Advances in Functional Decomposition:

Theory and Applications

ANDRÉS MARTINELLI

Doctoral Dissertation

Department of Electronic, Computer, and Software Systems
School of Information and Communication Technology
Royal Institute of Technology (KTH)
Stockholm, Sweden 2006

TRITA-ICT/ECS AVH 06:06
ISSN 1653-6363
ISRN KTH/ICT/ECS AVH-06/06--SE

KTH-ICT-ECS
SE-164 40 Stockholm
SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av doktorsexamen torsdagen den 12 oktober 2006 kl 9.00 i Sal E, KTH-Forum, plan 5, Isafjordsgatan 39, Kista, Stockholm.
(C) Andrés Martinelli, 2006

Abstract

Functional decomposition aims at finding efficient representations for Boolean functions. It is used in many applications, including multi-level logic synthesis, formal verification, and testing.

This dissertation presents novel heuristic algorithms for functional decomposition. These algorithms take advantage of suitable representations of the Boolean functions in order to be efficient.

The first two algorithms compute simple-disjoint and disjoint-support decompositions. They are based on representing the target function by a Reduced Ordered Binary Decision Diagram (BDD). Unlike other BDD-based algorithms, the presented ones can deal with larger target functions and produce more decompositions without requiring expensive manipulations of the representation, particularly BDD reordering.

The third algorithm also finds disjoint-support decompositions, but it is based on a technique which integrates circuit graph analysis and BDD-based decomposition. The combination of the two approaches results in an algorithm which is more robust than a purely BDD-based one, and that improves both the quality of the results and the running time.

The fourth algorithm uses circuit graph analysis to obtain non-disjoint decompositions. We show that the problem of computing non-disjoint decompositions can be reduced to the problem of computing multiple-vertex dominators. We also prove that multiple-vertex dominators can be found in polynomial time. This result is important because there is no known polynomial time algorithm for computing all non-disjoint decompositions of a Boolean function.

The fifth algorithm provides an efficient means to decompose a function at the circuit graph level, by using information derived from a BDD representation. This is done without the expensive circuit re-synthesis normally associated with BDD-based decomposition approaches.

Finally we present two publications that resulted from the many detours we have taken along the winding path of our research.

Contents

Contents iv
List of Figures vii
List of Tables ix
Acknowledgments xi
1 Introduction 1
1.1 Context and Motivation 3
2 Background 11
2.1 Basic Notation 11
2.2 Sets, Relations, and Functions 11
2.3 Decision Diagrams 13
3 Previous work 19
3.1 Functional Decomposition 19
3.2 Functional Decomposition Algorithms 22
3.3 Logic Synthesis 24
4 Contributions in this Dissertation 29
4.1 BDD Based Disjoint-Support Boolean Decomposition 31
4.2 Hybrid Disjoint-Support Decomposition 43
4.3 Circuit Based Non-Disjoint Decomposition 47
4.4 Efficient Circuit Re-Synthesis 52
4.5 On the Relation of Bound Sets and Best Orderings 59
4.6 From Nature to Electronics: Kauffman Networks 63
4.7 Conclusion and Open Problems 66
5 Complete List of Publications 67
Papers 71
A A BDD-Based Fast Heuristic Algorithm for Disjoint De- composition 73
A. 1 Introduction 75
A. 2 Previous work 76
A. 3 New heuristic algorithm 78
A. 4 Experimental results 83
A. 5 Conclusion 86
B Roth-Karp Decomposition of Large Boolean Functions with Application to Logic Design 87
B. 1 Introduction 89
B. 2 Previous work 91
B. 3 Generalized cut algorithm 93
B. 4 Experimental results 95
B. 5 Conclusions 97
C Disjoint-Support Boolean Decomposition Combining Func- tional and Structural Methods 99
C. 1 Introduction 101
C. 2 Previous work 103
C. 3 Preliminaries 104
C. 4 Circuit-based proper cut decomposition 106
C. 5 BDD-based decomposition 107
C. 6 Experimental results 108
C. 7 Conclusion 110
D On the Relation Between Non-Disjoint Decomposition and Multiple-Vertex Dominators 113
D. 1 Introduction 115
D. 2 Previous work 116
D. 3 Relation between non-disjoint decomposition and multiple- vertex dominators 118
D. 4 Computing all multiple-vertex dominators of a fixed size in polynomial time 119
D. 5 Experimental results 120
D. 6 Conclusion 122
E Bound Set Selection and Circuit Re-Synthesis for Area/ Delay Driven Decomposition 123
E. 1 Introduction 125
E. 2 Bound Set Selection 126
E. 3 Transformation Algorithm 127
E. 4 Conclusion and Future Work 129
F Bound-Set Preserving ROBDD Variable Orderings May Not Be Optimum 131
F. 1 Introduction 133
F. 2 Counterexample 134
F. 3 Conclusion 136
G Kauffman Networks: Analysis and Applications 139
G. 1 Introduction 141
G. 2 Kauffman Networks 143
G. 3 Redundancy Removal 146
G. 4 Partitioning 149
G. 5 Computation of Attractors 150
G. 6 Simulation Results 151
G. 7 Applications 153
G. 8 Conclusion and Future Work 156
Bibliography 159
Index 175

List of Figures

1.1 Major synthesis steps in the design of digital integrated circuits. 8
2.1 Example BDDs for the same Boolean function. 15
2.2 Example MDDs for the same function 17
3.1 Simple disjoint decomposition. 19
3.2 Disjoint-support decomposition 21
3.3 Decomposition chart for an example Boolean function 22
4.1 Cutting a BDD. 32
4.2 Abstract view of a BDD slice 34
4.3 Slicing a BDD. 35
4.4 Disjoint-Support Slicing. 37
4.5 BDDs for function $a(b+c+d+e)+\bar{a} b c d e$ for two different variable orderings. 38
4.6 Pseudo code of the Kernel algorithm. 41
4.7 Calculating the sub-function g and mappings σ_{1} and σ_{2}. 41
4.8 Calculating the MDD for function g from the MDDs of g_{1} and g_{2}. 42
4.9 Proper cut points 45
4.10 Pseudo-code of the algorithm ProperCut. 46
4.11 Nodes $\left\{v_{g_{1}}, v_{g_{2}}\right\}$ are a common multiple vertex dominator for the set of inputs $\left\{x_{1}, x_{2}, x_{3}\right\}$ 48
4.12 Non-disjoint support decomposition of the function represented in Figure 4.11 49
4.13 Binary decision diagrams representing the function $f=\left(x_{0}^{\prime}+x_{1}^{\prime}\right)\left(x_{2}^{\prime} x_{3}^{\prime}\right)+$ $x_{2}\left(x_{3}\left(x_{0}^{\prime} \oplus x_{1}\right)+x_{4}^{\prime}\right)+x_{0} x_{1} x_{4}^{\prime}$ and an example decomposition. The bound set is $\left\{x_{1}, x_{2}, x_{3}\right\}$, and the free set $\left\{x_{3}, x_{4}\right\}$ 54
4.14 Binary encoding of function g. 57
4.15 The structure of \mathcal{G}_{f} for any of the best variable orderings. 61
4.16 Solid and dotted arrows show solved and open problems, respec- tively. 65
A. 1 Example of a decomposition tree. 80
A. 2 Pseudo code of the IntervalCut procedure. 82
B. 1 Pseudo code of the GeneralizedIntervalCut procedure. 95
C. 1 Pseudo-code of the algorithm ProperCut. 107
C. 2 Pseudo-code of the GeneralizedintervalCut algorithm. 108
C. 3 Runtime comparison for the combined versus BDD-based ap- proaches. 109
F. 1 Two cases of ROBDDs for g with the smallest number of nodes labeled by h_{1}, h_{2}, h_{4}. 135
F. 2 ROBDD for different orderings. 137
G. 1 Example of a Kauffman network. The state of a vertex v_{i} at time $t+1$ is given by $\sigma_{v_{i}}(t+1)=f_{v_{i}}\left(\sigma_{v_{l}}(t), \sigma_{v_{r}}(t)\right)$, where v_{l} and v_{r} are the predecessors of v_{i}, and $f_{v_{i}}$ is the Boolean function associated to v_{i}. 144
G. 2 The algorithm for finding redundant vertices in Kauffman networks. 146
G. 3 Reduced network G_{R} for the Kauffman network in Figure G.1. 147
G. 4 State transition graph of the Kauffman network in Figure G.3. Each state is a 5-tuple $\left(\sigma\left(v_{1}\right) \sigma\left(v_{2}\right) \sigma\left(v_{5}\right) \sigma\left(v_{7}\right) \sigma\left(v_{9}\right)\right)$. 149
G. 5 Example of a network implementing the 2-input AND. 154
G. 6 (a) Reduced network for the Kauffman network in Figure G. 5 .
(b) Its state transition graph. Each state is a pair $\left(\sigma\left(v_{4}\right) \sigma\left(v_{5}\right)\right)$.
There are two attractors: $A_{1}=\{01,10\}$ and $A_{2}=\{11\}$. 154
G. 7 An alternative reduced network for the 2-input AND. 155
G. 8 (a) Reduced network for the Kauffman network in Figure G.5, after three mutation described in Section G. 7 has been applied.
(b) Its state transition graph. Each state is a pair $\left(\sigma\left(v_{3}\right) \sigma\left(v_{5}\right)\right)$. There are two attractors: $A_{1}=\{01,10\}$ and $A_{2}=\{00,11\}$. 155

List of Tables

A. 1 Experimental results; "-" indicates that information for the benchmark is not provided; ">" indicates that information is only provided for one of the outputs. 84
B. 1 Experimental results; time is reported in seconds and includes ROBDD building and minimization times. The case when $k=1$ represents classical (Boolean) bound sets, as defined in Section B.1. 96
C. 1 Experimental results. Notice that 'proper cuts' and disjoint- support case ' $k=1$ ' represent different simple disjoint decompo- sitions, found in the first and the second phase respectively, and should be counted separately. 111
D. 1 Benchmark results. 121
G. 1 Simulation results. Average values for 1000 networks. "*" indi- cates that the average is computed only for successfully termi- nated cases. 152

Acknowledgments

Thanks to all my colleagues at the Department of Electronic, Computer and Software systems at KTH, for so many interesting discussions and refreshing cups of tea. Thanks to Lena Beronius, for all her patience and her help in making the paperwork look human. Thanks to my first supervisor, Mads Dam, for his generosity. Thanks to Babak Sadighi, from the Swedish Institute of Computer Science, for always believing in me.

Thanks to my dearest old friends Pablo Giambiagi, Lars-Åke Fredlund and Elaine Vieira. I would not have survived this journey without them.

My deepest, and warmest thanks to my four mothers: Patricia Mac Elroy, Marina Villegas, Rosita Wachenchauzer, and Elena Dubrova. Patricia is my mum, and I am the person I am today because of her. Marina is my scientific mother; she showed me early in life that pursuing a scientific career was certainly a wonderful prospect. Rosita is my computer science mother, who introduced me to the delicious intricacies of theoretical computing. Elena is my supervisor, and I reached this point because of her patience, support, encouragement and good will. This thesis is dedicated to them.

Chapter 1

Introduction

This dissertation is a collection of papers I have published during my work as a PhD student at KTH. All, except the last one, are concerned with the manipulation of Boolean functions typically used to model problems at the logic synthesis step of the integrated circuit design flow. The last one is a peep into the future, as it proposes an idea that will surely put to the test our current conceptions and assumptions about computing devices.

From a "historical" perspective, many of the ideas presented in this dissertation were born "on the move", while I was traveling with other members of my research group. The idea for Paper C came to our minds while traveling by boat to Grinda island in Stockholm's archipelago. Summer is always a good time in Sweden to take the whole group to a more inspiring environment for a group meeting. We were so absorbed into the discussion that we missed the boat stop at Grinda, and had to get off on the next stop, Göllna island; which turned out to be even better for a day's trip. This paper, and the algorithm presented therein, are known within our group by the nickname Grinda.

Another idea which was born "on the fly" was the one that resulted in Paper G. We were returning from the DATE 2005 conference in Munich. Inspired by the presentations on emergent technologies, we realized that in Kauffman networks we had a starting point for creating a computational device based on the gene regulatory networks of living cells. Until that moment we had only been looking into the subject from a biologist's perspective, and trying to help with the simulation of Kauffman networks of large size.

The idea that has traveled with us the longest is the one presented in

Paper F. About four years ago, we found a mistake in a proof of a statement related to best orderings for a Binary Decision Diagram. Since then we struggled to find an alternative proof. This topic, although related, was not the main line of our work, so we mostly discussed it during conference trips, over a beer, and on bowling or billiard sessions which we often did together. Maxim Teslenko looked devastated the morning he showed up with a counter-example overthrowing this hypothesis that was believed to be true in the CAD community for over fifteen years.

This is not to say that all these ideas came to us easily, without hard work. They would not have come unless we had done a lot of reading and processing of piles of existing literature, nor would they have come if there had not been an excellent communication and mutual understanding among us as members of a research group. The ideas were born in a kind of environment that encouraged, and I would dare say was fundamental, for productive research work.

Now that this dissertation brings a certain kind of closure to my life, a sensation of a circle completed, I only hope to be able to keep sharing the kind of experiences that brought me to this point. And may good research and generous colleagues be a constant in my future life.

1.1 Context and Motivation

This dissertation revolves around the concept of a discrete function, particularly what is known as a Boolean function. It focuses on the problem of breaking apart such a function as a composition of hopefully simpler functions.

Functional Decomposition

What do we mean by functional decomposition?
In a general sense, functional decomposition refers to the various ways in which a function can be defined in terms of building blocks. This is different from the well known tabular definitions, like the truth table or the Karnaugh map depicted below.

a	b	$\mathrm{f}(a, b)$
0	0	0
0	1	0
1	0	1
1	1	0

(a) Truth table

(b) Karnaugh map

These are definitions of a function "by extension". As such, they suffer from the most basic problem when dealing with discrete functions: they are very large. These representations explicitly assign a particular output value to each of the possible combinations of input values. When we consider that a given Boolean function of n variables accepts 2^{n} different combinations of input values, we start realizing the problem.

It is known, however, that a certain set of basic functions can be used in a "compositional" way to build any other possible (and more complex) function ${ }^{1}$.

[^0]Let us see a common set of basic functions or operators that can represent any complex Boolean function.

1. The identity function.

a	$\mathrm{f}(a)=a$
0	0
1	1

| 2. The negation, or "not" function | $\left.\begin{array}{c\|c}a & \mathrm{f}(a)=\bar{a} \\ \hline 0 & 1 \\ \text { (noted as a bar). } & 1\end{array}\right] 0$ |
| :--- | :--- | :--- | :---: |

	a	b	$\mathrm{f}(a, b)=a \cdot b$
	0	0	0
3. The conjunction, or "and" func-	1	0	
tion (noted as a dot).	1	0	0
	1	1	1

In terms of these simple elements, the function described before in our truth table example can be represented as

$$
f(a, b)=a \cdot \bar{b}
$$

This is a mathematical "composition" of some basic operators, something that can be more clearly seen if we change the shorthand algebraic notation to a more verbose functional style,

$$
f(a, b)=\operatorname{and}(a, \operatorname{not}(b))
$$

We have actually performed a "decomposition" of a function into simpler components: "and", "not", and single variables a and b.

We can use other sets of "operators". For example,

1. The identity function.

a	$\mathrm{f}(a)=a$
0	0
1	1

2. The negation, or "not" function.

a	$\mathrm{f}(a)=\bar{a}$
0	1
1	0

a	b	$\mathrm{f}(a, b)=a+b$
0	0	0
0	1	1
1	0	1
1	1	1

In this case, our example function will be represented as the following "composition" of the single variables a and b, with the "or" and "not" operators:

$$
f(a, b)=\operatorname{not}(\operatorname{or}(\operatorname{not}(a), b))
$$

Or, in shorthand algebraic notation:

$$
f(a, b)=\overline{\bar{a}+b}
$$

Note that these are two different representations of the same Boolean function.

Any given function can be decomposed in many ways ${ }^{2}$, depending on how we choose the basic building blocks. Even for the same building blocks we may have different ways to express a function. For example, for the first set of operators:

$$
f(a, b)=a \cdot \bar{b}=a \cdot \overline{\bar{b}}=\overline{\overline{\overline{\overline{\overline{\overline{a \cdot a}} \cdot \bar{b}}}}}=\cdots
$$

Within the specific context of this dissertation we will call "decomposition" or "functional decomposition" to that kind of decomposition which expresses a function with respect to certain building blocks, but we will not

[^1]make any particular assumptions on the complexity or variety of our building blocks. For example, a four variable function f may be decomposed as
$$
f(w, x, y, z)=h(w, g(x, y, z))
$$
or
$$
f(w, x, y, z)=h\left(g_{1}(w, x), g_{2}(y, z)\right)
$$
or
$$
f(w, x, y, z)=h\left(g_{1}(w, x, y), g_{2}(x, y, z)\right)
$$
for certain functions h, g, g_{1} and g_{2} of arbitrary complexity.
We will categorize our decompositions into different classes depending on the depth of the nesting in the resulting formula ("two level" or "multilevel"), the sharing of variables among the different support sets ("disjoint" or "non-disjoint"), the means by which they were obtained ("Algebraic" or "Boolean"), or others. The first two decompositions in our example above are what we call "disjoint" decompositions, while the third one is what we call a "non-disjoint" decomposition. Each of the specific classes of decomposition we target in our work will be introduced later on, when we review the contributions of this dissertation.

Whichever the application domain is, the cost of using algorithms that in some way manipulate or depend on discrete functions seriously depends on the "complexity" of those functions. Decomposition techniques are recognized to reduce such complexity, even though the exact meaning of a "complex" function varies along the different domains of application. It is not the aim of this dissertation to discuss the suitability of decomposition in this respect, but rather to address the practical issues involved in producing such decompositions for logic synthesis applications.

Finding different decompositions for a given function is known to be a hard problem. Hard in the sense that we will always encounter a particular function whose analysis will exceed our time or space constraints. Finding all useful decompositions is, in most cases, unfeasible for large functions, so different approaches will each produce only a subset of decompositions in a reasonable time or within a reasonable space. It is this difficulty that calls for a battery of new and improved heuristics and algorithms to tackle the problem of decomposition in the most efficient way.

Logic Synthesis

Logic synthesis is a step in the computer-aided design (CAD) flow of integrated circuits. It plays a significant role in determining the overall circuit quality. In this section we establish a context for this problem, and briefly review previous synthesis efforts.

Very Large Scale Integration (VLSI) technology has been the key enabler for implementing modern digital systems. Today's microprocessors, memories, and application-specific integrated circuits (ASICs) are the beneficiaries of a steady doubling, over the last thirty years, of transistor counts every 18 months (known as Moore's law). This unprecedented increase in integration levels has led to dramatic reductions in production costs and significant increases in performance and functionality. The design of such highly complex systems was also critically dependent on the use of CAD tools in all steps of the design process: synthesis, optimization, analysis, and verification. This dissertation addresses one of the synthesis steps in this automatic design flow, namely the creation of a low-level structural description of a design from a more abstract form. The major synthesis steps in this design flow are depicted in Figure 1.1.

The starting point of design synthesis is typically a textual description of the desired functional behavior, written in an appropriate hardware description language (HDL). At this level, the design is specified in terms of abstract data manipulation operations which are organized into larger blocks using control constructs. High-level synthesis transforms such a description into an appropriate structural representation at the register-transfer level (RTL). Typical RTL components include data storage elements (registers, memories, etc.), functional modules (adders, shifters, etc.), and data steering logic (buses, multiplexers, etc.). The next major synthesis step creates multi-level logic gate realizations for each of the combinational (i.e. memory-less) parts of the RTL description.

Such multi-level logic synthesis is the primary application area of this dissertation. The primitive building blocks used in such synthesis are typically 3 - to 4 -input single-output cells from a precharacterized technology library. The final synthesis step generates a complete layout of the design by placing and routing its gate-level implementation, and by synthesizing a suitable power/ground distribution grid and a clock tree. Each of the above synthesis steps (high-level, logic, and physical) involves a multiple-objective optimization that seeks an appropriate trade-off among the design's area,

Figure 1.1: Major synthesis steps in the design of digital integrated circuits.
delay, testability, and more recently, power consumption. Area minimization leads to increased chip yields, and hence lower costs, as smaller circuits can be manufactured more reliably, and are easier to fit on a chip; smaller circuits also often have decreased delay. Delay minimization creates faster circuits which are essential in high-performance computing applications. Improving the testability properties of a circuit can lead to higher reliability and reduced testing costs. Finally, minimizing power consumption has become crucial with the proliferation of hand-held and portable computing devices, and is becoming a major issue in high-performance designs as well. These design objectives interact in complex ways. Synthesizing a circuit that optimizes across a set of these objectives is a difficult task due to the
tremendously large space of potential solutions. Finding a solution in this space that meets the specified objectives may, therefore, be computationally expensive, if not impossible. In the face of such complexity, most synthesis approaches resort to a serialization of the design creation process by approximating, or entirely ignoring, some of the contributing components of the various optimization objectives. For example, in physical synthesis, layout generation is serialized into the steps of placement, global routing, and detailed routing. Placement is done by making certain assumptions about the routing requirements and the resulting placement solution becomes a constraint for the subsequent routing optimization. In most cases, this is an acceptable strategy that yields good layouts. In some cases, however, the placement constraints preclude the successful routing of the design or lead to routing solutions that do not meet the delay objectives. In such cases, it is necessary to iterate the placement/routing steps until an acceptable solution meeting all objectives is found. This same serialization paradigm is currently the predominant way for dealing with the complexity of multi-level logic synthesis. Specifically, the synthesis process is split into two phases: a technology-independent global restructuring of the RTL logical specifications followed by a technology mapping of the resulting structure to a specified cell library. The technology-independent optimizations work on logic representations that do not directly model, and hence are unconstrained by, the particular primitive building blocks in this library. The technology mapping phase, on the other hand, is constrained by the structure produced in the technology-independent phase and can only achieve local optimizations as it makes choices to produce the gate-level implementation. Iteration between these two phases may, therefore, be necessary to satisfy all optimization objectives, especially delay. There are two fundamental concepts influencing research in multi-level synthesis, as well as synthesis in general: derivation of flexibility in the implementation of a design, and exploiting this flexibility when optimizing the implementation. One source of flexibility is the incomplete specification of a design, or the parts within it. Thus, the implementation changes remain consistent with the specification. The other source of flexibility is invariant transformations which leave the behavior of the actual implementation unchanged. Most research has been done regarding the second source of flexibility as it perceived to be a more difficult problem and to have a more significant impact on the design quality.

Chapter 2

Background

This chapter presents the general mathematical background needed for this dissertation. Background material that is specific to a particular chapter is introduced in the corresponding chapter.

2.1 Basic Notation

We let $\mathbb{M}=\{0,1, \ldots, m-1\}$ be an arbitrary finite set of values, and a set of Boolean values is denoted by $\mathbb{B}=\{0,1\}$. We use early lower-case letters a, b, c, a_{1}, a_{2}, etc. to denote elements over a finite set, and lower-case letters f, g, h, g_{1}, g_{2}, etc to denote functions. We use $x_{1}, x_{2}, \ldots, x_{n}$ to denote variables that functions may depend on. We use capital letters A, B, C, etc for vectors or sets, and usually denote the elements of the set by indexed lower-case letters. For example, the elements of a set A are denoted as a_{1}, a_{2}, etc.

2.2 Sets, Relations, and Functions

There are many excellent books providing comprehensive coverage of set theory. Among those are two classic works by Fraenkel [71] and Halmos [79]; they are suggested for further reading, as this section provides only the minimum notation and definitions needed to motivate further concepts.

Sets

A set is a collection of objects called elements, or members. If a is a member of set A then we write $a \in A$; similarly subset membership is denoted with $A \subseteq B$, whenever for every element in $x \in A$ we have also $x \in B$. If A is a proper subset (or strict subset) of B, i.e. $A \subseteq B$ and $A \neq B$, we denote it by $A \subset B$. The number of elements in set A will be denoted by $|A|$.

A partition P of a given set S is a set $P=\left\{S_{0}, \ldots, S_{n-1}\right\}$ such that $\bigcup_{i=0}^{n-1} S_{i}=S$ and $\forall i, j, i \neq j, S_{i} \cap S_{j}=\emptyset$.

Relations

Let A and B be sets. A binary relation R between A and B is a subset of the Cartesian product $A \times B$. We use the notation $a R b$ to denote that $(a, b) \in R$.

Binary relations represent relationships between the elements of two sets. A more general type of relation is the n-ary relation, which expresses relationships among elements of more than two sets. However, this dissertation uses only binary relations, and therefore we do not introduce n-ary relations. In the following, we use the term relation to mean binary relation.

Relations from a set A to itself are of special interest. A relation on the set A is a relation from A to A, i.e. a subset of $A \times A$.

Let R be a relation on A and let P be a property of binary relations (such as reflexivity, symmetry, or transitivity). The closure of R with respect to P is the smallest relation containing R that has property P.

A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive. Let R be an equivalence relation on A. The set of all elements b of A such that $b R a$ for an element $a \in A$ is called the equivalence class of a. The equivalence classes of R form a partition of A.

Functions

A function $f: A \rightarrow B$ from A to B is a relation, which has the property that every element $a \in A$ is the first element of exactly one ordered pair (a, b) of the relation. So, a function $f: A \rightarrow B$ assigns to each element $a \in A$ a unique element $b=f(a)$ in B, called the image of $a . A$ is called the domain of f and B is called the co-domain of f. The range of f is the set of all images of elements of A.

A function $f: A \rightarrow B$ can be specified by using a rule $a \mapsto f(a)$, assigning to each element $a \in A$, its image $f(a)$ in B.

The composition of two functions $f: A \rightarrow B$ and $g: C \rightarrow D$, where $D \subseteq A$ is denoted by $g \circ f$, where $(g \circ f)(x)=f(g(x))$.

A function $f: A \rightarrow B$ is called injective when different elements of A always have different images or, in other words, if and only if $a \neq b$ implies that $f(a) \neq f(b)$.

A function $f: A \rightarrow B$ is called surjective when the range is the whole co-domain B or, in other words, if and only if for every element $b \in B$ there is an element $a \in A$ with $f(a)=b$.

A function $f: A \rightarrow B$ is called bijective when there is a one to one correspondence between elements of A and B or, more specifically, if and only if it is both injective and surjective.

Two functions $f: A \rightarrow B_{1}$ and $g: A \rightarrow B_{2}$ are isomorphic if, and only if, there exists a bijection $\phi: B_{2} \rightarrow B_{1}$ such that $f(X)=\phi(g(X))$.

A surjective function $g: A \rightarrow B_{2}, B_{2} \subseteq B_{1}$, is said to be a projection of $f: A \rightarrow B_{1}$ if, and only if, for all $x, y \in A, g(x) \neq g(y) \Rightarrow f(x) \neq f(y)$. Alternatively, g is a projection of f if, and only if, there exists a surjective function $\sigma: B_{1} \rightarrow B_{2}$, such that $g=f \circ \sigma$.

Functions can be used to model set membership. For a subset B of set A such a function is defined as a mapping $\chi: A \rightarrow\{0,1\}$ such that $\chi(a)=1$ if $a \in B$, and $\chi(a)=0$ otherwise. We refer to this type of function as the characteristic function of the corresponding set.

In a similar manner, functions can be used to model partitions of a set. For a partition $P=\left\{S_{0}, \ldots, S_{n-1}\right\}$ of a set A (see Section 2.2), such a function is defined as a mapping $\chi: A \rightarrow\{0, \ldots, n-1\}$ such that $\chi(a)=i$ if, and only if, $a \in S_{i}$. We also refer to this type of function as the characteristic function of the corresponding set, without risk of confusion.

Observe that for a partition $P=\left\{S_{0}, \ldots, S_{n-1}\right\}$, every characteristic function χ induces an equivalence relation \equiv_{χ} defined as $s \equiv_{\chi} s^{\prime}$ if, and only if, $\chi(s)=\chi\left(s^{\prime}\right)$. The sets S_{0}, \ldots, S_{n-1} represent all the equivalence classes of $\equiv{ }_{\chi}$.

2.3 Decision Diagrams

This section gives an introduction to Binary and Multi-Valued Decision Diagrams.

Binary Decision Diagrams

Binary Decision Diagrams ($B D D$ s) are rooted, directed acyclic graphs. They were originally proposed by Lee [101] and Akers [2], but were later popularized by Bryant [36], who refined the data structure and presented a number of algorithms for their efficient manipulation. A BDD is associated with a finite set of Boolean variables and represents a Boolean function over these variables. We denote the BDD that represents a function f as \mathcal{F}.

The vertices of a BDD are usually referred to as nodes. A node v is either non-terminal, in which case it is labeled with a Boolean variable $\operatorname{var}(v) \in\left\{x_{1}, \ldots, x_{n}\right\}$, or terminal, in which case it is labeled with either $\mathbf{0}$ or $\mathbf{1}$. Each non-terminal node v has exactly two children, then (v) and else (v). A terminal node has no children. The value of the Boolean function f, represented by BDD \mathcal{F}, for a given valuation of its Boolean variables can be determined by tracing a path from its root node to one of the two terminal nodes. At each node v, the choice between then (v) and else (v) is determined by the value of $\operatorname{var}(v)$: if $\operatorname{var}(v)=1$, $\boldsymbol{\operatorname { t h e n }}(v)$ is taken (denoted graphically as a solid edge in the graph), if $\operatorname{var}(v)=0$, else (v) is taken (denoted graphically as a dashed edge in the graph). Every BDD node v corresponds to some Boolean function f_{v}. The terminal nodes correspond to the trivial constant functions $f_{0}=\mathbf{0}, f_{1}=\mathbf{1}$. For a function f, variable x_{i}, and Boolean value b, the cofactor $\left.f\right|_{x_{i}=b}$ is found by substituting the value b for variable x_{i} :

$$
\left.f\right|_{x_{i}=b}=f\left(x_{1}, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_{n}\right)
$$

An important property of BDDs is that the children of a non-terminal node v correspond to cofactors of function f_{v}. That is, for every non-terminal node $v, f_{\operatorname{then}(v)}=\left.f_{v}\right|_{\operatorname{var}(v)=1}$, and $f_{\operatorname{else}(v)}=\left.f_{v}\right|_{\operatorname{var}(v)=0}$. We will also refer to the cofactor of a BDD node v, with the understanding that we mean the BDD node representing the cofactor of the function represented by node v.

A BDD is said to be ordered $(O B D D)$ if there is a total ordering of the variables such that every path through the BDD visits nodes according to the ordering. Let $\operatorname{index}(x) \in\{1, \ldots, n+1\}$, where $x \in\left\{x_{1}, \ldots, x_{n}\right\}$ represent such a total ordering. Then for every child v^{\prime} of a non-terminal node v, either v^{\prime} is a terminal node or

$$
\operatorname{index}(\operatorname{var}(v))<\operatorname{index}\left(\operatorname{var}\left(v^{\prime}\right)\right)
$$

Notice that when we specify a variable ordering $\left\langle x_{0}, x_{1}, \ldots, x_{n-1}\right\rangle$, we implicitly define $\operatorname{index}(v)=i$, if and only if $\operatorname{var}(v)=x_{i}$.

When referring to the OBDD representing the function f as \mathcal{F}, the variable associated with the top node v of \mathcal{F} is represented also as $\operatorname{top} \operatorname{Var}(\mathcal{F})$ (i.e. $\operatorname{top} \operatorname{Var}(\mathcal{F})=\operatorname{var}(v)$).

A reduced OBDD $(R O B D D)$ is one which contains no redundant nodes, i.e. a non-terminal node labeled with the same variable and with identical children as some other non-terminal node, or a terminal node labeled with the same value as some other terminal node, or non-terminal nodes having two identical children.

Any OBDD can be reduced to an ROBDD by repeatedly eliminating, in a bottom-up fashion, any instances of duplicate and redundant nodes. If two nodes are duplicates, one of them is removed and all of its incoming pointers are redirected to its duplicate. If a node is redundant, it is removed and all incoming pointers are redirected to its unique child.

Figure 2.1: Example BDDs for the same Boolean function.

Figure 2.1 shows three equivalent data structures, a BDD, an OBDD, and an ROBDD, each representing the same Boolean function, f. Tracing paths from the root node to the terminal nodes of the data structures, we can see, for example, that $f(0,0,1,0,0,1)=1$ and $f(0,1,0,1,1,1)=0$. The most commonly used of these three variants is the ROBDD and this will also be the case in this thesis. For simplicity, and by convention, from this point on we will refer to ROBDDs simply as BDDs.

It is important to note that the reduction rules for BDDs described in the previous paragraphs have no effect on the function being represented. They
do, however, typically result in a significant decrease in the number of BDD nodes. More importantly still, as shown by Bryant [36], for a fixed ordering of the Boolean variables, BDDs are a canonical representation. This means that there is a one-to-one correspondence between BDDs and the Boolean functions they represent.

The canonical nature of BDDs has important implications for efficiency. For example, it makes checking whether or not two BDDs represent the same function very easy. This is an important operation in many situations, such as the implementation of iterative fixed-point computations. In practice, these reductions are taken one step further. Many BDD packages (e.g. CUDD [144]) will actually store all BDDs in a single, multi-rooted graph structure, known as the unique-table, where no two nodes are duplicated. This means that comparing two BDDs for equality is as simple as checking whether they are stored in the same place in memory.

It is also important to note that the choice of an ordering for the Boolean variables of a BDD can have a tremendous effect on the size of the data structure, i.e. its number of nodes. Finding the optimal variable ordering, however, is known to be computationally expensive [25]. For this reason, the efficiency of BDDs in practice is largely reliant on the development of application-dependent heuristics to select an appropriate ordering, e.g. [73]. There also exist techniques such as dynamic variable reordering [131], which can be used to change the ordering for an existing BDD in an attempt to reduce its size.

One of the main appeals of BDDs is the efficient algorithms for their manipulation which have been developed, e.g. [36, 37, 30]. A common BDD operation is the ITE ("If Then Else") operator, which takes three BDDs, \mathcal{F}, \mathcal{G} and \mathcal{H}, and returns the BDD representing the function $f_{\mathcal{F}} f_{\mathcal{G}}+\overline{f_{\mathcal{F}}} f_{\mathcal{H}}$. The ITE operator can be implemented recursively, based on the property $\left.\operatorname{ITE}(\mathcal{F}, \mathcal{G}, \mathcal{H})\right|_{x_{k}=b}=\operatorname{ITE}\left(\left.\mathcal{F}\right|_{x_{k}=b},\left.\mathcal{G}\right|_{x_{k}=b},\left.\mathcal{H}\right|_{x_{k}=b}\right)$.

Multi-Valued Decision Diagrams

Multi-Valued Decision Diagrams (MDDs) are also rooted, directed, acyclic graphs [89]. An MDD is associated with a set of k variables, x_{1}, \ldots, x_{k}, and an $\operatorname{MDD} \mathcal{M}$ represents a function $f_{\mathcal{M}}: \mathbb{M}_{x_{1}} \times \ldots \times \mathbb{M}_{x_{k}} \rightarrow \mathbb{M}$, where $\mathbb{M}_{x_{i}}$ is the finite set of values that variable x_{i} can assume, and \mathbb{M} is the finite set of possible function values. It is usually assumed that $\mathbb{M}_{x_{k}}=\left\{0, \ldots, m_{k}-1\right\}$ and $\mathbb{M}=\{0, \ldots, m-1\}$ for simplicity. Note that BDDs are the special
case of MDDs where $\mathbb{M}=\mathbb{B}$ and $\mathbb{M}_{x_{i}}=\mathbb{B}$ for all i. MDDs are similar to the "shared tree" data structure described in [163]. Like BDDs, MDDs consist of terminal nodes and non-terminal nodes. The terminal nodes are labeled with an integer from the set \mathbb{M}. A non-terminal node m is labeled with a variable $\operatorname{var}(m) \in\left\{x_{1}, \ldots, x_{k}\right\}$. Since variable x_{i} can assume values from the set $\mathbb{M}_{x_{i}}$, a non-terminal node m labeled with variable x_{i} has $\left|\mathbb{M}_{x_{i}}\right|$ children, each corresponding to a cofactor $\left.f_{m}\right|_{x_{i}=c}$, with $c \in \mathbb{M}_{x_{i}}$. We refer to the child c of node m as $\operatorname{child}_{c}(m)$, where $f_{\operatorname{child}_{c}}(m)=\left.f_{m}\right|_{\operatorname{var}(m)=c}$. Every MDD node corresponds to some integer function. The BDD notion of ordering can also be applied to MDDs, to produce ordered MDDs ($O M D D$ s). A non-terminal MDD node m is redundant if all of its children are identical, i.e., if $\operatorname{child}_{i}(m)=\operatorname{child}_{j}(m)$ for all $i, j \in \mathbb{M}_{\operatorname{var}(m)}$. Two non-terminal MDD nodes m_{1} and m_{2} are duplicates if $\operatorname{var}\left(m_{1}\right)=\operatorname{var}\left(m_{2}\right)$ and $\operatorname{child}{ }_{i}\left(m_{1}\right)=$ $\operatorname{child}_{i}\left(m_{2}\right)$ for all $i \in \mathbb{M}_{\operatorname{var}(m)}$. Based on the above definitions, we can extend the notion of reduced BDDs to apply also to MDDs. It can be shown [89] that reduced OMDDs ($R O M D D$ s) are a canonical representation for a fixed variable ordering. Finally, like BDDs, the number of ROMDD nodes required to represent a function may be sensitive to the chosen variable ordering. Example MDDs are shown in Figure 2.2, all representing the same

Figure 2.2: Example MDDs for the same function.
function over three variables, x_{1}, x_{2}, x_{3} with $m_{1}=m_{2}=m_{3}=4$ and $m=3$. The value of the function is zero if none of the variables has value 1 , one if exactly one of the variables has value 1 , and two if two or more of the
variables have value 1. Figure 2.2(a) shows an MDD that is not ordered nor reduced, and Figure 2.2(b) shows the ROMDD for the function, for the given variable ordering. Unless otherwise stated, the remainder of the dissertation will assume that all MDDs are ROMDDs.

Chapter 3

Previous work

3.1 Functional Decomposition

Research in the subject of Boolean function decomposition is almost as old as digital circuit engineering. The first major investigation on decomposition was carried out by Ashenhurst [7] in 1959. The basis for the different types of decompositions studied in his work is the simple disjoint decomposition, of type

$$
\begin{equation*}
f(X)=h(g(Y), Z) \tag{3.1}
\end{equation*}
$$

for Boolean functions $f: \mathbb{B}^{|X|} \rightarrow \mathbb{B}, g: \mathbb{B}^{|Y|} \rightarrow \mathbb{B}, h: \mathbb{B}^{|Z|+1} \rightarrow \mathbb{B}$. Such a decomposition exists trivially for Y given by any singleton set x_{i} or the whole set $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$.

When f, g and h are Boolean functions then, the original function f specifying an n-input, 1 -output 2 -valued circuit is replaced by the specifications of two 2 -valued circuits, one having $|Y|$ inputs and one output, and the other having $|Z|+1$ inputs and one output (see Figure 3.1).

Figure 3.1: Simple disjoint decomposition.

If Ω_{n} is an upper bound on the cost of realizing a Boolean function of n variables, then the total cost of realizing these two new circuits is bounded above by $\Omega_{|Y|}+\Omega_{(1+|Z|)}$. Because the cost bound Ω_{n} usually increases nearly exponentially with n [138], the discovery of any nontrivial decomposition of the form (3.1) greatly reduces the cost of realizing f.

The notion of a bound set is fundamental in decomposition theory.
Definition 3.1.1: Any set of variables Y such that f has a decomposition of type (3.1) is called a bound set for f.

Once a decomposition of type (3.1) has been selected, either g, h, or both may be similarly decomposed, giving one of the following complex disjoint decomposition types [90]:

$$
\begin{array}{ll}
\text { multiple }: & f(X, Y, Z)=h(g(X), k(Y), Z), \\
\text { iterative }: & f(X, Y, Z)=h(g(k(X), Y), Z), \tag{3.2}
\end{array}
$$

or more generally tree-like decompositions as in

$$
f(X, Y, X, W)=h(g(k(X), Y), l(Z), W)
$$

Ashenhurst's fundamental contribution is a theorem that states that any Boolean function has a unique disjoint tree-like decomposition such that all possible simple disjoint decompositions of f can be derived from it. He proved that any n-variable Boolean function that is non-degenerate, i.e. which actually depends on all n variables to determine its output, has a composition tree, which is a decomposition reflecting all bound sets, and thus a "most decomposed" one. Hence, the realization of the given function in correspondence with its composition tree (with suitable assumption about the cost of logic elements) should have a cost that is close to minimal. In the sixties it was even conjectured that such an implementation must be a minimal one. However, Paul [126] found a counterexample showing a circuit, derived by a technique other than decomposition, that has smaller cost than the one implementing the composition tree. Such examples seem to be very rare.

Curtis [48] and Roth and Karp [130] extended Ashenhurst theory to decompositions of type

$$
\begin{equation*}
f(X)=h(g(Y), Z) \tag{3.3}
\end{equation*}
$$

with g, h being multiple-valued functions of type $g: \mathbb{B}^{|Y|} \rightarrow \mathbb{M}$ and h : $\mathbb{M} \times \mathbb{B}^{|Z|} \rightarrow \mathbb{B}$. The function g can be alternatively encoded by $k=\left\lceil\log _{2} m\right\rceil$

Boolean functions $g_{1}, g_{2}, \ldots, g_{k}$, giving a decomposition of the form

$$
\begin{equation*}
f(X)=h\left(g_{1}(Y), \ldots, g_{k}(Y), Z\right) \tag{3.4}
\end{equation*}
$$

often referred to as a disjoint-support decomposition (see Figure 3.2). In this thesis we call any of these decomposition types a disjoint-support decompositions, and may use the multi-valued form or the binary-encoded form as needed.

Figure 3.2: Disjoint-support decomposition.

Disjoint-support decompositions define a more general notion of bound set, the k-bound set.

Definition 3.1.2: The set Y is said to be a k-bound set, with $k>1$, if k is the minimum value for which there exists a decomposition

$$
\begin{equation*}
f(X)=h(g(Y), Z) \tag{3.5}
\end{equation*}
$$

where g are h are surjective functions of type

$$
g: \mathbb{B}^{|Y|} \rightarrow \mathbb{M}
$$

and

$$
h: \mathbb{M} \times \mathbb{B}^{|Z|} \rightarrow \mathbb{B}
$$

with $\mathbb{M}=\{0, \ldots, k-1\}$.
Ashenhurst's main theorem does not extend directly to multiple-valued functions (a counterexample can be found in [60]), which means that there is no unique disjoint tree-like disjoint-support decomposition for this type of functions in general. However, Von Stengel [154] has defined a class of multiple-valued functions for which an analogous of Ashenhurst's main theorem holds.

A Non-disjoint support decomposition of a Boolean function f is a representation of type

$$
\begin{equation*}
f(X, Y, Z)=h\left(g_{1}(X, Y), \ldots, g_{k}(X, Y), Y, Z\right) \tag{3.6}
\end{equation*}
$$

where X, Y, Z are sets of variables partitioning the support set of f, and h and g_{i} are Boolean functions of type $g_{i}: \mathbb{B}^{|X \cup Y|} \rightarrow \mathbb{B}, i \in\{1, \ldots, k\}$, and $h: \mathbb{B}^{|Y \cup Z|+k} \rightarrow \mathbb{B}$.

3.2 Functional Decomposition Algorithms

The classical method for recognizing a bound set is based on representing the function by a decomposition chart [7, 48]. The decomposition chart for $f(Y, Z)$ is a two-dimensional table where the columns represent the variables from the set Y and the rows the variables from the set Z. Then Y is a bound set if and only if the chart has column multiplicity at most 2, i.e. there are at most 2 distinct columns in the chart.

Figure 3.3 shows such a chart for a Boolean function, for the partitioning of variables $\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{3}\right\}\right\}$, where the set $\left\{x_{1}, x_{2}\right\}$ is indeed a bound set.

Figure 3.3: Decomposition chart for an example Boolean function.

In the case of disjoint-support decompositions, the k-bound sets can be determined by a decomposition chart by relaxing the requirement of having exactly 2 different columns, to allow a number of columns up to k [90].

In the case of non-disjoint support decomposition, a Boolean function with n variables has a simple non-disjoint decomposition of type

$$
f(X, Y, Z)=h(g(X, Y), Y, Z)
$$

if each of its $2^{|Y|}$ decomposition charts representing sub-functions $f_{Y}(X, Z)$ has at most two distinct columns. The $2^{|Y|}$ charts are obtained by fixing the variables of Y to all combination of their values from \mathbb{B}^{n}.

Shortly after their introduction, decomposition charts were abandoned in favor of cube representation [90], and computing column multiplicity on charts was replaced by computing compatible classes for a set of cubes. Two assignments $\hat{x}_{1}, \hat{x}_{2} \in \mathbb{B}^{|X|}$ are said to be compatible with respect to the reference function $f(X, Y)$ if, for all $\hat{y} \in \mathbb{B}^{|Y|}$ such that $f\left(\hat{x}_{1}, \hat{y}\right)$ and $f\left(\hat{x}_{2}, \hat{y}\right)$ are defined, $f\left(\hat{x}_{1}, \hat{y}\right)=f\left(\hat{x}_{2}, \hat{y}\right)$ [90]. The set X is a k-bound set if and only if $\mathbb{B}^{|X|}$ can be partitioned into $k^{\prime} \leq k$ mutually compatible classes [90]. If $f(X)$ is completely specified, i.e. total, then compatibility is an equivalence relation and k is the number of equivalence classes. It is easy to see a one-to-one correspondence between a column in a decomposition chart and a compatible class.

Due to the exponential size of decomposition charts and cube representations, early decomposition algorithms were rarely applied to functions modeling large practical circuits. Instead, algebraic methods were used [33]. A milestone work in this subject is due to Brayton and McMullen [33], whom in 1982 introduced the notion of kernels, and proposed a method for fast algebraic decomposition based on this notion. The same technique, with minor modifications, is still used today in many systems for multi-level optimization $[29,112,136]$.

Binary Decision Diagrams made it possible to develop new algorithms for decomposition, feasible for much larger functions than previously possible. In a BDD, the column multiplicity can be easily computed by moving the variables Y to the upper part of the graph and counting the number of children below the boundary line, usually called cut line. The decomposition $f(X)=h(g(Y), Z)$ exists if and only if there are only two children below the cut line [132].

This approach has been adopted by a number of BDD-based decomposition algorithms [132, 99, 41, 135]. Stanion and Sechen [146] used the cut technique to find quasi-algebraic decompositions of the form $f(X)=$ $g(Y) \diamond h(Z)$, where " \diamond " is any binary Boolean operation and $|Y \cap Z|=$ k for some $k \geq 0$. This type decomposition is often referred to as $b i$ decomposition [159, 119].

Decomposition algorithms following a BDD-cut strategy proved to be orders of magnitude faster than those based on decomposition charts and cube representations. However, they require a reordering of the BDD to move the target set of variables to the top of the graph or to check bi-decompositions for partitions which are not consistent with the variable order. As an alternative, a number of methods use the fact that BDDs themselves are a
decomposed representation of the function and exploit their structure, rather than cut, to find disjoint decompositions. Karplus [91] extended the classical concept of dominator on graphs [103] to 0,1-dominators on BDDs. A node v is a 0 -dominator if every path from the root to the terminal node labeled 0 contains v. A node v is a 1-dominator if every path from the root to the terminal node labeled 1 contains v. If v is a 1 -dominator, then the function represented by the BDD possesses a conjunctive (AND) decomposition. If v is a 0 -dominator, then the function can be decomposed disjunctively (OR). This idea was extended by Yang et al [161] to XOR-type decompositions and to more general type of dominators. Minato and De Micheli [118] presented an algorithm which computes disjoint decompositions by generating an irreducible sum-of-product form for the function from its BDD and applying factorization. The algorithm of Bertacco and Damiani [15] makes a single traversal of the BDD to identify the decomposition of the co-factors and then combine them to obtain the decomposition for the entire function. The algorithm is impressively fast; however, as Sasao has observed in [133], it fails to compute some of the disjoint decompositions. This problem was corrected by Matsunaga [113], who added the missing cases in [15] allowing to treat the OR/XOR functions correctly. The algorithm [113] appears to be the fastest of existing exact algorithms for finding all disjoint decompositions.

In recent years, dominators reappeared also as the foundation of different decomposition techniques, working on function representations that rely on less constrained circuit graph structures than BDDs. Dominators have been applied to combinational equivalence checking [56], under the name of proper cuts, and to testing $[137,17]$ and design for low power [43], under the names of headlines or supergates.

3.3 Logic Synthesis

The quest for the automatic synthesis of logic circuits has a long history. In this section we highlight prominent milestones from the last five decades of research and development in this area. We divide the presentation into three parts: early theoretical work in the fifties and sixties, widespread adoption in the seventies and eighties, and modern research efforts.

Early Work

Two-Level Synthesis Synthesis algorithms were first sought for the twolevel logic minimization problem. Quine [127] proposed the first solution to this problem in the 1950s; his method was subsequently improved by McCluskey [114], and has since become known as the Quine-McCluskey twolevel minimization procedure. The essence of this procedure is a systematic exploration of the search space of two-level circuits seeking a realization with minimal area. The enumerative nature of such an approach makes it exponentially complex in both space and time, and limits its applicability to relatively small functions with, typically, a dozen or fewer inputs. The advantage of two-level forms is that they can be directly implemented in VLSI using programmable logic structures, such as PLAs and PALs [69], whose areas and delays can be estimated with high accuracy. However, general use of two-level synthesis is hampered by the computational infeasibility of optimally synthesizing large functions in two levels, and by the practical technological limits on the maximum fan-in and fan-out of logic gates. In addition, it can be easily shown that certain multi-level realizations are both smaller and faster than the corresponding optimal two-level forms. Despite these shortcomings, exact and approximate two-level synthesis is sometimes used as a step in multi-level synthesis algorithms.

Multi-Level Synthesis Research in multi-level synthesis emerged soon after the initial solutions to the two-level minimization problem were stated. Similar in spirit to those of the two-level problem, the original multi-level approaches were based on a systematic exploration of the solution search space. The dominant view at that time was that two-level circuits were a special case of multi-level circuits, and that the algorithmic solution to the former should generalize to solve the latter. The fundamental notion in multi-level synthesis is that of functional decomposition, studied in this dissertation. As mentioned earlier in Section 3.1, Ashenhurst [7] was the first to derive a condition for checking whether a Boolean function has a non-trivial simple disjoint decomposition. His observation laid the foundation for classical decomposition theory, which was shortly generalized by Curtis [48], and Roth and Karp [130], to handle other, more complex, decomposition forms. These works represent the first accounts of complete multi-level synthesis algorithms. The general approach was a search procedure that examined all possible decompositions lexicographically, pruning the search by some
simple lower bounds on circuit cost, and terminating when a minimum-cost realization was found. Several other enumeration techniques for multi-level synthesis were explored in the 1960s. Hellerman [81] proposed an algorithm that enumerated all directed acyclic graphs, and tested whether each generated graph implements the desired function. The advances in two-level minimization motivated Lawler [100] to generalize the notion of two-level prime implicants to the multilevel case. His approach showed how these multi-level implicants can be used to obtain "absolutely minimal" factored forms. Gimpel [75] proposed an optimal algorithm for synthesis of three-level networks in terms of NAND gates. Gimpel's approach is similar in spirit to the work of Lawler: it generalized the two-level enumeration approach to three levels. Davidson presented a branch-and-bound algorithm for NAND network synthesis [50]. The algorithm constructs a network realization by a sequence of local decisions starting from the primary outputs, and incrementally introduces new gates. Most of this early work on multi-level synthesis, while theoretically significant, failed to achieve the elusive goal of generating optimal circuits. The complexity of exhaustively enumerating the solution space limited the applicability of these approaches to very small circuits, and rendered them impractical for general-purpose synthesis.

Practical Synthesis

The growing complexity of VLSI in the late seventies necessitated new scalable synthesis techniques that sought approximate, rather than optimal, multi-level circuit solutions. Most synthesis tools in use today are based on the premise that the search for optimal solutions is intractable, and are designed, instead, to find acceptable sub-optimal realizations. These tools typically operate on a multi-level representation of the functions being synthesized, continually transforming it until a satisfactory solution is found, and can be roughly classified into two broad categories based on the granularity of transformations used. Local transformation approaches modify the current "solution" incrementally by making appropriate changes in its immediate neighborhood. In contrast, global transformation approaches seek good multi-level topologies by making large-scale changes to the implementation structure while disregarding technological considerations; a second "mapping" phase insures compliance of the resulting multi-level structure with technology constraints. The algorithms presented in this dissertation fall in this category.

Local Transformation approaches Local optimization methods perform rule-based transformations, which are a set of ad hoc rules that are applied iteratively to patterns found in the network of logic gates. In the local optimization method each rule introduces a transformation by replacing a small sub-graph of several gates in the network with another sub-graph which is functionally equivalent but has a simpler realization according to some cost function. Initially the network consists of AND, OR, INV gates, decoders, multiplexers, adders, etc. After the simplification step these primitives are translated into an interconnection of INV to NAND gates through a sequences of transformations. Technology specific transformations are then applied as a final step in the process. Such transformations have limited optimization capability since they are local in nature, and do not have global view on the design. Examples of systems based on this approach are LSS [49] and LORES/EX [85].

Global Transformations approaches The computational limitations of the classical theory for functional decomposition motivated the development of algorithms which are effective in partitioning complex logic functions. These ideas are based on the notion of algebraic factorization applied to sum-of-products (SOP) expressions; the technique is described in [33] and [34]. Algebraic decomposition techniques have experienced the most success to date in the field of multilevel synthesis. They are capable of handling large combinational blocks, and produce very good results for control logic. However, representing logic of higher level abstraction with SOP forms makes it difficult to explore the structural flexibility of the original description. It can lead to the loss of a compact description of the original equations, and algebraic decomposition is too restrictive to rediscover their structure. Examples of systems which rely on the algebraic techniques are MIS [32], SOCRATES [9], and more recently SIS [136]. In more recent years much attention has been also given to AND-XOR decompositions [151, 42, 57, 63]. The advent of Binary Decision Diagrams and their variants rekindled interest in classical decomposition techniques. In recent years researchers have successfully applied Roth and Karp decomposition in FPGA synthesis [41, 98, 124, 134, 158]. These approaches decompose a function recursively until each of the generated sub-functions meets a given fan-in constraint, typically 5 . However, since fan-in count is the only notion of node complexity in these approaches, they do not extend easily to a
library-specific synthesis. A number of approaches have also been developed which explore the structure of the decision diagram representation of a given function $[15,160,162,57]$. The close relation between BDDs and multiplexer circuits has also lead to several approaches to synthesis of pass transistor logic (PTL) [16, 38, 42, 107]; they are primarily based on a mapping of decomposed BDDs to PTL.

Chapter 4

Contributions in this Dissertation

This chapter reviews the subject matter of the seven publications that make the core of this dissertation. It complements the material given in the publications with additional examples, and includes all proofs omitted in the papers. It also presents an unpublished result which extends the technique described in Paper B.

Section 4.1 introduces the first two algorithms, which produce simpledisjoint and disjoint-support decompositions. They are based on representing the target function as a Binary Decision Diagram. Unlike other algorithms using similar techniques, the ones presented in this thesis can deal with large target functions and produce more decompositions, without requiring expensive manipulations of the representation, particularly BDD reordering.

Different ways of representing a function often lead to very different decomposition alternatives. Two of these alternatives are explored in this dissertation, based on analyzing the circuit graph representation of the target function.

The algorithm presented in Section 4.2 produces disjoint-support decompositions, like the ones obtained by the first two algorithms, but it is based on a technique which integrates circuit graph analysis and BDD-based decomposition. The combination of the two approaches results in a technique which is more robust than the ones based purely on BDD , and that improves both the performance and the quality of the results obtained.

Our fourth algorithm, which efficiently computes non-disjoint support decompositions is introduced in Section 4.3.

Section 4.4 presents our fifth algorithm, which provides an efficient means to decompose a function at the circuit graph level, by using information derived from a BDD representation, without requiring expensive circuit resynthesis.

We end this review of contributions by presenting two publications that resulted from the many detours we have taken along the winding path of our research.

Section 4.5 presents a result of a more theoretical nature. It answers a long standing question regarding the relation between the bound sets of a Boolean function and the "best" variable orders for its BDD representation.

Lastly, a leap into the future closes this list of contributions. In section 4.6 we introduce a novel model of computation, which opens a whole new line of research in the area of molecular circuit implementation, and will surely challenge our knowledge of functional decomposition.

4.1 BDD Based Disjoint-Support Boolean Decomposition

Since the development of BDDs, research on decomposition algorithms got a new life. BDDs allow for larger and more complicated functions to be decomposed. However, regardless of how fast an algorithm is, we are always dealing with a problem that grows exponentially with respect to the number of variables of a function. In Paper A, on page 73 , we explore an interesting extension to traditional cut methods on BDDs, allowing us to check if any interval of consecutive variables on a BDD is a bound set, without requiring expensive reordering of the BDD variables. This algorithm works specifically for simple disjoint decompositions. Later on, and inspired by this idea, we extend this result to disjoint-support decompositions in Paper B, on page 87.

Cutting In order to avoid expensive chart or compatible classes computations, Lai, Pan and Pedram [99] devised a BDD method for checking if a certain set of variables $Y \subset X$ form a bound set for a function $f(X)$. It is based on the property that there exist functions $f_{i}: \mathbb{B}^{|Z|} \rightarrow \mathbb{B}$, with $Y \cup Z=X$ and $Y \cap Z=\emptyset$ such that

$$
\begin{equation*}
f(X)=\sum_{i=0}^{2^{|Y|}-1} \alpha_{i}(Y) f_{i}(Z) \tag{4.1}
\end{equation*}
$$

where $Y=\left\{x_{1}, x_{2}, \ldots, x_{|Y|}\right\}, \alpha_{i}(Y)=x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots x_{|Y|}^{i_{|Y|}}$, where i_{j} is the j-th bit of the binary expansion of i, and $x_{i}^{0}=\bar{x}_{i}, x_{i}^{1}=x_{i}$. The number of different functions in the set $\left\{f_{0}, \ldots, f_{2|Y|-1}\right\}$ is clearly equivalent to the number of compatible classes, or to the number of different columns in a decomposition chart for f (see Section 3.2).

Let \mathcal{F} be the BDD representing f with respect to the variable ordering $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$. For a given cut level $c, 1 \leq c<n$, the "upper" part of the BDD \mathcal{F} is the set of nodes \mathbf{v} such that index $(\mathbf{v}) \leq c$. Respectively, the "lower" part of \mathcal{F} is the set of nodes \mathbf{v} such that index $(\mathbf{v})>c$. We denote by $\operatorname{cut}_{\mathcal{F}}(c)$ the boundary line between these to parts. Whenever the BDD \mathcal{F} is clear from the context we write $\operatorname{cut}(c)$ instead of $\operatorname{cut}_{\mathcal{F}}(c)$.

Figure 4.1: Cutting a BDD.

If the set of consecutive ${ }^{1}$ variables Y is at the top of the $\operatorname{BDD} \mathcal{F}$, the nodes adjacent to and below $\operatorname{cut}(|Y|)$ represent the functions f_{i} for all i. Since BDDs are canonical, the number of these nodes is exactly the number of different functions in the set $\left\{f_{0}, \ldots, f_{2|Y|-1}\right\}$ corresponding to equation (4.1). Thus, the set Y is a bound set for f, if and only if there are at most two nodes adjacent to and below $\operatorname{cut}(|Y|)$.

Figure 4.1 gives an intuitive idea of this method. The gray line in Figure 4.1 (a) shows $\operatorname{cut}(2)$, and the nodes adjacent to and below the cut are encircled in gray. In this example $\{a, b\}$ is a bound set for

$$
f(a, b, c, d)=a+b+c+d
$$

With respect to equation (4.1), the cut nodes u and v represent

$$
f_{1}=f_{2}=f_{3}=\mathbf{1}
$$

and

$$
f_{0}=c+d
$$

Also note that each function α_{i} is represented by a path from the root to a node below the cut, e.g. $\alpha_{0}=a^{0} b^{0}=\bar{a} \bar{b}$ is represented by the dotted path from the root to node v.

[^2]The sub-functions g and h of decomposition $f(a, b, c, d)=h(g(a, b), c, d)$ are easily obtained from the BDD as shown in Figure 4.1(b):

$$
\begin{aligned}
g(a, b) & =a+b, \\
h(g, c, d) & =g+c+d
\end{aligned}
$$

Slicing Although cutting a BDD renewed the hopes of practical application of Boolean decomposition, it has one essential drawback: the set of variables to be checked has to be at the top of the BDD. For example, a BDD with variable ordering $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$ only allows us to check the sets $\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and so on. If this is not the case, the BDD must be reordered. Not only is reordering computationally expensive, but it can also lead to an ordering of the variables that causes the BDD to blow up in size, and thus calculating the cut becomes unfeasible. Bryant shows in [36] a classical example. The BDD for the function $f=x_{1} x_{2}+\cdots+x_{2 n-1} x_{2 n}$ has $2 n+2$ nodes for the variable order $\left\langle x_{1}, x_{2}, \ldots, x_{2 n-1}, x_{2 n}\right\rangle$, whereas the size increases to 2^{n+1} nodes for the order $\left\langle x_{1}, x_{3}, \ldots, x_{2 n-1}, x_{2}, x_{4}, \ldots, x_{2 n}\right\rangle$.

In Paper A we attacked the reordering problem by devising a method that is similar to the "cutting" method in the previous section, but which allows to check if any interval of consecutive variables of a BDD forms a bound set for the function f. Since it is not limited to ranges of variables starting at the top of the BDD, in contrast to the previous method, it allows to check $O\left(n^{2}\right)$ bound set candidates instead of $O(n)$ without requiring reordering. We call this method slicing, since two cuts are required to delimit the interval of variables to check (a slice of the BDD).

Recall from the previous section that if we partition the support set of f into two disjoint sets Y and Z, we can represent f as shown in equation (4.1). Consider an abstract picture of a BDD \mathcal{F} of an n-variable function $f(X)$ shown in Figure 4.2. Two cut lines on levels a and b of the BDD are denoted by $\operatorname{cut}(a)$ and $\operatorname{cut}(b), a, b \in\{0, \ldots, n\}, a<b$. Let Y be the set of variables which lies between the cut lines, Z_{1} be the set of variables above cut (a) and Z_{2} be the set of variables below $\operatorname{cut}(b)$. We have $X=Y \cup Z, Y \cap Z=\emptyset$, and $Z=Z_{1} \cup Z_{2}, Z_{1} \cap Z_{2}=\emptyset$.

Let $c u t _\operatorname{set}(a)$ denote a set of nodes $v \in \mathcal{F}$ with indexes $a<\operatorname{index}(v) \leq b$ which are children of the nodes of \mathcal{F} above the $\operatorname{cut}(a)$. Let \mathcal{F}_{v} stand for the BDD rooted at $v \in$ cut_set (a). Then, cut_set $\left(b_{v}\right)$ is the set of nodes $u \in \mathcal{F}_{v}$

Figure 4.2: Abstract view of a BDD slice.
with indexes $b<\operatorname{index}(u) \leq n+1$ which are children of the nodes of \mathcal{F}_{v} above the cut (b).

Let $\alpha_{v}\left(Z_{1}\right)$ be a function representing the sum of all paths of \mathcal{F} leading to a node $v \in$ cut_set (a). Then f can be co-factored with respect to α_{v} as

$$
\begin{equation*}
f(X)=\left.\sum_{\forall v \in c u t_{_} \operatorname{set}(a)} \alpha_{v}\left(Z_{1}\right) \cdot f\right|_{\alpha_{v}}\left(Y, Z_{2}\right) \tag{4.2}
\end{equation*}
$$

If \mid cut_set $\left(b_{v}\right) \mid=2$, then Y is a bound set for $\left.f\right|_{\alpha_{v}}$, and $\left.f\right|_{\alpha_{v}}$ can be decomposed as

$$
\begin{equation*}
\left.f\right|_{\alpha_{v}}\left(Y, Z_{2}\right)=h_{v}\left(g_{v}(Y), Z_{2}\right), \tag{4.3}
\end{equation*}
$$

for some $h_{v}: \mathbb{B}^{\left|Z_{2}\right|+1} \rightarrow \mathbb{B}$ and $g_{v}: \mathbb{B}^{|Y|} \rightarrow \mathbb{B}$. The function g_{v} is represented by the BDD rooted at v whose terminal nodes are obtained by replacing the two nodes of cut_set $\left(b_{v}\right)$.

Using this notation, we can formulate the following theorem.
Theorem 1. A set of variables Y is a bound set for $f(X)$ if, and only if:

1. for all $v \in$ cut_set $(a), Y$ is a bound set for the co-factor $\left.f\right|_{\alpha_{v}}\left(Y, Z_{2}\right)$ in (4.2), and
2. for all pairs $v, u \in$ cut_set (a), sub-functions $g_{v}(Y)$ and $g_{u}(Y)$ in (4.3) are either equivalent, or complement of each other.

Proof. See the proof of Theorem 8 of Paper A, on page 73 of this thesis. The formulation of Theorem 1 differs from the one of Theorem 8, but their essence is the same.

Figure 4.3 illustrates this theorem. In this example $\{b, c\}$ is a bound set for $F(a, b, c, d)=a \oplus(b+c) \oplus d$. The gray lines in Figure 4.3(a) show the "slice" delimited by cut(1) and cut(3). The sub-functions g and h of the decomposition are easily obtained from the BDD, as shown in Figure 4.3(b).

Figure 4.3: Slicing a BDD.

Since two functions are equivalent, or complement of each other if, and only if, their BDD representations are graph isomorphic up to the terminal nodes, this method can be implemented very efficiently. See Paper A on page 73 for details on the algorithm and experimental results.

Disjoint-Support Slicing In Paper B, we have generalized the result of Paper A to disjoint-support decompositions.

Consider again Figure 4.2. If, for some node $v \in$ cut_set (a), we have \mid cut_set $\left(b_{v}\right) \mid=k$, then Y is a k-bound set for $\left.f\right|_{\alpha_{v}}$ in (4.2) and $\left.f\right|_{\alpha_{v}}$ can be
decomposed as

$$
\begin{equation*}
\left.f\right|_{\alpha_{v}}\left(Y, Z_{2}\right)=h_{v}\left(g_{v}(Y), Z_{2}\right), \tag{4.4}
\end{equation*}
$$

for some $h_{v}: \mathbb{B}^{\left|Z_{2}\right|} \times \mathbb{M} \rightarrow \mathbb{B}$ and $g_{v}: \mathbb{B}^{|Y|} \rightarrow \mathbb{M}$, where $\mathbb{M}=\{0,1, \ldots, k-1\}$. The function g_{v} is represented by the MDD rooted at v whose k terminal nodes are obtained by replacing the nodes of cut_set $\left(b_{v}\right)$.

We can extend Theorem 1 to the k-bound set case as follows:
Theorem 2. A set of variables Y is a k-bound set for $f(X)$ if:

1. for all $v \in$ cut_set $(a), Y$ is a k-bound set for the co-factor $\left.f\right|_{\alpha_{v}}\left(Y, Z_{2}\right)$ in (4.2), and
2. for all pairs $v, u \in$ cut_set (a), sub-functions $g_{v}(Y)$ and $g_{u}(Y)$ in (4.4) are isomorphic.

We present a proof of the disjoint-support slicing technique which is not included in Paper B.

Proof. Since Y is a k-bound set for all $\left.f\right|_{\alpha_{v}}$, each of $\left.f\right|_{\alpha_{v}}$ can be decomposed as in (4.4). Furthermore, since all sub-functions $g_{v}(Y)$ are isomorphic, we can also decompose $\left.f\right|_{\alpha_{v}}$ as

$$
\begin{equation*}
\left.f\right|_{\alpha_{v}}\left(Y, Z_{2}\right)=h_{v}\left(g(Y), Z_{2}\right) \tag{4.5}
\end{equation*}
$$

where $g(Y)=\phi_{v}\left(g_{v}(Y)\right)$ for some bijection $\phi_{v}: \mathbb{M} \rightarrow \mathbb{M}$.
From (4.2) and (4.5) we can conclude that f can be represented as

$$
f(X)=h(g(Y), Z)
$$

with $h=\sum_{\forall v \in \text { cut_set }(a)} \alpha_{v} \cdot h_{v}$. Thus, Y is a k-bound set for $f(X)$.
As with the slicing method shown in the previous section, the conditions stated in Theorem 2 can be checked very efficiently on an MDD representation of the function. Figure 4.4 illustrates this method. In this example $\{b, c, d\}$ is a 3 -bound set for

$$
F(a, b, c, d, e)=a(b(\bar{d}+e)+\bar{b} c e)+\bar{a} b d e+\bar{b} \bar{c}(a+e)
$$

The gray lines in Figure $4.4(\mathrm{a})$ show the "slice" delimited by cut(1) and cut(4). The sub-functions g and h can be easily obtained from the MDD, as shown in Figure 4.4(b). The pseudo-code for a SLICE algorithm is shown

Figure 4.4: Disjoint-Support Slicing.
on Paper B, Figure B.3. .
Note, however, that in contrast with Theorem 1, the conditions formulated in Theorem 2 are sufficient, but not necessary, for a set of variables to be a k-bound set. The isomorphism condition in this generalization is too strong, and good decomposition candidates may be lost depending on the particular variable ordering ${ }^{2}$. There is a solution to this problem, and we present it in the next section.

Disjoint-Support Slicing Revisited Although the slicing method described in the previous section is useful in practice, it may overlook certain decompositions that are desirable. For example, the function

$$
f(a, b, c, d, e)=a(b+c+d+e)+\bar{a}(b c d e)
$$

has a disjoint-support decomposition

$$
f(a, b, c, d, e)=h(a, g(b, c, d), e)
$$

that will be found by the slicing algorithm if the variable order is $\langle b, c, d, e, a\rangle$, but will not be found if the variable order is $\langle a, b, c, d, e\rangle$. Figure 4.5 illus-

[^3]
(a)

(b)

Figure 4.5: BDDs for function $a(b+c+d+e)+\bar{a} b c d e$ for two different variable orderings.
trates this example. It shows the BDDs representing function f for two different variable orderings. Figure $4.5(\mathrm{a})$ shows the BDD for the ordering $\langle b, c, d, e, a\rangle$. The gray dashed line shows that the slicing method (in this case reduced to a simple cut) detects the 3 -bound set $\{b, c, d\}$. When the set $\{b, c, d\}$ is in the middle, as shown in Figure $4.5(\mathrm{~b})$, the slice method does not recognize it as a 3 -bound set. This is due to the requirement of Theorem 2 that the two sub-graphs induced by the slice have to be pairwise isomorphic. In the example, the sub-graphs determined by the slice in Figure $4.5(\mathrm{~b})$, between the gray dashed lines, are not isomorphic.

Lets formulate necessary and sufficient conditions for the existence of a k-bound set. Let $f: \mathbb{B}^{|Y \cup Z|} \rightarrow \mathbb{B}, Y \cap Z=\emptyset$, and $\mathbb{M}=\{0, \ldots, k-1\}$ for some $k>1$.

Theorem 3. A set of variables Y is a k-bound set for $f(Y, Z)$ if, and only if, there is a function $g: \mathbb{B}^{|Y|} \rightarrow \mathbb{M}$ such that

1. for all $\hat{z} \in \mathbb{B}^{|Z|}, f(Y, \hat{z})$ is a projection of g, and
2. for all $\hat{y}_{1}, \hat{y}_{2} \in Y$ we have

$$
g\left(\hat{y}_{1}\right)=g\left(\hat{y}_{2}\right) \Leftrightarrow f\left(\hat{y}_{1}, z\right)=f\left(\hat{y}_{2}, z\right) .
$$

Proof.

$\Rightarrow)$ By the definition of k-bound set, there are functions $g: \mathbb{B}^{|Y|} \rightarrow \mathbb{M}$ and $h: \mathbb{M} \times \mathbb{B}^{|Z|} \rightarrow \mathbb{B}$ such that $f(Y, Z)=h(g(Y), Z)$. Then, for every $\hat{z} \in \mathbb{B}^{|Z|}, f(Y, \hat{z})=h(g(Y), \hat{z})$. The function $h(g, \hat{z})$ is a surjective mapping from \mathbb{M} into \mathbb{B}. Therefore, by the definition of projection, $f(Y, \hat{z})$ is a projection of g. The second condition follows from the surjectivity of g and the minimality of the set \mathbb{M}.
$\Leftarrow)$ We can write

$$
\begin{equation*}
f(Y, Z)=\sum_{\hat{z} \in \mathbb{B}|Z|} \alpha_{\hat{z}}(Z) f(Y, \hat{z}) \tag{4.6}
\end{equation*}
$$

where

$$
\alpha_{\hat{z}}(Z)= \begin{cases}1 & \text { if } Z=\hat{z} \\ 0 & \text { otherwise }\end{cases}
$$

By hypothesis, for all $\hat{z} \in \mathbb{B}^{|Z|}, f(Y, \hat{z})$ is a projection of g, i.e. there are functions $\sigma_{\hat{z}}: \mathbb{M} \rightarrow \mathbb{B}$ such that $\sigma_{\hat{z}}(g(Y))=f(Y, \hat{z})$. So, replacing in (4.6),

$$
f(Y, Z)=\sum_{\hat{z} \in \mathbb{B}|Z|} \alpha_{\hat{z}}(Z) \sigma_{\hat{z}}(g(Y)) .
$$

If we make

$$
h(g, Z)=\sum_{\hat{z} \in \mathbb{B}|Z|} \alpha_{\hat{z}}(Z) \sigma_{\hat{z}}(g)
$$

then,

$$
f(Y, Z)=h(g(Y), Z)
$$

The second condition guarantees that the size of \mathbb{M} is minimal. Therefore, by definition of k-bound set, Y is a k-bound set for f.

A straightforward corollary to Theorem 3 states our result in a manner similar to that of Theorems 1 and 2:

Corollary 1. A set of variables Y is a k-bound set for $f(X)$ if, and only if:

1. for all $v \in$ cut_set $(a), Y$ is a k_{v}-bound set for the co-factor $\left.f\right|_{\alpha_{v}}\left(Y, Z_{2}\right)$ in (4.2) with $k_{v} \leq k$, and
2. there exists a function $g: \mathbb{B}^{|Y|} \rightarrow \mathbb{M}$ with the smallest set \mathbb{M}, such that each sub-function $g_{v}(Y)$ induced by the decomposition (4.4) is a projection of g.

This corollary shows that there is a straightforward algorithm to compute a disjoint-support decomposition form a BDD representation of a function, if we can compute the MDD for the sub-function $g(Y)$ from the MDDs of its projections $g_{v}(Y)$. Such computation is possible by means of the following technique.

In order to simplify the exposition of the algorithm, we will assume that all our MDDs will have Boolean variables, but an arbitrary number of constant nodes. These MDDs are usually referred to as multi-terminal BDDs. The algorithm KERNEL allows us to compute a function $g: \mathbb{B}^{|X|} \rightarrow \mathbb{M}$ given $g_{1}: \mathbb{B}^{|X|} \rightarrow \mathbb{M}_{1}$ and $g_{2}: \mathbb{B}^{|X|} \rightarrow \mathbb{M}_{2}$, based on their respective representations as MDDs. Figure 4.6 shows a recursive implementation of the KERNEL algorithm in pseudo-code, using an MDD data structure as implemented in the Colorado University Decision Diagram package (CUDD [144]) ${ }^{3}$.

The procedures const?, mk-const, Else, Then, ITE, and TopVar are provided with the CUDD package, and implement the following functions:

- CONST? (\mathcal{G}) checks whether the $\operatorname{BDD} \mathcal{G}$ is a constant or not;
- MK-CONST (k) returns a BDD representing a constant function of value k.
- $\operatorname{ElSE}(\mathcal{G})$ returns the else child of \mathcal{G} (see Section 2.3);
- Then (\mathcal{G}) returns the then child of \mathcal{G} (see Section 2.3);
- $\operatorname{ITE}(v, \mathcal{G}, \mathcal{H})$ returns a BDD representing the function $v f_{\mathcal{G}}+\bar{v} f_{\mathcal{H}}$;
- Top $\operatorname{Var}(\mathcal{G})$ returns the top variable of $\operatorname{BDD} \mathcal{G}$.

Figures 4.7 and 4.8 give an illustration of this procedure, based on the example at the beginning of this section (Figure $4.5(\mathrm{~b})$). Figure 4.7 shows an example of the computation of sub-function g and mappings σ_{1} and σ_{2}, such that $g \circ \sigma_{1}=g_{1}$ and $g \circ \sigma_{2}=g_{2}$, for the functions given in tabular form. Figure 4.8 shows an example of the application of algorithm KERNEL to obtain the MDD for function g from the MDDs of g_{1} and g_{2}.

[^4]```
algorithm \(\operatorname{Kernel}\left(\mathcal{G}, \mathcal{G}^{\prime}\right)\)
 if const? \((\mathcal{G})\) and Const? \(\left(\mathcal{G}^{\prime}\right)\)
 return MK-CONST(GET-NUMBER \(\left.\left(\mathcal{G}, \mathcal{G}^{\prime}\right)\right)\)
 if const?(G)
 top_var \(=\) TOPVAR \(\left(\mathcal{G}^{\prime}\right)\)
 \(c_{0}=\operatorname{Kernel}\left(\mathcal{G}, \operatorname{Else}\left(\mathcal{G}^{\prime}\right)\right)\)
 \(c_{1}=\operatorname{Kernel}\left(\mathcal{G}, \operatorname{Then}\left(\mathcal{G}^{\prime}\right)\right)\)
 else if const? \(\left(\mathcal{G}^{\prime}\right)\)
 top_var \(=\operatorname{Top} \operatorname{Var}(\mathcal{G})\)
 \(c_{0}=\operatorname{Kernel}\left(\mathcal{G}^{\prime}, \operatorname{Else}(\mathcal{G})\right)\)
 \(c_{1}=\operatorname{Kernel}\left(\mathcal{G}^{\prime}, \operatorname{Then}(\mathcal{G})\right)\)
 else
 if \(\operatorname{Top} \operatorname{Var}(\mathcal{G})<\operatorname{Top} \operatorname{Var}\left(\mathcal{G}^{\prime}\right)\)
 top_var \(=\operatorname{Top} \operatorname{VAR}(\mathcal{G})\)
 \(c_{0}=\operatorname{Kernel}\left(\mathcal{G}^{\prime}, \operatorname{Else}(\mathcal{G})\right)\)
 \(c_{1}=\operatorname{Kernel}\left(\mathcal{G}^{\prime}, \operatorname{Then}(\mathcal{G})\right)\)
 else if \(\operatorname{Top} \operatorname{Var}(\mathcal{G})>\operatorname{Top} \operatorname{Var}\left(\mathcal{G}^{\prime}\right)\)
 top_var \(=\operatorname{Top} \operatorname{VaR}\left(\mathcal{G}^{\prime}\right)\)
 \(c_{0}=\operatorname{Kernel}\left(\mathcal{G}, \operatorname{Else}\left(\mathcal{G}^{\prime}\right)\right)\)
 \(c_{1}=\operatorname{Kernel}\left(\mathcal{G}, \operatorname{Then}\left(\mathcal{G}^{\prime}\right)\right)\)
 else
 top_var \(=\operatorname{Top} \operatorname{VAR}(\mathcal{G})\)
 \(c_{0}=\operatorname{Kernel}\left(\operatorname{Else}\left(\mathcal{G}^{\prime}\right), \operatorname{Else}(\mathcal{G})\right)\)
 \(c_{1}=\operatorname{Kernel}\left(\operatorname{Then}\left(\mathcal{G}^{\prime}\right), \operatorname{Then}(\mathcal{G})\right)\)
 return ITE(top_var, \(c_{1}, c_{0}\))
end
```

Figure 4.6: Pseudo code of the Kernel algorithm.

|  | $g_{1}$ | $g_{2}$ | $g$ |  |  |  | $\sigma_{1}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 000 | 0 | 0 | 0 |  |  | 0 | $\mapsto$ | 0 |
| 001 | 0 | 1 | 1 | three different pairs: |  | 1 | $\mapsto$ | 0 |
| 010 | 0 | 1 | 1 |  | $\nearrow$ | 2 | $\mapsto$ | 1 |
| 011 | 0 | 1 | 1 |  |  |  |  |  |
| 100 | 0 | 1 | 1 |  | $\searrow$ | $\sigma_{2}$ |  |  |
| 101 | 0 | 1 | 1 |  |  | 0 | $\mapsto$ | 0 |
| 110 | 0 | 1 | 1 |  |  | 1 | $\mapsto$ | 1 |
| 111 | 1 | 1 | 2 |  |  | 2 | $\mapsto$ | 1 |

Figure 4.7: Calculating the sub-function $g$ and mappings $\sigma_{1}$ and $\sigma_{2}$.


Figure 4.8: Calculating the MDD for function $g$ from the MDDs of $g_{1}$ and $g_{2}$.

### 4.2 Hybrid Disjoint-Support Decomposition

In previous sections we have shown that it is possible to devise BDD-based heuristics which quickly find many disjoint-support decompositions, and which can handle large functions. However, one problem with such techniques is that the decompositions that can be obtained do not necessarily simplify the function. For example, a circuit implemented as the two cofactors of a Shannon decomposition joined by a multiplexer is usually not optimal. ${ }^{4}$

Another problem is that, in contrast to simple disjoint decompositions, that are "too few", disjoint-support decompositions are "too many". So, an algorithm which first generates all decompositions and then decides which of them simplify the function is not feasible for large functions.

In Paper C, on page 99 we present our approach to overcome these problems. First, a set of proper cut points is identified in a circuit representation of the function by applying a structural decomposition method. Then, the circuit is partitioned along these cut points into a set of smaller sub-circuits, which are treated independently. This procedure allows us to reduce the search space for disjoint-support decompositions at the next stage, in which we apply a BDD-based technique similar to the ones presented earlier. Finally, the overall decomposition is determined by combining the intermediate results.

## Preliminaries

Let $C=(V, E)$ denote a directed acyclic graph representing a single-output circuit, where $V$ represents a set of gates and primary inputs. A particular vertex root $\in V$ is marked as the circuit output. The set of edges $E \subseteq V \times V$ describes the nets connecting the gates. We will call this type of graph a circuit graph.

The cone of influence of a vertex $v$, is a subset of $V$ containing all the vertices from which $v$ is reachable.

A vertex $v$ dominates another vertex $w$ in $V$ if every path from $w$ to root contains $v$ [103]. We call $v$ a dominator of $w$. Vertex $v$ is the immediate dominator of $w$, denoted by $v=i \operatorname{dom}(w)$, if $v$ dominates $w$ and every other

[^5]dominator of $w$ dominates $v$. Every vertex $v \in V$ except root has a unique immediate dominator [108]. The edges $\{(\operatorname{idom}(w), w) \mid w \in V-\{$ root $\}\}$ form a directed tree $D$ rooted at root, which is called the dominator tree of $C$. A reduced dominator tree [95] $D_{R}$ contains all vertices $v \subseteq D$ such that:

1. $v$ is a primary input or
2. $\exists u \in D_{R}$ such that $v=\operatorname{idom}(u)$.

A vertex is called a proper cut if it dominates all primary input vertices in its cone of influence.

## Circuit-Based Decomposition

The concept of proper cuts was first introduced in combinational equivalence checking [56]. It was later applied to testing [137, 17] and design for low power [43] where it is known under the alternative names of headlines or supergates. The definition of proper cut states that every path from any primary input in the cone of influence of a proper cut $v$ to the root contains $v$. This guarantees that all re-converging paths in the circuit are completely enclosed within the cone and, therefore, that those primary inputs belong to a bound set (see Figure 4.9). The primary input vertices and the root vertex are trivial proper cuts, i.e. they always exist.

We have chosen to use at the first stage of our algorithm a circuit-based technique, rather than a BDD-based one, because manipulating circuits is much faster. Therefore, for functions with no proper cuts, the presented technique does not bring a significant overhead. The running time of our algorithm is normally similar, or even faster, than the running time of a BDD-based algorithm.

The algorithm presented in Paper $C$ for finding proper cuts is based on the concept of a reduced dominator tree constructed by using an extension of the Lengauer-Tarjan algorithm [103] for finding dominators in a graph.

It is straightforward to prove that a proper cut is always a vertex of the reduced dominator tree $D_{R}$.

Lemma 1. A vertex $v \in V$ is a proper cut only if $v \in D_{R}$.
Figure 4.9 gives an example. The circuit shown represents $((d \oplus e)(a b+$ $\bar{a} c))+(\overline{a b+\bar{a} c}) f$. Notice the two proper cut points, and their respective cones of influence in gray. They correspond to bound sets $\{d, e\}$ and $\{a, b, c\}$ respectively.


Figure 4.9: Proper cut points.

The pseudo-code of the algorithm ProperCut which uses a reduced dominator tree $D_{R}$ to identify the set of proper cuts $P$ [95] is shown in Figure 4.10.

ProperCut processes the circuit from the inputs toward the output in topological order. The array $T[v]$ contains vertices $u \in D_{R}$ with open re-convergences. At the primary inputs, $T[v]$ is initialized to an empty set. Then, at each following vertex $v, T[v]$ is updated to the union of $T\left[v_{i}\right]$ for all vertices $v_{i}$ in its fan-in. If $v$ is in the reduced dominator tree, then the set $\operatorname{Doms}(v)$ of vertices having $v$ as an immediate dominator is removed from $T[v]$ and, after performing the proper cut checking, $v$ is added to $T[v]$. This substitution of $\operatorname{Doms}(v)$ vertices by their dominator allows us to keep the size of $T[v]$ small and, what is more important, let's us keep the support-set of $T[v]$ dependent on vertices having $v$ as an immediate dominator only, rather than vertices on previous topological levels.

```
algorithm ProperCut(\(V, E\), root);
 \(D_{R}\), Doms \(=\operatorname{Dominator}(V, E\), root \()\)
 for each \(v \in V\) in topological order do
 if \(v \in\) Inputs then
 \(T[v]=\emptyset ;\)
 else
 \(T[v]=\bigcup_{v_{i} \in F I(v)} T\left[v_{i}\right] ;\)
 if \(v \in D_{R}\) then
 \(T[v]=T[v]-\operatorname{Doms}(v) ;\)
 if \(T[v]=\emptyset\) then
 \(P=P \cup\{v\} ;\)
 \(T[v]=T[v] \cup\{v\} ;\)
 return \(P\)
end
```

Figure 4.10: Pseudo-code of the algorithm ProperCut.

## BDD-based Decomposition

After the set of proper cuts is identified, the circuit is partitioned along these cut points into a set of smaller sub-circuits which are processed independently using the BDD-based decomposition technique presented in section 4.1. The algorithm successively goes through all possible linear intervals of variables of a BDD and, for each interval, checks whether it is a bound set or not. In this way many decompositions are found very quickly, without expensive variable reordering.

The integration of circuit-based and BDD-based techniques results in an algorithm which is more robust than the pure BDD-based method regarding both quality of the result and running time. Our experiments on benchmark circuits suggest that the resulting algorithm has a significant potential for a large number of circuits. For details on these results, see Paper $C$, included on page 99 in this thesis.

### 4.3 Circuit Based Non-Disjoint Decomposition

We have shown in Paper $C$ that we can extract a lot of information about decompositions from the structure of a circuit graph. Following a similar route, Paper D, on page 113, presents a result that relates a different type of decomposition, the non-disjoint support decomposition, to certain structural properties of a circuit graph.

## Multiple-Vertex Dominators

Recall the definition of a circuit graph and single vertex dominator from Section 4.2. Many graphs do not contain any single-vertex dominators except for the primary inputs and root. It is more common that a vertex is dominated by a set of vertices.

A set of vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ is a multiple-vertex dominator of size $k[5]$ (also called generalized dominator [77]) for a vertex $u$, if (1) every path from $u$ to root contains some $v_{i}$, and (2) for every $v_{i}$, there exist at least one path from $u$ to root which contains $v_{i}$ and does not contain any other $v_{j}, i, j \in\{1, \ldots, k\}, i \neq j$. A set of vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ is a common multiple-vertex dominator for a set of vertices $U \subseteq V-\left\{v_{1}, \ldots, v_{k}\right\}$, if, for every $u \in U$, there exist $W \subseteq\left\{v_{1}, \ldots, v_{k}\right\}$ such that $W$ is a multiple-vertex dominator for $u$.

Theorem 4. Suppose a circuit graph $C=(V, E)$ represents a Boolean function $f(X, Y, Z)$, where $X, Y, Z$ are sets of variables partitioning the support set of $f$. Let $V_{X}, V_{Y}, V_{Z} \subset V$ be sets of primary input vertices corresponding to the variables of the sets $X, Y, Z$. Let $v_{g_{1}}, \ldots, v_{g_{k}} \in V$ be a set of vertices such that:

1. $\left\{v_{g_{1}}, \ldots, v_{g_{k}}\right\}$ is a common multiple-vertex dominator for $V_{X}$,
2. $\left(V_{X} \cup V_{Y}\right) \subset \bigcup_{i=1}^{k} I\left(v_{g_{i}}\right)$, where $I\left(v_{g_{i}}\right)$ is the cone of influence of $v_{g_{i}}$.

Then, there exist a decomposition of $f$ of type

$$
\begin{equation*}
f(X, Y, Z)=h\left(g_{1}(X, Y), \ldots, g_{k}(X, Y), Y, Z\right) \tag{4.7}
\end{equation*}
$$

where Boolean functions $g_{i}$ are the functions rooted by the vertices $v_{g_{i}}$, $\forall i \in$ $\{1, \ldots, k\}$, of $C$.


Figure 4.11: Nodes $\left\{v_{g_{1}}, v_{g_{2}}\right\}$ are a common multiple vertex dominator for the set of inputs $\left\{x_{1}, x_{2}, x_{3}\right\}$

Figures 4.11 and 4.12 illustrate this theorem. Figure 4.11 shows an abstracted circuit graph representing a Boolean function $f(X, Y, Z)$, where $X=\left\{x_{1}, x_{2}, x_{3}\right\}, Y=\left\{y_{1}, y_{2}\right\}, Z=\left\{z_{1}\right\}$. The output (root) node is marked $v_{f}$. The nodes $\left\{v_{g_{1}}, v_{g_{2}}\right\}$ are a common multiple vertex dominator for the set of inputs $X$; the domination relation is depicted by the light gray bell shaped area. The cones of influence of each of these nodes (reaching $X \cup\left\{y_{1}\right\}$ and $X \cup\left\{y_{2}\right\}$ respectively) are shown in dark gray. The theorem shows that, under these conditions, function $f$ can be decomposed as $h\left(g_{1}\left(X, y_{1}\right), g_{2}(X, y 2), Y, Z\right)$, where $h: \mathbb{B}^{|Y \cup Z|+2} \rightarrow \mathbb{B}, g_{1}: \mathbb{B}^{\left|X \cup\left\{y_{1}\right\}\right|} \rightarrow \mathbb{B}$ and $g_{2}: \mathbb{B}^{\left|X \cup\left\{y_{2}\right\}\right|} \rightarrow \mathbb{B}$. The resulting decomposition is illustrated in Figure 4.12.

We present a proof of Theorem 4 which is not included in Paper D.

Proof. Let $M=\left\{v_{g_{1}}, \ldots, v_{g_{k}}\right\}$ be the common multiple-vertex dominator. Let $G$ be the set of all nodes from which $M$ is reachable (the gray areas in Figure 4.11), $G=\bigcup_{i=1}^{k} I\left(v_{g_{i}}\right)$, and let $H$ denote all the nodes in the circuit graph $C$ that do not belong to $G$, i.e. $H=V-G$ (the white area on Figure 4.11). Transform the graph $C$ following the next three steps:


Figure 4.12: Non-disjoint support decomposition of the function represented in Figure 4.11

1. Pick an edge of the graph, $(v, u) \in E$, such that $u \in H, v \in G$, and $v \notin M$.
2. Make an isomorphic copy of the sub-graph induced by $I(v)$, and call $w$ the root of this copy.
3. Remove edge $(v, u)$ from the graph, and add an edge $(w, u)$

After these steps, the transformed graph still represents $f$, since isomorphic sub-graphs always represent the same Boolean function. Moreover, the subgraph created in step 2 does not contain any primary input vertices in $V_{X}$. If this was not the case, it would contradict the fact that $M$ is a common multiple-vertex dominator for $V_{X}$, since it would imply there is a path from a node in $V_{X}$ to the root which does not contain any vertex in $M$.

Lets repeat the steps 1-3 above until no more edges can be picked. In the end, we will have a circuit graph $C^{\prime}$ that still represents function $f$, but in which every path from a node $v$ in $G$ to the root contains a node in $M$. Lets call $v_{h}$ the root of $C^{\prime}$. The graph is now similar to the one shown in Figure 4.12. We can "split" the graph $C^{\prime}$ by creating $k$ new primary input vertices $g_{1}, g_{2}, \ldots, g_{k}$, and replacing every edge $\left(v_{g_{i}}, u\right), 1 \leq i \leq k$, with an
edge $\left(g_{i}, u\right)$. The resulting graph has $k+1$ root nodes $\left\{v_{h}, v_{g_{1}}, \ldots, v_{g_{k}}\right\}$, representing functions $\left\{h, g_{1}, \ldots, g_{k}\right\}$ in equation (4.7).

Theorem 4 allows us to reduce the problem of computing non-disjoint decompositions to the problem of computing multiple-vertex dominators. In the next section, we show that the problem of computing all multiple-vertex dominators of a fixed size can be solved in polynomial time.

## Computing Multiple-Vertex Dominators

It is possible to compute all single-vertex dominators for a directed graph in time less than quadratic in the number of vertices. For example, the well-known Lengauer-Tarjan algorithm [103] has the worst-case complexity $O(n \cdot \log n)$. However, algorithms for computing all multiple-vertex dominators for a directed graph have exponential worst case complexity [77]. A subset of immediate multiple-vertex dominators can be computed in $O\left(n^{2}\right)$ time [5], but immediate dominators are not particularly interesting from the decomposition point of view. Good decompositions require multiplevertex dominators of a small size $k$ which are common for large sets $V_{X}$. The following theorem shows that it is possible to compute multiple-vertex dominators of a fixed size in polynomial time.

Theorem 5. If there exists an $O(\tau(n))$ algorithm for computing all singlevertex dominators, then there exists an $O\left(n^{k-1} \tau(n)\right)$ algorithm for computing all multiple-vertex dominators of size $k$.

Proof. See Paper D, included in this thesis on page 113.
If the Lengauer-Tarjan algorithm [103] is used for computing singlevertex dominators, then the set of multiple-vertex dominators can be obtained in $O\left(n^{k} \log n\right)$ time. Clearly, the simple algorithm constructed in the proof will not be feasible for large circuit graphs if $k>2$. However, for small $k$, even this straightforward approach gives good results. Many practical applications of decomposition require only small values of $k$ (e.g. multi-level logic synthesis $[136,161]$, or FPGA technology mapping [132, 41]).

Our experiments support the claim that the problem of computing nondisjoint decompositions of Boolean functions can be solved efficiently using multiple-vertex dominators. They also show that the technique can decompose functions for which BDDs cannot be build, such as the 16 -bit multiplier

C6288 from the IWLS'02 benchmark set. The details of the experiments can also be found in Paper $D$, included in this thesis on page 113.

### 4.4 Efficient Circuit Re-Synthesis

Paper E, on page 123, presents a technique to transform the original circuit implementing $f(X, Y)$ into a circuit implementing the decomposed representation $h(g(X), Y)$. Previous algorithms [161, 99, 111] computed circuits for the decomposed representation from BDDs of $g$ and $h$, by applying various BDD-to-circuit transformation techniques. The algorithm presented in Paper $E$ uses BDDs only for an analysis of the decomposition. The actual synthesis of the circuits for $g$ and $h$ is done by restricting the original circuit with respect to a given assignment of input variables. This guarantees that the sizes of the circuits of $g$ and $h$ are strictly smaller than the size of the original circuit.

In the sequel, let $X$ be a bound set for $f$ and let $\mathcal{G}_{g}$ and $\mathcal{G}_{h}$ be BDDs representing the functions $g$ and $h$ in the decomposition $f(X, Y)=h(g(X), Y)$. These BDDs are computed by the slicing method introduced in Section 4.1.

## Constructing the circuit for $h$

Suppose $\hat{x}$ is an assignment of variables of $X$ leading to the 0 -terminal node in $\mathcal{G}_{g}$. Then $g(\hat{x})=0$, and thus $f(\hat{x}, Y)=h(g(\hat{x}), Y)=h(0, Y)$. Therefore, a circuit implementing the co-factor $h_{0}=h(0, Y)$ can be obtained from the circuit implementing $f$ by applying the assignment $\hat{x}$ to the inputs $X$ and propagating the constants through the circuit using the usual reduction rules:

- If an OR (AND) gate has one of its inputs assigned to $1(0)$, it is replaced by constant 1 (0);
- If an OR (AND) gate has one of its inputs assigned to 0 (1), this input is removed.

Similarly, the circuits implementing co-factors $h_{i}(Y), i \in\{1,2, \ldots, k-1\}$, can be obtained by propagating an assignment of variables of $X$ leading to $i$-terminal node of $\mathcal{G}_{g}$. Recall that $g$ is a function of type $g:\{0,1\}^{|X|} \rightarrow$ $\{0,1, \ldots, k-1\}$, so $\mathcal{G}_{g}$ is a multi-terminal BDD with $k$ terminal nodes.

In general, different assignments $\hat{x}$ result in different circuits for $h_{i}(Y)$. To maximize the sharing of common logic of the $i$ circuits implementing co-factors $h_{i}(Y), i \in\{0,1, \ldots, k-1\}, i$ assignments $\hat{x}_{i}$ are chosen so that they differ in the fewest number of bit positions.

The decomposition $h(g(X), Y)$ is obtained by combining the co-factors in a Shannon expansion as follows:

$$
\begin{equation*}
h(g(X), Y)=\sum_{i=0}^{k-1} g_{1}^{i_{1}}(X) g_{2}^{i_{2}}(X) \ldots g_{r}^{i_{r}}(X) h_{i}(Y) \tag{4.8}
\end{equation*}
$$

where $\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ is the binary expansion of $i, r=\left\lceil\log _{2} k\right\rceil$, and the term $g_{j}^{i_{j}}$ is defined by

$$
g_{j}^{i_{j}}= \begin{cases}g_{j} & \text { if } i_{j}=1 \\ \bar{g}_{j} & \text { otherwise }\end{cases}
$$

for $j \in\{1,2, \ldots, r\}$.
The circuit implementing expression (4.8) is constructed by feeding the co-factors $h_{i}(Y)$ into a multiplexer with $k$ control inputs $g_{1}(X), g_{2}(X), \ldots, g_{r}(X)$.

As an example, consider the BDD shown in Figure 4.13. This BDD represents the function

$$
f=\left(x_{0}^{\prime}+x_{1}^{\prime}\right)\left(x_{2}^{\prime} x_{3}^{\prime}\right)+x_{2}\left(x_{3}\left(x_{0}^{\prime} \oplus x_{1}\right)+x_{4}^{\prime}\right)+x_{0} x_{1} x_{4}^{\prime} .
$$

The cut line shows that $\left\{x_{0}, x_{1}, x_{2}\right\}$ is a bound set for $f$. Let's see how to structurally decompose function $f$ with the information provided by its BDD representation. We have to find assignments of $\left\{x_{0}, x_{1}, x_{2}\right\}$ such that the path represented by each of the assignments reaches each of the subfunctions $\left\{h_{0}, h_{1}, h_{2}\right\}$. In this case, when $x_{0}=1, x_{1}=1$, and $x_{2}=1$ we reach sub-function $h_{1}$. This means that by making such assignment and propagating the constants, we will obtain function $h_{1}$ :

$$
\begin{aligned}
h_{1} & =f\left[x_{0} \leftarrow 1, x_{1} \leftarrow 1, x_{2} \leftarrow 1\right] \\
& =\left(1^{\prime}+1^{\prime}\right)\left(1^{\prime} x_{3}^{\prime}\right)+1\left(x_{3}\left(1^{\prime} \oplus 1\right)+x_{4}^{\prime}\right)+11 x_{4}^{\prime} \\
& =x_{3}+x_{4}^{\prime} .
\end{aligned}
$$

Similarly, when $x_{0}=1, x_{1}=1$, and $x_{2}=0$ we reach sub-function $h_{0}$ :

$$
\begin{aligned}
h_{0} & =f\left[x_{0} \leftarrow 1, x_{1} \leftarrow 1, x_{2} \leftarrow 0\right] \\
& =\left(1^{\prime}+1^{\prime}\right)\left(0^{\prime} x_{3}^{\prime}\right)+0\left(x_{3}\left(1^{\prime} \oplus 1\right)+x_{4}^{\prime}\right)+11 x_{4}^{\prime} \\
& =x_{4}^{\prime} .
\end{aligned}
$$



Figure 4.13: Binary decision diagrams representing the function $f=\left(x_{0}^{\prime}+\right.$ $\left.x_{1}^{\prime}\right)\left(x_{2}^{\prime} x_{3}^{\prime}\right)+x_{2}\left(x_{3}\left(x_{0}^{\prime} \oplus x_{1}\right)+x_{4}^{\prime}\right)+x_{0} x_{1} x_{4}^{\prime}$ and an example decomposition. The bound set is $\left\{x_{1}, x_{2}, x_{3}\right\}$, and the free set $\left\{x_{3}, x_{4}\right\}$.

When $x_{0}=1, x_{1}=0$, and $x_{2}=0$ we reach sub-function $h_{2}$ :

$$
\begin{aligned}
h_{2} & =f\left[x_{0} \leftarrow 1, x_{1} \leftarrow 0, x_{2} \leftarrow 0\right] \\
& =\left(1^{\prime}+0^{\prime}\right)\left(0^{\prime} x_{3}^{\prime}\right)+0\left(x_{3}\left(1^{\prime} \oplus 0\right)+x_{4}^{\prime}\right)+10 x_{4}^{\prime} \\
& =x_{3}^{\prime} .
\end{aligned}
$$

Finally, we construct $h$. Thus,

$$
\begin{aligned}
h\left(g_{0}, g_{1}, x_{3}, x_{4}\right) & =g_{0}^{\prime} g_{1}^{\prime} h_{0}+g_{0}^{\prime} g_{1} h_{1}+g_{0} g_{1}^{\prime} h_{2}+g_{0} g_{1} h_{2} \\
& =g_{0}^{\prime}\left(g_{1}^{\prime} x_{4}^{\prime}+g_{1}\left(x_{3}+x_{4}^{\prime}\right)\right)+g_{0} x_{3}^{\prime} \\
& =g_{0}^{\prime}\left(g_{1} x_{3}+x_{4}^{\prime}\right)+g_{0} x_{3}^{\prime} .
\end{aligned}
$$

In the next section, we will consider the problem of constructing the circuits for the functions $g_{1}(X), g_{2}(X), \ldots, g_{r}(X)$ encoding the $k$-valued function $g(X)$.

## Constructing the circuit for $g$

Suppose that $\hat{y}$ is an assignment of variables of $Y$ such that $h_{i}(\hat{y}) \neq h_{j}(\hat{y})$ for some $i, j \in\{0,1, \ldots, k-1\}, i \neq j$. Then $f(X, \hat{y})=h(g(X), \hat{y})$ where the co-factor $h(g(X), \hat{y})$ is neither constant 0 , nor constant 1, i.e. it depends on $g(X)$.

Since $h$ is a function of type $\{0,1, \ldots, k-1\} \times\{0,1\}^{|Y|} \rightarrow\{0,1\}$, the cofactor $h(g(X), \hat{y})$ is a function of type $\{0,1, \ldots, k-1\} \rightarrow\{0,1\}$. Note that, for $k=2, h(g(X), \hat{y})$ is either an identity, or a complement. Since, for a given bound set $X$, the function $g(X)$ is unique up to complementation [7], both $g(X)$ and $\bar{g}(X)$ can be used for the decomposition. Thus, at this step, the problem of constructing the circuit for $g(X)$ is solved for $k=2$. For larger values of $k$, the following strategy is used.

The $k$-valued function $g(X)$ can be expressed as

$$
g(X)=\sum_{i=0}^{k-1} i \cdot g^{i}(X)
$$

where $g^{i}:\{0,1, \ldots, k-1\}^{|X|} \rightarrow\{0,1\}$ are multiple-valued literals defined as:

$$
g^{i}(X)= \begin{cases}1 & \text { if } g(X)=i \\ 0 & \text { otherwise }\end{cases}
$$

For a given encoding of the $k$ possible values of $g(X)$, each of the functions $g_{1}(X), g_{2}(X), \ldots, g_{r}(X), r=\left\lceil\log _{2} k\right\rceil$, encoding $g(X)$, can be represented as a sum of some literals $g^{i}(X)$ 's. For example, if $k=4$ and the encoding is $0=(00), 1=(01), 2=(10), 3=(11)$, then $g_{1}(X)=g^{2}(X)+g^{3}(X)$ and $g_{1}(X)=g^{1}(X)+g^{3}(X)$.

Consider a decomposition chart of $h(g(X), Y)$ with columns representing $k$ values of $g(X)$ and the rows representing all combinations of the variables of $Y$. Any non-constant row of $h(g(X), Y)$ represents a sum of some literals $g^{i}(X), i \in\{0,1, \ldots, k-1\}$.

In the best case, there exist rows in the decomposition chart corresponding directly to the encoded functions $g_{1}(X), g_{2}(X), \ldots, g_{r}(X)$. If $h(g(X), \hat{y})$ $=g_{j}(X)$ for some assignment $\hat{y}$ of the variables of $Y$, then the circuit implementing $g_{j}(X)$ can be obtained from the circuit implementing $f$ by applying the assignment $\hat{y}$ to the inputs $Y$ and propagating the constants.

In the worst case, the literals $g^{i}(X), i \in\{0,1, \ldots, k-1\}$, need to be computed by ANDing selected rows of $h(g(X), Y)$. Afterwards, the functions $g_{1}(X), g_{2}(X), \ldots, g_{r}(X)$ are obtained as a combination of $g^{i}(X)$.

Let us return to the example started on page 53. In order to obtain function $h$, according to the explanation above, we produce a table that shows the values taken by the sub-functions $h_{0}, h_{1}$, and $h_{2}$ for different values of the variables in the free set $\left\{x_{3}, x_{4}\right\}$.

| $\mathbf{x}_{\mathbf{3}}$ | $\mathbf{x}_{\mathbf{4}}$ | $\mathbf{0}$ | $\mathbf{1}$ | $\mathbf{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0}$ | $\mathbf{0}$ | 1 | 1 | 1 |
| $\mathbf{0}$ | $\mathbf{1}$ | 0 | 0 | 1 |
| $\mathbf{1}$ | $\mathbf{1}$ | 0 | 1 | 0 |
| $\mathbf{1}$ | $\mathbf{0}$ | 1 | 1 | 0 |$\leftarrow g_{0}$

The row marked $g_{0}$ allows us to discriminate the paths that go to $h_{0}$ or to $\left\{h_{1}, h_{2}\right\}$. Similarly, the row marked $g_{1}$ allows us to discriminate the paths that go to $h_{2}$ or to $\left\{h_{0}, h_{1}\right\}$. This is enough to discriminate the paths going to each of the three $h_{i}$ functions: when $g_{0}=1$ we select $h_{0}$, when $g_{0}=0$ and $g_{1}=0$ we select $h_{1}$, when $g_{0}=0$ and $g_{1}=1$ we select $h_{2}$ (see the paths marked with thick lines in fig. 4.13(b)). In order to obtain the function $g_{0}$, we make $x_{3}=0, x_{4}=1$ and propagate the constants (Fig. 4.14(a))


Figure 4.14: Binary encoding of function $g$.

$$
\begin{aligned}
g_{0} & =f\left[x_{3} \leftarrow 0, x_{4} \leftarrow 1\right] \\
& =\left(x_{0}^{\prime}+x_{1}^{\prime}\right)\left(x_{2}^{\prime} 0^{\prime}\right)+x_{2}\left(0\left(x_{0}^{\prime} \oplus x_{1}\right)+1^{\prime}\right)+x_{0} x_{1} 1^{\prime} \\
& =\left(x_{0}^{\prime}+x_{1}^{\prime}\right) x_{2}^{\prime} .
\end{aligned}
$$

In a similar way, we obtain $g_{1}$ by making $x_{3}=1, x_{4}=1$ and by propagating the constants (Fig. 4.14(b))

$$
\begin{aligned}
g_{1} & =f\left[x_{3} \leftarrow 1, x_{4} \leftarrow 1\right] \\
& =\left(x_{0}^{\prime}+x_{1}^{\prime}\right)\left(x_{2}^{\prime} 1^{\prime}\right)+x_{2}\left(1\left(x_{0}^{\prime} \oplus x_{1}\right)+1^{\prime}\right)+x_{0} x_{1} 1^{\prime} \\
& =\left(x_{0}^{\prime} \oplus x_{1}\right) x_{2} .
\end{aligned}
$$

To summarize, the re-synthesis technique described in this section works by structurally partitioning the original circuit representation according to the information provided by the partitioned BDD blocks. After all the blocks have been recovered, the BDDs are not needed and can be discarded. The resulting circuit is proportional to the original circuit representation, and not to the intermediate BDD representation. This is an advantage because BDDs can grow exponentially in some cases, and therefore decomposition algorithms which synthesize the circuit directly from BDDs may cause an exponential increase in the circuit's size. To cope with this space explosion,
each block of the partitioned circuit has to be re-synthesized before further processing. The extra re-synthesis, on the other hand, may impose a prohibitive time/space penalty on the design flow. The presented approach is free from these problems.

### 4.5 On the Relation of Bound Sets and Best Orderings

The result we present in Paper $F$, on page 131, is of theoretical interest, and answers a long standing question regarding the relation between the bound sets of a Boolean function and the best variable orderings for its corresponding BDD representation.

BDDs have proved to be an efficient data structures for representation and manipulation of Boolean functions for logic synthesis, testing and verification. Although a function may require, in the worst case, a BBD of size exponential in the number of variables, many practical functions have a representation which is linear in the number of variables [30].

As we mentioned in Section 2.3, a major concern with BDDs is that the size of the graph varies for different variable orderings and, for some functions, it is highly sensitive to the ordering. For example, BDDs representing adders have exponential number of nodes in the worst case and linear number of nodes in the best case. Hence, care must be taken to select a suitable ordering for the variables, minimizing the size of the graph.

The problem of computing a best variable ordering is known to be co-NP-complete [72], and therefore heuristic algorithms are used in practice. Many ordering heuristics analyze the structure of the logic circuit, implementing the function under consideration, and use its underlying topology to determine a best ordering [30, 110]. However, if there is no circuits to refer to, finding a good order is more difficult. It happens, for example, when computing the set of reachable states of a finite state machine from an initial state. Many intermediate BDDs are generated and, if no suitable ordering is found, their size may grow too large and exceed the peak memory limit.

If there is no circuit to refer to, then some properties of the function must be used to guide the ordering of the variables. Several different strategies have been investigated in this respect. In [88], it has been observed that symmetric variables tend to be adjacent in the best orderings. A number of heuristics for finding best orderings utilizing this property have been developed, including [122] and [125]. However, a counterexample has been shown in [125] of a function for which no order with the symmetric variables adjacent is best.

In [117], it has been shown that minimizing width of a ROBDD often
leads to a reduction in the number of nodes. The width on a given level of a ROBDD is defined as a number of distinct nodes in the lower block that are adjacent to the boundary between the two blocks. Minimal-width strategy has been used in the heuristic for finding a best variable ordering from [117]. However, in [64] a counterexample has been shown, giving a function for which no minimal-width ordering is best.

In [87], it was suggested to keep adjacent the variables from the bound sets of the function which are explicitly given by its composition tree. Recall from Section 3.1 that the composition tree of a Boolean function is a structure reflecting all its non-overlapping bound sets.

We call an ordering preserving all bound sets from a composition tree bound-set preserving.

Let $\langle X\rangle$ denote a set of variable orderings induced by all possible permutations over the set $X$. Then, the main result of [87] is given by the following theorem:

Theorem 6 ([87]). If $f: \mathbb{B}^{n} \rightarrow \mathbb{B}$ has a decomposition of type

$$
f(X)=g\left(h_{1}\left(Y_{1}\right), h_{2}\left(Y_{2}\right), \ldots, h_{k}\left(Y_{k}\right)\right)
$$

where $\left\{Y_{i}\right\}, 1 \leq i \leq k$, is a partition of $X=\left\{x_{1}, \ldots, x_{n}\right\}$, the functions $h_{i}$ are of type $h_{i}: \mathbb{B}^{\left|Y_{i}\right|} \rightarrow \mathbb{B}$, and function $g$ is of type $g: \mathbb{B}^{k} \rightarrow \mathbb{B}$, then there exists a variable ordering belonging to the set $\left\langle\left\langle Y_{1}\right\rangle,\left\langle Y_{2}\right\rangle, \ldots,\left\langle Y_{k}\right\rangle\right\rangle$ which is best.

Our Paper F presents a counter-example to Theorem 6. The counterexample is constructed by showing a function $f$ which has a decomposition of type

$$
f=g\left(h_{1}\left(Y_{1}\right), h_{2}\left(Y_{2}\right), h_{3}\left(Y_{3}\right), h_{4}\left(Y_{4}\right), x_{m}\right)
$$

where $\left\{Y_{1}, Y_{2}, Y_{3}, Y_{4}, x_{m}\right\}$ is a partition of $X$; and $g$ is a function

$$
g=h_{3}\left(h_{4}\left(h_{2}^{\prime}+x_{m}^{\prime}\right)+h_{1}^{\prime} x_{m}\right)+h_{3}^{\prime}\left(h_{4} x_{m}+h_{1}\left(h_{2} \oplus x_{m}\right)\right),
$$

where $h_{i}\left(Y_{i}\right)=\bigvee_{j \in Y_{i}} x_{j}, i \in\{1,2,4\}, h_{3}\left(Y_{3}\right)=\left(h_{31}\left(Y_{31}\right) \oplus x_{k}\right)^{\prime}, h_{31}\left(Y_{31}\right)=$ $\bigvee_{j \in Y_{31}} x_{j}, Y_{31}=Y_{3}-\left\{x_{k}\right\}$, and " $\oplus$ " stands for XOR. We also require that the BDDs for $h_{1}, h_{2}$, and $h_{4}$ are much larger than the BDD for $h_{3}$,

$$
\left|\mathcal{G}_{h_{1}}\right|=\left|\mathcal{G}_{h_{2}}\right|=\left|\mathcal{G}_{h_{4}}\right| \gg\left|\mathcal{G}_{h_{3}}\right| .
$$



Figure 4.15: The structure of $\mathcal{G}_{f}$ for any of the best variable orderings.

Under these conditions, the set of all bound-set-preserving orderings of the $\mathrm{BDD} \mathcal{G}_{f}$ is given by

$$
\left\langle\left\langle Y_{1}\right\rangle,\left\langle Y_{2}\right\rangle,\left\langle\left\langle Y_{31}\right\rangle, x_{k}\right\rangle,\left\langle Y_{4}\right\rangle, x_{m}\right\rangle .
$$

We show, however, that the set of best variable orderings for this function is

$$
\left(\left\langle Y_{1}\right\rangle,\left\langle Y_{2}\right\rangle,\left\langle Y_{31}\right\rangle, x_{m}, x_{k},\left\langle Y_{4}\right\rangle\right)
$$

None of these orderings is bound-set-preserving, thus contradicting the claim in [87]. The structure of $\mathcal{G}_{f}$ for any of these best variable orderings
is illustrated in Figure 4.15. In this figure, the nodes shaped as a triangle represent sub-graphs that are omitted for clarity, and the circular nodes represent variables in the usual manner.

### 4.6 From Nature to Electronics: Kauffman Networks

Paper $G$, on page 139, is a look into the future. It presents an algorithm that improves the state-of-the-art in the analysis of Random Boolean Networks ( $R B N \mathrm{~s}$ ). RBNs are used in a number of applications in biology and physics, including cell differentiation, immune response, evolution, gene regulatory networks and neural networks.

The paper also presents an idea on how this genetic system could be used as a new and general model of computation. The compositional properties of this model, that we have just started to uncover, will certainly challenge our knowledge of functional decomposition.

## Motivation

The exponential improvement in speed and integration of silicon transistor technology is expected to slow down as devices approach nanometer dimensions [116]. The search for functional nanometer-scale structures led to the exploration of alternative computation schemes. A number of devices based on gating the flow of electrons have been proposed, including quantum dots [76], organic molecules [152], carbon nanotubes [156], nanowires [84], and the motion of single atoms or molecules [68]. Other computation schemes, operating on different principles, include electrons confined in quantum dot cellular automatons [104, 6], magnetic dot cellular automatons [46], and solutions of interacting DNA molecules [105, 31]. Computation can also be performed by purely mechanical means [58, 80], as in the calculating engine of Babbage [148].

We consider a possibility of a computation scheme based on random Boolean networks (RBNs). An RBN is a synchronous Boolean automaton with $n$ vertices. Each vertex has $k$ incoming edges, selected at random, and an associated Boolean function. Functions are selected so that they evaluate to the values 0 and 1 with given probabilities $p$ and $1-p$, respectively.

Our interest in RBNs is due to their attractive fault-tolerant features. The parameters of an RBN can be tuned so that the network exhibits selforganized critical behavior ensuring both stability and evolutionary improvements. On one hand, different kind of faults, e.g. a change in the state of a particular vertex, or connection, typically cause no variations in network's
dynamics. On the other hand, if a sufficient number of mutations is allowed, a network can adopt to the changing environment by re-configuring its structure.

## Background on RBN

RBNs were introduced by Kauffman in 1969 in the context of gene expression and fitness landscapes [92]. Later, they were applied to the problems of cell differentiation [83], immune response [94], evolution [28], and neural networks $[8,4]$. They have attracted the interest of physicists due to their analogy with the disordered systems studied in statistical mechanics, such as the mean field spin glass $[54,52,53]$.

The parameters $k$ and $p$ determine the dynamics of an RBN. If a vertex controls many other vertices, and the number of controlled vertices grows in time, the RBN is said to be in a chaotic phase [109]. Typically such a behavior occurs for large values of $k \sim n$. The next states of the RBN are random with respect to the previous ones. The dynamics of the network is very sensitive to changes in the state of a particular vertex, associated Boolean function, or network connections.

If a vertex controls only a small number of other vertices and their number remains constant in time, the RBN is said to be in a frozen phase [70]. Usually, independently on the initial state, after a few steps, the network reaches a stable state. This behavior usually occurs for small values of $k$, such as $k=0$ or 1 .

There is a critical line between the frozen and the chaotic phases, when the number of vertices controlled by a vertex grows in time, but only up to a certain limit [10]. Statistical features of RBNs on the critical line are shown to match the characteristics of real cells and organisms [92, 93]. The minimal disturbances create typically only slight variations in the network's dynamics. Only some rare perturbations evoke radical changes.

For a given probability $p$, there is a critical number of inputs $k_{c}$ below which the network is in the frozen phase and above which the network is in the chaotic phase [54]:

$$
\begin{equation*}
k_{c}=\frac{1}{2 p(1-p)} . \tag{4.9}
\end{equation*}
$$



Figure 4.16: Solid and dotted arrows show solved and open problems, respectively.

## Contribution and Future Work

Paper $G$ presents an efficient algorithmic framework for the simulation of large RBNs. The presented algorithm for computing attractors uses BDDs to represent the state space of the network implicitly. This allows us to obtain exact results for much larger networks than previously possible. Previous algorithms could only handle networks with less than 32 non-redundant vertices $[11,157,19,143]$. For larger networks, the median instead of the exact values on the number of attractors was computed by simulation [143].

The ideas we describe are preliminary, and more research is needed to justify them. Figure 4.16 summarizes what remains to be done. Solid arrows show the problems which have been solved (partially or completely). These are the problem of removing redundant vertices from an RBN and the problems related to the analysis of the state space of an RBN, e.g. computing attractors.

Dotted arrows show the problems which have not been solved yet. Synthesis is the problem of constructing a reduced RBN which realizes the functionality specified by a given state transition graph. Redundancy addition is the problem of adding redundancy to a reduced RBN so that resulting RBN exhibits critical line behavior. Modeling and implementation are the problems of deriving an RBN model of a given Gene Regulatory Network $(G R N)$, and designing a GRN corresponding to the behavior of a given RBN, respectively. The level of understanding of the organizing principles of gene regulation and signal transduction networks in cells needs to be advanced before the modeling and implementation problems can be addressed. Then, a functional nano-scale device operating on the principles of gene interactions may become a reality.

### 4.7 Conclusion and Open Problems

Each of the seven papers included in this dissertation indicates open problems and paths to follow that are still relevant after their publication.

In general, and regarding the decomposition algorithms presented herein, there are two major lines for future work. One of them involves integrating these algorithms into existing logic synthesis tools in order to explore the best way to use these techniques in an industrial setting. It is important to ascertain the influence of early stages in the design flow over the performance and applicability of our techniques, and also to find the ways to maximize the optimization that following stages may achieve as a result of our manipulation of the circuit. The other line is, of course, improving the algorithms themselves. There is still plenty of room for optimization we have not yet implemented and for improvements on theoretical grounds we have not yet discovered. In particular, ongoing work includes developing a more efficient algorithm for computing multiple-vertex dominators.

Regarding the Random Boolean Networks presented in our last paper, they offer a wealth of new lines of work. Compositionality is not as straightforward to define in this context as it is in the case of CMOS based electronics. Due to the particular way inputs and outputs are represented within this model (inputs are bits, outputs are "fixed points" or sub-graphs) there is no unique way in which one can define compositionality. It is far from clear which of these alternative views will yield the best practical results. In turn, each of these possible definitions of compositionality will lead to decomposition techniques quite diverse from the ones that have proved so successful in CMOS technology. There is indeed an exciting research future in this area.

## Chapter 5

## Complete List of Publications

The following is the complete list of publications produced during my PhD studies. A star $\star$ indicates the publications included in this thesis. I also give the details of my specific contributions to each of the publications marked.

## 2005

* Kauffman Networks: Analysis and Applications, E. Dubrova, M. Teslenko, and A. Martinelli. In Proceedings of the IEEE International Conference on Computer-Aided Design (ICCAD 2005), November 610, 2005, San Jose, CA, USA, pp. 479-484.
I came out with the idea of applying Kauffman networks to logic synthesis. I also contributed my expertise on $B D D$ s to the implementation of the algorithm for computing attractors.

An Efficient Structural Technique for Boolean Decomposition, A. Martinelli and E. Dubrova. In Proceedings of SPIE - VLSI Circuits and Systems II, Vol. 5837, June 2005, Sevilla, Spain, pp. 913-918.

Achieving Fault Tolerance by Cost Bound Decomposition, A. Martinelli and E. Dubrova. In Proceedings of the Swedish System-on-Chip Conference (SSoCC'05), April 18-19, 2005, Tammsvik, Sweden.
$\star$ Bound Set Selection and Circuit Re-Synthesis for Area/delay Driven Decomposition, A. Martinelli and E. Dubrova. In Proceed-
ings of the Design and Test in Europe Conference 2005 (DATE'05), interactive presentation, March 7-11, 2005, Munich, Germany, pp. 430-431.

The idea as well as the implementation of the algorithm in this paper are mine.

* Bound-set Preserving ROBDD Variable Orderings May Not Be Optimum, M. Teslenko, A. Martinelli, and E. Dubrova. In IEEE Transactions on Computers, Vol. 54, number 2, pp. 236-238, February 2005.

The problem addressed by the paper was investigated by the three authors over a long period of time (about four years). The counterexample itself is due to the first author, M. Teslenko.

## 2004

* On Relation Between Non-Disjoint Decomposition and MultipleVertex Dominators, E. Dubrova, M. Teslenko, and A. Martinelli. In Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 2004), May 23-26, 2004, Vancouver, Canada, pp. 493496.

The idea of this paper was originated by the first author, E. Dubrova. Together with the second author, M. Teslenko, I contributed to the implementation of the algorithm and conducted experiments to evaluate it.

* Disjoint-Support Boolean Decomposition Combining Functional and Structural Methods, A. Martinelli, R. Krenz, and E. Dubrova. In Proceedings of the IEEE Asia and South Pacific Design Automation Conference 2004 (ASP-DAC 2004), January 27-30, 2004, Yokohama, Japan, pp. 183-189.

I proposed the idea of using the combined approach, and produced the tool which integrated the functional and structural algorithms. I also implemented the functional algorithm, while the structural one was implemented by R. Krenz.

## 2003

Roth-Karp Decomposition Combining Functional and Structural Techniques, R. Krenz, A. Martinelli, and E. Dubrova. In Proceedings of International Workshop on Logic Synthesis 2003 (IWLS'03), pp. 18-23, Laguna Beach, CA, May 2003.
$\star$ A BDD-Based Fast Heuristic Algorithm for Disjoint Decomposition, T. Bengtsson, A. Martinelli, and E. Dubrova. In Proceedings of the IEEE Asia and South Pacific Design Automation Conference 2003, (ASP-DAC 2003), Kitakyushu, Japan, January 2003, pp. 191196.

My contributions to this paper are implementing the presented heuristic, together with Tomas Bengtsson, and providing my own implementation of the exact decomposition algorithm which is used in the experimental results section to evaluate the heuristic.

## 2002

* Roth-Karp Decomposition of Large Boolean Functions with Application to Logic Design, A. Martinelli, T. Bengtsson, E. Dubrova, and A. J. Sullivan. In Proceedings of NORCHIP 2002 (NORCHIP'02), Copenhagen, Denmark, November 2002, pp. 183-189.
This paper is based on my generalization of the approach from the paper in IWLS'02 cited below. I also implemented most of the code.

A Fast Heuristic Algorithm for Disjunctive Decomposition of Boolean Functions, T. Bengtsson, A. Martinelli, and E. Dubrova. In Proceedings of International Workshop on Logic Synthesis 2002, (IWLS'02), pp. 51-57, New Orleans, Louisiana, USA, June 2002.

## Papers

## Paper A

## A BDD-Based Fast Heuristic Algorithm for Disjoint Decomposition

Tomas Bengtsson, Andrés Martinelli, Elena Dubrova. Published in the "Proceedings of the IEEE Asia and South Pacific Design Automation Conference 2003" (ASP-DAC 2003), January, 2003, Kitakyushu, Japan, pp. 191-196.

# A BDD-Based Fast Heuristic Algorithm for Disjoint Decomposition 

Tomas Bengtsson*<br>Andrés Martinelli ${ }^{\dagger}$<br>Elena Dubrova ${ }^{\dagger}$


#### Abstract

This paper presents a heuristic algorithm for disjoint decomposition of a Boolean function based on its ROBDD representation. Two distinct features make the algorithm feasible for large functions. First, for an n-variable function, it checks only $O\left(n^{2}\right)$ candidates for decomposition out of $O\left(2^{n}\right)$ possible ones. A special strategy for selecting candidates makes it likely that all other decompositions are encoded in the selected ones. Second, the decompositions for the approved candidates are computed using a novel IntervalCut algorithm. This algorithm does not require reordering of $R O B D D$. The combination of both techniques allows us to decompose the functions of size beyond that possible with the exact algorithms. The experimental results on 582 benchmark functions show that the presented heuristic finds $95 \%$ of all decompositions on average. For 526 of those functions, it finds $100 \%$ of the decompositions.


## A. 1 Introduction

The disjoint decomposition of a Boolean function is a representation of type $f(X)=h(g(Y), Z)$ with $Y$ and $Z$ being sets of variables partitioning the set $X$. Disjoint decomposition has many applications in computer science and discrete mathematics, including logic synthesis (decomposition of Boolean functions), reliability theory (decomposition of coherent systems [22]), game

[^6]theory (decomposition of simple $n$-persons games [139]) and combinatorial optimization problems over graphs and networks (see [121] for an overview).

This wide range of applications makes it important to have efficient algorithms for finding all, or at least some, decompositions for a given structure. Fast decomposition algorithms are known for binary relations and graphs $[23,47,78]$. For Boolean functions, however, the existing methods either involve the solution of an NP-complete problem (as in [20]) or have exponential running time [55, 141, 142, 150]. More recent ROBDD-based decomposition algorithms, including [15, 118, 113], show much better average-time performance.

This paper presents a heuristic algorithm targeting to find all disjoint decompositions of an $n$-variable Boolean function represented by a ROBDD. The heuristic is based on two properties: (1) all decompositions of a Boolean function (which can be $O\left(2^{n}\right)$ ) can be uniquely described by a certain subset of decompositions $A$ (which is only $O(n)$ ); (2) there exist a best variable ordering for a ROBDD in which the variables $Y$ from any decomposition $f(X)=h(g(Y), Z)$ belonging to $A$ are adjacent.

If we had such a best ordering, we could examine all its linear intervals to find which $Y$ results in a decomposition $f(X)=h(g(Y), Z)$. However, computing best orderings is infeasible for large functions. The algorithm presented in this paper is heuristic because it starts from a "good" ordering which is not necessarily keeping the variables $Y$ adjacent. The experimental results show that if sifting ordering algorithm [131] is used to get a "good" initial order, then our heuristic finds $95 \%$ of all decompositions on average. The presented heuristic algorithm is also able to decompose functions which are too large for the exact algorithms.

## A. 2 Previous work

The first major investigation on the subject was carried out by Ashenhurst [7]. He studied simple disjoint decomposition $f(X)=h(g(Y), Z)$ for Boolean functions $f, g, h: B^{n} \rightarrow B$, where $B=\{0,1\}$. Ashenhurst's fundamental contribution is a theorem which states that any Boolean function has a unique disjoint tree-like decomposition such that all possible simple disjoint decompositions of $f$ are exhibited.

Curtis [48] and Roth and Karp [130] extended Ashenhurst theory to the decomposition of type $f(X)=h(g(Y), Z)$ with $g, H$ being multiple-
valued functions of type $g B^{|Y|} \rightarrow M$ and $h M \times B^{|Z|} \rightarrow B$, where $M=$ $\{0,1, \ldots, m-1\}$. The function $g$ can be encoded by $k=\left\lceil\log _{2} m\right\rceil$ Boolean functions $g_{1}, g_{2}, \ldots, g_{k}$, giving a decomposition of the form

$$
f(X)=h\left(g_{1}(Y), \ldots, g_{k}(Y), Z\right),
$$

often referred to as Roth-Karp decomposition. Unfortunately Ashenhurst's main theorem does not extend directly to multiple-valued functions (for a counterexample see chapter 4 of [60]). A consequence of this is that there is no unique disjoint tree-like Roth-Karp decomposition. Von Stengel [154] has defined a class of multiple-valued functions for which Ashenhurst's main theorem holds.

Early algorithms for decomposition used decomposition charts [7], [48]. The decomposition chart for $f(Y, Z)$ is a two-dimensional table where the columns represent all combinations of the variables from the set $Y$ and the rows represent all combinations of the variables from the set $Z$. The set $Y$ is a bound set if and only if the chart has column multiplicity at most two, i.e. there are at most two distinct columns in the chart [7].

In a short time, decomposition charts were abandoned in favor of cube representation [90]. The task of computing column multiplicity on charts was replaced by the task of computing compatible classes for a set of cubes. Two assignments $x_{1}, x_{2} \in B^{|Y|}$ are said to be compatible with respect to the reference function $f(Y, Z)$ if, for all $y \in B^{|Z|}$ such that $f\left(x_{1}, y\right)$ and $f\left(x_{2}, y\right)$ are defined, $f\left(x_{1}, y\right)=f\left(x_{2}, y\right)[90]$. The set $Y$ is a bound set if and only if $B^{|Y|}$ can be partitioned into $k \leq 2$ mutually compatible classes [90]. If $f(X)$ is completely specified, then compatibility is an equivalence relation and $k$ is the number of equivalence classes. It is easy to see the one-to-one mapping between a column in a decomposition chart and a compatible class.

Due to the exponential size of decomposition charts and cube representations, early decomposition algorithms were rarely applied to large practical circuits. Instead, algebraic methods were used [33]. ROBDDs [36] made possible developing new algorithms for decomposition, feasible for much larger functions than previously possible.

In a ROBDD, the column multiplicity can be easily computed by moving the variables $Y$ to the upper part of the graph and checking the number of children below the boundary line, usually called cut line. The decomposition $f(X)=h(g(Y), Z)$ exists if and only if there are only two children below the cut line [132].

This approach has been adopted by a number of BDD-based decomposition algorithms [132, 99, 41, 135]. Stanion and Sechen [146] used cut to find quasi-algebraic decomposition of the form $f(X)=g(Y) \odot h(Z)$, where $" \odot$ " is any binary Boolean operation and $|Y \cup Z|=k$ for some $k \geq 0$. This type decomposition is often referred to as bi-decomposition [159, 119].

BDD-based decomposition algorithms following cut-strategy proved to be orders of magnitude faster than those based on decomposition charts and cube representations. However, they require reordering of variables of BDD to move the variables on the top or to check bi-decompositions for partitionings which are not consistent with the variable order. As an alternative, a number of methods use the fact that BDDs themselves are a decomposed representation of the function and exploit the structure of BDDs, rather than cut, to find disjoint decompositions. Karplus [91] extended the classical concept of dominator on graphs [103] to 0,1-dominators on BDDs. A node $v$ is a 1 -dominator ( 0 -dominator) if every path from the root to one (zero) terminal node contains $v$. If $v$ is a 1 -dominator, then the function represented by the BDD possesses a conjunctive (AND) decomposition. If $v$ is a 0 -dominator, then the function can be decomposed disjunctively (OR). This idea was extended by Yang et al [161] to XOR-type decompositions and to more general type of dominators. Minato and De Micheli [118] presented an algorithm which computes disjoint decompositions by generating irreducible sum-of-product for the function from its BDD and applying factorization. The algorithm of Bertacco and Damiani [15] makes a single traversal of the BDD to identify the decomposition of the co-factors and then combine them to obtain the decomposition for the entire function. The algorithm is impressively fast; however, as Sasao has observed in [133], it fails to compute some of the disjoint decompositions. This problem was corrected by Matsunaga [113], who added the missing cases in [15] allowing to treat the OR/XOR functions correctly. The algorithm [113] appears to be the fastest of existing exact algorithms for finding all disjoint decompositions.

## A. 3 New heuristic algorithm

The new heuristic algorithm is based on the following two properties.
Proposition 1. All disjoint decompositions of an n-variable Boolean function can be uniquely described by a certain subset of disjoint decompositions $A$. The size of $A$ is $O(n)$.

Proposition 2. There exist a best variable ordering for a ROBDD for $f$ in which the variables $Y$ from any decomposition $f(X)=h(g(Y), Z)$ belonging to $A$ are adjacent.

Property 1 follows from the results of [154]. We describe these results briefly in Section A.3. Property 2 follows from the main theorem of [59].

The presented algorithm examines all linear intervals of variables from a given ordering of a ROBDD and, for each interval $Y$, checks whether it is a bound set. The procedure IntervalCut described in Section A.3, is used to perform the checking as well as to compute the functions $g$ and $h$ in the resulting decomposition $f(X)=h(g(Y), Z)$.

## Properties of the disjoint decomposition

This section describes the properties of the disjoint decomposition from [154], implying Property 1. The formulation of the definitions and theorems is adjusted to the notation of this paper.
Definition A.3.1: A bound set $Y$ of $f(X), Y \subset X$, is strong if any other bound set of $f(X)$ is either a subset of $Y$, a super-set of $Y$, or disjoint to $Y$.

The partial order induced by set theoretical inclusion between pairs of strong bound sets of $f$ defines a tree.
Definition A.3.2: The decomposition tree $T(f)$ of $f(X)$ is a tree whose nodes represent all strong bound sets of $f(X)$, related by inclusion. Any node has two labels:
(a) a type, which is either "prime" or "full",
(b) an associated function.

The following Theorem shows how decompositions of a function can be derived from its decomposition tree and characterizes the functions associated with the nodes. It also states that the decomposition tree is unique for a given function (up to isotopy/isomorphy). Remind that two Boolean functions are isotopic if they are identical up to complementation of variables or function values. Two binary operations $\circ$ and $\bullet$ are isomorphic if there is a bijection $\phi: B \rightarrow B$ such that $\phi(a \circ b)=\phi(a) \bullet \phi(b)$.
Theorem 7. Let $T(f)$ be the decomposition tree of a Boolean function $f(X)$ with support set $X$. Let $Y_{1}, \ldots, Y_{k}$ be the children of the root $X$. Then $f(X)$ has a decomposition of type

$$
f(X)=h\left(g_{1}\left(Y_{1}\right), g_{2}\left(Y_{2}\right), \ldots, g_{k}\left(Y_{k}\right)\right)
$$



Figure A.1: Example of a decomposition tree.
for functions $g_{i}: B^{\left|Y_{i}\right|} \rightarrow B(1 \leq i \leq k)$ and $h: B^{k} \rightarrow B$ where
(a) $h$ is non-decomposable if $X$ is labeled "prime",
(b) $h$ is an associative and commutative Boolean operation if $X$ is labeled "full",
(c) $h$ is unique up to isotopy in (a) and up to isomorphy in (b).

An example of a decomposition tree is shown in Figure A.1. Abbreviations "P" and "F" stand for labels "prime", and "full", respectively. Letters $a, b, c, d, e, g, h$ denote the functions associated with the nodes, whereas and $\circ$ denote operations. In accordance with the tree, the complete disjoint decomposition of the function is

$$
f\left(x_{1}, \ldots, x_{6}\right)=\left(c\left(a\left(x_{1}\right), b\left(x_{2}\right)\right) \circ d\left(x_{3}\right) \circ e\left(x_{4}\right)\right) \bullet g\left(x_{5}\right) \bullet h\left(x_{6}\right)
$$

with • and $\circ$ being associative and commutative Boolean operations. $a, b$, $c, d, e, g, h$ are non-decomposable Boolean functions. In this case all those functions except $c$ are unary Boolean functions (identity or complement).

Theorem 7 shows that the decompositions associated with strong bound sets uniquely represent all disjoint decompositions of a function. These are the decompositions $A$ of Property 1. It was proved in [120] that the number of strong bound sets of an $n$-variable Boolean function is $O(n)$, while the number of all bound sets is $O\left(2^{n}\right)$.

## IntervalCut procedure for finding bound sets

Let $V$ be a set of nodes of a ROBDD $G$ of an $n$-variable function $f(X)$. Every non-terminal node $v \in V$ has an associated variable index, $\operatorname{index}(v) \in$ $\{1, \ldots, n\}$. The index of the root node is 1 . In order to have a unified notation in the proof of the main result, we assume that the terminal nodes also have an index, which is $n+1$.

Suppose that all nodes with index $\leq i$ are in the upper part of the graph and all nodes with index $>i$ are in the lower part of the graph, for some $i \in\{1, \ldots, n\}$. The boundary line between the upper and lower parts of the graph is called cut $(i)$. If the number of nodes with index $>i$ which are children of the nodes above the $\operatorname{cut}(i)$ is two, then the set of variables $Y=\left\{x_{1}, \ldots, x_{i}\right\}$ is a bound set [99].

One possibility to check whether a set of variables $Y$ is a bound set is to move the variables $Y$ to the top of the ROBDD and then check the number of children below $\operatorname{cut}(|Y|)$, as in [99, 41]. However, re-ordering is computationally expensive. Instead, we have developed a procedure, called Interval Cut which checks whether a given linear interval of variables of a ROBDD is a bound set without reordering. To describe the procedure, we first introduce some definitions.

Suppose the variables $Y$ lie between two cuts, $\operatorname{cut}(a)$ and $\operatorname{cut}(b)$, such that $a<b, a, b \in\{0, \ldots, n\}$. Let cut_set $(a)$ denote a set of nodes $v \in G$ with indexes $a<\operatorname{index}(v) \leq b$ which are children of the nodes above the $\operatorname{cut}(a)$ of $G$. Let $G_{v}$ stand for a ROBDD rooted at some $v \in \operatorname{cut} s e t(a)$. Then, cut_set $\left(b_{v}\right)$ is the set of nodes $u \in G_{v}$ with indexes $b<\operatorname{index}(u) \leq n+1$ which are children of the nodes of $G_{v}$ above the cut $(b)$. If $\mid \operatorname{cut}$ _set $\left(b_{v}\right) \mid=2$, then $g_{v}$ is a Boolean function represented by the sub-graph rooted at $v$ whose terminal nodes are obtained by replacing the two nodes of cut_set $\left(b_{v}\right)$. The resulting $g_{v}$ is unique up to complementation.

Using this notation, we can describe the pseudo code of the algorithm IntervalCut $(G, a, b)$ as shown in Figure A.2. Next, we prove that it computes the decompositions correctly.

Theorem 8. Algorithm IntervalCut $(G, a, b)$ computes a decomposition $f(X)=h(g(Y), Z)$ in $O\left(\left|c u t \_s e t(a)\right| \cdot \max \left(\left|g_{v}\right|\right)\right)$ time, $v \in$ cut_set $(a)$.

Proof: Let $Y$ be the variables between $\operatorname{cut}(a)$ and $\operatorname{cut}(b), Z_{1}$ be the variables above $\operatorname{cut}(a)$ and $Z_{2}$ be the variables below $\operatorname{cut}(b)$. We have $Z_{1} \cup$ $Z_{2}=Z$ and $Y \cup Z=X$.

```
IntervalCut \((G, a, b)\)
input: ROBDD \(G\) of \(f(X)\), two cuts \(\operatorname{cut}(a)\) and \(\operatorname{cut}(b), a<b, a, b \in\{0, \ldots, n\}\).
output: "not a bound set" if the set of variables \(Y\) between \(\operatorname{cut}(a)\) and \(\operatorname{cut}(b)\)
is not a bound set of \(f(X)\); functions \(g\) and \(h\) if \(Y\) is a bound set resulting in
\(f(X)=h(g(Y), Z)\).
for all \(v \in\) cut_set (a)
 if \(\left(\mid\right.\) cut_set \(\left.\left(b_{v}\right) \mid>2\right)\)
 return("not a bound set");
for all \(v_{1}, v_{2}, \ldots, v_{k} \in\) cut_set \((a)\)
 if \(\left(g_{v_{i}} \neq g_{v_{i+1}}\right) \quad /^{*}\) up to complementation */
 return("not a bound set");
\(h=\) substitute each sub-graph \(g_{v}, \forall v \in\) cut_set(a), by a node;
\(g=g_{v} ;\)
return(\(g, h\));
```

Figure A.2: Pseudo code of the IntervalCut procedure.

Let $k_{v}\left(Z_{1}\right)$ be a function which is a sum of all the paths leading to a node $v \in$ cut_set $(a)$. Then $f$ can be co-factored with respect to $k_{v}$ as

$$
\begin{equation*}
f(X)=\left.\sum_{\forall v \in c u t \_ \text {set }(a)} k_{v}\left(Z_{1}\right) \cdot f\right|_{k_{v}}\left(Y, Z_{2}\right) \tag{A.1}
\end{equation*}
$$

If $\mid$ cut_set $\left(b_{v}\right) \mid=2$, then $Y$ is a bound set for $\left.f\right|_{k_{v}}$ so it can be decomposed as

$$
\begin{equation*}
\left.f\right|_{k_{v}}\left(Y, Z_{2}\right)=h_{v}\left(g_{v}(Y), Z_{2}\right) \tag{A.2}
\end{equation*}
$$

for some $h_{v}, g_{v}$. Furthermore, if for all $v \in \operatorname{cut}$.set $(a)$ the functions $g_{v}$ are equal up to complementation, then we can denote $g_{v}$ by $g$ and write (A.2) as

$$
\begin{equation*}
\left.f\right|_{k_{v}}\left(Y, Z_{2}\right)=h_{v}\left(g(Y), Z_{2}\right) \tag{A.3}
\end{equation*}
$$

From (A.1) and (A.3) we can conclude that $f$ can be represented as

$$
f(X)=h(g(Y), Z)
$$

with $h=\sum_{\forall v \in c u t \_s e t(a)} k_{v} \cdot h_{v}$.
Let $\max \left(\left|g_{v}\right|\right)$ be the size of the largest sub-graph representing $g_{v}$, for some $v \in$ cut_set $(a)$. Since substitution of a ROBDD by a node is a constant-time operation, the complexity of the pseudo code in Figure A. 2 is $O\left(\left|c u t \_s e t(a)\right| \cdot \max \left(\left|g_{v}\right|\right)\right)$.

## A. 4 Experimental results

To make a thorough evaluation of the presented heuristic, we have implemented an exact decomposition algorithm ${ }^{1}$ from [67] and applied both, exact and heuristic versions, to $i w l s 93$ benchmark set. For all single outputs, for which the exact algorithm did not time out ${ }^{2}$, 582 in total, we have computed the total number of strong bound sets found by each algorithm. In the first set of experiments, we used sifting ordering algorithm [131] to get a good initial order for ROBDDs. The heuristic algorithm has succeeded to find $95 \%$ of all the decompositions on average. For 526 of those 582 single-output functions, it found $100 \%$ of the decompositions. In the second set of experiments, we switched the sifting off, and build ROBDDs using the breadth first traversal order from the benchmark's circuit description. For 191 functions out of 582 the result got worse (by $57 \%$ on average). Nevertheless, the heuristic still found all the decompositions for 365 functions.

We have also applied the presented heuristic to the benchmarks reported in [118], [15] and [113]. The results are summarized in Table A.1. Column 4 shows how many non-trivial strong bound sets are found for each benchmark by our algorithm. Every output is handled as a separate function. The number given in Column 4 is the total sum of bound sets for all the outputs. Columns 5-8 show runtime comparison. Our experiments were run on Sun Ultra 60 operating with two 360 MHz CPU and with 1024 MB RAM main storage. The algorithm [118] uses a SUN Ultra 30, [15] uses a PC equipped with 150 MHz Pentium and 96 MB RAM main storage and [113] uses a PC with Pentium-II 233Mhz processor.

[^7]Table A.1: Experimental results; "-" indicates that information for the benchmark is not provided; " $>$ " indicates that information is only provided for one of the outputs.

|  |  |  |  | CPU time (sec) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| name |  |  | in | out | bound <br> sets | presented <br> heuristic | exact <br> alg $[118]$ |
| alu2 | 10 | 6 | 3 | 0.0002 | - | 0.28 | exact |
| alg $[15]$ | exact <br> alg $[113]$ |  |  |  |  |  |  |
| alu4 | 14 | 8 | 2 | 0.0009 | - | 0.37 | 0.15 |
| apex1 | 45 | 45 | 83 | 0.008 | 59.0 | 1.01 | - |
| apex2 | 38 | 3 | 16 | 0.001 | 5.9 | 1.14 | - |
| apex3 | 54 | 50 | 23 | 0.008 | 44.3 | - | - |
| apex4 | 9 | 19 | 4 | 0.002 | - | 0.33 | - |
| apex5 | 114 | 88 | 196 | 0.032 | - | 2.34 | - |
| apex6 | 135 | 99 | 258 | 0.008 | 13.1 | 2.62 | 0.41 |
| apex7 | 49 | 37 | 96 | 0.006 | 1.7 | 1.03 | 0.37 |
| b9 | 41 | 21 | 49 | 0.001 | - | - | 0.02 |
| C432 | 36 | 7 | 10 | 0.002 | 415.4 | 1.23 | 0.28 |
| C499 | 41 | 32 | 68 | 5.2 | - | 83.47 | 8.80 |
| C880 | 60 | 26 | 45 | 0.046 | - | 2.71 | 0.92 |
| C1355 | 41 | 32 | 0 | 5.2 | - | 91.25 | 8.87 |
| C1908 | 33 | 25 | 15 | 0.23 | - | 7.58 | 1.42 |
| C3540 | 50 | 22 | 18 | 2.8 | - | 21.1 | 3.48 |
| cmb | 16 | 4 | 4 | 0.002 | - | 0.36 | - |
| CM42 | 4 | 10 | 10 | 0.0006 | - | 0.15 | - |
| CM85 | 11 | 3 | 15 | 0.0003 | - | 0.27 | - |
| CM150 | 21 | 1 | 1 | $<0.0001$ | - | 0.51 | - |
| comp | 32 | 3 | 47 | 0.002 | - | 0.71 | - |
| count | 35 | 16 | 47 | 0.007 | - | 0.73 | 0.01 |

continued on next page...

Table A. 1 - continued from previous page

|  |  |  |  | CPU time (sec) |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | bound |  |  |  |  |
| name | in | out | pets | presented <br> heuristic | $\left.\begin{array}{c}\text { exact } \\ \text { alg }\end{array} 118\right]$ | exact <br> alg $[15]$ | exact <br> alg $[113]$ |
| dalu | 75 | 16 | 42 | 0.015 | $>0.8$ | - | - |
| des | 256 | 245 | 688 | 0.041 | - | - | 0.36 |
| e64 | 65 | 65 | 63 | 0.51 | - | 1.31 | - |
| f51m | 8 | 8 | 6 | 0.0004 | - | 0.26 | - |
| frg2 | 143 | 139 | 532 | 0.032 | 19.2 | 2.86 | 0.15 |
| k2 | 45 | 45 | 85 | 0.008 | - | 1.04 | - |
| lal | 26 | 19 | 57 | 0.002 | - | 0.55 | - |
| misex2 | 25 | 18 | 29 | 0.003 | - | 0.57 | - |
| mux | 21 | 1 | 1 | 0.0001 | - | 0.48 | - |
| pair | 173 | 137 | 725 | 0.040 | - | 4.02 | 7.36 |
| PARITY | 16 | 1 | 1 | 0.001 | - | 0.38 | - |
| rot | 135 | 107 | 296 | 0.039 | - | 22.62 | - |
| seq | 41 | 35 | 135 | 0.009 | 67.8 | 1.10 | - |
| s298 | 17 | 20 | 15 | 0.0004 | - | 0.40 | - |
| s420 | 35 | 18 | 18 | 0.007 | - | 0.75 | - |
| s444 | 24 | 27 | 65 | 0.001 | - | 0.54 | - |
| s526 | 24 | 27 | 45 | 0.002 | - | 0.52 | - |
| s641 | 54 | 42 | 138 | 0.003 | - | 1.12 | - |
| s832 | 23 | 24 | 37 | 0.003 | - | 0.54 | - |
| s953 | 45 | 52 | 40 | 0.003 | - | 20.97 | - |
| s1196 | 32 | 32 | 33 | 0.002 | - | 0.71 | - |
| s1238 | 32 | 32 | 33 | 0.002 | - | 0.75 | - |
| s1423 | 91 | 79 | 38 | 0.066 | - | 12.48 | - |
| s1488 | 14 | 25 | 38 | 0.002 | - | 0.36 | - |
| s1494 | 14 | 25 | 38 | 0.002 | - | 0.34 | - |
| term1 | 34 | 10 | 65 | 0.002 | - | 0.75 | - |
| too_large | 38 | 3 | 17 | 0.001 | $>1.0$ | - | 0.09 |
| ttt2 | 24 | 21 | 44 | 0.002 | - | 0.55 | - |

continued on next page...

Table A. 1 - concluded from previous page

| name | in | out | bound sets | CPU time (sec) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | presented heuristic | $\begin{gathered} \text { exact } \\ \text { alg[118] } \end{gathered}$ | $\begin{gathered} \text { exact } \\ \text { alg [15] } \end{gathered}$ | $\begin{gathered} \text { exact } \\ \text { alg [113] } \end{gathered}$ |
| vda | 39 | 17 | 30 | 0.003 | >0.5 | 0.4 | - |
| x3 | 135 | 99 | 278 | 0.008 | - | 2.69 | - |
| x4 | 94 | 71 | 180 | 0.008 | - | 1.90 | - |

## A. 5 Conclusion

This paper presents a heuristic algorithm for finding disjoint decompositions of Boolean functions. Benchmark experiments demonstrate the effectiveness of the described technique.

Future work includes extension of the presented algorithm to Roth-Karp decomposition. We are also investigating a possibility of combining IntervalCut with decomposition algorithms exploiting the structure of BDDs, like [113].

## Acknowledgment

This work was supported in part by IBM Partnership Award.

## Paper B

# Roth-Karp Decomposition of Large Boolean Functions with Application to Logic Design 

Andrés Martinelli, Tomas Bengtsson, Elena Dubrova and Andrew J. Sullivan. Published in the "Proceedings of the 20st IEEE Norchip Conference 2002" (NORCHIP 2002), Copenhagen, Denmark, November 2002, pp. 183189.

# Roth-Karp Decomposition of Large Boolean Functions with Application to Logic Design 

Andrés Martinelli*

Tomas Bengtsson ${ }^{\dagger}$ Andrew J. Sullivan ${ }^{\ddagger}$

Elena Dubrova*


#### Abstract

This paper presents an algorithm for Roth-Karp decomposition of Boolean functions. Roth-Karp decomposition is an extension of classical simple disjoint decomposition $f(X)=h(g(Y), Z)$ allowing the number of outputs in the extracted logic block $g(Y)$ to be greater than one. Roth-Karp decomposition has many applications in CAD, including logic synthesis, testing and verification. Many efficient algorithms for finding all simple disjoint decompositions have been presented. However, no feasible exact algorithm is known for Roth-Karp decomposition. As a practical alternative, we propose a heuristic algorithm that quickly finds many, but not all, Roth-Karp decompositions using a BDD representation of the function. The algorithm does not require time-costly variable reordering of the BDD. An extensive set of experiments on benchmark functions demonstrates the effectiveness of our approach.


## B. 1 Introduction

Most approaches to the logic synthesis of digital systems consist of two phases: a technology-independent phase that manipulates and optimizes functions; and a technology-mapping phase that maps functions onto a set of

[^8]gates in a specific target technology. The technology-independent phase for two-level synthesis, resulting in two-level devices such as programmable logic arrays, is based on minimization techniques [26]. For multi-level synthesis decomposition is the essential step in the technology-independent phase, leading to devices with multi-level structure such as field-programmable gate arrays [35].

Generally, the problem of decomposition of functions can be formulated as follows. Given a function $f$, express it as a composite function of some set of new functions. Sometimes, a composite expression can be found in which the new functions are significantly simpler than $f$. Then the design of a logic circuit realizing $f$ may be accomplished by designing circuits realizing the simpler functions of the composite representation, thus reducing the the overall cost of implementing $f$.

However, the problem of selecting the "best" decomposition minimizing the overall cost of realization of a given function appears to be far too difficult to be solved exhaustively. Therefore, all efforts to apply decomposition theory to the design of Boolean and multi-valued logic circuits restrict the decomposition to be obtained to a particular type. In this paper we consider disjoint decompositions only. The basis for the different types of disjoint decomposition is the simple disjoint decomposition where a function $f(X)$, $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, is expressed as a composite function of two functions $g$ and $h$, namely

$$
\begin{equation*}
f(X)=h(g(Y), Z) \tag{B.1}
\end{equation*}
$$

where $Y$ and $Z$ are sets of variables forming a partition of the set of variables $X$. If $f, g$ and $h$ are Boolean functions, then in equation (B.1) the original function $f$ specifying an $n$-input, 1-output Boolean circuit is replaced by the specification of two Boolean circuits, one having $|Y|$ inputs and one output, and the other having $1+|Z|$ inputs and one output. Every set of variables $X$ such that $f$ has a decomposition like (B.1) is called a bound set for $f$. Such a decomposition exist trivially for $X$ given by any singleton set $x_{i}$ or the all-set $X$.

If $C_{n}$ is an upper bound on the cost of realizing an Boolean function of $n$ variables, then the total cost of realizing these two circuits is bounded above by $C_{|Y|}+C_{(1+|Z|)}$. Because the cost bound $C_{n}$ usually increases nearly exponentially with $n$ [138], the discovery of any nontrivial decomposition of the form (B.1) greatly reduces the cost of realizing $f$.

Unfortunately, the fraction of all Boolean functions of $n$ variables possessing nontrivial disjoint decompositions of type (B.1) approaches zero as $n$ approaches infinity [138, p. 90]. Therefore, simple disjoint decomposition has been extended to a more general type of decomposition, known as Roth-Karp decomposition [90]. This decomposition has the form

$$
f(X)=h(g(Y), Z)
$$

with $f:\{0,1\}^{n} \rightarrow\{0,1\}, g:\{0,1\}^{|Y|} \rightarrow\{0,1, \ldots, m-1\}$ and $h:\{0,1, \ldots, m-$ $1\} \times\{0,1\}^{|Z|} \rightarrow\{0,1\}$. In such a decomposition the $m$-valued function $h$ of Boolean variables can be coded by $k=\left\lceil\log _{2} m\right\rceil$ Boolean functions $g_{1}, g_{2}, \ldots, g_{k}$, giving a decomposition of the form

$$
\begin{equation*}
f(X)=h\left(g_{1}(Y), g_{2}(Y), \ldots, g_{k}(Y), Z\right) \tag{B.2}
\end{equation*}
$$

with all functions being Boolean. Methods for choosing good encodings are presented in $[102,82]$. The decomposition (B.2) includes as a subclass the simple disjoint decompositions $(m=1)$ mentioned above. As long as $f$ is a function of more than three variables, such a decomposition can always be found with $g_{1}(Y), g_{2}(Y), \ldots, g_{k}(Y)$ and $h$ each having fewer arguments than $f$, for there always exists a decomposition of the form

$$
f(X)=f\left(Y, x_{n}\right)=h\left(g_{1}(Y), g_{2}(Y), x_{n}\right)
$$

with $Y=\left\{x_{1}, \ldots, x_{n-1}\right\}$. Thus, the decomposition (B.2) allows the simplification of any Boolean function.

The rest of the paper is organized as follows. Section B. 2 reviews previous work in the area of decomposition. Section B. 3 presents the new algorithm for computing Roth-Karp decomposition. Section B. 4 shows the experimental results. Section B. 5 concludes the paper.

## B. 2 Previous work

The first major investigation on the subject was carried out by Ashenhurst [7]. He studied simple disjoint decomposition $f(X)=h(g(Y), Z)$ for Boolean functions $f, g, h: B^{n} \rightarrow B$, where $B=\{0,1\}$. Ashenhurst's fundamental contribution is a theorem which states that any Boolean function has a unique disjoint tree-like decomposition such that all possible simple disjoint decompositions of $f$ are exhibited.

Curtis [48] and Roth and Karp [130] extended Ashenhurst theory to the decomposition of type $f(X)=h(g(Y), Z)$ with $g, h$ being multiplevalued functions of type $g: B^{|Y|} \rightarrow M$ and $h: M \times B^{|Z|} \rightarrow B$, where $M=\{0,1, \ldots, m-1\}$. The function $g$ can be encoded by $k=\left\lceil\log _{2} m\right\rceil$ Boolean functions $g_{1}, g_{2}, \ldots, g_{k}$, giving a decomposition of the form $f(X)=$ $h\left(g_{1}(Y), \ldots, g_{k}(Y), Z\right)$, often referred to as Roth-Karp decomposition. Unfortunately Ashenhurst's main theorem does not extend directly to multiplevalued functions (for a counterexample see chapter 4 of [60]). A consequence of this is that there is no unique disjoint tree-like Roth-Karp decomposition. Von Stengel [154] has defined a class of multiple-valued functions for which Ashenhurst's main theorem holds.

Early algorithms for decomposition used decomposition charts [7], [48]. The decomposition chart for $f(Y, Z)$ is a two-dimensional table where the columns represent all combinations of the variables from the set $Y$ and the rows represent all combinations of the variables from the set $Z$. The set $Y$ is a bound set if and only if the chart has column multiplicity at most two, i.e. there are at most two distinct columns in the chart [7].

In a short time, decomposition charts were abandoned in favor of cube representation [90]. The task of computing column multiplicity on charts was replaced by the task of computing compatible classes for a set of cubes. Two assignments $x_{1}, x_{2} \in B^{|Y|}$ are said to be compatible with respect to the reference function $f(Y, Z)$ if, for all $y \in B^{|Z|}$ such that $f\left(x_{1}, y\right)$ and $f\left(x_{2}, y\right)$ are defined, $f\left(x_{1}, y\right)=f\left(x_{2}, y\right)$ [90]. The set $Y$ is a bound set if and only if $B^{|Y|}$ can be partitioned into $k \leq 2$ mutually compatible classes [90]. If $f(X)$ is completely specified, then compatibility is an equivalence relation and $k$ is the number of equivalence classes. It is easy to see the one-to-one mapping between a column in a decomposition chart and a compatible class.

Due to the exponential size of decomposition charts and cube representations, early decomposition algorithms were rarely applied to large practical circuits. Instead, algebraic methods were used [33]. ROBDDs [36] made it possible to develop new algorithms for decomposition, feasible for much larger functions than previously possible.

In a ROBDD, the column multiplicity can be easily computed by moving the variables $Y$ to the upper part of the graph and checking the number of children below the boundary line, usually called cut line. The decomposition $f(X)=h(g(Y), Z)$ exists if and only if there are only two children below the cut line [132].

This approach has been adopted by a number of BDD-based decompo-
sition algorithms [132, 99, 41, 135]. Stanion and Sechen [146] used cut to find quasi-algebraic decomposition of the form $f(X)=g(Y) \odot h(Z)$, where $" \odot$ " is any binary Boolean operation and $|Y \cup Z|=k$ for some $k \geq 0$. This type decomposition is often referred to as bi-decomposition [159, 119].

BDD-based decomposition algorithms following cut-strategy proved to be orders of magnitude faster than those based on decomposition charts and cube representations. However, they require reordering of variables of BDD to move the variables on the top or to check bi-decompositions for partitions which are not consistent with the variable order. As an alternative, a number of methods use the fact that BDDs themselves are a decomposed representation of the function and exploit the structure of BDDs, rather than cut, to find disjoint decompositions. Karplus [91] extended the classical concept of dominator on graphs [103] to 0,1-dominators on BDDs. A node $v$ is a 1 -dominator ( 0 -dominator) if every path from the root to one (zero) terminal node contains $v$. If $v$ is a 1-dominator, then the function represented by the BDD possesses a conjunctive (AND) decomposition. If $v$ is a 0 -dominator, then the function can be decomposed disjunctively (OR). This idea was extended by Yang et al [161] to XOR-type decompositions and to more general type of dominators. Minato and De Micheli [118] presented an algorithm which computes disjoint decompositions by generating irreducible sum-of-product for the function from its BDD and applying factorization. The algorithm of Bertacco and Damiani [15] makes a single traversal of the BDD to identify the decomposition of the co-factors and then combine them to obtain the decomposition for the entire function. The algorithm is impressively fast; however, as Sasao has observed in [133], it fails to compute some of the disjoint decompositions. This problem was corrected by Matsunaga [113], who added the missing cases in [15] allowing to treat the OR/XOR functions correctly. The algorithm [113] appears to be the fastest of existing exact algorithms for finding all disjoint decompositions.

## B. 3 Generalized cut algorithm

## Notation

The bound sets used in Roth-Karp decomposition are a more general case of the notion of classic (Boolean) bound sets defined in Section B.1.

Definition B.3.1: The set $\{Y\}$ is said to be a $k$-bound set if there exists a decomposition

$$
\begin{equation*}
f(X)=h(g(Y), Z) \tag{B.3}
\end{equation*}
$$

for some functions $g, h$ of type $g:\{0,1\}^{|Y|} \rightarrow\{0,1, \ldots, m-1\}$ and $h$ : $\{0,1, \ldots, m-1\} \times\{0,1\}^{Z} \rightarrow\{0,1\}$, such that $2 \leq m<2^{k}$.

These bound sets can be determined by decomposition chart or cut methods, by relaxing the requirement of having exactly 2 different columns (or 2 different cut nodes), to allow a number of columns (or cut nodes) up to $2^{k}$ [90].

## Basic idea of the method

Let $V$ be a set of nodes of a ROBDD $G$ of an $n$-variable function $f(X)$. Every non-terminal node $v \in V$ has an associated variable index, index $(v) \in$ $\{1, \ldots, n\}$. The index of the root node is 1 , and we let the terminal nodes have also an index, which is $n+1$.

Suppose that all nodes with index $\leq i$ are in the upper part of the graph and all nodes with index $>i$ are in the lower part of the graph, for some $i \in\{1, \ldots, n\}$. The boundary line between the upper and lower parts of the graph is called cut $(i)$.

If the number of nodes with index $>i$ which are children of the nodes above the $\operatorname{cut}(i)$ is at most $2^{k}$, for a given $k$, then, by Definition B.3.1, the set of variables $Y=\left\{x_{1}, \ldots, x_{i}\right\}$ is a $k$-bound set.

One possibility to check whether a set of variables $Y$ is a bound set is to move the variables $Y$ to the top of the ROBDD and check the number of children below $\operatorname{cut}(|Y|)$, as in $[99,41]$. However, re-ordering is computationally expensive. Instead, we have developed a procedure, called Generalized-
IntervalCut which checks whether a given linear interval of variables of a ROBDD is a $k$-bound set without reordering of variables. GeneralizedIntervalCut is an extension of IntervalCut algorithm introduced in [13] for simple disjoint decomposition. To describe the procedure, we first present some definitions.

Suppose the variables $Y$ lie between two cuts, $\operatorname{cut}(a)$ and $\operatorname{cut}(b)$, such that $a<b, a, b \in\{0, \ldots, n\}$. Let cut_set $(a)$ denote a set of nodes $v \in G$ with indexes $a<\operatorname{index}(v) \leq b$ which are children of the nodes above the $\operatorname{cut}(a)$ of $G$. Let $G_{v}$ stand for a ROBDD rooted at some $v \in \operatorname{cut} \_$set $(a)$. Then,

```
GeneralizedIntervalCut \((G, k, a, b)\)
input: ROBDD \(G\) of \(f(X), k \geq 1\), two cuts \(\operatorname{cut}(a)\) and \(\operatorname{cut}(b), a<b, a, b \in\{0, \ldots, n\}\).
output: "not a bound set" if the set of variables \(Y\) between \(\operatorname{cut}(a)\) and \(\operatorname{cut}(b)\) is not a \(k\) -
bound set of \(f(X)\); functions \(g\) and \(h\) if \(Y\) is a \(k\)-bound set resulting in \(f(X)=h(g(Y), Z)\).
for all \(v \in\) cut_set \((a)\)
 if \(\left(\mid\right.\) cut_set \(\left(b_{v}\right) \mid<2\) or \(\left.\left|c u t_{_} \operatorname{set}\left(b_{v}\right)\right|>2^{k}\right)\)
 return("not a \(k\)-bound set");
for all \(v_{1}, v_{2}, \ldots, v_{k} \in\) cut_set \((a)\)
 if \(\left(g_{v_{i}} \neq g_{v_{i+1}}\right) \quad / *\) up to isomorphism */
 return("not a bound set");
\(h=\) substitute each subgraph \(g_{v}, \forall v \in\) cut_set \(^{\prime}(a)\), by a variable node;
\(g=g_{v} ;\)
return \((g, h)\);
```

Figure B.1: Pseudo code of the GeneralizedIntervalCut procedure.
cut_set $\left(b_{v}\right)$ is the set of nodes $u \in G_{v}$ with indexes $b<\operatorname{index}(u) \leq n+1$ which are children of the nodes of $G_{v}$ above the $\operatorname{cut}(b)$.

If $\mid$ cut_set $\left(b_{v}\right) \mid=m, 2 \leq m \leq 2^{k}$, then $g_{v}$ is a $m$-valued function represented by the subgraph rooted at $v$ whose terminal nodes are obtained by replacing the $m$ nodes of cut_set $\left(b_{v}\right)$ by constants $\{0,1, \ldots, m-1\}$. The resulting $g_{v}$ is unique up to isomorphism ${ }^{1}$. Using this notation, we can describe the pseudo code of the algorithm GeneralizedIntervalCut $(G, k, a, b)$ as shown in Figure B.3.

## B. 4 Experimental results

We implemented the presented heuristic and applied it to a large set of benchmarks. Only some representative results are shown in Table B.1, for space limitation reasons. The first three columns show information about the benchmarks: their name, the number of primary inputs and the number primary outputs. Columns 4 to 9 show the number $N$ of $k$-bound sets found for different values of $k$, and the time spend by our algorithm to find

[^9]Table B.1: Experimental results; time is reported in seconds and includes ROBDD building and minimization times. The case when $k=1$ represents classical (Boolean) bound sets, as defined in Section B.1.

| benchmarks |  |  | bound sets |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $k=1$ |  | $k=2$ |  | $k=3$ |  |
| name | in | out | N | t (sec) | N | t ( sec ) | N | t (sec) |
| 9 symml | 9 | 1 | 0 | 0,03 | 5 | 0,03 | 12 | 0,02 |
| C1355 | 41 | 32 | 0 | 213,5 | 32 | 214,08 | 62 | 213,13 |
| C1908 | 33 | 25 | 668 | 32,4 | 758 | 32,45 | 857 | 32,54 |
| C3540 | 50 | 22 | 2993 | 322,24 | 3039 | 322,78 | 2989 | 324,01 |
| C432 | 36 | 7 | 342 | 3,65 | 448 | 3,65 | 466 | 3,67 |
| C499 | 41 | 32 | 0 | 213,01 | 32 | 212,91 | 62 | 212,73 |
| C880 | 60 | 26 | 14332 | 73,09 | 14246 | 74,32 | 14305 | 74,86 |
| alu2 | 10 | 6 | 55 | 0,08 | 65 | 0,08 | 72 | 0,08 |
| alu4 | 14 | 8 | 145 | 0,37 | 177 | 0,4 | 195 | 0,37 |
| apex1 | 45 | 45 | 5633 | 14,55 | 6028 | 14,71 | 6135 | 14,77 |
| apex2 | 39 | 3 | 6 | 3,8 | 31 | 3,84 | 68 | 3,85 |
| apex4 | 9 | 19 | 4 | 0,28 | 27 | 0,27 | 44 | 0,28 |
| apex5 | 117 | 88 | 25286 | 52,88 | 45349 | 53,48 | 62147 | 53,45 |
| apex6 | 135 | 99 | 147837 | 64,04 | 242510 | 64,76 | 244018 | 64,79 |
| apex7 | 49 | 37 | 8764 | 3,34 | 11744 | 3,37 | 11730 | 3,35 |
| b9 | 41 | 21 | 2616 | 1,11 | 4336 | 1,13 | 4858 | 1,12 |
| cm150a | 21 | 1 | 1 | 2,1 | 3 | 2,08 | 9 | 2,13 |
| cm42a | 4 | 10 | 7 | 0,01 | 7 | 0,02 | 7 | 0,01 |
| cm85a | 11 | 3 | 27 | 0,05 | 56 | 0,05 | 62 | 0,05 |
| cmb | 16 | 4 | 285 | 0,06 | 285 | 0,06 | 285 | 0,05 |
| comp | 32 | 3 | 147 | 29,79 | 267 | 30,08 | 266 | 29,86 |
| count | 35 | 16 | 734 | 0,62 | 2642 | 0,66 | 2667 | 0,65 |
| des | 256 | 245 | 253580 | 1000,71 | 261548 | 1001,94 | 257766 | 1002,46 |
| e64 | 65 | 65 | 47447 | 12,42 | 46195 | 12,23 | 44883 | 12,14 |
| f51m | 8 | 8 | 54 | 0,03 | 83 | 0,03 | 102 | 0,05 |
| frg2 | 143 | 139 | 91905 | 103,15 | 119457 | 103,97 | 120067 | 103,78 |
| lal | 26 | 19 | 1514 | 0,4 | 2433 | 0,38 | 2433 | 0,39 |
| misex2 | 25 | 18 | 1880 | 0,38 | 2259 | 0,38 | 2272 | 0,39 |
| mux | 21 | 1 | 1 | 2,01 | 3 | 2 | 9 | 2,01 |
| pair | 173 | 137 | 160887 | 486,98 | 222231 | 495,93 | 276550 | 503,61 |
| parity | 16 | 1 | 104 | 0,04 | 104 | 0,04 | 104 | 0,04 |
| rot | 135 | 107 | 200868 | 493,82 | 246026 | 501,45 | 254197 | 508,59 |
| seq | 41 | 35 | 1045 | 14,44 | 1735 | 14,6 | 2870 | 14,69 |
| term1 | 34 | 10 | 677 | 0,58 | 942 | 0,62 | 1368 | 0,62 |
| too_large | 38 | 3 | 3 | 2,62 | 19 | 2,62 | 41 | 2,62 |
| ttt2 | 24 | 21 | 933 | 0,4 | 1565 | 0,4 | 1599 | 0,41 |
| vda | 17 | 39 | 427 | 0,84 | 502 | 0,86 | 635 | 0,89 |
| x3 | 135 | 99 | 151793 | 64,1 | 242510 | 64,76 | 244018 | 64,8 |
| x4 | 94 | 71 | 35949 | 20,16 | 44939 | 20,28 | 45201 | 20,24 |

them. The timings include ROBDD building and minimization ${ }^{2}$ times, and are expressed in seconds. All the experiments were run on a Sun Ultra 60 operating with two 360 MHz CPU and with 1024 MB RAM main storage.

## B. 5 Conclusions

We have presented a practical heuristic algorithm that quickly finds many, although not all, Roth-Karp decompositions. The algorithm works on a ROBDD representation of the function to be decomposed, without the usual reordering overhead of other cut-based methods. This paper reflects results from ongoing work, and the preliminary implementation performance shown in Section B. 4 can be further improved.

Future work includes an extension of the algorithm to non-disjoint decomposition where $Y \cap Z \neq \emptyset$. We are also investigating a possibility of combining GeneralizedIntervalCut with decomposition algorithms exploiting the structure of BDDs, like [113].

## Acknowledgment

This work was supported in part by IBM Partnership Award.

[^10]
## Paper C

## Disjoint-Support Boolean Decomposition Combining Functional and Structural Methods

Andrés Martinelli, René Krenz and Elena Dubrova. Published in the "Proceedings of the IEEE Asia and South Pacific Design Automation Conference 2004" (ASP-DAC 2004), January, 2004, Yokohama, Japan, pp. 597-599.

# Disjoint-Support Boolean Decomposition Combining Functional and Structural Methods 

Andrés Martinelli* René Krenz* Elena Dubrova*


#### Abstract

This paper presents an algorithm for disjoint-support decomposition of Boolean functions which combines functional and structural approaches. First, a set of proper cut points is identified in the circuit by using dominator relations (structural method). Then, the circuit is partitioned along these cut points and a BDD-based decomposition is applied to the resulting smaller functions (functional method). Previous work on Boolean decomposition used only single methods and did not integrate a combined strategy. The experimental results show that the presented technique is more robust than a pure BDD-based approach and produces better-quality decompositions.


## C. 1 Introduction

Boolean decomposition is a technique used in many applications, including multi-level logic synthesis [41, 132], testing [137, 17], formal verification [56], combinatorial optimization problems over graphs and networks [121].

In general terms, the problem of decomposition of functions can be formulated as follows: Given a function $f$, express it as a composite function of some set of new functions. Often, a composite expression can be found in which the new functions are significantly simpler than $f$.

[^11]The basic type of decomposition is the simple disjoint decomposition where a function $f(X)$ is expressed as a composite function of two functions $g$ and $h$, namely

$$
\begin{equation*}
f(X)=h(g(Y), Z) \tag{C.1}
\end{equation*}
$$

where $Y$ and $Z$ are sets of variables forming a partition of the set of variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ of $f$. Every set of variables $X$ for which a decomposition like (C.1) exists is called a bound set for $f$.

The fraction of all Boolean functions of $n$ variables possessing simple disjoint decompositions of type (C.1) approaches zero as $n$ approaches infinity [138, p. 90]. Therefore, a more general type of decomposition, known as disjoint-support (or Roth-Karp [90]) decomposition is usually considered. Disjoint-support decomposition has the form

$$
f(X)=h(g(Y), Z)
$$

with $f:\{0,1\}^{n} \rightarrow\{0,1\}, g:\{0,1\}^{|Y|} \rightarrow\{0,1, \ldots, m-1\}$ and $h:\{0,1, \ldots, m-$ $1\} \times\{0,1\}^{|Z|} \rightarrow\{0,1\}$. The $m$-valued function $h$ can be encoded by $k=$ $\left\lceil\log _{2} m\right\rceil$ Boolean functions $g_{1}, g_{2}, \ldots, g_{k}$, giving a representation of the form

$$
\begin{equation*}
f(X)=h\left(g_{1}(Y), g_{2}(Y), \ldots, g_{k}(Y), Z\right) \tag{C.2}
\end{equation*}
$$

with all functions being Boolean. Methods for choosing good encodings where presented in $[102,82]$. Disjoint-support decomposition includes as a special case non-disjoint decomposition. For example, if $V$ is the set of overlapping variables of $h$ and $g_{1}$, then the non-disjoint decomposition $f(X)=h\left(g_{1}(Y, V), V, Z\right)$ can be treated as a disjoint-support decomposition $f(X)=h\left(g_{1}(Y, V), g_{2}(V), Z\right)$, with $g_{2}$ being the identity function.

It is possible to extend algorithms for simple disjoint decomposition to the disjoint-support case. For example, [111] presents such an extension of the algorithm proposed in [13]. It is a BDD-based heuristic algorithm which quickly finds many disjoint-support decompositions and can handle large functions. One problem with this approach is that the decompositions found in this way do not necessarily simplify the function. For example, a circuit implemented as the two cofactors of a Shannon decomposition joined by a multiplexor is usually not optimal. Shannon decomposition is a special case of the decomposition (C.2), with $Z=x_{1}, g_{1}(Y)=f\left(0, x_{2}, \ldots, x_{n}\right)$, $g_{2}(Y)=f\left(1, x_{2}, \ldots, x_{n}\right)$, and $h=x_{1}^{\prime} g_{1}(Y)+x_{1} g_{2}(Y)$.

Another problem is that, in contrast to the case of simple disjoint decompositions, that are "too few", disjoint-support decompositions are "too
many". So, an algorithm which first generates all disjoint-support decompositions and then checks which of them simplify the function is not feasible.

Our approach to overcome these problems is the following. First, a set of proper cut points is identified in a circuit representation of the function by applying a structural decomposition method. The circuit is partitioned along these cut points into a set of smaller sub-circuits which are treated independently. This allows us to reduce the search space for disjoint-support decompositions at the next stage, since all bound sets which overlap proper cut partitions are pruned. Finally, the overall decomposition is determined by combining the intermediate results.

We have chosen to use at the first stage of our algorithm a circuit-based technique rather than a BDD-based one, because manipulating circuits is much faster. Therefore, for functions with no proper cuts, the presented technique does not bring a significant overhead. The running time of our algorithm is normally similar, or even faster, than the running time of a BDD-based algorithm.

The rest of the paper is organized as follows. Section C. 2 reviews previous work. Section C. 3 summarizes the notation. Section C. 4 presents the first phase of our algorithm (circuit-based method). Section C. 5 presents the second phase of our algorithm (BDD-based method). Section C. 6 shows the experimental results. Section C. 7 concludes the paper and discusses some open problems.

## C. 2 Previous work

The concept of proper cuts was first introduced in combinational equivalence checking [56]. Later it was applied to testing [137, 17] and design for low power [43] where it is known under the alternative names of headline or supergate. A vertex $v$ is a proper cut if every path from any primary input in the cone of influence of $v$ to the root contains $v$. The presented algorithm for finding proper cuts is based on the concept of reduced dominator tree constructed by using an extension of the Lengauer-Tarjan algorithm [103] for finding dominators in a graph. A proper cut is required to dominate all the primary inputs in its cone of influence. This guarantees that all re-converging paths are completely enclosed within the cone and, therefore, that those primary inputs belong to a bound set.

Disjoint-support decomposition was introduced by Roth and Karp [130]. They defined the notion of compatible classes describing the conditions for the existence of bound sets. Two assignments $x_{1}, x_{2} \in B^{|Y|}$ are said to be compatible with respect to the reference function $f(Y, Z)$ if, for all $y \in B^{|Z|}$ such that $f\left(x_{1}, y\right)$ and $f\left(x_{2}, y\right)$ are defined, $f\left(x_{1}, y\right)=f\left(x_{2}, y\right)$ [90]. The set $Y$ is a bound set if and only if $B^{|Y|}$ can be partitioned into $k \leq 2$ mutually compatible classes [90]. If $f(X)$ is completely specified, then compatibility is an equivalence relation and $k$ is the number of equivalence classes.

A number of BDD-based decomposition algorithms have been developed. Karplus [91] presented a technique for AND- and OR-type decomposition based on dominators in BDDs. It was extended by Yang et al [161] to XOR-type decompositions. Stanion and Sechen [146] target quasi-algebraic decomposition of the form $f(X)=g(Y) \odot h(Z)$, where " $\odot$ " is any binary Boolean operation and $|Y \cup Z|=k$ for some $k \geq 0$. This type of decomposition is often referred to as bi-decomposition [132, 159, 119, 45]. Bengtsson [13] developed a fast heuristic for simple disjoint decomposition which iteratively examines all linear intervals of variables of a ROBDD, and for every interval checks whether it is a bound set. This algorithm has been extended to disjoint-support decompositions in [111]. Minato and De Micheli [118] presented an algorithm which computes simple disjoint decompositions by generating irreducible sum-of-product for the function from its BDD and applying factorization. The algorithm of Bertacco and Damiani [15] makes a single traversal of the BDD to identify the simple disjoint decomposition of the co-factors and then combine them to obtain the decomposition for the entire function. The algorithm is impressively fast; however, as Sasao has observed in [133], it fails to compute some of the disjoint decompositions. This problem was corrected by Matsunaga [113], who added the missing cases in [15] allowing to treat the OR/XOR functions correctly. The algorithm [113] appears to be the fastest of existing exact algorithms for finding all simple disjoint decompositions.

## C. 3 Preliminaries

In this section we summarize the basic notation and definitions used in the sequel.

Let $C=(V, E, r o o t)$ denote a single-output circuit, where $V$ represents a set of gates and primary inputs. A particular vertex root $\in V$ is marked
as the circuit output. The set of edges $E \subseteq V \times V$ represents the nets connecting the gates. Each edge $(u, v) \in E$ is associated with an inverter attribute $i(u, v) \in\{0,1\}$ where $i=1$ or $i=0$ indicates whether the edge function is to be complemented or not, respectively.

A vertex $v$ dominates another vertex $w \neq v$ in $C$ if every path from $w$ to root contains $v$. Vertex $v$ is the immediate dominator of $w$, denoted $v=\operatorname{idom}(w)$, if $v$ dominates $w$ and every other dominator of $w$ dominates $v$. Every vertex $v$ in $C$ except root has a unique immediate dominator [108].

The edges $\{(\operatorname{idom}(w), w) \mid w \in V-\{\operatorname{root}\}\}$ form a directed tree $D$ rooted at root, which is called the dominator tree of $C$. The dominator children $\operatorname{Doms}(v) \subset V$ of vertex $v$ are the set of vertices having $v$ as immediate dominator, i.e., $\operatorname{Doms}(v)=\{u \mid i \operatorname{dom}(u)=v\}$.

A reduced dominator tree $[95] D_{R}$ contains all vertices $v \subseteq D$ such that:

1. $v$ is a primary input or
2. $\exists u \in D_{R}$ such that $v=i \operatorname{dom}(u)$.

The bound sets used in disjoint-support decomposition are a more general case of the notion of classical bound sets, as described in Section C.1.
Definition C.3.1: The set $Y$ is said to be a $k$-bound set if there exists a decomposition

$$
\begin{equation*}
f(X)=h(g(Y), Z) \tag{C.3}
\end{equation*}
$$

for some functions $g, h$ of type $g:\{0,1\}^{|Y|} \rightarrow\{0,1, \ldots, m-1\}$ and $h$ : $\{0,1, \ldots, m-1\} \times\{0,1\}^{|Z|} \rightarrow\{0,1\}$, such that $2 \leq m<2^{k}$.

These bound sets can be determined by decomposition chart or cut methods, by relaxing the requirement of having exactly 2 different columns (or 2 different cut nodes), to allow a number of columns (or cut nodes) up to $2^{k}$ [90].

Let $V$ be a set of nodes of a ROBDD $G$ of an $n$-variable function $f(X)$. Every non-terminal node $v \in V$ has an associated variable index, $\operatorname{index}(v) \in$ $\{1, \ldots, n\}$. The index of the root node is 1 , and we let the terminal nodes have also an index, which is $n+1$.

Suppose that all nodes with index $\leq i$ are in the upper part of the graph and all nodes with index $>i$ are in the lower part of the graph, for some $i \in\{1, \ldots, n\}$. The boundary line between the upper and lower parts of the graph is called cut $(i)$.

If the number of nodes with index $>i$ which are children of the nodes above the $\operatorname{cut}(i)$ is at most $2^{k}$, for a given $k$, then, by Definition C.3.1, the set of variables $Y=\left\{x_{1}, \ldots, x_{i}\right\}$ is a $k$-bound set.

## C. 4 Circuit-based proper cut decomposition

Let $C_{v}$ denote the cone of influence of $v$, i.e. a sub-graph of $C$ including all the vertices from which $v$ is reachable by a directed path.

Definition C.4.1: A vertex is a proper cut if it dominates all primary input vertices in its cone of influence.

This guarantees that all re-converging paths are completely enclosed within the cone and, therefore, that those primary inputs form a bound set. For all non-primary input vertices $w$, there exists at least one primary input vertex $u$ from which $w$ is reachable by a directed path. Therefore, $v=\operatorname{dom}(u)$ implies $v=\operatorname{dom}(w)$ for all $w \in C_{v}$. The primary input vertices and the root vertex are trivial proper cuts, i.e. they always exists.

It is easy to prove prove that a proper cut is always a vertex of the reduced dominator tree.

Lemma 2. A vertex $v \in V$ is a proper cut only if $v \in D_{R}$.

The pseudo-code of the algorithm ProperCut which uses a reduced dominator tree to identify the set of proper cuts $P$ is shown in Figure C. 1 [95]. We use Lengauer-Tarjan algorithm [103] is used for finding dominators. It is efficient for large circuits.

ProperCut processes the circuit from the inputs toward the output in topological order. The array $T[v]$ contains vertices $u \in D_{R}$ with open re-convergences. At the primary inputs, $T[v]$ is initialized to an empty set. Then, at each following vertex $v, T[v]$ is updated to the union of $T\left[v_{i}\right]$ for all vertices $v_{i}$ in its fan-in. If $v$ is in the reduced dominator tree, then the set $\operatorname{Doms}(v)$ of vertices having $v$ as an immediate dominator is removed from $T(v)$ and, after performing the proper cut checking, $v$ is added to $T[v]$. This substitution of $\operatorname{Doms}(v)$ vertices by their dominator allows us to keep the size of $T[v]$ small and, what is more important, lets us keep the support-set of $T[v]$ dependent on vertices having $v$ as an immediate dominator only, rather than vertices on previous topological levels.

```
algorithm ProperCut(\(V\), \(E\), root);
 \(D_{R}, D o m s=\operatorname{Dominator}(V, E, r o o t)\)
 for each \(v \in V\) in topological order do
 if \(v \in\) Inputs then
 \(T[v]=\emptyset ;\)
 else
 \(T[v]=\bigcup_{v_{i} \in F I(v)} T\left[v_{i}\right] ;\)
 if \(v \in D_{R}\) then
 \(T[v]=T[v]-\operatorname{Doms}(v) ;\)
 if \(T[v]=\emptyset\) then
 \(P=P \cup\{v\} ;\)
 \(T[v]=T[v] \cup\{v\} ;\)
 return \(P\)
end
```

Figure C.1: Pseudo-code of the algorithm ProperCut.

## C. 5 BDD-based decomposition

After the set of proper cut points is identified, the circuit is partitioned along these cut points into a set of smaller sub-circuits which are processed independently using the BDD-based decomposition technique similar to [111].

The algorithm successively goes through all possible linear intervals of variables of a BDD and, for each interval, checks whether it is a bound set or not. In this way many decomposition are found quickly, without expensive variable re-ordering.

Suppose the variables $Y$ lie between two cuts, $\operatorname{cut}(a)$ and $\operatorname{cut}(b)$, such that $a<b, a, b \in\{0, \ldots, n\}$. Let cut_set $(a)$ denote a set of nodes $v \in G$ with indexes $a<\operatorname{index}(v) \leq b$ which are children of the nodes above the $\operatorname{cut}(a)$ of $G$. Let $G_{v}$ stand for a ROBDD rooted at some $v \in c u t \_s e t(a)$. Then, cut_set $\left(b_{v}\right)$ is the set of nodes $u \in G_{v}$ with indexes $b<\operatorname{index}(u) \leq n+1$ which are children of the nodes of $G_{v}$ above the $\operatorname{cut}(b)$.

If $\mid$ cut_set $\left(b_{v}\right) \mid=m, 2 \leq m \leq 2^{k}$, then $g_{v}$ is a $m$-valued function represented by the sub-graph rooted at $v$ whose terminal nodes are obtained by replacing the $m$ nodes of cut_set $\left(b_{v}\right)$ by constants $\{0,1, \ldots, m-1\}$. The
resulting $g_{v}$ is unique up to isomorphism ${ }^{1}$. Using this notation, the pseudo code of the algorithm GeneralizedintervalCut $(G, k, a, b)$ is described in Figure C.2.

```
algorithm GeneralizedIntervalCut(\(G, k, a, b\))
 for each \(v \in\) cut_set \((a)\)
 if \(\left(\mid\right.\) cut_set \(\left(b_{v}\right) \mid<2\) or \(\left.\left|c u t _s e t\left(b_{v}\right)\right|>2^{k}\right)\)
 return ("not a \(k\)-bound set");
 for each \(v_{1}, v_{2}, \ldots, v_{k} \in\) cut_set \((a)\)
 if \(\left(g_{v_{i}} \neq g_{v_{i+1}}\right) \quad / *\) up to isomorphism */
 return ("not a bound set");
 \(h=\) substitute each sub-graph \(g_{v}, \forall v \in c u t _s e t(a)\),
 by a variable node;
 \(g=g_{v} ;\)
 return \((g, h)\);
end
```

Figure C.2: Pseudo-code of the GeneralizedintervalCut algorithm.

## C. 6 Experimental results

All experiments were performed on a PC with a 2 GHz Pentium4 CPU and 1024MByte main memory, running Linux Mandrake 8.2. We used a set of 188 combinational circuits from IWLS'02 benchmark set which comprises a total of 17633 outputs.

Figure C. 3 shows a comparison of the running times of the pure BDDbased approach against the combined one. Each cross in the figure represents a single output function. Those above the line mark an improvement in the running time. As one can see, in the majority of cases, the combined approach is faster. Crosses below the line, representing cases where the running time of the combined tool is slower, are primarily circuits with no simple disjoint decomposition (i.e. no proper cuts), where the time spent

[^12]

Figure C.3: Runtime comparison for the combined versus BDD-based approaches.
on circuit exploration simply adds up as an overhead on the BDD-based algorithm.

Some representative results, aiming to show the number of disjointsupport decompositions computed by the combined approach, are given in Table C.1. The first three columns show information about the benchmarks: their name, the number of primary inputs and the number of primary outputs. Column 4 shows the number of proper cuts found in the first phase of the algorithm. Columns 5 to 7 show the number of $k$-bound sets found in the second phase, for different values of $k$, as the total sum of the results for individual outputs.

Notice that although columns 4 and 5 both show simple disjoint decompositions, the results they report do not overlap and should be considered separately. They respectively represent those decompositions found during the structural and the BDD-based phases of the algorithm, respectively. Since the heuristics used in each phase may not find all bound sets, and since they are dependent on the structure of the circuit and BDD ordering, the combination of the two can result in one finding bound sets which cannot be found by the other.

Also notice the cases like cm42a, decod or parity: in these, only zeroes are reported for the second phase of the algorithm. This is because after the partitioning along the cut points found in the first phase, the resulting functions only contain trivial disjoint-support decompositions, so the BDDbased algorithm is not invoked at all. This is one the reasons for the running time improvement.

## C. 7 Conclusion

We present a decomposition technique which integrates circuit-based and BDD-based decompositions. The combination of the two approaches results in an algorithm which is more robust than the pure BDD-based method, regarding both, quality of the result and running time.

Our experiments on benchmark circuits suggest that the developed algorithm has a significant potential for a large number of circuits. However, there are also limitations. The main one is that our method depends on dominator relations of the circuit. If the circuit under consideration has no internal dominators, the presented technique reduces to a BDD-based decomposition. We have found that the majority of practical circuit graphs contain a substantial number of internal dominator vertices (between 5 and 0.5 per input) which warrants an efficient performance of our algorithm. For circuits with no internal dominators, in the future we plan to use complementary methods for structuring the decomposition process, such as generalized dominators [77] and min-cut [44].

| benchmarks |  |  | bound sets |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | classical |  | Roth-Karp |  |
| name | in | out | proper cuts | $k=1$ | $k=2$ | $k=3$ |
| 9symml | 9 | 1 | 0 | 0 | 10 | 17 |
| alu2 | 10 | 6 | 1 | 3 | 55 | 89 |
| alu4 | 14 | 8 | 0 | 2 | 141 | 263 |
| apex2 | 39 | 3 | 0 | 9 | 57 | 119 |
| apex6 | 135 | 99 | 229 | 9056 | 32520 | 36084 |
| apex7 | 49 | 37 | 104 | 2814 | 8406 | 9435 |
| b9 | 41 | 21 | 37 | 335 | 1320 | 1465 |
| C1355 | 41 | 32 | 0 | 0 | 11624 | 21708 |
| C1908 | 33 | 25 | 0 | 2758 | 5337 | 8279 |
| C3540 | 50 | 22 | 18 | 79 | 676 | 1378 |
| C432 | 36 | 7 | 16 | 0 | 97 | 259 |
| C499 | 41 | 32 | 0 | 0 | 12404 | 22428 |
| C880 | 60 | 26 | 57 | 204 | 1574 | 3150 |
| cm150a | 21 | 1 | 1 | 0 | 5 | 11 |
| cm42a | 4 | 10 | 20 | 0 | 0 | 0 |
| cm85a | 11 | 3 | 9 | 20 | 90 | 100 |
| cmb | 16 | 4 | 20 | 325 | 325 | 325 |
| comp | 32 | 3 | 7 | 108 | 520 | 696 |
| cordic | 25 | 2 | 0 | 18 | 71 | 95 |
| count | 35 | 16 | 136 | 136 | 544 | 544 |
| decod | 5 | 16 | 48 | 0 | 0 | 0 |
| des | 256 | 245 | 640 | 30527 | 202664 | 327911 |
| e64 | 65 | 65 | 2016 | 0 | 0 | 0 |
| f51m | 8 | 8 | 0 | 26 | 85 | 123 |
| frg2 | 143 | 139 | 1 | 14 | 29 | 31 |
| lal | 26 | 19 | 598 | 32927 | 142542 | 169797 |
| misex2 | 25 | 18 | 50 | 237 | 1522 | 1550 |
| mux | 21 | 1 | 1 | 0 | 5 | 11 |
| pair | 173 | 137 | 889 | 28416 | 113431 | 173717 |
| parity | 16 | 1 | 14 | 0 | 0 | 0 |
| rot | 135 | 107 | 177 | 9159 | 45070 | 65873 |
| seq | 41 | 35 | 34 | 3951 | 15762 | 28193 |
| term1 | 34 | 10 | 26 | 340 | 822 | 870 |
| too_large | 38 | 3 | 0 | 7 | 43 | 109 |
| ttt2 | 24 | 21 | 10 | 843 | 2583 | 2665 |
| x3 | 135 | 99 | 129 | 11980 | 31663 | 36259 |
| x4 | 94 | 71 | 66 | 11066 | 30591 | 34785 |

Table C.1: Experimental results. Notice that 'proper cuts' and disjointsupport case ' $k=1$ ' represent different simple disjoint decompositions, found in the first and the second phase respectively, and should be counted separately.

## Paper D

# On the Relation Between Non-Disjoint Decomposition and Multiple-Vertex Dominators 

Elena Dubrova, Maxim Teslenko and Andrés Martinelli. Published in the "Proceedings of the IEEE International Symposium on Circuits and Systems 2004" (ISCAS 2004), May 23-26, 2004, Vancouver, Canada, pp. 493-496.

# On Relation Between Non-Disjoint Decomposition and Multiple-Vertex Dominators 

Elena Dubrova* ${ }^{\dagger}$ Maxim Teslenko* Andrés Martinelli*


#### Abstract

This paper addresses the problem of non-disjoint decomposition of Boolean functions. Decomposition has multiple applications in logic synthesis, testing and formal verification. First, we show that the problem of computing non-disjoint decompositions of Boolean functions can be reduced to the problem of finding multiple-vertex dominators of circuit graphs. Then, we prove that there exists an algorithm for computing all multiple-vertex dominators of a fixed size in polynomial time. Our result is important because no polynomial-time algorithm for non-disjoint decomposition of Boolean functions is known. A set of experiments on benchmark circuits illustrates our approach.


## D. 1 Introduction

Non-disjoint decomposition of a Boolean function $f$ is a representation of type

$$
\begin{equation*}
f(X, Y, Z)=h\left(g_{1}(X, Y), \ldots, g_{k}(X, Y), Y, Z\right) \tag{D.1}
\end{equation*}
$$

where $X, Y, Z$ are sets of variables partitioning the support set of $f$, and $h$ and $g_{i}$ are Boolean functions, $i \in\{1, \ldots, k\}$. Applications of decomposition include multi-level logic optimization [136, 161], FPGA technology mapping [132, 41, 134], testing [137], and formal verification [97].

[^13]The problem of computing non-disjoint decomposition is hard. No algorithm for computing all possible non-disjoint decompositions of a Boolean function in polynomial-time is known. Binary Decision Diagram (BDD) based decomposition algorithms show a good average-time performance [161, 99, 111]. However, these approaches are limited by the excessive memory consumption of decision diagrams.

This paper has two main contributions. First, we show that the problem of computing non-disjoint decompositions of Boolean functions is related to the problem of finding multiple-vertex dominators of circuit graphs. A circuit graph is a common format for representing Boolean functions. Most practical functions have small circuit representations. Second, we prove that there exists a $O\left(n^{k} \log n\right)$ algorithm for computing all multiple-vertex dominators of a fixed size $k$, where $n$ is the number of vertices of the circuit graph.

The presented approach allows us to compute all non-disjoint decompositions which are reflected in the circuit structure. However, these may not be all possible decompositions of the function. For example, if a function is represented by a circuit implementing $f=a(b+c)$, then the disjoint decomposition $h=a \cdot g, g=b+c$ will be identified. However, if the function is represented by the circuit realizing $f=a b+a c$, then no disjoint decomposition will be found.

The paper is organized as follows. Section D. 2 describes previous work. Section D. 3 shows a relation between non-disjoint decomposition and multiplevertex dominators. The existence of a polynomial algorithm for computing multiple-vertex dominators is proved in Section D.4. Section D. 5 summarizes the experimental results. Conclusion and future work are given in Section D.6.

## D. 2 Previous work

Non-disjoint decomposition of Boolean functions was pioneered by Curtis [48] in 1962. Curtis has shown that a Boolean function possesses a simple non-disjoint decomposition of type $f(X, Y, Z)=h(g(X, Y), Y, Z)$ if each of its $2^{|Y|}$ decomposition charts representing sub-functions $f_{Y}(X, Z)$ has at most two distinct columns. The decomposition chart for $f_{Y}(X, Z)$ is a two-dimensional table where the columns describe all combinations of the variables from the set $X$ and the rows list all combinations of the variables
from the set $Z .2^{|Y|}$ charts are obtained by fixing the variables of $Y$ to all combination of their values from $\{0,1\}^{n}$.

Roth and Karp [130] have extended simple non-disjoint decomposition to a more general type given by equation (D.1). They used cube representation and reduced the problem of computing column multiplicity to the problem of computing compatible classes for a set of cubes.

Due to the exponential size of decomposition charts and cube representations, early decomposition algorithms were not applicable to large functions. Instead, algebraic decomposition methods were used in practice. A milestone work is [33], where the notion of kernels is introduced and a method for fast algebraic decomposition based on kernels is developed. This technique, with minor modifications, is used in many systems for multi-level optimization [29, 112, 136].

BDDs made possible developing algorithms for Boolean decomposition, feasible for much larger functions than previously possible. In a BDD, the column multiplicity can be computed by moving the variables $X$ to the upper part of the graph and checking the number of children below the boundary line, called cut line. This approach has been adopted by a number of BDDbased decomposition algorithms [99, 132, 111]. Stanion and Sechen [146] used cut to find quasi-algebraic decomposition of the form $f(X, Y, Z)=$ $g(X, Y) \odot h(Y, Z)$, where " $\odot$ " is an arbitrary Boolean binary operation. This type decomposition is often referred to as bi-decomposition [159, 119].

Another group of decomposition methods exploit the structure of BDDs, rather than cut. Karplus [91] extended the classical concept of dominator on graphs to 0,1 - dominators on BDDs. A node $v$ is a 1 -dominator ( 0 dominator) if every path from the root to one (zero) terminal node contains $v$. This idea was extended by Yang et al [161] to XOR-type decompositions. Minato and De Micheli [118] presented an algorithm which computes all disjoint decompositions by generating irreducible sum-of-product for the function from its BDD and applying factorization. Algorithms [15] and [113] makes a single traversal of the BDD to identify the disjoint decomposition of the co-factors and then combine them to obtain all disjoint decomposition for the entire function.

## D. 3 Relation between non-disjoint decomposition and multiple-vertex dominators

In this section, we present a fundamental theorem showing the relation between non-disjoint decomposition of Boolean functions and multiple-vertex dominators of circuit graphs. We start with the definitions used in the sequel.

Let $C=(V, E)$ denote a single-output directed acyclic circuit graph, where $V$ represents a set of gates and primary inputs. A particular vertex root $\in V$ is marked as the circuit output. The set of edges $E \subseteq V \times V$ describes the nets connecting the gates.

The cone of influence of a vertex $v, I(v)$, is a subset of $V$ containing all the vertices from which $v$ is reachable.

A vertex $v$ dominates another vertex $w$ in $V$ if every path from $w$ to root contains $v$ [103]. We denote by $D(v)$ the set of vertices dominated by $v$. Vertex $v$ is the immediate dominator of $w$, denoted by $v=\operatorname{idom}(w)$, if $v$ dominates $w$ and every other dominator of $w$ dominates $v$. Every vertex $v \in V$ except root has a unique immediate dominator [108]. The edges $\{(\operatorname{idom}(w), w) \mid w \in V-\{\operatorname{root}\}\}$ form a directed tree rooted at root, which is called the dominator tree of $C$.

Many graphs do not contain any single-vertex dominators except primary inputs and root. It is more common that a vertex is dominated by a set of vertices.

A set of vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ is a multiple-vertex dominator of size $k[5]$ (also called generalized dominator [77]) for a vertex $u$, if (1) every path from $u$ to root contains some $v_{i}$, and (2) for every $v_{i}$, there exist at least one path from $u$ to root which contains $v_{i}$ and does not contain any other $v_{j}$, $i, j \in\{1, \ldots, k\}, i \neq j$.

A set of vertices $\left\{v_{1}, \ldots, v_{k}\right\}$ is a common multiple-vertex dominator for a set of vertices $U \subseteq V-\left\{v_{1}, \ldots, v_{k}\right\}$, if, for every $u \in U$, there exist $W \subseteq\left\{v_{1}, \ldots, v_{k}\right\}$ such that $W$ is a multiple-vertex dominator for $u$.

Let $X, Y, Z$ be sets of variables partitioning the support set of a Boolean function $f$.

Theorem 9. Suppose a Boolean function $f(X, Y, Z)$ is represented by a circuit graph $C=(V, E)$. Let $V_{X}, V_{Y}, V_{Z} \subset V$ be sets of primary input vertices corresponding to the variables of the sets $X, Y, Z$. Let $v_{g_{1}}, \ldots, v_{g_{k}} \in$ $V$ be a set of vertices such that:

1. $\left\{v_{g_{1}}, \ldots, v_{g_{k}}\right\}$ is a common multiple-vertex dominator for $V_{X}$,
2. $\left(V_{X} \cup V_{Y}\right) \subset \bigcup_{i=1}^{k} I\left(v_{g_{i}}\right)$.

Then, there exist a decomposition of $f$ of type

$$
f(X, Y, Z)=h\left(g_{1}(X, Y), \ldots, g_{k}(X, Y), Y, Z\right)
$$

where Boolean functions $g_{i}$ are the functions rooted by the vertices $v_{g_{i}}$, $\forall i \in$ $\{1, \ldots, k\}$, of $C$.

Theorem 9 allows us to reduce the problem of computing non-disjoint decompositions to the problem of computing multiple-vertex dominators. This result is important because no polynomial-time algorithm for computing all non-disjoint decompositions of a Boolean function is known. In the next section, we show that the problem of computing all multiple-vertex dominators of a fixed size can be solved in polynomial-time.

## D. 4 Computing all multiple-vertex dominators of a fixed size in polynomial time

It is possible to compute all single-vertex dominators for a directed graph in time less than quadratic in the number of vertices. For example, a well-known Lengauer-Tarjan algorithm [103] has the worst-case complexity $O(n \cdot \log n)$. However, algorithms for computing all multiple-vertex dominators for a directed graph have exponential worst case complexity [77]. A subset of immediate multiple-vertex dominators can be computed in $O\left(n^{2}\right)$ time [5], but immediate dominators are not particularly interesting from the decomposition point of view. Good decompositions require multiple-vertex dominators of a small size $k$ which are common for large sets $V_{X}$. In this section, we show that it is possible to compute multiple-vertex dominators of a fixed size in polynomial time.

Let $C=(V, E)$ be a circuit graph with $|V|=n$ vertices.
Theorem 10. If there exists an $O(\tau(n))$ algorithm for computing all single-vertex dominators, then there exists an $O\left(n^{k-1} \tau(n)\right)$ algorithm for computing all multiple-vertex dominators of size $k$.

Proof. Assume there exists an $O(\tau(n))$ algorithm for computing all singlevertex dominators. Let $T(C)$ denote the dominator tree of a circuit-graph
$C=(V, E, r o o t)$, and let $M(C)$ denote the set of all possible multiple-vertex dominators of size $k$. To compute $M(C)$, we do the following:

1. Compute $T(C)$.
2. For each $\left\{v_{1}, \ldots, v_{k-1}\right\} \in V^{k-1}$ do Steps 3 to 6
3. Mark as "non-existing" all edges in $C$ such that
$E^{\prime}=E-\left\{(u, w) \mid u \in \bigcup_{i=1}^{k-1} D\left(v_{i}\right) \vee w \in \bigcup_{i=1}^{k-1} D\left(v_{i}\right)\right\}$.
4. Compute $T\left(C^{\prime}\right)$ for the resulting modified graph $C^{\prime}$.
5. Compute $M(C)$ by checking the following condition $\forall u_{j} \in T\left(C^{\prime}\right)$ : If $u_{j}$ is a single-vertex dominator for some $w \in \bigcup_{i=1}^{k-1} I\left(v_{i}\right)-\bigcup_{i=1}^{k-1} D\left(v_{i}\right)$ in $C^{\prime}$, then $\left\{u_{j}, v_{1}, . ., v_{k-1}\right\}$ is a multiple-vertex dominator of size $k$ for $w$ in $C$, if $u_{j}$ does not dominate any of $v_{i}$ in $C, i \in\{1, \ldots, k-1\}$.
6. Undo Step 3.

Steps 1 and 4 are $O(\tau(n))$. Steps 3,5 and 6 can be done in $O(n)$ time. The correctness of Step 5 follows directly from the definition of multiplevertex dominator. The overall complexity is

$$
O(\tau(n))+n^{k-1}(\max (O(\tau(n)), O(n)))=O\left(n^{k-1} \tau(n)\right) .
$$

If Lengauer-Tarjan algorithm [103] is used for computing single-vertex dominators, then $M(C)$ can be obtained in $O\left(n^{k} \log n\right)$ time. Clearly, the simple algorithm constructed in the proof will not be feasible for large circuit graphs if $k>2$. However, as we show in the next sections, for small $k$, ever this straightforward approach gives good results. Many practical applications of decomposition (multi-level logic synthesis [136, 161], FPGA technology mapping [132, 41], etc.) require only small values of $k$.

## D. 5 Experimental results

This section illustrates the performance of the algorithm constructed in the proof of the Theorem 10 for IWLS'02 benchmark set.

Column 5 of Table D. 1 shows the number, $N_{2 d e c}$, of computed decompositions $f(X, Y, Z)=h\left(g_{1}(X, Y), g_{2}(X, Y), Y, Z\right)$ with $k=2$. Note, that $N_{2 d e c}$ does not include decompositions with $k=1$. Only interesting cases, where a 2 -vertex dominator dominates at least 3 inputs $(|X|>2)$ are counted. Every output is treated as a separate function. The numbers shown in Column

Table D.1: Benchmark results.

| name | in | out | gates | $N_{2 \text { dec }}$ | $t(\mathrm{sec})$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| apex5 | 114 | 88 | 3781 | 2609 | 2.34 |
| apex6 | 135 | 99 | 801 | 639 | 0.11 |
| b9 | 41 | 21 | 166 | 50 | 0.02 |
| comp | 32 | 3 | 158 | 103 | 0.07 |
| count | 35 | 16 | 163 | 15 | 0.01 |
| C1355 | 41 | 32 | 546 | 1032 | 3.98 |
| C1908 | 33 | 25 | 448 | 350 | 1.63 |
| C2670 | 233 | 140 | 951 | 261 | 1.26 |
| C3540 | 50 | 22 | 1089 | 345 | 8.42 |
| C432 | 36 | 7 | 247 | 169 | 0.23 |
| C499 | 41 | 32 | 442 | 1000 | 2.53 |
| C5315 | 178 | 123 | 1952 | 4205 | 5.57 |
| C6288 | 32 | 32 | 2370 | 153 | 70.23 |
| C7552 | 207 | 108 | 2282 | 12816 | 7.73 |
| C880 | 60 | 26 | 338 | 253 | 1.15 |
| des | 256 | 245 | 4733 | 1134 | 5.24 |
| frg2 | 143 | 139 | 2011 | 1389 | 0.85 |
| i2 | 201 | 1 | 434 | 32 | 0.26 |
| i3 | 132 | 6 | 259 | 0 | 0.02 |
| i4 | 192 | 6 | 439 | 0 | 0.04 |
| i5 | 133 | 66 | 447 | 3 | 0.04 |
| i6 | 138 | 67 | 831 | 30 | 0.08 |
| i7 | 199 | 67 | 1104 | 36 | 0.13 |
| i8 | 133 | 81 | 3444 | 791 | 2.12 |
| i9 | 88 | 63 | 981 | 63 | 0.74 |
| i10 | 257 | 224 | 2935 | 6543 | 17.06 |
| pair | 173 | 137 | 1907 | 5272 | 0.94 |
| rot | 135 | 107 | 1199 | 1125 | 1.19 |
| s1196 | 32 | 32 | 510 | 224 | 0.41 |
| s1238 | 32 | 32 | 565 | 238 | 0.55 |
| s1423 | 91 | 79 | 554 | 2974 | 0.98 |
| s9234 | 247 | 250 | 2206 | 2323 | 2.49 |
| term1 | 34 | 10 | 746 | 45 | 0.17 |
| too_large | 38 | 3 | 8746 | 90 | 644.02 |
| x1 | 51 | 35 | 1317 | 187 | 1.03 |
| x3 | 135 | 99 | 1464 | 268 | 0.22 |
| x4 | 94 | 71 | 794 | 315 | 0.13 |
|  |  |  |  |  |  |

4 are the total sum of decompositions for all outputs of the circuit. Unfortunately, it is not possible to compare our results to the results of other algorithms for non-disjoint decompositions, because none of them reports the number of all decompositions for a given function.

Column 6 shows runtime, in seconds, measured using the Unix command
time (user time). The experiments were performed on a PC with a 1.4 GHz Pentium4 CPU and 1 GByte main memory. One can see that, for circuits with less than 1000 gates, the runtime is of order of 1 sec . The largest circuit, too_large, with 8746 gates, takes 10 min. gates in Column 4 are the 2-input AND gates, because our implementation uses an And/Inverter graph [97] for representing circuits. The presented algorithm can decompose functions for which BDDs cannot be build, such as 16-bit multiplier C6288.

## D. 6 Conclusion

This paper shows that the problem of computing non-disjoint decompositions of Boolean functions can be reduced to the problem of finding multiplevertex dominators in circuits. We also prove that, for a given circuit, all multiple-vertex dominators of a fixed size can be found in polynomial time. This implies that certain non-disjoint decompositions (the ones reflected in the circuit structure) can be computed in polynomial time.

Our ongoing work includes developing a more efficient algorithm for computing multiple-vertex dominators.

## Paper E

## Bound Set Selection and Circuit Re-Synthesis for Area/Delay Driven Decomposition

Andrés Martinelli and Elena Dubrova. Published in the "Proceedings of the Design, Automation \& Test in Europe Conference 2005" (DATE 2005), March 7-11, 2005, Munich, Germany, pp. 430-431.

# Bound Set Selection and Circuit Re-Synthesis for Area/Delay Driven Decomposition 

Andrés Martinelli* Elena Dubrova*


#### Abstract

This paper addresses two problems related to disjoint-support decomposition of Boolean functions. First, we present a heuristic for finding a subset of variables, $X$, which results in the disjoint-support decomposition $f(X, Y)=h(g(X), Y)$ with a good area/delay trade-off. Second, we present a technique for re-synthesis of the original circuit implementing $f(X, Y)$ into a circuit implementing the decomposed representation $h(g(X), Y)$. Preliminary experimental results indicate that the proposed approach has a significant potential.


## E. 1 Introduction

Disjoint-support decomposition of a Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$ is a representation of the form $f(X, Y)=h(g(X), Y)$ where $X \cap Y=\emptyset$, $g:\{0,1\}^{|X|} \rightarrow\{0,1, \ldots, k-1\}$ and $h:\{0,1, \ldots, k-1\} \times\{0,1\}^{|Y|} \rightarrow\{0,1\}$. The $k$-valued function $g$ can be encoded as

$$
f(X, Y)=h\left(g_{1}(X), g_{2}(X), \ldots, g_{\left\lceil\log _{2} k\right\rceil}(X), Y\right)
$$

giving a decomposition with all functions being Boolean. Every set of variables $X$ for which such a decomposition exists is called a bound set for $f$. This paper addresses two problems related to disjoint-support decomposition. First, we present a heuristic for finding a bound set which results in

[^14]a disjoint-support achieving a good area/delay trade-off. Choosing a suitable bound set is important because disjoint-support decomposition does not necessarily simplify the function.

Second, we present a technique for transforming the original circuit implementing $f(X, Y)$ into a circuit implementing the decomposed representation $h(g(X), Y)$. Previous algorithms computed circuits for the decomposed representation from Binary Decision Diagrams (BDDs) of $g$ and $h$, by applying various BDD-to-circuit transformation techniques. The algorithm presented in this paper uses BDDs only for analysis of the decomposition. The actual synthesis of the circuits for $g$ and $h$ is done by restricting the original circuit with respect to a given assignment of input variables. This guarantees that the sizes of the circuits of $g$ and $h$ are strictly smaller than the size of the original circuit.

## E. 2 Bound Set Selection

To find a suitable bound set $X$ for $f$, we examine all linear intervals of variables of the BDD representing $f$. To check whether a given linear interval is a bound set, we use IntervalCut algorithm [111]. IntervalCut is very fast, because it does not require expensive BDD re-ordering.

If a bound set $X$ with the column multiplicity $k<|X|$ is found, it is stored together with the following three parameters characterizing the associated decomposition $f(X, Y)=h(g(X), Y)$ :

1. the number of outputs having $X$ as a bound set: $s(X)$;
2. the number of outputs of $g: c(X)=\left\lceil\log _{2} k\right\rceil$;
3. the difference in sizes of the bound set $X$ and the free set $Y: d(X)=$ $\| X|-|Y||, d(X) \in\{0,1, \ldots, n-1\}$.

Let $\mathbf{X}$ be the set of bound sets computed by IntervalCut. The best candidate is selected from $\mathbf{X}$ as follows. First, a subset $\mathbf{X}_{\mathbf{s}}$ of $\mathbf{X}$ containing all bound sets with the maximum $s(X)$ is chosen. Maximizing of $s(X)$ increases the sharing of common logic among different outputs of the circuit. Next, a subset $\mathbf{X}_{\mathbf{c}}$ of $\mathbf{X}_{\mathbf{s}}$ containing all bound sets with the minimum $c(X)$ is selected. Minimizing of $c(X)$ promotes the selection of bound sets with the smallest column multiplicity (more precisely, smallest $\log _{2} k$ ). Finally,
a subset $\mathbf{X}_{\mathbf{d}}$ of $\mathbf{X}_{\mathbf{c}}$ containing largest bound sets with the minimum $d(X)$ is obtained. Minimizing of $d(X)$ allows balancing the partitioning of logic between the functions $g$ and $h$.

Any element of $\mathbf{X}_{\mathbf{d}}$ is considered to be a "best" bound set for $f$, i.e. the one which produces a decomposition with the best area/delay trade-off. The original circuit implementing $f$ is transformed into the circuit implementing $h(g(X), Y)$ by applying the algorithm described in the next section.

## E. 3 Transformation Algorithm

Let $X$ be a bound set for $f$ and let $G_{g}$ and $G_{h}$ be BDDs representing the functions $g$ and $h$ in the decomposition $f(X, Y)=h(g(X), Y)$. These BDDs are computed by IntervalCut.

## Constructing the circuit for $h$

Suppose $A$ is an assignment of variables of $X$ leading to the 0-terminal node in $G_{g}$. Then $g(A)=0$, and thus $f(A, Y)=h(g(A), Y)=h(0, Y)$. Therefore, a circuit implementing the co-factor $h(0, Y)$ can be obtained from the circuit implementing $f$ by applying the assignment $A$ to the inputs $X$ and propagating the constants through the circuit using the usual reduction rules. Similarly, circuits implementing co-factors $h(i, Y), i \in\{1,2, \ldots, k-1\}$, can be obtained by propagating an assignment of variables of $X$ leading to the $i$-terminal node of $G_{g}$. Recall, that $g$ is a function of type $g:\{0,1\}^{|X|} \rightarrow\{0,1, \ldots, k-1\}$, so $G_{g}$ is a multi-terminal BDD with $k$ terminal nodes.

To maximize the sharing of common logic of the $i$ circuits implementing co-factors $h(i, Y), i \in\{0,1, \ldots, k-1\}, i$ assignments $A$ are chosen so that they differ in the fewest number of bit positions.

The function $h(g(X), Y)$ is obtained by combining the co-factors in a Shannon expansion as follows:

$$
\begin{equation*}
h(g(X), Y)=\sum_{i=0}^{k-1} g_{1}^{i_{1}}(X) g_{2}^{i_{2}}(X) \ldots g_{r}^{i_{r}}(X) h(i, Y) \tag{E.1}
\end{equation*}
$$

where $\left(i_{1}, i_{2}, \ldots, i_{r}\right)$ is the binary expansion of $i, r=\left\lceil\log _{2} k\right\rceil$, and the term
$g_{j}^{i_{j}}$ is defined by

$$
g_{j}^{i_{j}}= \begin{cases}g_{j} & \text { if } i_{j}=1 \\ \bar{g}_{j} & \text { otherwise }\end{cases}
$$

for $j \in\{1,2, \ldots, r\}$.

## Constructing the circuit for $g$

Suppose that $B$ is an assignment of variables of $Y$ such that $h(i, B) \neq h(j, B)$ for some $i, j \in\{0,1, \ldots, k-1\}, i \neq j$. Then $f(X, B)=h(g(X), B)$ where the co-factor $h(g(X), B)$ is neither constant 0 , nor constant 1, i.e. it depends of $g(X)$.

Since $h$ is a function of type $\{0,1, \ldots, k-1\} \times\{0,1\}^{|Y|} \rightarrow\{0,1\}$, the co-factor $h(g(X), B)$ is a function of type $\{0,1, \ldots, k-1\} \rightarrow\{0,1\}$. Note that, for $k=2, h(g(X), B)$ is either an identity, or a complement. Thus, at this step, the problem of constructing the circuit for $g(X)$ is solved for $k=2$. For larger values of $k$, the following strategy is used.

The $k$-valued function $g(X)$ can be expressed as

$$
g(X)=\sum_{i=0}^{k-1} i \cdot g^{i}(X)
$$

where $g^{i}:\{0,1, \ldots, k-1\}^{|X|} \rightarrow\{0,1\}$ are multiple-valued literals defined as:

$$
g^{i}(X)= \begin{cases}1 & \text { if } g(X)=i \\ 0 & \text { otherwise }\end{cases}
$$

For a given encoding of $k$ values of $g(K)$, each of the functions $g_{1}(X)$, $g_{2}(X), \ldots, g_{r}(X), r=\left\lceil\log _{2} k\right\rceil$, encoding $g(X)$, can be represented as a sum of some literals $g^{i}(X)$ 's.

Consider a decomposition chart of $h(g(X), Y)$ with columns representing $k$ values of $g(X)$ and the rows represent all combinations of the variables of $Y$. Any non-constant row of $h(g(X), Y)$ represents a sum of some literals $g^{i}(X), i \in\{0,1, \ldots, k-1\}$.

In the best case, there exist rows in the decomposition chart corresponding directly to the encoded functions $g_{1}(X), g_{2}(X), \ldots, g_{r}(X)$. If $h(g(X), A)$ $=g_{j}(X)$ for some assignment $A$ of the variables of $Y$, then the circuit implementing $g_{j}(X)$ can be obtained from the circuit implementing $f$ by applying the assignment $A$ to the inputs $Y$ and propagating the constants.

In the worst case, the literals $g^{i}(X), i \in\{0,1, \ldots, k-1\}$, need to be computed by ANDing selected rows of $h(g(X), Y)$. Afterward, the functions $g_{1}(X), g_{2}(X), \ldots, g_{r}(X)$ are obtained as a combination of $g^{i}(X)$.

## E. 4 Conclusion and Future Work

This paper has two contributions: (1) a heuristic for finding a bound set $X$ which results in the disjoint-support decomposition with a good area/delay trade-off; (2) an algorithm which transforms the original circuit into the decomposed circuit.

Our preliminary experimental results on IWLS'02 benchmarks set show that the proposed technique usually results in a smoother trade-off between area and delay compared to the one of SIS. More experiments are needed to make a thorough evaluation.

## Paper F

## Bound-Set Preserving ROBDD Variable Orderings May Not Be Optimum

Maxim Teslenko, Andrés Martinelli and Elena Dubrova. Published in the "IEEE Transactions on Computers", Vol. 54, no. 2, February 2005, pp. 236238.

# Bound-Set Preserving ROBDD Variable Orderings May Not Be Optimum 

Maxim Teslenko* Andrés Martinelli* Elena Dubrova*


#### Abstract

This paper reports a result concerning the relation between the best variable orderings of a ROBDD $G_{f}$ and the decomposition structure of the Boolean function $f$ represented by $G_{f}$. It was stated in [87] that, if $f$ has a decomposition of type $f(X)=g\left(h_{1}\left(Y_{1}\right), h_{2}\left(Y_{2}\right), \ldots, h_{k}\left(Y_{k}\right)\right)$, where $\left\{Y_{i}\right\}, i \in\{1,2, \ldots, k\}$, is a partition of $X$, then one of the orderings which keeps the variables within the sets $\left\{Y_{i}\right\}$ adjacent is a best ordering for $G_{f}$. Using a counterexample, we show that this statement is incorrect. and explore under which conditions this claim does not hold.


## F. 1 Introduction

This paper gives a counterexample to the following theorem from [87, p. 58, Theorem 3.8]. Let $f(X)$ be a Boolean function of type $f: B^{n} \rightarrow B$ on $B=\{0,1\}$, of the variables $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Let $\langle X\rangle$ denote a set of variable orderings induced by all possible permutations over the set $X$.

Theorem 11. If $f(X)$ has a decomposition of type

$$
f(X)=g\left(h_{1}\left(Y_{1}\right), h_{2}\left(Y_{2}\right), \ldots, h_{k}\left(Y_{k}\right)\right)
$$

where $\left\{Y_{i}\right\}, 1 \leq i \leq k$, is a partition of $X$, and $h_{i}, g$ are functions of type $h_{i}: B^{\left|Y_{i}\right|} \rightarrow B, g: B^{k} \rightarrow B$, then there exists a variable ordering belonging to the set $\left\langle\left\langle Y_{1}\right\rangle,\left\langle Y_{2}\right\rangle, \ldots,\left\langle Y_{k}\right\rangle\right\rangle$ which is best.

[^15]
## F. 2 Counterexample

A set of variables $Y \subseteq X$ is a bound set for $f(X)$ if $f$ can be decomposed as $f(X)=g(h(Y), Z)$, where $Z=X-Y$, and $h$ and $g$ are functions of type $h: B^{|Y|} \rightarrow B, g: B \times B^{|Z|} \rightarrow B$.

We say that two sets $X$ and $Y$ overlap if $X-Y \neq \emptyset, X \cap Y \neq \emptyset$ and $Y-X \neq \emptyset$.

Definition 1. A bound-set-preserving ordering is an ordering which keeps the variables from all non-overlapping bound sets of the function adjacent.

It was proved in [7] that, for any Boolean function $f(X)$ depending on all its variables, the set of all non-overlapping bound sets related by inclusion form a tree which is unique for $f(X)$ (up to complementation). Therefore, the set of bound-set-preserving orderings is uniquely defined for a given function.

Theorem 12. There exists a function for which no bound-set-preserving ordering is best.

Proof. By construction. Suppose a Boolean function $f(X)$ has a decomposition of type

$$
f(X)=g\left(h_{1}\left(Y_{1}\right), h_{2}\left(Y_{2}\right), h_{3}\left(Y_{3}\right), h_{4}\left(Y_{4}\right), x_{m}\right)
$$

where $\left\{Y_{i}\right\}, 1 \leq i \leq 4$, and $x_{m}$ is a partition of $X, g$ is a function

$$
g=h_{3}\left(h_{4}\left(h_{2}^{\prime}+x_{m}^{\prime}\right)+h_{1}^{\prime} x_{m}\right)+h_{3}^{\prime}\left(h_{4} x_{m}+h_{1}\left(h_{2} \oplus x_{m}\right)\right),
$$

where $h_{i}\left(Y_{i}\right)=\bigvee_{j \in Y_{i}} x_{j}, i \in\{1,2,4\}, h_{3}\left(Y_{3}\right)=\left(h_{31}\left(Y_{31}\right) \oplus x_{k}\right)^{\prime}$ where $Y_{31}=Y_{3}-\left\{x_{k}\right\}, " \oplus "$ is an XOR and $h_{31}\left(Y_{31}\right)=\bigvee_{j \in Y_{31}} x_{j}$.

From the structure of $f$, we can see that the set of all bound-set-preserving orderings of $G_{f}$ is given by $\left\langle\left\langle Y_{1}\right\rangle,\left\langle Y_{2}\right\rangle,\left\langle\left\langle Y_{31}\right\rangle, x_{k}\right\rangle,\left\langle Y_{4}\right\rangle, x_{m}\right\rangle$.

Since, $h_{1}, h_{2}$ and $h_{4}$ are totally symmetric functions, the structure and the size of their ROBDDs do not depend on the variable ordering. In addition, $h_{1}, h_{2}$ and $h_{4}$ are OR operations, and thus their ROBDDs do not contain any pairs of sub-graphs representing functions which are complements of each other. According to , this implies that the OBDD resulting after the substitution of nodes $h_{1}, h_{2}$ and $h_{4}$ in $G_{g}$ by their corresponding ROBDDs is reduced. So, each node labeled by $h_{i}, i \in\{1,2,4\}$, contributes exactly $\left|G_{h_{i}}\right|$ nodes to $G_{f}$ (terminal nodes are not included in the count).


Figure F.1: Two cases of ROBDDs for $g$ with the smallest number of nodes labeled by $h_{1}, h_{2}, h_{4}$.

On the other hand, since $h_{3}$ is decomposable by an XNOR operation, its ROBDD contains pairs of sub-graphs representing functions which are complements of each other. Therefore, the OBDD resulting after the substitution of nodes $h_{3}$ may be non-reduced [62]. The amount of reduction cannot be estimated without analyzing the structure of $G_{g}$ and $G_{h_{3}}$ for each particular order.

To make the size of $G_{f}$ less dependent on the size of $G_{h_{3}}$, we impose the condition that the ROBDDs for $h_{1}, h_{2}$ and $h_{4}$ is much larger than $G_{h_{3}}$, i.e. $\left|G_{h_{1}}\right|=\left|G_{h_{2}}\right|=\left|G_{h_{4}}\right| \gg\left|G_{h_{3}}\right|$.

Then, the only potential candidates for best orderings of $G_{f}$ are the orderings of $G_{g}$ which have the smallest number of nodes labeled by $h_{1}, h_{2}$ and $h_{4}$.

By exhaustive search through all possible orderings of $G_{g}$, we can determine that ROBDDs for orderings $\left(h_{1}, h_{2}, h_{3}, x_{m}, h_{4}\right)$ and $\left(h_{1}, h_{2}, x_{m}\right.$, $h_{3}, h_{4}$ ), shown in Figure F.1, are the only two ROBDDs that have one node for each of $h_{1}, h_{2}$ and $h_{4}$. ROBDDs for all other orderings have more than one node per at least one of $h_{1}, h_{2}$ or $h_{4}$. The overall size of $G_{f}$ is given by $G_{f}=\left|G_{h_{1}}\right|+\left|G_{h_{2}}\right|+\left|G_{h_{4}}\right|+N_{\left[h_{3}, x_{m}\right]}$, where $N_{\left[h_{3}, x_{m}\right]}$ is the number of nodes within the interval shown in Figure F. 1 by dotted lines.

Next, we show that the number of nodes in $G_{f}$ can be reduced by making the ordering not bound-set-preserving.

Suppose the nodes $h_{3}$ in $G_{g}$ are substituted by ROBDDs for $h_{3}=\left(h_{31} \oplus\right.$ $\left.x_{k}\right)^{\prime}$. There are six possible choices to order the variables $h_{31}, x_{k}$ and $x_{m}$
within the interval shown in Figure F. 1 by dotted lines. For each choice, we compute $N_{\left[h_{3}, x_{m}\right]}$. Note, that each node labeled by $h_{31}$ contributes exactly $\left|G_{h_{31}}\right|$ nodes to $G_{f}$, since $h_{31}$ is an OR operation and the reasoning from above applies.

1. For the ordering $\left(h_{31}, x_{k}, x_{m}\right), N_{\left[h_{3}, x_{m}\right]}=3\left|G_{h_{31}}\right|+6+5$ (Fig. F.2(a)).
2. For $\left(h_{31}, x_{m}, x_{k}\right), N_{\left[h_{3}, x_{m}\right]}=3\left|G_{h_{31}}\right|+6+4$ (Fig. F.2(b)).
3. For $\left(x_{m}, h_{31}, x_{k}\right), N_{\left[h_{3}, x_{m}\right]}=3+4\left|G_{h_{31}}\right|+4$ (Fig. F.2(c)).
4. Since $h_{3}=\left(h_{31} \oplus x_{k}\right)^{\prime}$ and XNOR is symmetric, the graph for the ordering $\left(x_{m}, x_{k}, h_{31}\right)$ is the same as the graph for the ordering $\left(x_{m}, h_{31}, x_{k}\right)$ (Fig. F.2(c)) with the variables $x_{k}$ and $h_{31}$ permuted. $N_{\left[h_{3}, x_{m}\right]}=$ $3+4+4\left|G_{h_{31}}\right|$.
5. For $\left(x_{k}, x_{m}, h_{31}\right)$, we have $N_{\left[h_{3}, x_{m}\right]}=3+6+4\left|G_{h_{31}}\right|$. The structure of the graph is the same as in Figure F.2(b) with the variables $x_{k}$ and $h_{31}$ permuted.
6. For $\left(x_{k}, h_{31}, x_{m}\right), N_{\left[h_{3}, x_{m}\right]}=3+6\left|G_{h_{31}}\right|+5$. The structure of the graph is the same as in Figure F.2(a) with the variables $x_{k}$ and $h_{31}$ permuted.

For $\left|G_{h_{31}}\right| \geq 4$ the ordering $\left(h_{1}, h_{2}, h_{31}, x_{m}, x_{k}, h_{4}\right)$ (Fig. F.2(b)) gives us the smallest number of nodes. This ordering does not preserve the bound set $Y_{3}$. Therefore, the best ordering for $G_{f}$ is not bound-set-preserving. This proves the theorem.

Theorem 12 also holds for ROBDDs with complemented edges (for the same function as in the proof).

## F. 3 Conclusion

In this paper, we show that bound-set-preserving orderings may not be best for ROBDDs. Such cases, however, are rare. Their existence does not diminish the practical value of using bound sets as a guide for grouping ROBDD variables, but should be noted as a possibility.


Figure F.2: ROBDD for different orderings.

## Paper $G$

## Kauffman Networks: Analysis and Applications

Elena Dubrova, Maxim Teslenko and Andrés Martinelli. Published in the "Proceedings of the ACM/IEEE International Conference on ComputerAided Design 2005" (ICCAD 2005), November 6-10, 2005, San Jose, California, USA, pp. 479-484

# Kauffman Networks: Analysis and Applications 

Elena Dubrova* Maxim Teslenko* Andres Martinelli*


#### Abstract

A Kauffman network is an abstract model of gene regulatory networks. Each gene is represented by a vertex. An edge from one vertex to another implies that the former gene regulates the latter. Statistical features of Kauffman networks match the characteristics of living cells. The number of cycles in the network's state space, called attractors, corresponds to the number of different cell types. The attractor's length corresponds to the cell cycle time. The sensitivity of attractors to different kinds of disturbances, modeled by changing a network connection, the state of a vertex, or the associated function, reflects the stability of the cell to damage, mutations and virus attacks. In order to evaluate attractors, their number and lengths have to be computed. This problem is the major open problem related to Kauffman networks. Available algorithms can only handle networks with less than a hundred vertices. The number of genes in a cell is often larger. In this paper, we present a set of efficient algorithms for computing attractors in large Kauffman networks., enabling the modeling of real living cells. The resulting software package will make possible analyzing Kauffman networks with more than 10.000 vertices, thus enabling the modeling of real living cells. The resulting software package is hoped to be of assistance in understanding the principles of gene interactions and discovering a computing scheme operating on these principles.


## G. 1 Introduction

The gene regulatory network is one of the most important signaling networks in living cells. It is composed of the interactions of proteins with the

[^16]genome [3]. The major discovery related to gene regulatory networks was made in 1961 by French biologists François Jacob and Jacques Monod [86]. They found that a small fraction of the thousands of genes in the DNA molecule acts as tiny "switches". By exposing a cell to a certain hormone, these switches can be turned "on" or "off". The activated genes send chemical signals to other genes which, in turn, get either activated or repressed. The signals propagate along the DNA molecule until the cell settles down into a stable pattern.

Jacob and Monod's discovery showed that DNA is not just a blueprint for the cell, but rather an automaton which allows for the creation of different types of cells. It answered the long open question of how one fertilized egg cell could differentiate itself into brain cells, lung cells, muscle cells, and other types of cells that form a newborn baby. Each kind of cells corresponds to a different pattern of activated genes in the automaton.

In 1969 Stuart Kauffman proposed using Boolean networks for modeling gene regulatory networks [92]. Each gene is represented by a vertex in a directed graph. An edge from one vertex to another implies a causal link between the two genes. The "on" state of a vertex corresponds to the gene being expressed. Time is viewed as proceeding in discrete steps. At each step, the new state of a vertex $v$ is a Boolean function of the previous states of the vertices which are predecessors of $v$.

We discovered that many problems related to Kauffman networks are similar to the problems in logic synthesis and verification of electronic circuits. For example, the problem of finding relevant elements in Kauffman networks [12] is similar to the problem of removing redundancy in sequential logic circuits [14]. The problem of identifying state cycles in Kauffman networks [145] is related to the problem of image computation in model checking [115].

After examining the state-of-the-art in Kauffman networks, we found that existing methods for their analysis are quite immature compared to the approaches used in logic synthesis and verification. There are efficient techniques for removing redundancy from a circuit with millions of gates [14] and for verifying finite state machines with $10^{20}$ states [40]. The programs available for computing state cycles in Kauffman networks can only deal with networks with less than 32 relevant vertices [11, 157, 19, 143]. The number of genes in a cell is often larger. For example, the tiny worm Caenorhabditis elegans has 19.099 genes. A small flower in the mustard family, Arabidopis, has 25.498 genes [140].

To bridge this gap, we developed algorithms for redundancy removal and partitioning for Kauffman networks that have linear-time complexity and are feasible for networks with millions of vertices [66, 61, 65]. These algorithms are first steps towards solving the more central problem of computing state cycles in large Kauffman networks, which is addressed in this paper.

## G. 2 Kauffman Networks

In this section, we give a brief introduction to Kauffman networks. For a more detailed description, the reader is referred to [4].

## Definition of Kauffman Networks

Kauffman networks are a class of random $n k$-Boolean networks [8]. A random $n k$-Boolean network is a synchronous Boolean automaton with $n$ vertices. Each vertex has exactly $k$ incoming edges, assigned at random, and an associated Boolean function. Functions are selected so that they evaluate to the values 0 and 1 with given probabilities $p$ and $1-p$, respectively. Time is viewed as proceeding in discrete steps. At each step, the new state of a vertex $v$ is a Boolean function of the previous states of the predecessors of $v$.

A Kauffman network is a random $n k$-Boolean network with $k=2$ and $p=0.5$, i.e. each vertex has two predecessors and Boolean functions are assigned to vertices independently and uniformly at random from the set of 16 possible 2 -variable Boolean functions [129]. The state $\sigma_{v_{i}}$ of a vertex $v_{i}$ at time $t+1$ is determined by the states of its predecessors $v_{l}$ and $v_{r}$, $i, l, r \in\{1,2, \ldots, n\}$, as:

$$
\sigma_{v_{i}}(t+1)=f_{v_{i}}\left(\sigma_{v_{l}}(t), \sigma_{v_{r}}(t)\right)
$$

where $f_{v_{i}}:\{0,1\}^{2} \rightarrow\{0,1\}$ is the Boolean function associated to $v_{i}$. The vector $\left(\sigma_{v_{1}}(t), \sigma_{v_{2}}(t), \ldots, \sigma_{v_{n}}(t)\right)$ represents the state of the network at time $t$. An example of a Kauffman network with ten vertices is shown in Figure G.1. We use ".", "+" and """ to denote the Boolean operations AND, OR and NOT, respectively.


Figure G.1: Example of a Kauffman network. The state of a vertex $v_{i}$ at time $t+1$ is given by $\sigma_{v_{i}}(t+1)=f_{v_{i}}\left(\sigma_{v_{l}}(t), \sigma_{v_{r}}(t)\right)$, where $v_{l}$ and $v_{r}$ are the predecessors of $v_{i}$, and $f_{v_{i}}$ is the Boolean function associated to $v_{i}$.

## Frozen and chaotic phases

The parameters $k$ and $p$ determine the dynamics of the network. For a given probability $p$, there is a critical number of inputs, $k_{c}$, below which the network is in the frozen phase and above which the network is in the chaotic phase [54]:

$$
\begin{equation*}
k_{c}=\frac{1}{2 p(1-p)} . \tag{G.1}
\end{equation*}
$$

If a network is in the frozen phase, then, independently of the initial state, a stable state is reached after a few steps [70]. Small changes in network's connections, states of vertices, or associated Boolean functions, typically create no variations in the network's dynamics.

In the chaotic phase, the length of state cycles is of order of $2^{n}$. The dynamics of the network is very sensitive to changes in network's connections, states of vertices, or associated Boolean functions [109].

On the critical line between the frozen and the chaotic phases, the network exhibits self-organized critical behavior, ensuring both stability and evolutionary improvements [10]. Statistical features of random $n k$-Boolean
networks on the critical line are shown to match the characteristics of real cells and organisms $[92,93,4]$. For $p=0.5$, the critical number of inputs is $k_{c}=2$, so Kauffman networks are on the critical line.

Apart from gene regulatory networks, Kauffman networks have been applied to the problems of cell differentiation [83], immune response [94], and evolution [28]. They have also attracted the interest of physicists due to their analogy with disordered systems studied in statistical mechanics, such as the mean field spin glass [52].

## Attractors

Since the number of possible states of a Kauffman network is finite (up to $2^{n}$ ), any sequence of consecutive states of a network eventually converges to either a single state, or a cycle of states, called attractor. The number and length of attractors represent two important parameters of the cell modeled by a Kauffman network. The number of attractors corresponds to the number of different cell types. For example, humans have 20.000-25.000 genes (the exact number is not known yet) and about 250 cell types [106]. The attractor's length corresponds to the cell cycle time. Cell cycle time refers to the amount of time required for a cell to grow and divide into two daughter cells. The length of the total cell cycle varies for different types of cells.

The human body has a sophisticated system for maintaining normal cell repair and growth. The body interacts with cells through a feedback system that signals a cell to enter different phases of the cycle [51]. If a person is sick, e.g suffers from cancer, then this feedback system does not function normally and cancer cells enter the cell cycle independently of the body's signals. The number and length of attractors of a Kauffman network serve as indicators of the health of the cell modeled by the network [145]. The sensitivity of attractors to different kinds of disturbances, modeled by changing the state of a vertex, the associated Boolean function, or a network connection, reflects the stability of the cell to damage, mutations and virus attacks.

In order to evaluate attractors, their number and length have to be computed. This problem is the major problem in the analysis of Kauffman networks, for which no efficient solution is found so far. Available algorithms for exact computation of attractors can only handle networks with less than 32 non-redundant vertices [11, 157, 19, 143]. For larger networks, the median instead of the exact values on the number of attractors is computed using the

```
algorithm RemoveRedundant \((V, E)\)
 /* I. Edge Combining */
 for each \(v \in V\) do
 if two incoming edges of \(v\) come from the same vertex then
 Simplify \(f_{v}\);
 /* II. Constant Propagation */
 \(R_{1}=\emptyset\);
 for each \(v \in V\) do
 if \(f_{v}\) is a constant then
 Append \(v\) at the end of \(R_{1}\);
 for each \(v \in R_{1}\) do
 for each \(u \in S_{v}-R_{1}\) do
 Simplify \(f_{u}\) by substituting constant \(f_{v}\);
 if \(f_{u}\) is a constant then
 Append \(u\) at the end of \(R_{1}\);
 Remove all \(v \in R_{1}\) and all edges connected to \(v\);
 /* III. Copy Propagation */
 for each \(v \in V\) do
 if \(f_{v}\) is a 1 -variable function then
 Remove the edge \((u, v)\), where \(u\) is the
 predecessor of \(v\) on which \(v\) does not depend;
 /* IV. Dead Code Elimination */
 \(R_{2}=\emptyset\);
 for each \(v \in V\) do
 if \(S_{v}=\emptyset\) then
 Append \(v\) at the end of \(R_{2}\);
 for each \(v \in R_{2}\) do
 for each \(u \in P_{v}-R_{2}\) do
 if all ancestors of \(u\) are in \(R_{2}\) then
 Append \(u\) at the end of \(R_{2}\);
 Remove all \(v \in R_{2}\) and all edges connected to \(v\);
end
```

Figure G.2: The algorithm for finding redundant vertices in Kauffman networks.
following technique [143]. Repeatedly, an initial state is chosen at random and the attractor reachable from this state is computed. If 1000 consecutive attempts yield no new attractor, the algorithm terminates. The resulting number is used as a lower bound on the number of attractors in the network.

## G. 3 Redundancy Removal

Redundancy is an essential feature of biological systems, ensuring their correct behavior in presence of internal or external disturbances. An overwhelming percentage (about $95 \%$ ) of DNA of humans is redundant to the


Figure G.3: Reduced network $G_{R}$ for the Kauffman network in Figure G.1.
metabolic and developmental processes. Such "junk" DNA is believed to act as a protective buffer against genetic damage and harmful mutations, reducing the probability that any single, random offense to the nucleotide sequence will affect the organism [147].

In the context of Kauffman networks, redundancy is defined as follows. Let $G=(V, E)$ be a Kauffman network, where $V$ is the set of vertices and $E \subseteq V \times V$ is the set of edges connecting the vertices.

Definition G.3.1: A vertex $v \in V$ of a Kauffman network $G$ is redundant if the network obtained from $G$ by removing $v$ has the same number and length of attractors as $G$.

If a vertex in not redundant, it is called relevant [11].
In [11], an algorithm for computing the set of all redundant vertices was presented. This algorithm has a high complexity, and therefore is only applicable to small Kauffman networks with up to a hundred vertices. In [61], we presented an algorithm RemoveRedundant (Figure G.2), which quickly finds structural redundancy and some simple cases of functional redundancy. The phases II and IV of Remove Redundant are similar to the decimation procedure of [19], although a detailed comparison is hard to do because no pseudo-code is shown in [19]. The ordering of the phases of the algorithm is very important. For example, if the phase IV is performed before the phase II, then usually less redundant vertices are found.

Let $P_{v}=\{u \in V \mid(u, v) \in E\}$ be a set of predecessors of $v \in V$ and $S_{v}=\{u \in V \mid(v, u) \in E\}$ be a set of successors of $v$.

RemoveRedundant first checks whether there are vertices $v$ with two incoming edges coming from the same vertex. If yes, the associated functions $f_{v}$ are simplified.

Then, RemoveRedundant classifies as redundant all vertices $v$ whose associated function $f_{v}$ is constant 0 or constant 1 . Such vertices are collected in a list $R_{1}$. Then, for every vertex $v \in R_{1}$, successors of $v$ are visited and the functions associated to the successors are simplified. The simplification is done by substituting the constant value of $f_{v}$ in the function of the successor $u$. If as a result of the simplification the function $f_{u}$ reduces to a constant, then $u$ is appended to $R_{1}$.

Second, RemoveRedundant finds all vertices whose associated function $f_{v}$ is a single-variable function. The edge between $v$ and the predecessor of $v$ which $v$ does not depend on is removed.

Next, RemoveRedundant classifies as redundant all vertices which have no successors. Such vertices are collected in a list $R_{2}$. For every vertex $v \in R_{2}$, both predecessors of $v$ are visited. If all successors of some predecessor $u \in P_{v}$ are redundant, $u$ is appended at the end of $R_{2}$.

The worst-case time complexity of RemoveRedundant is $O(|V|+|E|)$, where $|V|$ is the number of vertices and $|E|$ is the number of edges in $G$.

As we mentioned before, RemoveRedundant might not identify all cases of functional redundancy. For example, a vertex may have a constant output value due to the correlation of its input variables. For example, if a vertex $v$ with an associated OR (AND) function has predecessors $v_{l}$ and $v_{r}$ with functions $f_{v_{l}}=\sigma_{v_{j}}$ and $f_{v_{r}}=\sigma_{v_{j}}^{\prime}$, then the value of $f_{v}$ is always 1 (0). Such cases of redundancy are not detected by RemoveRedundant.

Let $G_{R}$ be the reduced network obtained from $G$ by removing redundant vertices. The reduced network for the example in Figure G. 1 is shown in Figure G.3. Its state transition graph is given in Figure G.4. Each vertex of the state transition graph represents a 5-tuple $\left(\sigma\left(v_{1}\right) \sigma\left(v_{2}\right) \sigma\left(v_{5}\right) \sigma\left(v_{7}\right) \sigma\left(v_{9}\right)\right)$ of values of states on the relevant vertices $v_{1}, v_{2}, v_{5}, v_{7}, v_{9}$. There are two attractors: $\{01111,01110,00100,10000,10011,01011\}$, of length six, and $\{00101,11010,00111,01010\}$, of length four. By Definition G.3.1, by removing redundant vertices we do not change the total number and length of attractors in a Kauffman network. Therefore, $G_{R}$ has the same number and length of attractors as $G$.


Figure G.4: State transition graph of the Kauffman network in Figure G.3. Each state is a 5 -tuple $\left(\sigma\left(v_{1}\right) \sigma\left(v_{2}\right) \sigma\left(v_{5}\right) \sigma\left(v_{7}\right) \sigma\left(v_{9}\right)\right)$.

## G. 4 Partitioning

The vertices of $G_{R}$ induce a number of connected components.
Definition G.4.1: Two relevant vertices are in the same component if and only if there is an undirected path between them.

A path is called undirected if it ignores the direction of edges.
Connected components can be computed in $O(|V|+|E|)$ time, where $|V|$ is the number of vertices and $|E|$ is the number of edges of $G_{R}$, using the following algorithm [149]. To find a connected component number $i$, the function ComponentSearch $(v)$ is called for a vertex $v$ which has not been assigned to a component yet. ComponentSearch does nothing if $v$ has been assigned to a component already. Otherwise, ComponentSearch assigns $v$ to the component $i$ and calls itself recursively for all predecessors and successors of $v$. The process repeats with the counter $i$ incremented until all vertices are assigned.

In [65], we have shown that attractors of a Kauffman network can be
computed compositionally from the attractors of the connected components of $G_{R}$. Let $\left\{G_{1}, G_{2}, \ldots, G_{p}\right\}$ be the set of components of $G_{R}, N_{i}$ be the number of attractors of $G_{i}, L_{i j}$ be the length of the $j$ th attractor $G_{i}$ and $I=I_{1} \times I_{2} \times \ldots \times I_{p}$ be the Cartesian product of sets $I_{i}=\left\{i_{1}, i_{2}, \ldots, i_{N_{i}}\right\}$, $i=\{1,2, \ldots, p\}, j=\left\{1,2, \ldots, N_{i}\right\}$. Then, the total number of attractors in $G_{R}$ is given by

$$
N=\sum_{\forall\left(i_{1}, \ldots, i_{p}\right) \in I} \prod_{j=2}^{p}\left(\left(\left(L_{1 i_{1}} \bullet L_{2 i_{2}}\right) \bullet L_{3 i_{3}}\right) \ldots \bullet L_{j-1 i_{j-1}}\right) \circ L_{j i_{j}}
$$

where " $\bullet$ " is the least common multiple operation and "०" is the greatest common divisor operation. The maximum length of attractors is given by

$$
L_{\max }=\max _{\forall\left(i_{1}, \ldots, i_{p}\right) \in I}\left(\left(L_{1 i_{1}} \bullet L_{2 i_{2}}\right) \bullet L_{3 i_{3}}\right) \ldots \bullet L_{p i_{p}}
$$

where "•" is the least common multiple operation.

## G. 5 Computation of Attractors

To be able to compute attractors in a large Kauffman network, it is important to use an efficient representation for its set of states, and for the transition relation on this set. In our current implementation, we use $R e-$ duced Ordered Binary Decision Diagrams (ROBDDs) [36].

A transition relation defines the next state values of the vertices in terms of the current state values. We derive the transition relation in the standard way [40], by assigning every vertex $v_{i}$ of the network a state variable $x_{v_{i}}$ and making two copies of the set of state variables: $s=\left(x_{v_{1}}, x_{v_{2}}, \ldots, x_{v_{r}}\right)$, denoting the variables of the current state, and $s^{+}=\left(x_{v_{1}}^{+}, x_{v_{2}}^{+}, \ldots, x_{v_{r}}^{+}\right)$, denoting the variables of the next state. Using this notation, the characteristic formula for the transition relation of a Kauffman network is given by:

$$
T\left(s, s^{+}\right)=\bigwedge_{i=1}^{r}\left(x_{v_{i}}^{+} \leftrightarrow f_{i}\left(x_{v_{i_{1}}}, x_{v_{i_{2}}}\right)\right)
$$

where $r$ is the number of relevant vertices, $f_{i}$ is the Boolean function associated with the vertex $v_{i}$ and $v_{i_{1}}$ and $v_{i_{2}}$ are the predecessors of $v_{i}$.

As an example, consider the reduced Kauffman network in Figure G. 3 and its state transition graph in Figure G.4. We have $s=\left(x_{v_{1}}, x_{v_{2}}, x_{v_{5}}, x_{v_{7}}, x_{v_{9}}\right)$
and $s^{+}=\left(x_{v_{1}}^{+}, x_{v_{2}}^{+}, x_{v_{5}}^{+}, x_{v_{7}}^{+}, x_{v_{9}}^{+}\right)$. The transition relation is given by:

$$
\begin{aligned}
T\left(s, s^{+}\right)= & \left(x_{v_{1}}^{+} \leftrightarrow x_{v_{7}}^{\prime}\right) \wedge\left(x_{v_{2}}^{+} \leftrightarrow x_{v_{9}}\right) \wedge\left(x_{v_{5}}^{+} \leftrightarrow x_{v_{2}}\right) \\
& \wedge\left(x_{v_{7}}^{+} \leftrightarrow\left(x_{v_{1}}+x_{v_{9}}\right)\right) \wedge\left(x_{v_{9}}^{+} \leftrightarrow x_{v_{5}}^{\prime}\right)
\end{aligned}
$$

Let $T^{i}\left(s, s^{+}\right)$denote the transition relation describing the set of next states $s^{+}$that can be reached from any current state $s$ in $i$ steps. For $i=2$, $T^{2}\left(s, s^{+}\right)$is computed as follows:

$$
T^{2}\left(s, s^{+}\right)=\exists s^{++} .\left(T\left(s, s^{++}\right) \wedge T\left(s^{++}, s^{+}\right)\right)
$$

By applying squaring iteratively, we can obtain $T^{2^{i}}\left(s, s^{+}\right)$in $i$ steps for any $i$ [39].

One one hand, for a Kauffman network with $r$ relevant vertices, it cannot take more than $2^{r}$ steps to reach an attractor from any state. One the other hand, "overshooting" is not a problem because, once entered, an attractor is never left. Therefore, for any initial state $s$, the next state $s^{+}$obtained by the transition defined by $T^{2^{r}}\left(s, s^{+}\right)$is a state of an attractor.

Let $F_{i}(s)$ denote the set of states reachable from a given set of initial states in $i$ steps. Using the transition relation $T^{2^{r}}\left(s, s^{+}\right)$, we can compute the set of states $F_{2^{r}}(s)$ that can be reached from any state in $2^{r}$ steps as:

$$
F_{2^{r}}\left(s^{+}\right)=\exists s \cdot T^{2^{r}}\left(s, s^{+}\right)
$$

$F_{2^{r}}\left(s^{+}\right)$represents the set of states of all attractors. It remains to distinguish between different attractors. This can be done by picking up an arbitrary state $s$ of $F_{2^{r}}\left(s^{+}\right)$and following its next states until $s$ is not reached again. This process is repeated starting from a state of $F_{2^{r}}\left(s^{+}\right)$which was not visited previously until $F_{2^{r}}\left(s^{+}\right)$is covered.

Our simulation results show that the length and the number of attractors in a Kauffman network with $n$ vertices are of order of $\sqrt{n}$, which makes the proposed approach efficient.

## G. 6 Simulation Results

This section shows simulation results for Kauffman networks of sizes from 10 to $10^{7}$ vertices (Table G.1). Column 2 gives the average number of relevant vertices computed using RemoveRedundant. Column 3 shows

| total <br> number <br> of <br> vertices | average <br> number of <br> relevant <br> vertices | average <br> size of <br> the largest <br> component | average <br> number <br> of <br> components | average <br> number <br> of <br> attractors |
| :---: | :---: | :---: | :---: | :---: |
| 10 | 5 | 5 | 1.1 | 2.67 |
| $10^{2}$ | 25 | 25 | 1.4 | 11.7 |
| $10^{3}$ | 93 | 92 | 1.8 | $23.9^{*}$ |
| $10^{4}$ | 270 | 266 | 2.4 | - |
| $10^{5}$ | 690 | 682 | 3.1 | - |
| $10^{6}$ | 1614 | 1596 | 3.7 | - |
| $10^{7}$ | 3502 | 3463 | 4.3 | - |

Table G.1: Simulation results. Average values for 1000 networks. "*" indicates that the average is computed only for successfully terminated cases.
the average size of the largest connected component of the sub-graph $G_{R}$ induced by the relevant vertices and column 4 gives the average number of components. Column 5 shows the average number of attractors.

The simulation results show that we need to find a better way of partitioning. Currently, the size of the largest component of the sub-graph induced by the relevant vertices (column 3) is $\Theta(r)$, where $r$ is the number of relevant vertices in the sub-graph, i.e. we observe so called "giant" component phenomena [123]. A technique resulting in a more balanced partitioning is needed.

Another problem is that, on random graphs, ROBDDs blow up more frequently than on sequential circuits. Currently, we cannot compute the exact number of attractors in most networks with $10^{3}$ vertices and larger. The number of attractors shown in column 5 for networks with $10^{3}$ vertices is the average value computed for successfully terminated cases only. We did have occasional blow ups for networks with 100 vertices as well. The number of attractors shown in column 5 for networks with 100 vertices is the average value computed for 1000 successfully terminated cases. In our future work, we plan to investigate possibilities for implementing the algorithm presented in Section G. 5 using Boolean circuits $[18,1,96,24]$, rather than ROBDDs, and combined approaches $[128,155]$. We will also try reducing the state space by detecting equivalent state variables [153] and by partitioning the transition relation [74].

## G. 7 Applications

In this section we present some ideas on how Kauffman networks can be used for implementing Boolean functions and for achieving fault-tolerance. The ideas we describe are preliminary, more research is needed to justify them.

## Implementing logic functions by Kauffman networks

An interesting direction of research is investigating how Kauffman networks can be used for implementing logic functions. One possibility is to use the states of relevant vertices of a network to represent variables of the function, and to use the attractors to represent the function's values.

To be more specific, suppose that we have a Kauffman network $G$ with $r$ relevant vertices $v_{1}, \ldots, v_{r}$ and $m$ attractors $A_{1}, A_{2}, \ldots, A_{m}$. The basins of attractions of $A_{i}$ 's partition the Boolean space $B^{r}$ into $m$ connected components. We assign a value $i, i \in\{0,1, \ldots, m-1\}$ to the attractor $A_{i}$ and assume that the set of minterms represented by the states in the basin of attraction of $A_{i}$ is mapped to $k$. Then, $G$ implements the function $f:\{0,1\}^{r} \rightarrow\{0,1, \ldots, m-1\}$ of variables $x_{1}, \ldots, x_{r}$, where the value of the variable $x_{i}$ corresponds to the state of relevant vertex $v_{i}$. The mapping is unique up to permutation of $m$ output values of $f$. If $m=2$, then $G$ implements a Boolean function.

As an example, consider the Kauffman network $G$ shown in Figure G.5. The vertices $v_{4}$ and $v_{5}$ are relevant vertices, determining the dynamic of $G$ according to the reduced network in Figure G.6(a). The state transition graph of the reduced network is shown in Figure G.6(b). There are two attractors, $A_{1}$ and $A_{2}$. We assign the logic 0 to $A_{1}$ and the logic 1 to $A_{2}$. The initial states 00,01 and 10 terminate in the attractor $A_{1}$ (logic 0 ) and the initial state 11 terminates in the attractor $A_{2}$ (logic 1). So, $G$ implements the 2 -input Boolean AND.

## Stability

Extensive experimental results confirm that Kauffman networks are tolerant to faults, i.e. typically the number and length of attractors are not affected by small changes [93, 4]. The following types of fault models are used to model the effects of diseases, mutations, or injuries on a cell:


Figure G.5: Example of a network implementing the 2-input AND.


Figure G.6: (a) Reduced network for the Kauffman network in Figure G.5. (b) Its state transition graph. Each state is a pair $\left(\sigma\left(v_{4}\right) \sigma\left(v_{5}\right)\right)$. There are two attractors: $A_{1}=\{01,10\}$ and $A_{2}=\{11\}$.


Figure G.7: An alternative reduced network for the 2-input AND.


Figure G.8: (a) Reduced network for the Kauffman network in Figure G.5, after three mutation described in Section G. 7 has been applied. (b) Its state transition graph. Each state is a pair $\left(\sigma\left(v_{3}\right) \sigma\left(v_{5}\right)\right)$. There are two attractors: $A_{1}=\{01,10\}$ and $A_{2}=\{00,11\}$.

- a predecessor of a vertex $v$ is changed, i.e. the edge $(u, v)$ is replaced by an edge $(w, v), v, u, w \in V$;
- the state of a vertex is changed to the complemented value;
- Boolean function of a vertex is changed to a different Boolean function.

On one hand, the stability of Kauffman networks is due to the large percentage of redundancy in the network. $\Theta(n-\sqrt{n})$ of $n$ vertices are typically redundant. On the other hand, the stability is due to the nonuniqueness of the network representation. The same dynamic behavior can be achieved by many different Kauffman networks. For instance, the 2-input AND gate could be implemented in many other ways than the one shown in Figure G.5. For example, the reduced network in Figure G. 7 has the same state transition graph as the one in Figure G.6.

## Evolvability

An essential feature of living organisms is their capability to adapt to a changing environment. Kauffman networks have been shown to be successful in evolving to a predefined target function.

As an example, suppose that the following three mutations are applied to the network in Figure G.5:

1. edge $\left(v_{4}, v_{5}\right)$ is replaced by $\left(v_{3}, v_{5}\right)$;
2. edge $\left(v_{2}, v_{3}\right)$ is replaced by $\left(v_{3}, v_{3}\right)$;
3. edge $\left(v_{7}, v_{3}\right)$ is replaced by $\left(v_{5}, v_{3}\right)$.

After removing redundant vertices from the resulting modified network, we obtain the reduced network shown in Figure G.8. Its state space has two attractors, $A_{1}$ and $A_{2}$. If we assign the logic 0 to $A_{1}$ and the logic 1 to $A_{2}$, then the initial states 00 and 11 terminate in 1 , while 01 and 10 terminate in 0 . So, the modified network implements the 2 -input Boolean XNOR.

The example given above is intended to demonstrate that an evolution from one functionality to another is possible.

## G. 8 Conclusion and Future Work

This paper presents a set of algorithms for the analysis of Kauffman networks. Redundancy removal and partitioning algorithms have been presented previously in $[66,61,65]$. The algorithm for computing attractors is a new contribution, as well as the proposed applications.

We would like to stress that the major challenge is the size of the networks we are targeting. Small Kauffman networks are of theoretical interest only. They cannot adequately model gene interactions of living cells. We aim at developing a practical software package, applicable to real world size problems.

A software package that can model gene interactions is of primary importance to biology and medicine. Such a package will provide a framework for obtaining simulation results that can be independently evaluated by in vivo experiments. It can be used for various purposes, including:

1. to study the effects of diseases, mutations, or injuries on a cell;
2. to infer gene interactions that produce abnormal cells, e.g. cancer;
3. to understand the process of aging of a cell over time.

In the future, we will also investigate possibilities for enhancing Kauffman networks as a model. Kauffman networks have a number of drawbacks. First, input connectivity of gene regulatory networks is much higher than $k=2$. For example, it is more than 20 in $\beta$-globine gene of humans and more than 60 for the platelet-derived growth factor $\beta$ receptor [4]. We will consider networks with a higher input connectivity $k$ and a smaller probability $p$, satisfying the equation (G.1).

Second, using Boolean functions for describing the rules of regulatory interactions between the genes seems too simplistic. It is known that the level of gene expression depends on the presence of activating or repressing proteins. However, the absence of a protein can also influence the gene expression [4]. Using multiple-valued functions instead of Boolean ones for representing the rules of regulations could be a better option.

Third, the number of attractors in Kauffman networks is a function of the number of vertices. However, organisms with a similar number of genes may have different numbers of cell types. For example, humans have 20.00025.000 genes and more than 250 cell types [106]. The flower Arabidopis has a similar number of genes, 25.498 , but only about 40 cell types [21]. We will investigate which other factors influence the number of attractors.

As a longer-term goal, we will attempt to develop a computing scheme based on the principles of gene interactions. A living cell is, essentially, a molecular computer that configures itself as part of the execution of its code. By understanding how genes interact with each other, we might find a way to build a novel type of computer chips. As silicon transistor technology approaches nano-meter dimensions and its speed and integration slow down, the need for new ways of computing becomes more and more evident.

## Bibliography

[1] P. A. Abdulla, P. Bjesse, and N. Eén. Symbolic reachability analysis based on SAT-solvers. In Susanne Graf and Michael I. Schwartzbach, editors, TACAS, volume 1785 of Lecture Notes in Computer Science, pages 411-425. Springer, 2000. ISBN 3-540-67282-6.
[2] S. Akers. Binary decision diagrams. IEEE Transactions on Computers, 27(6):509-516, 1978.
[3] B. Alberts, D. Bray, J. Lewis, M. Ra, K. Roberts, and J. D. Watson. Molecular Biology of the Cell. Garland Publishing, New York, 1994.
[4] M. Aldana, S. Coopersmith, and L. P. Kadanoff. Boolean dynamics with random couplings. http://arXiv.org/abs/adap-org/9305001.
[5] S. Alstrup, J. Clausen, and K. Jorgensen. An $O(|v| *|e|)$ algorithm for finding immediate multiple-vertex dominators. Information Processing Letters, 59(1):9-11, 1996.
[6] I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and G. L. Snider. Digital logic gate using quantum-dot cellular automata. Science, 284:289-291, 1999.
[7] R. Ashenhurst. The decomposition of switching functions. In Proceedings International Symp. Theory of Switching, volume 29, pages 74-116, 1959.
[8] H. Atlan, F. Fogelman-Soulie, J. Salomon, and G. Weisbuch. Random Boolean networks. Cybernetics and System, 12:103-121, 2001.
[9] K. Bartlett, W. Cohen, A. de Geus, and G. Hachtel. Synthesis and optimization of multilevel logic under timing constraints. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 5(4):582-596, October 1986.
[10] U. Bastola and G. Parisi. The critical line of Kauffman networks. J. Theor. Biol., 187:117, 1997.
[11] U. Bastola and G. Parisi. The modular structure of Kauffman networks. Phys. D, 115:219, 1998.
[12] U. Bastola and G. Parisi. Relevant elements, magnetization and dynamic properties in Kauffman networks: a numerical study. Physica D, 115:203, 1998.
[13] T. Bengtsson, A. Martinelli, and E. Dubrova. A BDD-based fast heuristic algorithm for disjoint decomposition. In Proceedings of Asia and South Pacific Design Automation Conference, ASP-DAC03, pages 191-196, Kitakyushu, Japan, January 2003.
[14] M. Berkelaar and K. M. van Eijk. Efficient and effective redundancy removal for million-gate circuits. In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition, page 1088. IEEE Computer Society Press, 2002.
[15] V. Bertacco and M. Damiani. The disjunctive decomposition of logic functions. In Proceedings of the ACM/IEEE International Conference on Computer-Aided Design (ICCAD), pages 78-82, 1997.
[16] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, Micheli, and G. De. Decision diagrams and pass transistor logic synthesis. Technical Report CSL-TR-97-748, Stanford, CA, USA, 1997.
[17] B. B. Bhattacharya and S. C. Seth. On the reconvergent structure of combinational circuits with applications to compact testing. In Proceeding of International Symposium on Fault-Tolerant Computing, pages 264-269, 1987.
[18] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without BDDs. In 5th International Conference on Tools and Algorithms for Construction and Analysis of Systems, pages 193-207, Amsterdam, The Netherlands, March 1999.
[19] S. Bilke and F. Sjunnesson. Stability of the Kauffman model. Physical Review E, 65:016129, 2001.
[20] L. J. Billera. On the composition and decomposition of clutters. Journal of Comb. Theory, 11:234-241, 1971.
[21] K. D. Birnbaum, D. E. Shasha, J. Y. Wang, J. W. Jung, G. M. Lambert, D. W. Galbraith, and P. N. Benfey. A global view of cellular identity in the arabidopsis root. In Proceedings of the International Conference on Arabidopsis Research, Berlin, Germany, July 2004.
[22] Z. W. Birnbaum and J. D. Esary. Modules of coherent binary systems. SIAM Journal of Applied Math., 13:444-451, 1965.
[23] Z. W. Birnbaum and R. H. Möhring. A fast algorithm for the decomposition of graphs and posets. Math. Oper. Res, pages 170-177, 1984.
[24] P. Bjesse. DAG-aware circuit compression for formal verification. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pages 42-49, November 2004.
[25] B. Bollig and I. Wegner. Improving the variable ordering of OBDDs is NP-complete. IEEE Transactions on Computers, 45(9):993-1006, 1996.
[26] M. Bolton. Digital Systems Design with Programmable Logic. AddisonWesley Pub. Co., 1990.
[27] G. Boole. The laws of thought. Prometeus Books, New York, 2003. ISBN 1-59102-089-1. Originally published: An investigation of the laws of thought. 1854.
[28] S. Bornholdt and T. Rohlf. Topological evolution of dynamical networks: Global criticality from local dynamics. Physical Review Letters, 84:6114-6117, 2000.
[29] D. Bostick and G. D. Hachtel. The Boulder optimal logic design system. In Proceedings of the IEEE International Conference on Computer-Aided Design, pages 62-65, November 1987.
[30] K. Brace, R. Rudell, and R. Bryant. Efficient implementation of a BDD package. In Proc. 27th Design Automation Conference, pages 37-111, 1990.
[31] R. S. Braich, N. Chelyapov, C. Johnson, P. W. K. Rothemund, L. Adleman, R. P. Cowburn, and M. E. Welland. Solution of a 20variable 3-SAT problem on a DNA computer. Science, 296:499-502, 2002.
[32] R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. Multi-level logic optimization and the rectangle covering problem. Proceedings of the ACM/IEEE International Conference on ComputerAided Design (ICCAD), pages 66-69, November 1987.
[33] R. K. Brayton and C. McMullen. The decomposition and factorization of Boolean expression. In Proceedings of the IEEE International Symposium of Circuits and Systems, pages 49-54. IEEE, 1982.
[34] R. K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A. Wang. MIS: A multiple-level logic optimization system. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 6(6): 1062-1081, November 1987.
[35] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic. FieldProgrammable Gate Arrays. Kluwer Academic Publishers, 1992.
[36] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput., 35(8):677-691, 1986. ISSN 0018-9340.
[37] R. E. Bryant. Symbolic Boolean manipulation with ordered binarydecision diagrams. ACM Computing Surveys, 24(3):293-318, 1992.
[38] P. Buch, A. Narayan, A. R. Newton, and A. Sangiovanni-Vincentelli. Logic synthesis for large pass transistor circuits. In $p-I C C A D$, pages 663-670, Washington, DC, USA, 1997. IEEE Computer Society. ISBN 0-8186-8200-0.
[39] J.R. Burch, E.M. Clarke, D. E. Long, K.L. McMillan, and D.L. Dill. Symbolic Model Checking for sequential circuit verification. Transactions on Computer-Aided Design of Integrated Circuits and Systems, 13(4):401-442, April 1994.
[40] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic Model Checking: $10^{20}$ States and Beyond. In Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, pages 1-33, Washington, D.C., 1990. IEEE Computer Society Press.
[41] S.-C. Chang, M. Marek-Sadowska, and T. Hwang. Technology mapping for TLU FPGA's based on decomposition of binary decision diagrams. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15:1226-1235, 1996.
[42] S. Chattopadhyay, S. Roy, and P. P. Chaudhuri. KGPMIN: an efficient multilevel multioutput AND-OR-XOR minimizer. IEEE Transactions on CAD of Integrated Circuits and Systems, 16(3):257-265, March 1997.
[43] D. Cheng. Power estimation of digital CMOS circuits and the application to logic synthesis for low power, December 1995. Ph.D. Thesis, University of California at Santa Barbara.
[44] J. Cong, H. P. Li, S. K. Lim, Toshiyuki Shibuya, and Dongmin Xu. Large scale circuit partitioning with loose/stable net removal and signal flow based clustering. In International Conference on ComputerAided Design, pages 441-446, 1997.
[45] J. Cortadella. Bi-decomposition and tree-height reduction for timing optimization. In Proceedings of the ACM/IEEE International Workshop on Logic Synthesis, New Orleans, July 2002. ACM/IEEE.
[46] R. P. Cowburn and M. E. Welland. Room temperature magnetic quantum cellular automata. Science, 287:1466-1468, 2000.
[47] W. H. Cunningham. Decomposition of directed graphs. SIAM Journal of Algebraic and Discrete Methods, 3:214-221, 1982.
[48] H. A. Curtis. A New Approach to the Design of Switching Circuits. D. van Nostrand company, Princeton, New Jersey, 1962.
[49] J. Darringer, W. Joyner, L. Berman, and L. Trevillyan. LSS: Logic synthesis through local transformations. IBM Journal of Research and Development, 25(4):272-280, July 1981.
[50] E. S. Davidson. An algorithm for NAND decomposition under network constraints. IEEE Transactions on Computers, C-18(12):1098-1109, December 1969.
[51] R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, 1989.
[52] B. Derrida and H. Flyvbjerg. Multivalley structure in Kauffman's model: Analogy with spin glass. J. Phys. A: Math. Gen., 19:L1103, 1986.
[53] B. Derrida and H. Flyvbjerg. Distribution of local magnetizations in random networks of automata. J. Phys. A: Math. Gen., 20:L1107, 1987.
[54] B. Derrida and Y. Pomeau. Random networks of automata: a simple annealed approximation. Biophys. Lett., 1:45, 1986.
[55] J-P. Deschamps. Binary simple decomposition of discrete functions. Digital Processes, 1:123-130, 1975.
[56] W. E. Donath and H. Ofek. Automatic identification of equivalence points for Boolean logic verification. IBM Technical Disclosure Bulletin, 18(8):2700-2703, 1976.
[57] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, and M. A. Perkowski. Efficient representation and manipulation of switching functions based on ordered kronecker functional decision diagrams. In Proceedings of the 31st annual conference on Design automation, pages 415-419, New York, NY, USA, 1994. ACM Press. ISBN 0-89791-653-0.
[58] K. E. Drexler. Nanosystems. Wiley, New York, 1992.
[59] E. Dubrova. Composition trees in finding best variable orderings for ROBDDs. In Proceedings of Design, Automation \& Test in Europe Conference, page 1084, 2002.
[60] E. Dubrova. Logic Synthesis and Verification, chapter 4. Kluwer Academic Publishers, 2002.
[61] E. Dubrova. Modeling of gene regulatory systems by random Boolean networks. In Bioengineered and Bioinspired Systems, Sevilla, Spain, 9-11 May 2005.
[62] E. Dubrova and L. Macchiarulo. A comment on graph-based algorithm for Boolean manipulation. IEEE Transactions on Computers, 49(10): 1290-1292, October 2000.
[63] E. Dubrova, D. Miller, and J. Muzio. AOXMIN: A three-level heuristic AND-OR-XOR minimizer for Boolean functions. In Proceedings of the 3rd International Workshop on the Applications of the Reed-Muller Expansion in Circuit Design, page 209, 1997.
[64] E. Dubrova and D. M. Miller. On dependable criteria for dynamic reordering algorithms. In Proc. 7th Int. Workshop on Post-Binary ULSI Systems, pages 46-48, 1998.
[65] E. Dubrova and M. Teslenko. Compositional properties of Random Boolean Networks. Physical Review E, 71, May 2005.
[66] E. Dubrova, M. Teslenko, and H. Tenhunen. Computing attractors in dynamic networks. In Proceedings of International Symposium on Applied Computing (IADIS'2005), pages 535-543, Algarve, Portugal, February 2005.
[67] E. V. Dubrova, C. Muzio, and B. von Stengel. Finding composition trees for multiple-valued functions. In Proceedings of ${ }^{2} 7$ th International Symposium on Multiple-Valued Logic, pages 19-26. IEEE, 1997.
[68] D. M. Eigler, C. P. Lutz, and W. E. Rudge. An atomic switch realized with the scanning tunnelling microscope. Nature, 352:600-602, 1991.
[69] G. Fleisher and L. Maissel. An introduction to array logic. IBM Journal of Research and Development, 19:98-109, March 1975.
[70] H. Flyvbjerg and N. J. Kjaer. Exact solution of Kauffman model with connectivity one. J. Phys. A: Math. Gen., 21:1695, 1988.
[71] A. A. Fraenkel. Abstract Set Theory. North-Holland Publishing, Amsterdam, 1976.
[72] S. J. Friedman and K. J. Supowit. Finding the optimal variable ordering for binary decision diagrams. In Proc. 24th ACM/IEEE Design Automation Conf., pages 348-355, 1987.
[73] M. Fujita, Y. Matsunaga, and T. Kakuda. On variable ordering of binary decision diagrams for the application of multi-level logic synthesis. In Proceedings of the European Conference on Design Automation, pages 50-54, Amsterdam, February 1991.
[74] D. Geist and I. Beer. Efficient model checking by automated ordering of transition relation partitions. In Computer Aided Verification (CAV'94), pages 299-310, Stanford, July 1994. Springer-Verlag.
[75] J. F. Gimpel. The minimization of TANT networks. IEEE Transactions on Electronic Computers, EC-16(1):18-38, February 1967.
[76] D. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love, G. J. Opiteck, and J. C. Ellenbogen. Overview of nanoelectronic devices. Proc. IEEE, 85:521-540, 1997.
[77] R. Gupta. Generalized dominators and post-dominators. In Proceedings of 19th Annual ACM Symposium on Principles of Programming Languages, pages 246-257, 1992.
[78] M. Habib and M. C. Maurer. On the x-join decomposition for undirected graphs. Journal of Appl. Discr. Math., 3:198-205, 1979.
[79] P. Halmos. Naive set theory. Springer-Verlag, New York, 1974. ISBN 0-387-90092-6.
[80] A. J. Heinrich, C. P. Lutz, J. A. Gupta, and D. M. Eigler. Molecule cascades. Science, 298:1381-1387, 2002.
[81] L. Hellermann. A catalog of three-variable OR-invert and AND-invert logical circuits. IEEE Transactions on Electronic Computers, EC-12: 198-223, June 1963.
[82] J.-D Huang, J.-Y Jou, and W.-Z. Shen. Encoding in Roth-Karp decomposition with application to two-output LUT architecture. In Computers and Digital Techniques, IEE Proceedings, Vol.146, Iss.3, pages 131-138. IEE, 1999.
[83] S. Huang and D. E. Ingber. Shape-dependent control of cell growth, differentiation, and apoptosis: Switching between attractors in cell regulatory networks. Experimental Cell Research, 261:91-103, 2000.
[84] Y. Huang, X. Duan, Y. Cui, L. Lauhon, K. Kim, and C. M. Lieber. Logic gates and computation from assembled nanowire building blocks. Science, 294:1313-1317, 2001.
[85] J. Ishikawa, H. Sato, M. Hiramine, K. Ishida, S. Oguri, Y. Kazuma, and S. Murai. A rule-based reorganization system LORES/EX. Proc. International Conference on Computer Design, pages 262-266, October 1988 .
[86] F. Jacob and J. Monod. Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3:318-356, 1961.
[87] S.-W. Jeong. Binary Decision Diagrams and their Applications to Implicit Enumeration Techniques in Logic Synthesis. PhD thesis, University of Colorado, 1992.
[88] S.-W. Jeong, B. Plessier, G. D. Hatchel, and F. Somenzi. Variable ordering and selection for SSM traversal. In Proceedings of the IEEE Int. Conf. on Computer Aided Design, pages 476-479, 1991.
[89] T. Kam, T. Villa, R. K. Brayton, and A. Sangiovanni-Vincentelli. Multi-valued decision diagrams: theory and applications. MultipleValued Logic, 4(1-2):9-62, 1998.
[90] R. M. Karp. Functional decomposition and switching circuit design. Journal of Soc. Indust. Appl. Math., 11(2):291-335, June 1963.
[91] K. Karplus. Using If-Then-Else DAGs for multi-level logic minimization. Technical Report UCSC-CRL-88-29, University of California Santa Cruz, 1988.
[92] S. A. Kauffman. Metabolic stability and epigenesis in randomly constructed nets. Journal of Theoretical Biology, 22:437-467, 1969.
[93] S. A. Kauffman. The Origins of Order: Self-Organization and Selection of Evolution. Oxford University Press, Oxford, 1993.
[94] S. A. Kauffman and E. D. Weinberger. The NK model of rugged fitness landscapes and its application to maturation of the immune response. Journal of Theoretical Biology, 141:211-245, 1989.
[95] R. Krenz and E. Dubrova. On-the-fly proper cut recognition based on circuit graph analysis. In Proceedings of NORCHIP'02, Copenhagen, Denmark, November 2002. poster.
[96] A. Kuehlmann, M. K. Ganai, and V. Paruthi. Circuit-based Boolean reasoning. In Proceedings of the 38th ACM/IEEE Design Automation Conference, pages 232-237, Las Vegas, Nevada, June 2001.
[97] A. Kuehlmann, M.K. Ganai, and V. Paruthi. Circuit-based Boolean reasoning. In Proceedings of the 38th ACM/IEEEDesign Automation Conference, pages 232-237, Las Vegas, NV, June 2001. IEEE Computer Society Press.
[98] Y.-T. Lai, M. Pedram, and S. B. K. Vrudhula. BDD based decomposition of logic functions with application to FPGA synthesis. In $p-D A C$, pages 642-647, 1993.
[99] Yung-Te Lai, K.-R.R. Pan, and M. Pedram. BDD-based function decomposition: algorithms and implementation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 15: 977-990, 1996.
[100] E. L. Lawler. An approach to multilevel Boolean minimization. Journal of the ACM, 11(3):283-295, July 1964.
[101] C. Lee. Representation of switching circuits by binary-decision programs. Bell Systems Technical Journal, 38(4):985-999, 1959.
[102] C. Legl, B. Wurth, and K. Eckl. Computing support-minimal subfunctions during functional decomposition. Transactions on Very Large Scale Integration (VLSI) systems, 6(3):354-363, September 1998.
[103] T. Lengauer and R. E. Tarjan. A fast algorithm for finding dominators in a flowgraph. Transactions of Programming Languages and Systems, 1(1):121-141, July 1979.
[104] C. S. Lent and P. D. Tougaw. A device architecture for computing with quantum dots. Proc. IEEE, 85:541-557, 1997.
[105] R. J. Lipton. Dna solution of hard computational problem. Science, 268:542-545, 1995.
[106] A. Y. Liu and L. D. True. Characterization of prostate cell types by CD cell surface molecules. The American Journal of Pathology, 160: 37-43, 2002.
[107] T.-H. Liu, M. K. Ganai, A. Aziz, and J. L. Burns. Performance driven synthesis for pass-transistor logic. In VLSID '99: Proceedings of the 12th International Conference on VLSI Design, pages 372-377, Washington, DC, USA, 1999. IEEE Computer Society. ISBN 0-7695-0013-7.
[108] E. S. Lowry and C. W. Medlock. Object code optimization. Communications of the ACM, 12(1):13-22, January 1969.
[109] B. Luque and R. V. Sole. Stable core and chaos control in Random Boolean Networks. Journal of Physics A: Mathematical and General, 31:1533-1537, 1998.
[110] S. Malik, A. Wang, R. K. Brayton, and A. Sangiovanni-Vincentelli. Logic verification using binary decision diagrams in a logic synthesis environment. In Proc. International Conference on Computer-Aided Design, pages 6-9, 1988.
[111] A. Martinelli, T. Bengtsson, E. Dubrova, and A. J. Sullivan. RothKarp decomposition of large Boolean functions with application to logic design. In Proceedings of NORCHIP'02, Copenhagen, Denmark, November 2002.
[112] H. Mathony and U. G. Baitinger. CARLOS: An automated multilevel logic design system for CMOS semi-custom integrated circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 7(3):346-355, March 1988.
[113] Y. Matsunaga. An exact and efficient algorithm for disjunctive decomposition. In Proceedings of SASIMI'98, pages 44-50, 1998.
[114] E. J. McCluskey. Minimization of Boolean functions. Bell System Technical Journal, 35:1417-1444, 1959.
[115] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Boston, MA, 1993.
[116] J. D. Meindl, Q. Chen, and J. A. Davis. Limits on silicon nanoelectronics for terascale integration. Science, 293:2044-2049, 2001.
[117] S. Minato. Minimum-width method of variable ordering for binary decision diagrams. IEICE Trans. Fundamentals, E-75-A(3):392-399, 1992.
[118] S. Minato and G. De Micheli. Finding all simple disjunctive decompositions using irredundant sum-of-products forms. In Proceedings of IEEE/ACM International Conference on Computer-Aided Design, pages 111-117, 1998.
[119] A. Mishchenko, B. Steinbach, and M. Perkowski. An algorithm for bi-decomposition of logic functions. In Proceedings of the ACM/IEEE Design Automation Conference (DAC), pages 103-108. IEEE, 2001.
[120] R. H. Möhring. Algorithmic aspects of the substitution decomposition in optimization over relations, set systems and Boolean functions. Annals of Operations Research, 4:195-225, June 1985.
[121] R. H. Möhring and F. J. Radermacher. Substitution decomposition of discrete structures and connections to combinatorial optimization. Ann. Discrete Math, 19:257-264, 1984.
[122] D. Möller, P. Molitor, and R. Drechsler. Symmetry based variable ordering for ROBDDs. In IFIP Workshop on Logic and Architecture Synthesis, 1994.
[123] M. Molloy and B. Reed. The size of the giant component of a random graph with a given degree sequence. Combin. Probab. Comput., 7: 295-305, 1998.
[124] R. Murgai, R. K. Brayton, and A. Sangiovanni-Vincentelli. Optimum functional decomposition using encoding. In $p-D A C$, pages 408-414, New York, NY, USA, 1994. ACM Press. ISBN 0-89791-653-0.
[125] S. Panda and F. Somenzi. Who are the variables in your neighborhood. In Proceedings of IEE/ACM Workshop on Logic Synthesis, pages 1-10, 1995.
[126] W. Paul. Realizing Boolean functions on disjoint sets of variables. Theoretical Computer Science, 2:383-396, 1976.
[127] W. Van Orman Quine. The problem of simplifying truth functions. American Mathematical Monthly, 59(8):521-531, October 1952.
[128] S. M. Reddy, W. Kunz, and D. K. Pradhan. Novel verification framework combining structural and OBDD methods in a synthesis environment. In Proceedings of the 32th ACM/IEEE Design Automation Conference, pages 414-419, San Francisco, June 1995.
[129] V. G. Redko. Kauffman's nk Boolean networks, 1998. http://pespmc1.vub.ac.be/BOOLNETW. html.
[130] J. P. Roth and R. M. Karp. Minimization over Boolean graphs. IBM Journal, 6:227-238, April 1962.
[131] R. Rudell. Dynamic variable ordering for ordered binary decision diagrams. In Proceeding of IEEE/ACM International Conference on Computer-Aided Design, volume 29, pages 42-47, 1993.
[132] T. Sasao. FPGA design by generalized functional decomposition, pages 233-258. Kluwer Academic Publishers, 1993.
[133] T. Sasao and M. Matsuura. DECOMPOS: An integrated system for functional decomposition. In Proceedings of the ACM/IEEE International Workshop on Logic Synthesis, 1998.
[134] H. Sawada, T. Suyama, and A. Nagoya. Logic synthesis for lookup table based FPGAs using functional decomposition and support minimization. In Proceedings of the IEEE International Conference on Computer-Aided Design, pages 355-358. IEEE, 1995.
[135] H. Sawada, S. Yamashita, and A. Nagoya. Restructuring logic representations with easily detectable simple disjunctive decompositions. In Proceedings of the ACM/IEEE Design Automation Conference ( $D A C$ ), pages 755-759. IEEE, 1998.
[136] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. Stephan, R. Brayton, and A. Sangiovanni-Vincentelli. SIS: A system for sequential circuit synthesis. Technical report, University of California Berkley, May 1992.
[137] S. C. Seth, L. Pan, and V. D. Agrawal. PREDICT-probabilistic estimation of digital circuit testability. In Proceeding of International Symposium on Fault-Tolerant Computing, pages 220-225, June 1985.
[138] C. E. Shannon. The synthesis of two-terminal switching circuits. Bell Systems Technical J., 28:59-98, January 1949.
[139] L. S. Shapley. Solutions of compound simple games. In Advances in Game Theory, number 52 in Ann. of Math. Study, pages 267-280. Princeton University Press, 1964.
[140] J. Shelley. Here we go again, 29 December 2004. http://www.gdnctr.com/dec_29_00.htm.
[141] V. Y. Shen and A. C. McKellar. An algorithm for the disjunctive decomposition of switching functions. IEEE Trans. Computers, C-19: 239-245, 1970.
[142] V. Y. Shen, A. C. McKellar, and P. Weiner. A fast algorithm for the disjunctive decomposition of switching functions. IEEE Trans. Computers, C-20:239-246, 1970.
[143] J. E. S. Socolar and S. A. Kauffman. Scaling in ordered and critical random Boolean networks. http://arXiv.org/abs/cond-mat/0212306.
[144] F. Somenzi. CU Decision Diagram Package, Release 2.3.0. University of Colorado at Boulder, 1998.
[145] Z. Somogyvari and S. Payrits. Length of state cycles of random boolean networks: an analytic study. Journal of Physics A: Mathematical and General, 33:6699-6706, 2000.
[146] T. Stanion and C. Sechen. Quasi-algebraic decompositions of switching functions. In Proceedings of Sixteenth Conference on Advanced Research in VLSI, pages 358-367. IEEE, 1995.
[147] J. Suurkula. Over 95 percent of DNA has largely unknown function, 2004. http://www.psrast.org/junkdna.htm.
[148] D. D. Swade. Redeeming charles babbage's mechanical computer. Scientific American, 268(2):62-68, 1993.
[149] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2):146-160, 1972.
[150] A. Thayse. A fast algorithm for the proper decomposition of Boolean functions. Philips Res. Rep., 27:140-147, 1972.
[151] C.-C. Tsai and M. Marek-Sadowska. Multilevel logic synthesis for arithmetic functions. In $p-D A C$, pages 68-73. IEEE, 1996.
[152] G. Y. Tseng and J. C. Ellenbogen. Nanotechnology: Enhanced: Toward nanocomputers. Science, 294:1293-1294, 2001.
[153] C. A. J. van Eijk and J. A. G. Jess. Detection of equivalent state variables in finite state machine verification. In 1995 ACM/IEEE International Workshop on Logic Synthesis, pages 3-35-3-44, Tahoe City, CA, May 1995.
[154] B. von Stengel. Eine dekompositionstheorie für mehrstellige funktionen. In Mathematical Systems in Economics, volume 123. Anton Hain, Frankfurt, 1991.
[155] P. F. Williams, A. Biere, E. M. Clarke, and A. Gupta. Combining decision diagrams and SAT procedures for efficient symbolic model checking. In Computer Aided Verification (CAV'00), pages 125-138, Chicago, IL, July 2000. Springer-Verlag.
[156] S. J. Wind, J. Appenzeller, R. Martel, and V. Derycke. Vertical scaling of single-wall carbon nanotube cmos field effect transistors using top gate electrodes. Appl. Phys. Lett., 80:3817, 2002.
[157] A. Wuensche. The DDlab manual, 2000. http://www.cogs.susx.ac.uk/users/andywu/man_ contents.html.
[158] B. Wurth, K. Eckl, and K. Antreich. Functional multiple-output decomposition: Theory and an implicit algorithm. In $p-D A C$, pages 54-59, 1995.
[159] S. Yamashita, H. Sawada, and A. Nagoya. New methods to find optimal non-disjoint bi-decompositions. In Proceedings of the ACM/IEEE Design Automation Conference ( $D A C$ ), pages 59-68. IEEE, 1998.
[160] C. Yang, M. Ciesielski, and V. Singhal. BDS: a BDD-based logic optimization system. In Proceedings of the ACM/IEEE Design Automation Conference ( $D A C$ ), pages 92-97. IEEE, 2000.
[161] C. Yang, V. Singhal, and M. Ciesielski. BDD decomposition for efficient logic synthesis. In Proceedings of International Conference on Computer Design, pages 626-631, 1999.
[162] Y. Ye and K. Roy. A graph-based synthesis algorithm for AND/XOR networks. In Proceedings of the 34th annual conference on Design automation, pages 107-112, New York, NY, USA, 1997. ACM Press. ISBN 0-89791-920-3.
[163] D. Zampunièris. The Sharing Tree Data Structure. PhD thesis, Department of Computer Science, University of Namur, Belgium, 1997.

## Index

algebraic, 23
BDD, 14
canonical, 16
multi-terminal, 40
node, 14
non-terminal node, 14
OBDD, 14
ordered, 14
reduced, 15
ROBDD, 15
terminal node, $\mathbf{1 4}$
unique table, 16
bound set, 20
k-bound set, 21
preserving, 60
circuit graph, 43, 47
compatible
assignment, 23
class, 23
composition tree, $\mathbf{2 0}$
cone of influence, 43
cube, 23
cut, 23
cut level, 31
decomposition
bi-decomposition, 23
column multiplicity, 22
complex disjoint, $\mathbf{2 0}$
disjoint support, 21, 29
iterative, 20
multiple, 20
non-disjoint support, 30, 47
quasi-algebraic, 23
simple disjoint, 19, 29
tree like, 20
dominator, 24
common multiple vertex, 47, 48
dominate, 43
immediate, 43
multiple vertex, 47
proper cut, 24,43
reduced dominator tree, $\mathbf{4 4}$
single vertex, 43, 47
tree, 44
equivalence class, 12,13
equivalence relation, 13
function, 12
bijective, 13
characteristic, 13
co-domain, 12
cofactor, 14
composition, 13
domain, 12
image, 12
injective, 13
isomorphic, 13
non-degenerate, 20
projection, 13
range, 12
surjective, 13
Gene Regulatory Network, 65
GRN, 65
headlines, 24, 44
kernels, 23
MDD, 16
algebraic decision diagram, 40
non-terminal node, 17
OMDD, 17
ROMDD, 17
terminal node, $\mathbf{1 7}$
Non-disjoint support decomposition, 22
proper cut, 24, 43, 44, 44
Random Boolean Network, 63
RBN, 63
relation, 12
binary, 12
closure, 12
equivalence, 12, 23
on, 12
set, 12
equivalence class, 12, 23
member, 12
partition, 12
proper subset, 12
strict subset, 12
subset, 12
slice, 33
slicing, 33
sum-of-products, 27
supergates, 24, 44


[^0]:    ${ }^{1}$ This is known since Boole's ground breaking "Laws of thought" [27], published in 1858.

[^1]:    ${ }^{2}$ Actually in an infinite number of ways.

[^2]:    ${ }^{1}$ Consecutive with respect to the BDD variable order. For example, for the ordering $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$, the set $\left\{x_{2}, x_{3}, x_{4}\right\}$ is a set of consecutive variables, but the set $\left\{x_{2}, x_{4}\right\}$ is not.

[^3]:    ${ }^{2}$ Note, however, that the slicing method detects classical bound sets in any position. The problem arises when looking for $k$-bound sets, with $k>2$.

[^4]:    ${ }^{3}$ Strictly speaking, the CUDD package calls these multi-terminal BDDs Algebraic Decision Diagrams or ADDs.

[^5]:    ${ }^{4}$ Shannon decomposition is a special case of decomposition, where $f(x, Y)=\bar{x} \cdot g_{0}(Y)+$ $x \cdot g_{1}(Y)$, where $g_{0}(Y)=f(0, Y), g_{1}(Y)=f(1, Y)$ and $x \notin Y$.

[^6]:    *Jönköping University, Embedded systems/ING, Jönköping, Sweden
    ${ }^{\dagger}$ Royal Institute of Technology, IMIT/KTH, Stockholm, Sweden

[^7]:    ${ }^{1}$ We have chosen [67] because this algorithm actually builds decomposition trees. It computes only $O(n)$ strong bound sets which are the nodes of $T(f)$.
    ${ }^{2}$ Time limit 30 min per circuit.

[^8]:    *\{andres, elena\}@imit.kth.se, Royal Institute of Technology, IMIT/KTH, Stockholm, Sweden
    ${ }^{\dagger}$ beto@ing.hj.se, Jönköping University, Embedded systems/ING, Jönköping, Sweden
    ${ }^{\ddagger}$ sullia@us.ibm.com, IBM EDA group Fishkill, N.Y., USA

[^9]:    ${ }^{1}$ Two functions are isomorphic if, and only if, their ROBDD representations are graph isomorphic up to the constant nodes; i.e. if, and only if, there exists a bijection $\phi$ : $\{0, \ldots, m-1\} \rightarrow\{0, \ldots, m-1\}$ such that $f(x)=\phi(g(x))$

[^10]:    ${ }^{2}$ In order to make the implementation more efficient, we use a fast "sifting" [144] algorithm to make the ROBDD size smaller.

[^11]:    *Royal Institute of Technology, IMIT/KTH, Stockholm, Sweden

[^12]:    ${ }^{1}$ Two functions are isomorphic if, and only if, their ROBDD representations are graph isomorphic up to the constant nodes; i.e. if, and only if, there exists a bijection $\phi:\{0, \ldots, m-1\} \rightarrow\{0, \ldots, m-1\}$ such that $f(x)=\phi(g(x))$.

[^13]:    *\{elena, maxim, andres\}@imit.kth.se, Royal Institute of Technology, IMIT/KTH, Stockholm, Sweden
    ${ }^{\dagger}$ This work was supported in part by the Research Grant No 6426 from the Swedish Research Council Vetenskpsrådet.

[^14]:    *\{andres,elena\}@imit.kth.se, Royal Institute of Technology, IMIT/KTH, 16446 Kista, Sweden

[^15]:    *The authors are with the Department of Microelectronics and Information Technology, Royal Institute of Technology (KTH), Stockholm, Sweden. E-mail: \{maximt, andres, elena\}@imit.kth.se.

[^16]:    *Royal Institute of Technology, IMIT/KTH, 16446 Kista, Sweden

