benchmark circuits suggest that the developed al-
gorithm has a significant potential for a large number of circuits. However,
there are also limitations. The main one is that our method depends on
dominator relations of the circuit. If the circuit under consideration has
no internal dominators, the presented technique reduces to a BDD-based
decomposition. We have found that the majority of practical circuit graphs
contain a substantial number of internal dominator vertices (between 5 and
0.5 per input) which warrants an efficient performance of our algorithm. For
circuits with no internal dominators, in the future we plan to use complemen-
tary methods for structuring the decomposition process, such as generalized
dominators [77] and min-cut [44].

C.7. CONCLUSION 111

bound sets

benchmarks classical Roth-Karp

name in out proper cuts k=1 k=2 k=3

9symml 9 1 0 0 10 17
alu2 10 6 1 3 55 89
alu4 14 8 0 2 141 263

apex2 39 3 0 9 57 119
apex6 135 99 229 9056 32520 36084
apex7 49 37 104 2814 8406 9435

b9 41 21 37 335 1320 1465
C1355 41 32 0 0 11624 21708
C1908 33 25 0 2758 5337 8279
C3540 50 22 18 79 676 1378
C432 36 7 16 0 97 259
C499 41 32 0 0 12404 22428
C880 60 26 57 204 1574 3150

cm150a 21 1 1 0 5 11
cm42a 4 10 20 0 0 0
cm85a 11 3 9 20 90 100

cmb 16 4 20 325 325 325
comp 32 3 7 108 520 696
cordic 25 2 0 18 71 95
count 35 16 136 136 544 544
decod 5 16 48 0 0 0

des 256 245 640 30527 202664 327911
e64 65 65 2016 0 0 0

f51m 8 8 0 26 85 123
frg2 143 139 1 14 29 31
lal 26 19 598 32927 142542 169797

misex2 25 18 50 237 1522 1550
mux 21 1 1 0 5 11
pair 173 137 889 28416 113431 173717

parity 16 1 14 0 0 0
rot 135 107 177 9159 45070 65873
seq 41 35 34 3951 15762 28193

term1 34 10 26 340 822 870
too large 38 3 0 7 43 109

ttt2 24 21 10 843 2583 2665
x3 135 99 129 11980 31663 36259
x4 94 71 66 11066 30591 34785

Table C.1: Experimental results. Notice that ‘proper cuts’ and disjoint-
support case ‘k=1’ represent different simple disjoint decompositions, found
in the first and the second phase respectively, and should be counted sepa-
rately.

Paper D

On the Relation Between
Non-Disjoint Decomposition and

Multiple-Vertex Dominators

Elena Dubrova, Maxim Teslenko and Andrés Martinelli. Published in the
“Proceedings of the IEEE International Symposium on Circuits and Systems
2004” (ISCAS 2004), May 23-26, 2004, Vancouver, Canada, pp. 493–496.

On Relation Between Non-Disjoint Decomposition

and Multiple-Vertex Dominators

Elena Dubrova∗,† Maxim Teslenko∗ Andrés Martinelli∗

Abstract

This paper addresses the problem of non-disjoint decomposition of Boolean func-
tions. Decomposition has multiple applications in logic synthesis, testing and formal
verification. First, we show that the problem of computing non-disjoint decomposi-
tions of Boolean functions can be reduced to the problem of finding multiple-vertex
dominators of circuit graphs. Then, we prove that there exists an algorithm for
computing all multiple-vertex dominators of a fixed size in polynomial time. Our
result is important because no polynomial-time algorithm for non-disjoint decompo-
sition of Boolean functions is known. A set of experiments on benchmark circuits
illustrates our approach.

D.1 Introduction

Non-disjoint decomposition of a Boolean function f is a representation of
type

f(X,Y,Z) = h(g1(X,Y), . . . , gk(X,Y), Y, Z) (D.1)

where X,Y,Z are sets of variables partitioning the support set of f , and
h and gi are Boolean functions, i ∈ {1, . . . , k}. Applications of decompo-
sition include multi-level logic optimization [136, 161], FPGA technology
mapping [132, 41, 134], testing [137], and formal verification [97].

∗{elena, maxim, andres}@imit.kth.se, Royal Institute of Technology, IMIT/KTH,
Stockholm, Sweden

†This work was supported in part by the Research Grant No 6426 from the Swedish
Research Council Vetenskpsr̊adet.

115

116 APPENDIX D. ON THE RELATION BETWEEN ...

The problem of computing non-disjoint decomposition is hard. No algo-
rithm for computing all possible non-disjoint decompositions of a Boolean
function in polynomial-time is known. Binary Decision Diagram (BDD)
based decomposition algorithms show a good average-time performance [161,
99, 111]. However, these approaches are limited by the excessive memory
consumption of decision diagrams.

This paper has two main contributions. First, we show that the problem
of computing non-disjoint decompositions of Boolean functions is related
to the problem of finding multiple-vertex dominators of circuit graphs. A
circuit graph is a common format for representing Boolean functions. Most
practical functions have small circuit representations. Second, we prove
that there exists a O(nk log n) algorithm for computing all multiple-vertex
dominators of a fixed size k, where n is the number of vertices of the circuit
graph.

The presented approach allows us to compute all non-disjoint decompo-
sitions which are reflected in the circuit structure. However, these may not
be all possible decompositions of the function. For example, if a function
is represented by a circuit implementing f = a(b + c), then the disjoint
decomposition h = a · g, g = b + c will be identified. However, if the func-
tion is represented by the circuit realizing f = ab + ac, then no disjoint
decomposition will be found.

The paper is organized as follows. Section D.2 describes previous work.
Section D.3 shows a relation between non-disjoint decomposition and multiple-
vertex dominators. The existence of a polynomial algorithm for computing
multiple-vertex dominators is proved in Section D.4. Section D.5 summa-
rizes the experimental results. Conclusion and future work are given in
Section D.6.

D.2 Previous work

Non-disjoint decomposition of Boolean functions was pioneered by Cur-
tis [48] in 1962. Curtis has shown that a Boolean function possesses a
simple non-disjoint decomposition of type f(X,Y,Z) = h(g(X,Y), Y, Z) if
each of its 2|Y | decomposition charts representing sub-functions fY (X,Z)
has at most two distinct columns. The decomposition chart for fY (X,Z) is
a two-dimensional table where the columns describe all combinations of the
variables from the set X and the rows list all combinations of the variables

D.2. PREVIOUS WORK 117

from the set Z. 2|Y | charts are obtained by fixing the variables of Y to all
combination of their values from {0, 1}n.

Roth and Karp [130] have extended simple non-disjoint decomposition to
a more general type given by equation (D.1). They used cube representation
and reduced the problem of computing column multiplicity to the problem
of computing compatible classes for a set of cubes.

Due to the exponential size of decomposition charts and cube representa-
tions, early decomposition algorithms were not applicable to large functions.
Instead, algebraic decomposition methods were used in practice. A milestone
work is [33], where the notion of kernels is introduced and a method for fast
algebraic decomposition based on kernels is developed. This technique, with
minor modifications, is used in many systems for multi-level optimization
[29, 112, 136].

BDDs made possible developing algorithms for Boolean decomposition,
feasible for much larger functions than previously possible. In a BDD, the
column multiplicity can be computed by moving the variables X to the upper
part of the graph and checking the number of children below the boundary
line, called cut line. This approach has been adopted by a number of BDD-
based decomposition algorithms [99, 132, 111]. Stanion and Sechen [146]
used cut to find quasi-algebraic decomposition of the form f(X,Y,Z) =
g(X,Y) ⊙ h(Y,Z), where “⊙” is an arbitrary Boolean binary operation.
This type decomposition is often referred to as bi-decomposition [159, 119].

Another group of decomposition methods exploit the structure of BDDs,
rather than cut. Karplus [91] extended the classical concept of dominator
on graphs to 0, 1− dominators on BDDs. A node v is a 1-dominator (0-
dominator) if every path from the root to one (zero) terminal node contains
v. This idea was extended by Yang et al [161] to XOR-type decomposi-
tions. Minato and De Micheli [118] presented an algorithm which computes
all disjoint decompositions by generating irreducible sum-of-product for the
function from its BDD and applying factorization. Algorithms [15] and [113]
makes a single traversal of the BDD to identify the disjoint decomposition of
the co-factors and then combine them to obtain all disjoint decomposition
for the entire function.

118 APPENDIX D. ON THE RELATION BETWEEN ...

D.3 Relation between non-disjoint decomposition

and multiple-vertex dominators

In this section, we present a fundamental theorem showing the relation be-
tween non-disjoint decomposition of Boolean functions and multiple-vertex
dominators of circuit graphs. We start with the definitions used in the
sequel.

Let C = (V,E) denote a single-output directed acyclic circuit graph,
where V represents a set of gates and primary inputs. A particular vertex
root ∈ V is marked as the circuit output. The set of edges E ⊆ V × V

describes the nets connecting the gates.

The cone of influence of a vertex v, I(v), is a subset of V containing all
the vertices from which v is reachable.

A vertex v dominates another vertex w in V if every path from w to
root contains v [103]. We denote by D(v) the set of vertices dominated by
v. Vertex v is the immediate dominator of w, denoted by v = idom(w), if
v dominates w and every other dominator of w dominates v. Every vertex
v ∈ V except root has a unique immediate dominator [108]. The edges
{(idom(w), w) | w ∈ V −{root}} form a directed tree rooted at root, which
is called the dominator tree of C.

Many graphs do not contain any single-vertex dominators except primary
inputs and root. It is more common that a vertex is dominated by a set of
vertices.

A set of vertices {v1, . . . , vk} is a multiple-vertex dominator of size k [5]
(also called generalized dominator [77]) for a vertex u, if (1) every path from
u to root contains some vi, and (2) for every vi, there exist at least one
path from u to root which contains vi and does not contain any other vj,
i, j ∈ {1, . . . , k}, i 6= j.

A set of vertices {v1, . . . , vk} is a common multiple-vertex dominator for
a set of vertices U ⊆ V − {v1, . . . , vk}, if, for every u ∈ U , there exist
W ⊆ {v1, . . . , vk} such that W is a multiple-vertex dominator for u.

Let X,Y,Z be sets of variables partitioning the support set of a Boolean
function f .

Theorem 9. Suppose a Boolean function f(X,Y,Z) is represented by a
circuit graph C = (V,E). Let VX , VY , VZ ⊂ V be sets of primary input
vertices corresponding to the variables of the sets X,Y,Z. Let vg1 , . . . , vgk

∈
V be a set of vertices such that:

D.4. COMPUTING ALL MULTIPLE-VERTEX DOMINATORS 119

1. {vg1 , . . . , vgk
} is a common multiple-vertex dominator for VX ,

2. (VX ∪ VY) ⊂ ⋃k
i=1 I(vgi

).

Then, there exist a decomposition of f of type

f(X,Y,Z) = h(g1(X,Y), . . . , gk(X,Y), Y, Z)

where Boolean functions gi are the functions rooted by the vertices vgi
, ∀i ∈

{1, . . . , k}, of C.

Theorem 9 allows us to reduce the problem of computing non-disjoint
decompositions to the problem of computing multiple-vertex dominators.
This result is important because no polynomial-time algorithm for comput-
ing all non-disjoint decompositions of a Boolean function is known. In the
next section, we show that the problem of computing all multiple-vertex
dominators of a fixed size can be solved in polynomial-time.

D.4 Computing all multiple-vertex dominators of

a fixed size in polynomial time

It is possible to compute all single-vertex dominators for a directed graph
in time less than quadratic in the number of vertices. For example, a
well-known Lengauer-Tarjan algorithm [103] has the worst-case complexity
O(n · log n). However, algorithms for computing all multiple-vertex domi-
nators for a directed graph have exponential worst case complexity [77]. A
subset of immediate multiple-vertex dominators can be computed in O(n2)
time [5], but immediate dominators are not particularly interesting from the
decomposition point of view. Good decompositions require multiple-vertex
dominators of a small size k which are common for large sets VX . In this
section, we show that it is possible to compute multiple-vertex dominators
of a fixed size in polynomial time.

Let C = (V,E) be a circuit graph with |V | = n vertices.

Theorem 10. If there exists an O(τ(n)) algorithm for computing all
single-vertex dominators, then there exists an O(nk−1τ(n)) algorithm
for computing all multiple-vertex dominators of size k.

Proof. Assume there exists an O(τ(n)) algorithm for computing all single-
vertex dominators. Let T (C) denote the dominator tree of a circuit-graph

120 APPENDIX D. ON THE RELATION BETWEEN ...

C = (V,E, root), and let M(C) denote the set of all possible multiple-vertex
dominators of size k. To compute M(C), we do the following:

1. Compute T (C).
2. For each {v1, . . . , vk−1} ∈ V k−1 do Steps 3 to 6
3. Mark as “non-existing” all edges in C such that
E′ = E − {(u,w)|u ∈ ⋃k−1

i=1 D(vi) ∨ w ∈ ⋃k−1
i=1 D(vi)}.

4. Compute T (C ′) for the resulting modified graph C ′.
5. Compute M(C) by checking the following condition ∀uj ∈ T (C ′): If

uj is a single-vertex dominator for some w ∈ ⋃k−1
i=1 I(vi)−

⋃k−1
i=1 D(vi) in C ′,

then {uj , v1, .., vk−1} is a multiple-vertex dominator of size k for w in C, if
uj does not dominate any of vi in C, i ∈ {1, . . . , k − 1}.

6. Undo Step 3.

Steps 1 and 4 are O(τ(n)). Steps 3, 5 and 6 can be done in O(n) time.
The correctness of Step 5 follows directly from the definition of multiple-
vertex dominator. The overall complexity is

O(τ(n)) + nk−1(max(O(τ(n)), O(n))) = O(nk−1τ(n)).

If Lengauer-Tarjan algorithm [103] is used for computing single-vertex
dominators, then M(C) can be obtained in O(nk log n) time. Clearly, the
simple algorithm constructed in the proof will not be feasible for large cir-
cuit graphs if k > 2. However, as we show in the next sections, for small
k, ever this straightforward approach gives good results. Many practical
applications of decomposition (multi-level logic synthesis [136, 161], FPGA
technology mapping [132, 41], etc.) require only small values of k.

D.5 Experimental results

This section illustrates the performance of the algorithm constructed in the
proof of the Theorem 10 for IWLS’02 benchmark set.

Column 5 of Table D.1 shows the number, N2dec, of computed decomposi-
tions f(X,Y,Z) = h(g1(X,Y), g2(X,Y), Y, Z) with k = 2. Note, that N2dec

does not include decompositions with k = 1. Only interesting cases, where a
2-vertex dominator dominates at least 3 inputs (|X| > 2) are counted. Ev-
ery output is treated as a separate function. The numbers shown in Column

D.5. EXPERIMENTAL RESULTS 121

Table D.1: Benchmark results.

name in out gates N2dec t (sec)

apex5 114 88 3781 2609 2.34
apex6 135 99 801 639 0.11

b9 41 21 166 50 0.02
comp 32 3 158 103 0.07
count 35 16 163 15 0.01
C1355 41 32 546 1032 3.98
C1908 33 25 448 350 1.63
C2670 233 140 951 261 1.26
C3540 50 22 1089 345 8.42
C432 36 7 247 169 0.23
C499 41 32 442 1000 2.53
C5315 178 123 1952 4205 5.57
C6288 32 32 2370 153 70.23
C7552 207 108 2282 12816 7.73
C880 60 26 338 253 1.15
des 256 245 4733 1134 5.24
frg2 143 139 2011 1389 0.85
i2 201 1 434 32 0.26
i3 132 6 259 0 0.02
i4 192 6 439 0 0.04
i5 133 66 447 3 0.04
i6 138 67 831 30 0.08
i7 199 67 1104 36 0.13
i8 133 81 3444 791 2.12
i9 88 63 981 63 0.74
i10 257 224 2935 6543 17.06
pair 173 137 1907 5272 0.94
rot 135 107 1199 1125 1.19

s1196 32 32 510 224 0.41
s1238 32 32 565 238 0.55
s1423 91 79 554 2974 0.98
s9234 247 250 2206 2323 2.49
term1 34 10 746 45 0.17

too large 38 3 8746 90 644.02
x1 51 35 1317 187 1.03
x3 135 99 1464 268 0.22
x4 94 71 794 315 0.13

4 are the total sum of decompositions for all outputs of the circuit. Un-
fortunately, it is not possible to compare our results to the results of other
algorithms for non-disjoint decompositions, because none of them reports
the number of all decompositions for a given function.

Column 6 shows runtime, in seconds, measured using the Unix command

122 APPENDIX D. ON THE RELATION BETWEEN ...

time (user time). The experiments were performed on a PC with a 1.4 GHz
Pentium4 CPU and 1 GByte main memory. One can see that, for circuits
with less than 1000 gates, the runtime is of order of 1 sec. The largest circuit,
too large, with 8746 gates, takes 10 min. gates in Column 4 are the 2-input
AND gates, because our implementation uses an And/Inverter graph [97]
for representing circuits. The presented algorithm can decompose functions
for which BDDs cannot be build, such as 16-bit multiplier C6288.

D.6 Conclusion

This paper shows that the problem of computing non-disjoint decomposi-
tions of Boolean functions can be reduced to the problem of finding multiple-
vertex dominators in circuits. We also prove that, for a given circuit, all
multiple-vertex dominators of a fixed size can be found in polynomial time.
This implies that certain non-disjoint decompositions (the ones reflected in
the circuit structure) can be computed in polynomial time.

Our ongoing work includes developing a more efficient algorithm for com-
puting multiple-vertex dominators.

Paper E

Bound Set Selection and Circuit
Re-Synthesis for Area/Delay Driven

Decomposition

Andrés Martinelli and Elena Dubrova. Published in the “Proceedings of
the Design, Automation & Test in Europe Conference 2005” (DATE 2005),
March 7–11, 2005, Munich, Germany, pp. 430–431.

Bound Set Selection and Circuit Re-Synthesis for

Area/Delay Driven Decomposition

Andrés Martinelli∗ Elena Dubrova∗

Abstract

This paper addresses two problems related to disjoint-support decomposition of
Boolean functions. First, we present a heuristic for finding a subset of variables,
X, which results in the disjoint-support decomposition f(X, Y) = h(g(X), Y) with
a good area/delay trade-off. Second, we present a technique for re-synthesis of the
original circuit implementing f(X, Y) into a circuit implementing the decomposed
representation h(g(X), Y). Preliminary experimental results indicate that the pro-
posed approach has a significant potential.

E.1 Introduction

Disjoint-support decomposition of a Boolean function f : {0, 1}n → {0, 1}
is a representation of the form f(X,Y) = h(g(X), Y) where X ∩ Y = ∅,
g : {0, 1}|X| → {0, 1, ..., k − 1} and h : {0, 1, ..., k − 1} × {0, 1}|Y | → {0, 1}.
The k-valued function g can be encoded as

f(X,Y) = h(g1(X), g2(X), . . . , g⌈log2 k⌉(X), Y)

giving a decomposition with all functions being Boolean. Every set of vari-
ables X for which such a decomposition exists is called a bound set for f .
This paper addresses two problems related to disjoint-support decomposi-
tion. First, we present a heuristic for finding a bound set which results in

∗{andres,elena}@imit.kth.se, Royal Institute of Technology, IMIT/KTH, 164 46 Kista,
Sweden

125

126 APPENDIX E. BOUND SET SELECTION ...

a disjoint-support achieving a good area/delay trade-off. Choosing a suit-
able bound set is important because disjoint-support decomposition does
not necessarily simplify the function.

Second, we present a technique for transforming the original circuit im-
plementing f(X,Y) into a circuit implementing the decomposed representa-
tion h(g(X), Y). Previous algorithms computed circuits for the decomposed
representation from Binary Decision Diagrams (BDDs) of g and h, by ap-
plying various BDD-to-circuit transformation techniques. The algorithm
presented in this paper uses BDDs only for analysis of the decomposition.
The actual synthesis of the circuits for g and h is done by restricting the
original circuit with respect to a given assignment of input variables. This
guarantees that the sizes of the circuits of g and h are strictly smaller than
the size of the original circuit.

E.2 Bound Set Selection

To find a suitable bound set X for f , we examine all linear intervals of
variables of the BDD representing f . To check whether a given linear interval
is a bound set, we use IntervalCut algorithm [111]. IntervalCut is very
fast, because it does not require expensive BDD re-ordering.

If a bound set X with the column multiplicity k < |X| is found, it
is stored together with the following three parameters characterizing the
associated decomposition f(X,Y) = h(g(X), Y):

1. the number of outputs having X as a bound set: s(X);

2. the number of outputs of g: c(X) = ⌈log2 k⌉;

3. the difference in sizes of the bound set X and the free set Y : d(X) =
||X| − |Y ||, d(X) ∈ {0, 1, . . . , n− 1}.

Let X be the set of bound sets computed by IntervalCut. The best
candidate is selected from X as follows. First, a subset Xs of X containing all
bound sets with the maximum s(X) is chosen. Maximizing of s(X) increases
the sharing of common logic among different outputs of the circuit. Next,
a subset Xc of Xs containing all bound sets with the minimum c(X) is
selected. Minimizing of c(X) promotes the selection of bound sets with
the smallest column multiplicity (more precisely, smallest log2 k). Finally,

E.3. TRANSFORMATION ALGORITHM 127

a subset Xd of Xc containing largest bound sets with the minimum d(X)
is obtained. Minimizing of d(X) allows balancing the partitioning of logic
between the functions g and h.

Any element of Xd is considered to be a ”best” bound set for f , i.e. the
one which produces a decomposition with the best area/delay trade-off. The
original circuit implementing f is transformed into the circuit implementing
h(g(X), Y) by applying the algorithm described in the next section.

E.3 Transformation Algorithm

Let X be a bound set for f and let Gg and Gh be BDDs representing the
functions g and h in the decomposition f(X,Y) = h(g(X), Y). These BDDs
are computed by IntervalCut.

Constructing the circuit for h

Suppose A is an assignment of variables of X leading to the 0-terminal node
in Gg. Then g(A) = 0, and thus f(A,Y) = h(g(A), Y) = h(0, Y). Therefore,
a circuit implementing the co-factor h(0, Y) can be obtained from the circuit
implementing f by applying the assignment A to the inputs X and propa-
gating the constants through the circuit using the usual reduction rules.
Similarly, circuits implementing co-factors h(i, Y), i ∈ {1, 2, . . . , k − 1},
can be obtained by propagating an assignment of variables of X lead-
ing to the i-terminal node of Gg. Recall, that g is a function of type
g : {0, 1}|X| → {0, 1, ..., k − 1}, so Gg is a multi-terminal BDD with k

terminal nodes.

To maximize the sharing of common logic of the i circuits implementing
co-factors h(i, Y), i ∈ {0, 1, . . . , k − 1}, i assignments A are chosen so that
they differ in the fewest number of bit positions.

The function h(g(X), Y) is obtained by combining the co-factors in a
Shannon expansion as follows:

h(g(X), Y) =

k−1
∑

i=0

gi1
1 (X)gi2

2 (X) . . . gir
r (X)h(i, Y) (E.1)

where (i1, i2, . . . , ir) is the binary expansion of i, r = ⌈log2 k⌉, and the term

128 APPENDIX E. BOUND SET SELECTION ...

g
ij
j is defined by

g
ij
j =

{

gj if ij = 1
gj otherwise

for j ∈ {1, 2, . . . , r}.

Constructing the circuit for g

Suppose that B is an assignment of variables of Y such that h(i, B) 6= h(j,B)
for some i, j ∈ {0, 1, . . . , k − 1}, i 6= j. Then f(X,B) = h(g(X), B) where
the co-factor h(g(X), B) is neither constant 0, nor constant 1, i.e. it depends
of g(X).

Since h is a function of type {0, 1, ..., k − 1} × {0, 1}|Y | → {0, 1}, the
co-factor h(g(X), B) is a function of type {0, 1, ..., k − 1} → {0, 1}. Note
that, for k = 2, h(g(X), B) is either an identity, or a complement. Thus,
at this step, the problem of constructing the circuit for g(X) is solved for
k = 2. For larger values of k, the following strategy is used.

The k-valued function g(X) can be expressed as

g(X) =
k−1
∑

i=0

i · gi(X)

where gi : {0, 1, . . . , k − 1}|X| → {0, 1} are multiple-valued literals defined
as:

gi(X) =

{

1 if g(X) = i

0 otherwise

For a given encoding of k values of g(K), each of the functions g1(X),
g2(X), . . . , gr(X), r = ⌈log2 k⌉, encoding g(X), can be represented as a sum
of some literals gi(X)’s.

Consider a decomposition chart of h(g(X), Y) with columns representing
k values of g(X) and the rows represent all combinations of the variables of
Y . Any non-constant row of h(g(X), Y) represents a sum of some literals
gi(X), i ∈ {0, 1, . . . , k − 1}.

In the best case, there exist rows in the decomposition chart correspond-
ing directly to the encoded functions g1(X), g2(X), . . . , gr(X). If h(g(X), A)
= gj(X) for some assignment A of the variables of Y , then the circuit imple-
menting gj(X) can be obtained from the circuit implementing f by applying
the assignment A to the inputs Y and propagating the constants.

E.4. CONCLUSION AND FUTURE WORK 129

In the worst case, the literals gi(X), i ∈ {0, 1, . . . , k − 1}, need to be
computed by ANDing selected rows of h(g(X), Y). Afterward, the functions
g1(X), g2(X), . . . , gr(X) are obtained as a combination of gi(X).

E.4 Conclusion and Future Work

This paper has two contributions: (1) a heuristic for finding a bound set X

which results in the disjoint-support decomposition with a good area/delay
trade-off; (2) an algorithm which transforms the original circuit into the
decomposed circuit.

Our preliminary experimental results on IWLS’02 benchmarks set show
that the proposed technique usually results in a smoother trade-off between
area and delay compared to the one of SIS. More experiments are needed to
make a thorough evaluation.

Paper F

Bound-Set Preserving ROBDD
Variable Orderings May Not Be

Optimum

Maxim Teslenko, Andrés Martinelli and Elena Dubrova. Published in the
“IEEE Transactions on Computers”, Vol. 54, no. 2, February 2005, pp. 236–
238.

Bound-Set Preserving ROBDD Variable Orderings

May Not Be Optimum

Maxim Teslenko∗ Andrés Martinelli∗ Elena Dubrova∗

Abstract

This paper reports a result concerning the relation between the best variable
orderings of a ROBDD Gf and the decomposition structure of the Boolean function
f represented by Gf . It was stated in [87] that, if f has a decomposition of type
f(X) = g(h1(Y1), h2(Y2), . . . , hk(Yk)), where {Yi}, i ∈ {1, 2, . . . , k}, is a partition of
X , then one of the orderings which keeps the variables within the sets {Yi} adjacent
is a best ordering for Gf . Using a counterexample, we show that this statement is
incorrect. and explore under which conditions this claim does not hold.

F.1 Introduction

This paper gives a counterexample to the following theorem from [87, p. 58,
Theorem 3.8]. Let f(X) be a Boolean function of type f : Bn → B on
B = {0, 1}, of the variables X = {x1, x2, . . . , xn}. Let 〈X〉 denote a set of
variable orderings induced by all possible permutations over the set X.

Theorem 11. If f(X) has a decomposition of type

f(X) = g(h1(Y1), h2(Y2), . . . , hk(Yk))

where {Yi}, 1 ≤ i ≤ k, is a partition of X, and hi, g are functions of type
hi : B|Yi| → B, g : Bk → B, then there exists a variable ordering belonging
to the set 〈〈Y1〉, 〈Y2〉, . . . , 〈Yk〉〉 which is best.

∗The authors are with the Department of Microelectronics and Information Technol-
ogy, Royal Institute of Technology (KTH), Stockholm, Sweden. E-mail: {maximt, andres,
elena}@imit.kth.se.

133

134 APPENDIX F. BOUND-SET PRESERVING ORDERINGS ...

F.2 Counterexample

A set of variables Y ⊆ X is a bound set for f(X) if f can be decomposed as
f(X) = g(h(Y), Z), where Z = X − Y , and h and g are functions of type
h : B|Y | → B, g : B ×B|Z| → B.

We say that two sets X and Y overlap if X − Y 6= ∅, X ∩ Y 6= ∅ and
Y −X 6= ∅.

Definition 1. A bound-set-preserving ordering is an ordering which keeps
the variables from all non-overlapping bound sets of the function adjacent.

It was proved in [7] that, for any Boolean function f(X) depending on all
its variables, the set of all non-overlapping bound sets related by inclusion
form a tree which is unique for f(X) (up to complementation). Therefore,
the set of bound-set-preserving orderings is uniquely defined for a given
function.

Theorem 12. There exists a function for which no bound-set-preserving
ordering is best.

Proof. By construction. Suppose a Boolean function f(X) has a decompo-
sition of type

f(X) = g(h1(Y1), h2(Y2), h3(Y3), h4(Y4), xm),

where {Yi}, 1 ≤ i ≤ 4, and xm is a partition of X, g is a function

g = h3(h4(h
′
2 + x′

m) + h′
1xm) + h′

3(h4xm + h1(h2 ⊕ xm)),

where hi(Yi) =
∨

j∈Yi
xj , i ∈ {1, 2, 4}, h3(Y3) = (h31(Y31) ⊕ xk)

′ where
Y31 = Y3 − {xk}, “⊕” is an XOR and h31(Y31) =

∨

j∈Y31
xj.

From the structure of f , we can see that the set of all bound-set-preserving
orderings of Gf is given by 〈〈Y1〉, 〈Y2〉, 〈〈Y31〉, xk〉, 〈Y4〉, xm〉.

Since, h1, h2 and h4 are totally symmetric functions, the structure and
the size of their ROBDDs do not depend on the variable ordering. In ad-
dition, h1, h2 and h4 are OR operations, and thus their ROBDDs do not
contain any pairs of sub-graphs representing functions which are comple-
ments of each other. According to , this implies that the OBDD resulting
after the substitution of nodes h1, h2 and h4 in Gg by their corresponding
ROBDDs is reduced. So, each node labeled by hi, i ∈ {1, 2, 4}, contributes
exactly |Ghi

| nodes to Gf (terminal nodes are not included in the count).

F.2. COUNTEREXAMPLE 135

h1

h2

h3 h3 h3

xm xm xm xm xm

h4

0 1

h1

h2

xm xm xm

h3 h3 h3 h3

h4

0 1

Figure F.1: Two cases of ROBDDs for g with the smallest number of nodes
labeled by h1, h2, h4.

On the other hand, since h3 is decomposable by an XNOR operation,
its ROBDD contains pairs of sub-graphs representing functions which are
complements of each other. Therefore, the OBDD resulting after the sub-
stitution of nodes h3 may be non-reduced [62]. The amount of reduction
cannot be estimated without analyzing the structure of Gg and Gh3 for each
particular order.

To make the size of Gf less dependent on the size of Gh3 , we impose the
condition that the ROBDDs for h1, h2 and h4 is much larger than Gh3 , i.e.
|Gh1 | = |Gh2 | = |Gh4 | >> |Gh3 |.

Then, the only potential candidates for best orderings of Gf are the
orderings of Gg which have the smallest number of nodes labeled by h1, h2

and h4.

By exhaustive search through all possible orderings of Gg, we can de-
termine that ROBDDs for orderings (h1, h2, h3, xm, h4) and (h1, h2, xm,
h3, h4), shown in Figure F.1, are the only two ROBDDs that have one node
for each of h1, h2 and h4. ROBDDs for all other orderings have more than
one node per at least one of h1, h2 or h4. The overall size of Gf is given by
Gf = |Gh1 |+ |Gh2|+ |Gh4|+N[h3,xm], where N[h3,xm] is the number of nodes
within the interval shown in Figure F.1 by dotted lines.

Next, we show that the number of nodes in Gf can be reduced by making
the ordering not bound-set-preserving.

Suppose the nodes h3 in Gg are substituted by ROBDDs for h3 = (h31⊕
xk)

′. There are six possible choices to order the variables h31, xk and xm

136 APPENDIX F. BOUND-SET PRESERVING ORDERINGS ...

within the interval shown in Figure F.1 by dotted lines. For each choice, we
compute N[h3,xm]. Note, that each node labeled by h31 contributes exactly
|Gh31 | nodes to Gf , since h31 is an OR operation and the reasoning from
above applies.

1. For the ordering (h31, xk, xm), N[h3,xm] = 3|Gh31 |+6+5 (Fig. F.2(a)).

2. For (h31, xm, xk), N[h3,xm] = 3|Gh31 |+ 6 + 4 (Fig. F.2(b)).

3. For (xm, h31, xk), N[h3,xm] = 3 + 4|Gh31 |+ 4 (Fig. F.2(c)).

4. Since h3 = (h31⊕xk)
′ and XNOR is symmetric, the graph for the order-

ing (xm, xk, h31) is the same as the graph for the ordering (xm, h31, xk)
(Fig. F.2(c)) with the variables xk and h31 permuted. N[h3,xm] =
3 + 4 + 4|Gh31 |.

5. For (xk, xm, h31), we have N[h3,xm] = 3 + 6 + 4|Gh31 |. The structure
of the graph is the same as in Figure F.2(b) with the variables xk and
h31 permuted.

6. For (xk, h31, xm), N[h3,xm] = 3 + 6|Gh31 | + 5. The structure of the
graph is the same as in Figure F.2(a) with the variables xk and h31

permuted.

For |Gh31 | ≥ 4 the ordering (h1, h2, h31, xm, xk, h4) (Fig. F.2(b)) gives us
the smallest number of nodes. This ordering does not preserve the bound set
Y3. Therefore, the best ordering for Gf is not bound-set-preserving. This
proves the theorem.

Theorem 12 also holds for ROBDDs with complemented edges (for the
same function as in the proof).

F.3 Conclusion

In this paper, we show that bound-set-preserving orderings may not be best
for ROBDDs. Such cases, however, are rare. Their existence does not
diminish the practical value of using bound sets as a guide for grouping
ROBDD variables, but should be noted as a possibility.

F.3. CONCLUSION 137

h1

h2

xk xk xk xk xk xk

xm xm xm xm xm

h4

0 1

h31 h31 h31

(a) (h1, h2, h31, xk, xm, h4)

h1

h2

xk xk xk xk

xm xm xm xm xm xm

h4

0 1

h31 h31 h31

(b) (h1, h2, h31, xm, xk, h4)

h1

h2

xm xm xm

h4

0 1

xk xk xkxk

h31 h31 h31h31

(c) (h1, h2, xm, h31, xk, h4)

Figure F.2: ROBDD for different orderings.

Paper G

Kauffman Networks: Analysis and
Applications

Elena Dubrova, Maxim Teslenko and Andrés Martinelli. Published in the
“Proceedings of the ACM/IEEE International Conference on Computer-
Aided Design 2005” (ICCAD 2005), November 6–10, 2005, San Jose, Cali-
fornia, USA, pp. 479–484

Kauffman Networks: Analysis and Applications

Elena Dubrova∗ Maxim Teslenko∗ Andres Martinelli∗

Abstract

A Kauffman network is an abstract model of gene regulatory networks. Each
gene is represented by a vertex. An edge from one vertex to another implies that the
former gene regulates the latter. Statistical features of Kauffman networks match
the characteristics of living cells. The number of cycles in the network’s state
space, called attractors, corresponds to the number of different cell types. The
attractor’s length corresponds to the cell cycle time. The sensitivity of attractors to
different kinds of disturbances, modeled by changing a network connection, the state
of a vertex, or the associated function, reflects the stability of the cell to damage,
mutations and virus attacks. In order to evaluate attractors, their number and
lengths have to be computed. This problem is the major open problem related to
Kauffman networks. Available algorithms can only handle networks with less than
a hundred vertices. The number of genes in a cell is often larger. In this paper,
we present a set of efficient algorithms for computing attractors in large Kauffman
networks. , enabling the modeling of real living cells. The resulting software package
will make possible analyzing Kauffman networks with more than 10.000 vertices,
thus enabling the modeling of real living cells. The resulting software package is
hoped to be of assistance in understanding the principles of gene interactions and
discovering a computing scheme operating on these principles.

G.1 Introduction

The gene regulatory network is one of the most important signaling net-
works in living cells. It is composed of the interactions of proteins with the

∗Royal Institute of Technology, IMIT/KTH, 164 46 Kista, Sweden

141

142 APPENDIX G. KAUFFMAN NETWORKS: ANALYSIS ...

genome [3]. The major discovery related to gene regulatory networks was
made in 1961 by French biologists François Jacob and Jacques Monod [86].
They found that a small fraction of the thousands of genes in the DNA
molecule acts as tiny “switches”. By exposing a cell to a certain hormone,
these switches can be turned “on” or “off”. The activated genes send chem-
ical signals to other genes which, in turn, get either activated or repressed.
The signals propagate along the DNA molecule until the cell settles down
into a stable pattern.

Jacob and Monod’s discovery showed that DNA is not just a blueprint for
the cell, but rather an automaton which allows for the creation of different
types of cells. It answered the long open question of how one fertilized
egg cell could differentiate itself into brain cells, lung cells, muscle cells, and
other types of cells that form a newborn baby. Each kind of cells corresponds
to a different pattern of activated genes in the automaton.

In 1969 Stuart Kauffman proposed using Boolean networks for modeling
gene regulatory networks [92]. Each gene is represented by a vertex in a
directed graph. An edge from one vertex to another implies a causal link
between the two genes. The “on” state of a vertex corresponds to the gene
being expressed. Time is viewed as proceeding in discrete steps. At each
step, the new state of a vertex v is a Boolean function of the previous states
of the vertices which are predecessors of v.

We discovered that many problems related to Kauffman networks are
similar to the problems in logic synthesis and verification of electronic cir-
cuits. For example, the problem of finding relevant elements in Kauffman
networks [12] is similar to the problem of removing redundancy in sequen-
tial logic circuits [14]. The problem of identifying state cycles in Kauffman
networks [145] is related to the problem of image computation in model
checking [115].

After examining the state-of-the-art in Kauffman networks, we found
that existing methods for their analysis are quite immature compared to
the approaches used in logic synthesis and verification. There are efficient
techniques for removing redundancy from a circuit with millions of gates [14]
and for verifying finite state machines with 1020 states [40]. The programs
available for computing state cycles in Kauffman networks can only deal with
networks with less than 32 relevant vertices [11, 157, 19, 143]. The number
of genes in a cell is often larger. For example, the tiny worm Caenorhabditis
elegans has 19.099 genes. A small flower in the mustard family, Arabidopis,
has 25.498 genes [140].

G.2. KAUFFMAN NETWORKS 143

To bridge this gap, we developed algorithms for redundancy removal and
partitioning for Kauffman networks that have linear-time complexity and are
feasible for networks with millions of vertices [66, 61, 65]. These algorithms
are first steps towards solving the more central problem of computing state
cycles in large Kauffman networks, which is addressed in this paper.

G.2 Kauffman Networks

In this section, we give a brief introduction to Kauffman networks. For a
more detailed description, the reader is referred to [4].

Definition of Kauffman Networks

Kauffman networks are a class of random nk-Boolean networks [8]. A ran-
dom nk-Boolean network is a synchronous Boolean automaton with n ver-
tices. Each vertex has exactly k incoming edges, assigned at random, and
an associated Boolean function. Functions are selected so that they evaluate
to the values 0 and 1 with given probabilities p and 1−p, respectively. Time
is viewed as proceeding in discrete steps. At each step, the new state of a
vertex v is a Boolean function of the previous states of the predecessors of
v.

A Kauffman network is a random nk-Boolean network with k = 2 and
p = 0.5, i.e. each vertex has two predecessors and Boolean functions are
assigned to vertices independently and uniformly at random from the set
of 16 possible 2-variable Boolean functions [129]. The state σvi

of a vertex
vi at time t + 1 is determined by the states of its predecessors vl and vr,
i, l, r ∈ {1, 2, . . . , n}, as:

σvi
(t + 1) = fvi

(σvl
(t), σvr (t))

where fvi
: {0, 1}2 → {0, 1} is the Boolean function associated to vi. The

vector (σv1(t), σv2(t), . . . , σvn(t)) represents the state of the network at time
t. An example of a Kauffman network with ten vertices is shown in Fig-
ure G.1. We use “·”, “+” and “′” to denote the Boolean operations AND,
OR and NOT, respectively.

144 APPENDIX G. KAUFFMAN NETWORKS: ANALYSIS ...

0

1

v0

v6

v4

v3

σ
′

v2

σ
′

v7

σv2

v1

v9

v7

v2

σv0
σv9

v8

v5

σ
′

v3

σ
′

v0
+ σ

′

v5

σv4
+ σ

′

v0

σv9
+ σv1

Figure G.1: Example of a Kauffman network. The state of a vertex vi at
time t + 1 is given by σvi

(t + 1) = fvi
(σvl

(t), σvr (t)), where vl and vr are the
predecessors of vi, and fvi

is the Boolean function associated to vi.

Frozen and chaotic phases

The parameters k and p determine the dynamics of the network. For a
given probability p, there is a critical number of inputs, kc, below which the
network is in the frozen phase and above which the network is in the chaotic
phase [54]:

kc =
1

2p(1− p)
. (G.1)

If a network is in the frozen phase, then, independently of the initial state,
a stable state is reached after a few steps [70]. Small changes in network’s
connections, states of vertices, or associated Boolean functions, typically
create no variations in the network’s dynamics.

In the chaotic phase, the length of state cycles is of order of 2n. The dy-
namics of the network is very sensitive to changes in network’s connections,
states of vertices, or associated Boolean functions [109].

On the critical line between the frozen and the chaotic phases, the net-
work exhibits self-organized critical behavior, ensuring both stability and
evolutionary improvements [10]. Statistical features of random nk-Boolean

G.2. KAUFFMAN NETWORKS 145

networks on the critical line are shown to match the characteristics of real
cells and organisms [92, 93, 4]. For p = 0.5, the critical number of inputs is
kc = 2, so Kauffman networks are on the critical line.

Apart from gene regulatory networks, Kauffman networks have been
applied to the problems of cell differentiation [83], immune response [94],
and evolution [28]. They have also attracted the interest of physicists due
to their analogy with disordered systems studied in statistical mechanics,
such as the mean field spin glass [52].

Attractors

Since the number of possible states of a Kauffman network is finite (up to
2n), any sequence of consecutive states of a network eventually converges to
either a single state, or a cycle of states, called attractor. The number and
length of attractors represent two important parameters of the cell modeled
by a Kauffman network. The number of attractors corresponds to the num-
ber of different cell types. For example, humans have 20.000-25.000 genes
(the exact number is not known yet) and about 250 cell types [106]. The
attractor’s length corresponds to the cell cycle time. Cell cycle time refers to
the amount of time required for a cell to grow and divide into two daughter
cells. The length of the total cell cycle varies for different types of cells.

The human body has a sophisticated system for maintaining normal
cell repair and growth. The body interacts with cells through a feedback
system that signals a cell to enter different phases of the cycle [51]. If a
person is sick, e.g suffers from cancer, then this feedback system does not
function normally and cancer cells enter the cell cycle independently of the
body’s signals. The number and length of attractors of a Kauffman network
serve as indicators of the health of the cell modeled by the network [145].
The sensitivity of attractors to different kinds of disturbances, modeled by
changing the state of a vertex, the associated Boolean function, or a network
connection, reflects the stability of the cell to damage, mutations and virus
attacks.

In order to evaluate attractors, their number and length have to be
computed. This problem is the major problem in the analysis of Kauffman
networks, for which no efficient solution is found so far. Available algorithms
for exact computation of attractors can only handle networks with less than
32 non-redundant vertices [11, 157, 19, 143]. For larger networks, the median
instead of the exact values on the number of attractors is computed using the

146 APPENDIX G. KAUFFMAN NETWORKS: ANALYSIS ...

algorithm RemoveRedundant(V, E)
/* I. Edge Combining */
for each v ∈ V do

if two incoming edges of v come from the same vertex then

Simplify fv;
/* II. Constant Propagation */
R1 = ∅;
for each v ∈ V do

if fv is a constant then

Append v at the end of R1;
for each v ∈ R1 do

for each u ∈ Sv − R1 do

Simplify fu by substituting constant fv;
if fu is a constant then

Append u at the end of R1;
Remove all v ∈ R1 and all edges connected to v;
/* III. Copy Propagation */
for each v ∈ V do

if fv is a 1-variable function then

Remove the edge (u, v), where u is the
predecessor of v on which v does not depend;

/* IV. Dead Code Elimination */
R2 = ∅;
for each v ∈ V do

if Sv = ∅ then

Append v at the end of R2;
for each v ∈ R2 do

for each u ∈ Pv − R2 do

if all ancestors of u are in R2 then

Append u at the end of R2;
Remove all v ∈ R2 and all edges connected to v;

end

Figure G.2: The algorithm for finding redundant vertices in Kauffman net-
works.

following technique [143]. Repeatedly, an initial state is chosen at random
and the attractor reachable from this state is computed. If 1000 consecutive
attempts yield no new attractor, the algorithm terminates. The resulting
number is used as a lower bound on the number of attractors in the network.

G.3 Redundancy Removal

Redundancy is an essential feature of biological systems, ensuring their cor-
rect behavior in presence of internal or external disturbances. An over-
whelming percentage (about 95%) of DNA of humans is redundant to the

G.3. REDUNDANCY REMOVAL 147

v5
v2

v9

v7
v1

σv2
σv9

σ
′

v5

σ
′

v7
σv1

+ σv9

Figure G.3: Reduced network GR for the Kauffman network in Figure G.1.

metabolic and developmental processes. Such “junk” DNA is believed to
act as a protective buffer against genetic damage and harmful mutations,
reducing the probability that any single, random offense to the nucleotide
sequence will affect the organism [147].

In the context of Kauffman networks, redundancy is defined as follows.
Let G = (V,E) be a Kauffman network, where V is the set of vertices and
E ⊆ V × V is the set of edges connecting the vertices.

Definition G.3.1: A vertex v ∈ V of a Kauffman network G is redundant
if the network obtained from G by removing v has the same number and
length of attractors as G.

If a vertex in not redundant, it is called relevant [11].

In [11], an algorithm for computing the set of all redundant vertices was
presented. This algorithm has a high complexity, and therefore is only appli-
cable to small Kauffman networks with up to a hundred vertices. In [61], we
presented an algorithm RemoveRedundant (Figure G.2), which quickly
finds structural redundancy and some simple cases of functional redundancy.
The phases II and IV of Remove Redundant are similar to the decimation
procedure of [19], although a detailed comparison is hard to do because no
pseudo-code is shown in [19]. The ordering of the phases of the algorithm is
very important. For example, if the phase IV is performed before the phase
II, then usually less redundant vertices are found.

Let Pv = {u ∈ V | (u, v) ∈ E} be a set of predecessors of v ∈ V and
Sv = {u ∈ V | (v, u) ∈ E} be a set of successors of v.

148 APPENDIX G. KAUFFMAN NETWORKS: ANALYSIS ...

RemoveRedundant first checks whether there are vertices v with two
incoming edges coming from the same vertex. If yes, the associated functions
fv are simplified.

Then, RemoveRedundant classifies as redundant all vertices v whose
associated function fv is constant 0 or constant 1. Such vertices are collected
in a list R1. Then, for every vertex v ∈ R1, successors of v are visited and the
functions associated to the successors are simplified. The simplification is
done by substituting the constant value of fv in the function of the successor
u. If as a result of the simplification the function fu reduces to a constant,
then u is appended to R1.

Second, RemoveRedundant finds all vertices whose associated func-
tion fv is a single-variable function. The edge between v and the predecessor
of v which v does not depend on is removed.

Next, RemoveRedundant classifies as redundant all vertices which
have no successors. Such vertices are collected in a list R2. For every
vertex v ∈ R2, both predecessors of v are visited. If all successors of some
predecessor u ∈ Pv are redundant, u is appended at the end of R2.

The worst-case time complexity of RemoveRedundant is O(|V |+ |E|),
where |V | is the number of vertices and |E| is the number of edges in G.

As we mentioned before, RemoveRedundant might not identify all
cases of functional redundancy. For example, a vertex may have a constant
output value due to the correlation of its input variables. For example, if a
vertex v with an associated OR (AND) function has predecessors vl and vr

with functions fvl
= σvj

and fvr = σ
′

vj
, then the value of fv is always 1 (0).

Such cases of redundancy are not detected by RemoveRedundant.

Let GR be the reduced network obtained from G by removing redundant
vertices. The reduced network for the example in Figure G.1 is shown in
Figure G.3. Its state transition graph is given in Figure G.4. Each vertex of
the state transition graph represents a 5-tuple (σ(v1)σ(v2)σ(v5)σ(v7)σ(v9))
of values of states on the relevant vertices v1, v2, v5, v7, v9. There are
two attractors: {01111, 01110, 00100, 10000, 10011, 01011}, of length six,
and {00101, 11010, 00111, 01010}, of length four. By Definition G.3.1, by
removing redundant vertices we do not change the total number and length
of attractors in a Kauffman network. Therefore, GR has the same number
and length of attractors as G.

G.4. PARTITIONING 149

01000

10111

11000

01010

00101 10101

11110

00110

00000

10001 00001

00010

10110

11100

10011

10000

01011

00100

01110

11111

11001

11011

11101 01101

01001
01111

01100

00011

10010

10100

00111

11010

Figure G.4: State transition graph of the Kauffman network in Figure G.3.
Each state is a 5-tuple (σ(v1)σ(v2)σ(v5)σ(v7)σ(v9)).

G.4 Partitioning

The vertices of GR induce a number of connected components.

Definition G.4.1: Two relevant vertices are in the same component if and
only if there is an undirected path between them.

A path is called undirected if it ignores the direction of edges.

Connected components can be computed in O(|V | + |E|) time, where
|V | is the number of vertices and |E| is the number of edges of GR, using
the following algorithm [149]. To find a connected component number i,
the function ComponentSearch(v) is called for a vertex v which has not
been assigned to a component yet. ComponentSearch does nothing if v

has been assigned to a component already. Otherwise, ComponentSearch
assigns v to the component i and calls itself recursively for all predecessors
and successors of v. The process repeats with the counter i incremented
until all vertices are assigned.

In [65], we have shown that attractors of a Kauffman network can be

150 APPENDIX G. KAUFFMAN NETWORKS: ANALYSIS ...

computed compositionally from the attractors of the connected components
of GR. Let {G1, G2, . . . , Gp} be the set of components of GR, Ni be the
number of attractors of Gi, Lij be the length of the jth attractor Gi and
I = I1 × I2 × . . .× Ip be the Cartesian product of sets Ii = {i1, i2, . . . , iNi

},
i = {1, 2, . . . , p}, j = {1, 2, . . . , Ni}. Then, the total number of attractors in
GR is given by

N =
∑

∀(i1,...,ip)∈I

p
∏

j=2

(((L1i1 • L2i2) • L3i3) . . . • Lj−1ij−1) ◦ Ljij

where “•” is the least common multiple operation and “◦” is the greatest
common divisor operation. The maximum length of attractors is given by

Lmax = max
∀(i1,...,ip)∈I

((L1i1 • L2i2) • L3i3) . . . • Lpip

where “•” is the least common multiple operation.

G.5 Computation of Attractors

To be able to compute attractors in a large Kauffman network, it is im-
portant to use an efficient representation for its set of states, and for the
transition relation on this set. In our current implementation, we use Re-
duced Ordered Binary Decision Diagrams (ROBDDs) [36].

A transition relation defines the next state values of the vertices in terms
of the current state values. We derive the transition relation in the stan-
dard way [40], by assigning every vertex vi of the network a state variable xvi

and making two copies of the set of state variables: s = (xv1 , xv2 , . . . , xvr),
denoting the variables of the current state, and s+ = (x+

v1
, x+

v2
, . . . , x+

vr
), de-

noting the variables of the next state. Using this notation, the characteristic
formula for the transition relation of a Kauffman network is given by:

T (s, s+) =
r

∧

i=1

(x+
vi
↔ fi(xvi1

, xvi2
)),

where r is the number of relevant vertices, fi is the Boolean function asso-
ciated with the vertex vi and vi1 and vi2 are the predecessors of vi.

As an example, consider the reduced Kauffman network in Figure G.3
and its state transition graph in Figure G.4. We have s = (xv1 , xv2 , xv5 , xv7 , xv9)

G.6. SIMULATION RESULTS 151

and s+ = (x+
v1

, x+
v2

, x+
v5

, x+
v7

, x+
v9

). The transition relation is given by:

T (s, s+) = (x+
v1
↔ x′

v7
) ∧ (x+

v2
↔ xv9) ∧ (x+

v5
↔ xv2)

∧ (x+
v7
↔ (xv1 + xv9)) ∧ (x+

v9
↔ x′

v5
).

Let T i(s, s+) denote the transition relation describing the set of next
states s+ that can be reached from any current state s in i steps. For i = 2,
T 2(s, s+) is computed as follows:

T 2(s, s+) = ∃s++.(T (s, s++) ∧ T (s++, s+)).

By applying squaring iteratively, we can obtain T 2i

(s, s+) in i steps for any
i [39].

One one hand, for a Kauffman network with r relevant vertices, it cannot
take more than 2r steps to reach an attractor from any state. One the other
hand, “overshooting” is not a problem because, once entered, an attractor
is never left. Therefore, for any initial state s, the next state s+ obtained
by the transition defined by T 2r

(s, s+) is a state of an attractor.

Let Fi(s) denote the set of states reachable from a given set of initial
states in i steps. Using the transition relation T 2r

(s, s+), we can compute
the set of states F2r (s) that can be reached from any state in 2r steps as:

F2r(s+) = ∃s.T 2r

(s, s+).

F2r(s+) represents the set of states of all attractors. It remains to distinguish
between different attractors. This can be done by picking up an arbitrary
state s of F2r(s+) and following its next states until s is not reached again.
This process is repeated starting from a state of F2r (s+) which was not
visited previously until F2r (s+) is covered.

Our simulation results show that the length and the number of attractors
in a Kauffman network with n vertices are of order of

√
n, which makes the

proposed approach efficient.

G.6 Simulation Results

This section shows simulation results for Kauffman networks of sizes from
10 to 107 vertices (Table G.1). Column 2 gives the average number of
relevant vertices computed using RemoveRedundant. Column 3 shows

152 APPENDIX G. KAUFFMAN NETWORKS: ANALYSIS ...

total average average average average
number number of size of number number

of relevant the largest of of
vertices vertices component components attractors

10 5 5 1.1 2.67
102 25 25 1.4 11.7
103 93 92 1.8 23.9∗

104 270 266 2.4 -
105 690 682 3.1 -
106 1614 1596 3.7 -
107 3502 3463 4.3 -

Table G.1: Simulation results. Average values for 1000 networks. ”∗” indi-
cates that the average is computed only for successfully terminated cases.

the average size of the largest connected component of the sub-graph GR

induced by the relevant vertices and column 4 gives the average number of
components. Column 5 shows the average number of attractors.

The simulation results show that we need to find a better way of par-
titioning. Currently, the size of the largest component of the sub-graph
induced by the relevant vertices (column 3) is Θ(r), where r is the num-
ber of relevant vertices in the sub-graph, i.e. we observe so called “giant”
component phenomena [123]. A technique resulting in a more balanced
partitioning is needed.

Another problem is that, on random graphs, ROBDDs blow up more
frequently than on sequential circuits. Currently, we cannot compute the
exact number of attractors in most networks with 103 vertices and larger.
The number of attractors shown in column 5 for networks with 103 vertices
is the average value computed for successfully terminated cases only. We did
have occasional blow ups for networks with 100 vertices as well. The number
of attractors shown in column 5 for networks with 100 vertices is the average
value computed for 1000 successfully terminated cases. In our future work,
we plan to investigate possibilities for implementing the algorithm presented
in Section G.5 using Boolean circuits [18, 1, 96, 24], rather than ROBDDs,
and combined approaches [128, 155]. We will also try reducing the state
space by detecting equivalent state variables [153] and by partitioning the
transition relation [74].

G.7. APPLICATIONS 153

G.7 Applications

In this section we present some ideas on how Kauffman networks can be
used for implementing Boolean functions and for achieving fault-tolerance.
The ideas we describe are preliminary, more research is needed to justify
them.

Implementing logic functions by Kauffman networks

An interesting direction of research is investigating how Kauffman networks
can be used for implementing logic functions. One possibility is to use the
states of relevant vertices of a network to represent variables of the function,
and to use the attractors to represent the function’s values.

To be more specific, suppose that we have a Kauffman network G with r

relevant vertices v1, . . . , vr and m attractors A1, A2, . . . , Am. The basins
of attractions of Ai’s partition the Boolean space Br into m connected
components. We assign a value i, i ∈ {0, 1, . . . ,m − 1} to the attractor
Ai and assume that the set of minterms represented by the states in the
basin of attraction of Ai is mapped to k. Then, G implements the function
f : {0, 1}r → {0, 1, . . . ,m − 1} of variables x1, . . . , xr, where the value of
the variable xi corresponds to the state of relevant vertex vi. The mapping
is unique up to permutation of m output values of f . If m = 2, then G

implements a Boolean function.

As an example, consider the Kauffman network G shown in Figure G.5.
The vertices v4 and v5 are relevant vertices, determining the dynamic of G

according to the reduced network in Figure G.6(a). The state transition
graph of the reduced network is shown in Figure G.6(b). There are two
attractors, A1 and A2. We assign the logic 0 to A1 and the logic 1 to A2.
The initial states 00, 01 and 10 terminate in the attractor A1 (logic 0) and
the initial state 11 terminates in the attractor A2 (logic 1). So, G implements
the 2-input Boolean AND.

Stability

Extensive experimental results confirm that Kauffman networks are tolerant
to faults, i.e. typically the number and length of attractors are not affected
by small changes [93, 4]. The following types of fault models are used to
model the effects of diseases, mutations, or injuries on a cell:

154 APPENDIX G. KAUFFMAN NETWORKS: ANALYSIS ...

0

v1

σv3
σv5

v0

v4

v7

v5v2

v6

1

v3

σ
′

v6
σv7

σ
′

v1
+ σv2

σv2
+ σv3

σv4
+ σ

′

v5

σ
′

v2
+ σv7

Figure G.5: Example of a network implementing the 2-input AND.

(a) (b)

00

01

10

11A1

v4 v5

σv5

A2

σv4
+ σ

′

v5

Figure G.6: (a) Reduced network for the Kauffman network in Figure G.5.
(b) Its state transition graph. Each state is a pair (σ(v4)σ(v5)). There are
two attractors: A1 = {01, 10} and A2 = {11}.

G.7. APPLICATIONS 155

σv4
σv5

v4 v5

σv5

Figure G.7: An alternative reduced network for the 2-input AND.

(b)(a)

01

10

A1

00

11

A2

v5v3

σ
′

v3
+ σv5

σv3
+ σ

′

v5

Figure G.8: (a) Reduced network for the Kauffman network in Figure G.5,
after three mutation described in Section G.7 has been applied. (b) Its state
transition graph. Each state is a pair (σ(v3)σ(v5)). There are two attractors:
A1 = {01, 10} and A2 = {00, 11}.

• a predecessor of a vertex v is changed, i.e. the edge (u, v) is replaced
by an edge (w, v), v, u,w ∈ V ;

• the state of a vertex is changed to the complemented value;

• Boolean function of a vertex is changed to a different Boolean function.

On one hand, the stability of Kauffman networks is due to the large
percentage of redundancy in the network. Θ(n − √n) of n vertices are
typically redundant. On the other hand, the stability is due to the non-
uniqueness of the network representation. The same dynamic behavior can
be achieved by many different Kauffman networks. For instance, the 2-input
AND gate could be implemented in many other ways than the one shown in
Figure G.5. For example, the reduced network in Figure G.7 has the same
state transition graph as the one in Figure G.6.

156 APPENDIX G. KAUFFMAN NETWORKS: ANALYSIS ...

Evolvability

An essential feature of living organisms is their capability to adapt to a
changing environment. Kauffman networks have been shown to be successful
in evolving to a predefined target function.

As an example, suppose that the following three mutations are applied
to the network in Figure G.5:

1. edge (v4, v5) is replaced by (v3, v5);

2. edge (v2, v3) is replaced by (v3, v3);

3. edge (v7, v3) is replaced by (v5, v3).

After removing redundant vertices from the resulting modified network, we
obtain the reduced network shown in Figure G.8. Its state space has two
attractors, A1 and A2. If we assign the logic 0 to A1 and the logic 1 to A2,
then the initial states 00 and 11 terminate in 1, while 01 and 10 terminate
in 0. So, the modified network implements the 2-input Boolean XNOR.

The example given above is intended to demonstrate that an evolution
from one functionality to another is possible.

G.8 Conclusion and Future Work

This paper presents a set of algorithms for the analysis of Kauffman net-
works. Redundancy removal and partitioning algorithms have been pre-
sented previously in [66, 61, 65]. The algorithm for computing attractors is
a new contribution, as well as the proposed applications.

We would like to stress that the major challenge is the size of the net-
works we are targeting. Small Kauffman networks are of theoretical interest
only. They cannot adequately model gene interactions of living cells. We
aim at developing a practical software package, applicable to real world size
problems.

A software package that can model gene interactions is of primary im-
portance to biology and medicine. Such a package will provide a framework
for obtaining simulation results that can be independently evaluated by in
vivo experiments. It can be used for various purposes, including:

1. to study the effects of diseases, mutations, or injuries on a cell;

G.8. CONCLUSION AND FUTURE WORK 157

2. to infer gene interactions that produce abnormal cells, e.g. cancer;

3. to understand the process of aging of a cell over time.

In the future, we will also investigate possibilities for enhancing Kauff-
man networks as a model. Kauffman networks have a number of drawbacks.
First, input connectivity of gene regulatory networks is much higher than
k = 2. For example, it is more than 20 in β-globine gene of humans and more
than 60 for the platelet-derived growth factor β receptor [4]. We will con-
sider networks with a higher input connectivity k and a smaller probability
p, satisfying the equation (G.1).

Second, using Boolean functions for describing the rules of regulatory
interactions between the genes seems too simplistic. It is known that the
level of gene expression depends on the presence of activating or repressing
proteins. However, the absence of a protein can also influence the gene
expression [4]. Using multiple-valued functions instead of Boolean ones for
representing the rules of regulations could be a better option.

Third, the number of attractors in Kauffman networks is a function of
the number of vertices. However, organisms with a similar number of genes
may have different numbers of cell types. For example, humans have 20.000-
25.000 genes and more than 250 cell types [106]. The flower Arabidopis has
a similar number of genes, 25.498, but only about 40 cell types [21]. We will
investigate which other factors influence the number of attractors.

As a longer-term goal, we will attempt to develop a computing scheme
based on the principles of gene interactions. A living cell is, essentially,
a molecular computer that configures itself as part of the execution of its
code. By understanding how genes interact with each other, we might find a
way to build a novel type of computer chips. As silicon transistor technology
approaches nano-meter dimensions and its speed and integration slow down,
the need for new ways of computing becomes more and more evident.

Bibliography

[1] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis
based on SAT-solvers. In Susanne Graf and Michael I. Schwartzbach,
editors, TACAS, volume 1785 of Lecture Notes in Computer Science,
pages 411–425. Springer, 2000. ISBN 3-540-67282-6.

[2] S. Akers. Binary decision diagrams. IEEE Transactions on Computers,
27(6):509–516, 1978.

[3] B. Alberts, D. Bray, J. Lewis, M. Ra, K. Roberts, and J. D. Watson.
Molecular Biology of the Cell. Garland Publishing, New York, 1994.

[4] M. Aldana, S. Coopersmith, and L. P. Kadanoff. Boolean dynamics
with random couplings. http://arXiv.org/abs/adap-org/9305001.

[5] S. Alstrup, J. Clausen, and K. Jorgensen. An O(|v| ∗ |e|) algorithm for
finding immediate multiple-vertex dominators. Information Processing
Letters, 59(1):9–11, 1996.

[6] I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and
G. L. Snider. Digital logic gate using quantum-dot cellular automata.
Science, 284:289–291, 1999.

[7] R. Ashenhurst. The decomposition of switching functions. In Pro-
ceedings International Symp. Theory of Switching, volume 29, pages
74–116, 1959.

[8] H. Atlan, F. Fogelman-Soulie, J. Salomon, and G. Weisbuch. Random
Boolean networks. Cybernetics and System, 12:103–121, 2001.

[9] K. Bartlett, W. Cohen, A. de Geus, and G. Hachtel. Synthesis and
optimization of multilevel logic under timing constraints. IEEE Trans-

160 BIBLIOGRAPHY

actions on Computer-Aided Design of Integrated Circuits and Systems,
5(4):582–596, October 1986.

[10] U. Bastola and G. Parisi. The critical line of Kauffman networks. J.
Theor. Biol., 187:117, 1997.

[11] U. Bastola and G. Parisi. The modular structure of Kauffman net-
works. Phys. D, 115:219, 1998.

[12] U. Bastola and G. Parisi. Relevant elements, magnetization and dy-
namic properties in Kauffman networks: a numerical study. Physica
D, 115:203, 1998.

[13] T. Bengtsson, A. Martinelli, and E. Dubrova. A BDD-based fast
heuristic algorithm for disjoint decomposition. In Proceedings of Asia
and South Pacific Design Automation Conference, ASP-DAC03, pages
191–196, Kitakyushu, Japan, January 2003.

[14] M. Berkelaar and K. M. van Eijk. Efficient and effective redundancy
removal for million-gate circuits. In Proceedings of the Design, Au-
tomation and Test in Europe Conference and Exhibition, page 1088.
IEEE Computer Society Press, 2002.

[15] V. Bertacco and M. Damiani. The disjunctive decomposition of logic
functions. In Proceedings of the ACM/IEEE International Conference
on Computer-Aided Design (ICCAD), pages 78–82, 1997.

[16] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, Micheli, and G. De.
Decision diagrams and pass transistor logic synthesis. Technical Re-
port CSL-TR-97-748, Stanford, CA, USA, 1997.

[17] B. B. Bhattacharya and S. C. Seth. On the reconvergent structure
of combinational circuits with applications to compact testing. In
Proceeding of International Symposium on Fault-Tolerant Computing,
pages 264–269, 1987.

[18] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. In 5th International Conference on Tools and
Algorithms for Construction and Analysis of Systems, pages 193–207,
Amsterdam, The Netherlands, March 1999.

161

[19] S. Bilke and F. Sjunnesson. Stability of the Kauffman model. Physical
Review E, 65:016129, 2001.

[20] L. J. Billera. On the composition and decomposition of clutters. Jour-
nal of Comb. Theory, 11:234–241, 1971.

[21] K. D. Birnbaum, D. E. Shasha, J. Y. Wang, J. W. Jung, G. M. Lam-
bert, D. W. Galbraith, and P. N. Benfey. A global view of cellular
identity in the arabidopsis root. In Proceedings of the International
Conference on Arabidopsis Research, Berlin, Germany, July 2004.

[22] Z. W. Birnbaum and J. D. Esary. Modules of coherent binary systems.
SIAM Journal of Applied Math., 13:444–451, 1965.

[23] Z. W. Birnbaum and R. H. Möhring. A fast algorithm for the de-
composition of graphs and posets. Math. Oper. Res, pages 170–177,
1984.

[24] P. Bjesse. DAG-aware circuit compression for formal verifica-
tion. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pages 42–49, November 2004.

[25] B. Bollig and I. Wegner. Improving the variable ordering of OBDDs
is NP-complete. IEEE Transactions on Computers, 45(9):993–1006,
1996.

[26] M. Bolton. Digital Systems Design with Programmable Logic. Addison-
Wesley Pub. Co., 1990.

[27] G. Boole. The laws of thought. Prometeus Books, New York, 2003.
ISBN 1-59102-089-1. Originally published: An investigation of the
laws of thought. 1854.

[28] S. Bornholdt and T. Rohlf. Topological evolution of dynamical net-
works: Global criticality from local dynamics. Physical Review Letters,
84:6114–6117, 2000.

[29] D. Bostick and G. D. Hachtel. The Boulder optimal logic design
system. In Proceedings of the IEEE International Conference on
Computer-Aided Design, pages 62–65, November 1987.

162 BIBLIOGRAPHY

[30] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a
BDD package. In Proc. 27th Design Automation Conference, pages
37–111, 1990.

[31] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund,
L. Adleman, R. P. Cowburn, and M. E. Welland. Solution of a 20-
variable 3-SAT problem on a DNA computer. Science, 296:499–502,
2002.

[32] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang.
Multi-level logic optimization and the rectangle covering problem. Pro-
ceedings of the ACM/IEEE International Conference on Computer-
Aided Design (ICCAD), pages 66–69, November 1987.

[33] R. K. Brayton and C. McMullen. The decomposition and factoriza-
tion of Boolean expression. In Proceedings of the IEEE International
Symposium of Circuits and Systems, pages 49–54. IEEE, 1982.

[34] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang.
MIS: A multiple-level logic optimization system. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 6(6):
1062–1081, November 1987.

[35] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. Field-
Programmable Gate Arrays. Kluwer Academic Publishers, 1992.

[36] R. E. Bryant. Graph-based algorithms for Boolean function manipu-
lation. IEEE Trans. Comput., 35(8):677–691, 1986. ISSN 0018-9340.

[37] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[38] P. Buch, A. Narayan, A. R. Newton, and A. Sangiovanni-Vincentelli.
Logic synthesis for large pass transistor circuits. In p-ICCAD, pages
663–670, Washington, DC, USA, 1997. IEEE Computer Society. ISBN
0-8186-8200-0.

[39] J.R. Burch, E.M. Clarke, D. E. Long, K.L. McMillan, and D.L. Dill.
Symbolic Model Checking for sequential circuit verification. Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems,
13(4):401–442, April 1994.

163

[40] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic Model Checking: 1020 States and Beyond. In Proceedings
of the Fifth Annual IEEE Symposium on Logic in Computer Science,
pages 1–33, Washington, D.C., 1990. IEEE Computer Society Press.

[41] S.-C. Chang, M. Marek-Sadowska, and T. Hwang. Technology map-
ping for TLU FPGA’s based on decomposition of binary decision di-
agrams. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 15:1226–1235, 1996.

[42] S. Chattopadhyay, S. Roy, and P. P. Chaudhuri. KGPMIN: an efficient
multilevel multioutput AND-OR-XOR minimizer. IEEE Transactions
on CAD of Integrated Circuits and Systems, 16(3):257–265, March
1997.

[43] D. Cheng. Power estimation of digital CMOS circuits and the appli-
cation to logic synthesis for low power, December 1995. Ph.D. Thesis,
University of California at Santa Barbara.

[44] J. Cong, H. P. Li, S. K. Lim, Toshiyuki Shibuya, and Dongmin Xu.
Large scale circuit partitioning with loose/stable net removal and sig-
nal flow based clustering. In International Conference on Computer-
Aided Design, pages 441–446, 1997.

[45] J. Cortadella. Bi-decomposition and tree-height reduction for timing
optimization. In Proceedings of the ACM/IEEE International Work-
shop on Logic Synthesis, New Orleans, July 2002. ACM/IEEE.

[46] R. P. Cowburn and M. E. Welland. Room temperature magnetic quan-
tum cellular automata. Science, 287:1466–1468, 2000.

[47] W. H. Cunningham. Decomposition of directed graphs. SIAM Journal
of Algebraic and Discrete Methods, 3:214–221, 1982.

[48] H. A. Curtis. A New Approach to the Design of Switching Circuits.
D. van Nostrand company, Princeton, New Jersey, 1962.

[49] J. Darringer, W. Joyner, L. Berman, and L. Trevillyan. LSS: Logic
synthesis through local transformations. IBM Journal of Research and
Development, 25(4):272–280, July 1981.

164 BIBLIOGRAPHY

[50] E. S. Davidson. An algorithm for NAND decomposition under network
constraints. IEEE Transactions on Computers, C-18(12):1098–1109,
December 1969.

[51] R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, 1989.

[52] B. Derrida and H. Flyvbjerg. Multivalley structure in Kauffman’s
model: Analogy with spin glass. J. Phys. A: Math. Gen., 19:L1103,
1986.

[53] B. Derrida and H. Flyvbjerg. Distribution of local magnetizations in
random networks of automata. J. Phys. A: Math. Gen., 20:L1107,
1987.

[54] B. Derrida and Y. Pomeau. Random networks of automata: a simple
annealed approximation. Biophys. Lett., 1:45, 1986.

[55] J-P. Deschamps. Binary simple decomposition of discrete functions.
Digital Processes, 1:123–130, 1975.

[56] W. E. Donath and H. Ofek. Automatic identification of equivalence
points for Boolean logic verification. IBM Technical Disclosure Bul-
letin, 18(8):2700–2703, 1976.

[57] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski.
Efficient representation and manipulation of switching functions based
on ordered kronecker functional decision diagrams. In Proceedings of
the 31st annual conference on Design automation, pages 415–419, New
York, NY, USA, 1994. ACM Press. ISBN 0-89791-653-0.

[58] K. E. Drexler. Nanosystems. Wiley, New York, 1992.

[59] E. Dubrova. Composition trees in finding best variable orderings for
ROBDDs. In Proceedings of Design, Automation & Test in Europe
Conference, page 1084, 2002.

[60] E. Dubrova. Logic Synthesis and Verification, chapter 4. Kluwer Aca-
demic Publishers, 2002.

[61] E. Dubrova. Modeling of gene regulatory systems by random Boolean
networks. In Bioengineered and Bioinspired Systems, Sevilla, Spain,
9-11 May 2005.

165

[62] E. Dubrova and L. Macchiarulo. A comment on graph-based algorithm
for Boolean manipulation. IEEE Transactions on Computers, 49(10):
1290–1292, October 2000.

[63] E. Dubrova, D. Miller, and J. Muzio. AOXMIN: A three-level heuristic
AND-OR-XOR minimizer for Boolean functions. In Proceedings of the
3rd International Workshop on the Applications of the Reed-Muller
Expansion in Circuit Design, page 209, 1997.

[64] E. Dubrova and D. M. Miller. On dependable criteria for dynamic
reordering algorithms. In Proc. 7th Int. Workshop on Post-Binary
ULSI Systems, pages 46–48, 1998.

[65] E. Dubrova and M. Teslenko. Compositional properties of Random
Boolean Networks. Physical Review E, 71, May 2005.

[66] E. Dubrova, M. Teslenko, and H. Tenhunen. Computing attractors
in dynamic networks. In Proceedings of International Symposium on
Applied Computing (IADIS’2005), pages 535–543, Algarve, Portugal,
February 2005.

[67] E. V. Dubrova, C. Muzio, and B. von Stengel. Finding composition
trees for multiple-valued functions. In Proceedings of 27th Interna-
tional Symposium on Multiple-Valued Logic, pages 19–26. IEEE, 1997.

[68] D. M. Eigler, C. P. Lutz, and W. E. Rudge. An atomic switch realized
with the scanning tunnelling microscope. Nature, 352:600–602, 1991.

[69] G. Fleisher and L. Maissel. An introduction to array logic. IBM
Journal of Research and Development, 19:98–109, March 1975.

[70] H. Flyvbjerg and N. J. Kjaer. Exact solution of Kauffman model with
connectivity one. J. Phys. A: Math. Gen., 21:1695, 1988.

[71] A. A. Fraenkel. Abstract Set Theory. North-Holland Publishing, Am-
sterdam, 1976.

[72] S. J. Friedman and K. J. Supowit. Finding the optimal variable or-
dering for binary decision diagrams. In Proc. 24th ACM/IEEE Design
Automation Conf., pages 348–355, 1987.

166 BIBLIOGRAPHY

[73] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering of bi-
nary decision diagrams for the application of multi-level logic synthe-
sis. In Proceedings of the European Conference on Design Automation,
pages 50–54, Amsterdam, February 1991.

[74] D. Geist and I. Beer. Efficient model checking by automated order-
ing of transition relation partitions. In Computer Aided Verification
(CAV’94), pages 299–310, Stanford, July 1994. Springer-Verlag.

[75] J. F. Gimpel. The minimization of TANT networks. IEEE Transac-
tions on Electronic Computers, EC-16(1):18–38, February 1967.

[76] D. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck,
and J. C. Ellenbogen. Overview of nanoelectronic devices. Proc. IEEE,
85:521–540, 1997.

[77] R. Gupta. Generalized dominators and post-dominators. In Proceed-
ings of 19th Annual ACM Symposium on Principles of Programming
Languages, pages 246–257, 1992.

[78] M. Habib and M. C. Maurer. On the x-join decomposition for undi-
rected graphs. Journal of Appl. Discr. Math., 3:198–205, 1979.

[79] P. Halmos. Naive set theory. Springer-Verlag, New York, 1974. ISBN
0-387-90092-6.

[80] A. J. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler. Molecule
cascades. Science, 298:1381–1387, 2002.

[81] L. Hellermann. A catalog of three-variable OR-invert and AND-invert
logical circuits. IEEE Transactions on Electronic Computers, EC-12:
198–223, June 1963.

[82] J.-D Huang, J.-Y Jou, and W.-Z. Shen. Encoding in Roth-Karp de-
composition with application to two-output LUT architecture. In
Computers and Digital Techniques, IEE Proceedings, Vol.146, Iss.3,
pages 131–138. IEE, 1999.

[83] S. Huang and D. E. Ingber. Shape-dependent control of cell growth,
differentiation, and apoptosis: Switching between attractors in cell
regulatory networks. Experimental Cell Research, 261:91–103, 2000.

167

[84] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, and C. M. Lieber.
Logic gates and computation from assembled nanowire building blocks.
Science, 294:1313–1317, 2001.

[85] J. Ishikawa, H. Sato, M. Hiramine, K. Ishida, S. Oguri, Y. Kazuma,
and S. Murai. A rule-based reorganization system LORES/EX. Proc.
International Conference on Computer Design, pages 262–266, Octo-
ber 1988.

[86] F. Jacob and J. Monod. Genetic regulatory mechanisms in the syn-
thesis of proteins. Journal of Molecular Biology, 3:318–356, 1961.

[87] S.-W. Jeong. Binary Decision Diagrams and their Applications to Im-
plicit Enumeration Techniques in Logic Synthesis. PhD thesis, Uni-
versity of Colorado, 1992.

[88] S.-W. Jeong, B. Plessier, G. D. Hatchel, and F. Somenzi. Variable
ordering and selection for SSM traversal. In Proceedings of the IEEE
Int. Conf. on Computer Aided Design, pages 476–479, 1991.

[89] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Multi-valued decision diagrams: theory and applications. Multiple-
Valued Logic, 4(1–2):9–62, 1998.

[90] R. M. Karp. Functional decomposition and switching circuit design.
Journal of Soc. Indust. Appl. Math., 11(2):291–335, June 1963.

[91] K. Karplus. Using If-Then-Else DAGs for multi-level logic minimiza-
tion. Technical Report UCSC-CRL-88-29, University of California
Santa Cruz, 1988.

[92] S. A. Kauffman. Metabolic stability and epigenesis in randomly con-
structed nets. Journal of Theoretical Biology, 22:437–467, 1969.

[93] S. A. Kauffman. The Origins of Order: Self-Organization and Selec-
tion of Evolution. Oxford University Press, Oxford, 1993.

[94] S. A. Kauffman and E. D. Weinberger. The NK model of rugged fitness
landscapes and its application to maturation of the immune response.
Journal of Theoretical Biology, 141:211–245, 1989.

168 BIBLIOGRAPHY

[95] R. Krenz and E. Dubrova. On-the-fly proper cut recognition based on
circuit graph analysis. In Proceedings of NORCHIP’02, Copenhagen,
Denmark, November 2002. poster.

[96] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean
reasoning. In Proceedings of the 38th ACM/IEEE Design Automation
Conference, pages 232–237, Las Vegas, Nevada, June 2001.

[97] A. Kuehlmann, M.K. Ganai, and V. Paruthi. Circuit-based Boolean
reasoning. In Proceedings of the 38th ACM/IEEEDesign Automation
Conference, pages 232–237, Las Vegas, NV, June 2001. IEEE Com-
puter Society Press.

[98] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula. BDD based decomposi-
tion of logic functions with application to FPGA synthesis. In p-DAC,
pages 642–647, 1993.

[99] Yung-Te Lai, K.-R.R. Pan, and M. Pedram. BDD-based function
decomposition: algorithms and implementation. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, 15:
977–990, 1996.

[100] E. L. Lawler. An approach to multilevel Boolean minimization. Jour-
nal of the ACM, 11(3):283–295, July 1964.

[101] C. Lee. Representation of switching circuits by binary-decision pro-
grams. Bell Systems Technical Journal, 38(4):985–999, 1959.

[102] C. Legl, B. Wurth, and K. Eckl. Computing support-minimal subfunc-
tions during functional decomposition. Transactions on Very Large
Scale Integration (VLSI) systems, 6(3):354–363, September 1998.

[103] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators
in a flowgraph. Transactions of Programming Languages and Systems,
1(1):121–141, July 1979.

[104] C. S. Lent and P. D. Tougaw. A device architecture for computing
with quantum dots. Proc. IEEE, 85:541–557, 1997.

[105] R. J. Lipton. Dna solution of hard computational problem. Science,
268:542–545, 1995.

169

[106] A. Y. Liu and L. D. True. Characterization of prostate cell types by
CD cell surface molecules. The American Journal of Pathology, 160:
37–43, 2002.

[107] T.-H. Liu, M. K. Ganai, A. Aziz, and J. L. Burns. Performance driven
synthesis for pass-transistor logic. In VLSID ’99: Proceedings of the
12th International Conference on VLSI Design, pages 372–377, Wash-
ington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0013-7.

[108] E. S. Lowry and C. W. Medlock. Object code optimization. Commu-
nications of the ACM, 12(1):13–22, January 1969.

[109] B. Luque and R. V. Sole. Stable core and chaos control in Random
Boolean Networks. Journal of Physics A: Mathematical and General,
31:1533–1537, 1998.

[110] S. Malik, A. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli.
Logic verification using binary decision diagrams in a logic synthesis
environment. In Proc. International Conference on Computer-Aided
Design, pages 6–9, 1988.

[111] A. Martinelli, T. Bengtsson, E. Dubrova, and A. J. Sullivan. Roth-
Karp decomposition of large Boolean functions with application to
logic design. In Proceedings of NORCHIP’02, Copenhagen, Denmark,
November 2002.

[112] H. Mathony and U. G. Baitinger. CARLOS: An automated multilevel
logic design system for CMOS semi-custom integrated circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 7(3):346–355, March 1988.

[113] Y. Matsunaga. An exact and efficient algorithm for disjunctive de-
composition. In Proceedings of SASIMI’98, pages 44–50, 1998.

[114] E. J. McCluskey. Minimization of Boolean functions. Bell System
Technical Journal, 35:1417–1444, 1959.

[115] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Pub-
lishers, Boston, MA, 1993.

[116] J. D. Meindl, Q. Chen, and J. A. Davis. Limits on silicon nanoelec-
tronics for terascale integration. Science, 293:2044–2049, 2001.

170 BIBLIOGRAPHY

[117] S. Minato. Minimum-width method of variable ordering for binary
decision diagrams. IEICE Trans. Fundamentals, E-75-A(3):392–399,
1992.

[118] S. Minato and G. De Micheli. Finding all simple disjunctive decom-
positions using irredundant sum-of-products forms. In Proceedings
of IEEE/ACM International Conference on Computer-Aided Design,
pages 111–117, 1998.

[119] A. Mishchenko, B. Steinbach, and M. Perkowski. An algorithm for
bi-decomposition of logic functions. In Proceedings of the ACM/IEEE
Design Automation Conference (DAC), pages 103–108. IEEE, 2001.

[120] R. H. Möhring. Algorithmic aspects of the substitution decomposition
in optimization over relations, set systems and Boolean functions. An-
nals of Operations Research, 4:195–225, June 1985.

[121] R. H. Möhring and F. J. Radermacher. Substitution decomposition
of discrete structures and connections to combinatorial optimization.
Ann. Discrete Math, 19:257–264, 1984.

[122] D. Möller, P. Molitor, and R. Drechsler. Symmetry based variable
ordering for ROBDDs. In IFIP Workshop on Logic and Architecture
Synthesis, 1994.

[123] M. Molloy and B. Reed. The size of the giant component of a random
graph with a given degree sequence. Combin. Probab. Comput., 7:
295–305, 1998.

[124] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimum
functional decomposition using encoding. In p-DAC, pages 408–414,
New York, NY, USA, 1994. ACM Press. ISBN 0-89791-653-0.

[125] S. Panda and F. Somenzi. Who are the variables in your neighborhood.
In Proceedings of IEE/ACM Workshop on Logic Synthesis, pages 1–10,
1995.

[126] W. Paul. Realizing Boolean functions on disjoint sets of variables.
Theoretical Computer Science, 2:383–396, 1976.

[127] W. Van Orman Quine. The problem of simplifying truth functions.
American Mathematical Monthly, 59(8):521–531, October 1952.

171

[128] S. M. Reddy, W. Kunz, and D. K. Pradhan. Novel verification frame-
work combining structural and OBDD methods in a synthesis envi-
ronment. In Proceedings of the 32th ACM/IEEE Design Automation
Conference, pages 414–419, San Francisco, June 1995.

[129] V. G. Redko. Kauffman’s nk Boolean networks, 1998.
http://pespmc1.vub.ac.be/BOOLNETW. html.

[130] J. P. Roth and R. M. Karp. Minimization over Boolean graphs. IBM
Journal, 6:227–238, April 1962.

[131] R. Rudell. Dynamic variable ordering for ordered binary decision di-
agrams. In Proceeding of IEEE/ACM International Conference on
Computer-Aided Design, volume 29, pages 42–47, 1993.

[132] T. Sasao. FPGA design by generalized functional decomposition, pages
233–258. Kluwer Academic Publishers, 1993.

[133] T. Sasao and M. Matsuura. DECOMPOS: An integrated system for
functional decomposition. In Proceedings of the ACM/IEEE Interna-
tional Workshop on Logic Synthesis, 1998.

[134] H. Sawada, T. Suyama, and A. Nagoya. Logic synthesis for look-
up table based FPGAs using functional decomposition and support
minimization. In Proceedings of the IEEE International Conference
on Computer-Aided Design, pages 355–358. IEEE, 1995.

[135] H. Sawada, S. Yamashita, and A. Nagoya. Restructuring logic repre-
sentations with easily detectable simple disjunctive decompositions.
In Proceedings of the ACM/IEEE Design Automation Conference
(DAC), pages 755–759. IEEE, 1998.

[136] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. SIS:
A system for sequential circuit synthesis. Technical report, University
of California Berkley, May 1992.

[137] S. C. Seth, L. Pan, and V. D. Agrawal. PREDICT-probabilistic es-
timation of digital circuit testability. In Proceeding of International
Symposium on Fault-Tolerant Computing, pages 220–225, June 1985.

172 BIBLIOGRAPHY

[138] C. E. Shannon. The synthesis of two-terminal switching circuits. Bell
Systems Technical J., 28:59–98, January 1949.

[139] L. S. Shapley. Solutions of compound simple games. In Advances in
Game Theory, number 52 in Ann. of Math. Study, pages 267–280.
Princeton University Press, 1964.

[140] J. Shelley. Here we go again, 29 December 2004.
http://www.gdnctr.com/dec 29 00.htm.

[141] V. Y. Shen and A. C. McKellar. An algorithm for the disjunctive
decomposition of switching functions. IEEE Trans. Computers, C-19:
239–245, 1970.

[142] V. Y. Shen, A. C. McKellar, and P. Weiner. A fast algorithm for
the disjunctive decomposition of switching functions. IEEE Trans.
Computers, C-20:239–246, 1970.

[143] J. E. S. Socolar and S. A. Kauffman. Scaling in ordered and critical
random Boolean networks. http://arXiv.org/abs/cond-mat/0212306.

[144] F. Somenzi. CU Decision Diagram Package, Release 2.3.0. University
of Colorado at Boulder, 1998.

[145] Z. Somogyvari and S. Payrits. Length of state cycles of random boolean
networks: an analytic study. Journal of Physics A: Mathematical and
General, 33:6699–6706, 2000.

[146] T. Stanion and C. Sechen. Quasi-algebraic decompositions of switch-
ing functions. In Proceedings of Sixteenth Conference on Advanced
Research in VLSI, pages 358–367. IEEE, 1995.

[147] J. Suurkula. Over 95 percent of DNA has largely unknown function,
2004. http://www.psrast.org/junkdna.htm.

[148] D. D. Swade. Redeeming charles babbage’s mechanical computer. Sci-
entific American, 268(2):62–68, 1993.

[149] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160, 1972.

[150] A. Thayse. A fast algorithm for the proper decomposition of Boolean
functions. Philips Res. Rep., 27:140–147, 1972.

173

[151] C.-C. Tsai and M. Marek-Sadowska. Multilevel logic synthesis for
arithmetic functions. In p-DAC, pages 68–73. IEEE, 1996.

[152] G. Y. Tseng and J. C. Ellenbogen. Nanotechnology: Enhanced: To-
ward nanocomputers. Science, 294:1293–1294, 2001.

[153] C. A. J. van Eijk and J. A. G. Jess. Detection of equivalent state
variables in finite state machine verification. In 1995 ACM/IEEE
International Workshop on Logic Synthesis, pages 3–35 – 3–44, Tahoe
City, CA, May 1995.

[154] B. von Stengel. Eine dekompositionstheorie für mehrstellige funktio-
nen. In Mathematical Systems in Economics, volume 123. Anton Hain,
Frankfurt, 1991.

[155] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining
decision diagrams and SAT procedures for efficient symbolic model
checking. In Computer Aided Verification (CAV’00), pages 125–138,
Chicago, IL, July 2000. Springer-Verlag.

[156] S. J. Wind, J. Appenzeller, R. Martel, and V. Derycke. Vertical scaling
of single-wall carbon nanotube cmos field effect transistors using top
gate electrodes. Appl. Phys. Lett., 80:3817, 2002.

[157] A. Wuensche. The DDlab manual, 2000.
http://www.cogs.susx.ac.uk/users/andywu/man contents.html.

[158] B. Wurth, K. Eckl, and K. Antreich. Functional multiple-output de-
composition: Theory and an implicit algorithm. In p-DAC, pages
54–59, 1995.

[159] S. Yamashita, H. Sawada, and A. Nagoya. New methods to find opti-
mal non-disjoint bi-decompositions. In Proceedings of the ACM/IEEE
Design Automation Conference (DAC), pages 59–68. IEEE, 1998.

[160] C. Yang, M. Ciesielski, and V. Singhal. BDS: a BDD-based logic
optimization system. In Proceedings of the ACM/IEEE Design Au-
tomation Conference (DAC), pages 92–97. IEEE, 2000.

[161] C. Yang, V. Singhal, and M. Ciesielski. BDD decomposition for ef-
ficient logic synthesis. In Proceedings of International Conference on
Computer Design, pages 626–631, 1999.

174 BIBLIOGRAPHY

[162] Y. Ye and K. Roy. A graph-based synthesis algorithm for AND/XOR
networks. In Proceedings of the 34th annual conference on Design
automation, pages 107–112, New York, NY, USA, 1997. ACM Press.
ISBN 0-89791-920-3.

[163] D. Zampunièris. The Sharing Tree Data Structure. PhD thesis, De-
partment of Computer Science, University of Namur, Belgium, 1997.

Index

algebraic, 23

BDD, 14
canonical, 16
multi-terminal, 40
node, 14
non-terminal node, 14
OBDD, 14
ordered, 14
reduced, 15
ROBDD, 15
terminal node, 14
unique table, 16

bound set, 20
k-bound set, 21
preserving, 60

circuit graph, 43, 47
compatible

assignment, 23
class, 23

composition tree, 20
cone of influence, 43
cube, 23
cut, 23
cut level, 31

decomposition
bi-decomposition, 23

column multiplicity, 22

complex disjoint, 20

disjoint support, 21, 29

iterative, 20

multiple, 20

non-disjoint support, 30, 47

quasi-algebraic, 23

simple disjoint, 19, 29

tree like, 20

dominator, 24

common multiple vertex, 47,
48

dominate, 43

immediate, 43

multiple vertex, 47

proper cut, 24, 43

reduced dominator tree, 44

single vertex, 43, 47

tree, 44

equivalence class, 12, 13

equivalence relation, 13

function, 12

bijective, 13

characteristic, 13

co-domain, 12

cofactor, 14

176 INDEX

composition, 13
domain, 12
image, 12
injective, 13
isomorphic, 13
non-degenerate, 20
projection, 13
range, 12
surjective, 13

Gene Regulatory Network, 65
GRN, 65

headlines, 24, 44

kernels, 23

MDD, 16
algebraic decision diagram, 40
non-terminal node, 17
OMDD, 17
ROMDD, 17
terminal node, 17

Non-disjoint support decomposition,
22

proper cut, 24, 43, 44, 44

Random Boolean Network, 63
RBN, 63
relation, 12

binary, 12
closure, 12
equivalence, 12, 23
on, 12

set, 12
equivalence class, 12, 23
member, 12

partition, 12
proper subset, 12
strict subset, 12
subset, 12

slice, 33
slicing, 33
sum-of-products, 27
supergates, 24, 44

