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Abstract. The basic nearest neighbour classifier suffers from the indiscriminate storage of all presented training
instances. With a large database of instances classification response time can be slow. When noisy instances are
present classification accuracy can suffer. Drawing on the large body of relevant work carried out in the past 30
years, we review the principle approaches to solving these problems. By deleting instances, both problems can be
alleviated, but the criterion used is typically assumed to be all encompassing and effective over many domains.
We argue against this position and introduce an algorithm that rivals the most successful existing algorithm. When
evaluated on 30 different problems, neither algorithm consistently outperforms the other: consistency is very
hard. To achieve the best results, we need to develop mechanisms that provide insights into the structure of class
definitions. We discuss the possibility of these mechanisms and propose some initial measures that could be useful
for the data miner.
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1. Introduction

The Nearest Neighbour Classifier is a simple supervised concept learning scheme which
classifies unseen (i.e., unclassified) instances by finding the closest previously observed
instance, taking note of its class, and predicting this class for the unseen instance (Cover
and Hart, 1967). Learners that employ this classification scheme are also termed Instance-
Based Learners, Lazy Learners, Memory-Based Learners, and Case-Based Learners. They
all suffer from the same problem: the instances used to train the classifier are stored indis-
criminately. No process of selection is performed, and as result, harmful and superfluous
instances are stored needlessly. Disregarding this problem, the classification scheme is sim-
ple and very effective in comparison to other methods such as feed-forward neural networks
and decision trees (King et al., 1995).
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In this article we survey the chief efforts to alleviate this problem and review the criteria
used to selectively store instances of the classification problem. We review this work using
insights about the structure of classification problems in general. By viewing instances as
feature vectors we can imagine an instance space where each instance is a point. We argue
that the structure of the classes formed by the instances can be very different from problem
to problem, which results in inconsistency when we apply one instance selection scheme
over many problems. The thrust of this article is that the data miner needs to gain an insight
into the structure of the classes within the instance space to effectively deploy an instance
selection scheme. We shed light on possible class structures, and how they can be grouped.
We aim to show that a knowledge of the class structures is an intrinsic part of designing
and deploying instance selection algorithms.

The structure of this article is as follows. In Section 2 we characterise the problem
by discussing exactly what an instance selection algorithm should achieve, and in what
circumstances this is possible. We argue that different kinds of problem spaces, specifically
the class structures, require a different interpretation of what a critical instance is. Using
these insights we review previous work in Section 3. We group previous work on the basis of
what aspect of the problem they attempt to solve: noise removal, competence preservation,
and those that attempt both objectives. We then address the problem of how to compare
these algorithms: little comparative work has been carried out in the past. We argue that
three eras have occurred in the development of instance selection algorithms, with the most
recent approaches being superior. Our contribution to the evaluation is a comparison of
the ICF algorithm (Brighton and Mellish, 1999) with RT3 (Wilson and Martinez, 1997)
over 30 domains. We argue that neither of these two algorithms is superior: both record the
highest accuracy and space reduction on certain problems. In the context of instance-based
learning, both algorithms represent the cutting edge in instance set reduction techniques.
Finally we discuss how our ICF algorithm offers insights into the structure of the instance
space, and we discuss some future research directions.

2. Defining the problem

We want to isolate the smallest set of instances which enable us to predict the class of a
query instance with the same (or higher) accuracy than the original set. Before review-
ing the many methods one can employ to tackle this problem, we present two practical
issues which are often neglected. First, we point out that instance selection is practically
realised by instance removal in the context of nearest neighbour classification: we aim to
retain only the critical instances. We argue that any scheme should aim to achieve what
we term unintrusive storage reduction, which defines the position we should aim for in
the trade-off between storage reduction and classification accuracy. Secondly, we argue
that in the context of instance selection, we need to differentiate between certain types
of classification problem: domains with homogeneous class definitions and those without.
We argue that different removal criteria are required for the two opposing class structures.
The second point reinforces the thrust of this article: consistency over many problems is
hard when designing an instance filter. Instead of placing the whole solution on the algo-
rithm, we argue it is largely placed on the data miner, as a knowledge of problem structure
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is required to select the best tool. In Section 5 we propose some measures to aid this
process.

2.1. Selection as removal: How to preserve classification competence

In general we define the problem of instance selection as the need to extract the most useful
set of instances from a database which we know (or suspect) contains instances which are
superfluous or harmful. In the context of instance-based learning, we seek to discard the
cases which are superfluous or harmful to the classification process. Some instances of a
class are just not telling us much, the job they do in informing classification decisions is
done far better by other cases: they are superfluous. Similarly, some instances of a class
might lead us to make false classification predictions if we rely on them: they are harmful.

In the context of instance-based learning, the problem of instance selection should be
viewed more in terms of instance deletion as we remove superfluous and harmful instances
and retain only the critical instances. By removing a set of instances from a database the
response time for classification decisions will decrease, as fewer instances are examined
when a query instance is presented. This objective is primary when we are working with
large databases and have limited storage. The removal of instances can also lead to either
an increase or decrease in classification competence. Therefore, when applying a instance
selection scheme to a database of instances we must be clear about the degree to which
we are willing to let the original classification accuracy depreciate. For example, if we
have a fixed storage limit then the number of cases we are forced to remove might be too
large, and unavoidably result in a degradation of classification accuracy. For example, the
schemes used by Markovitch and Scott (1993) and Smyth and Keane (1995) employ fixed
storage limits. Usually, the principle objective of an instance selection scheme is unintrusive
storage reduction. Here, classification accuracy is primary: we desire the same (or higher)
classification accuracy but we require it faster and taking up less space. Ideally, accuracy
should not suffer at the expense of improved performance.

Now, if our deletion decisions are not to harm the classification accuracy of the learner,
we must be clear about the kind of deletion decisions that introduce erroneous classifica-
tion decisions. Consider the following reasons why a k-nearest neighbour classifier might
incorrectly classify a query instance:

1. When noise is present in locality of the query instance. The noisy instance(s) win the
majority vote, resulting in the incorrect class being predicted.

2. When the query instance occupies a position close to an inter-class border where dis-
crimination is harder due to the presence of multiple classes.

3. When the region defining the class, or fragment of the class, is so small that instances
belonging to the class that surrounds the fragment win the majority vote. This situation
depends on the value of k being large.

4. When the problem is unsolvable by an instance-based learner. This will be due to the
nature of the underlying function, or due to the sparse data problem.

In the context of instance selection, we can address point (1) and try and improve classi-
fication accuracy by removing noise. We can do nothing about (4) as this situation is a given
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and defines the intrinsic difficulty of the problem. However, issues (2) and (3) should guide
our removal decisions. Removing instances that are close to borders is not recommended
as these instances are relevant to discrimination between classes. We should be aware of
point (3), but as k is typically small, the occurrence of such a problem is likely to be rare.

An interesting point to note here which, to our knowledge, has not been made before is
that one can place a theoretical limit on how our instance-base reduction algorithms should
perform. In practice, we take a small random sample of our classification problem and keep
these instances for testing the accuracy of the nearest neighbour classifier. Now, given an
instance-base I , we form two sets: training and testing. That is, training ∪ testing = I . If
we then make the following assumptions:

1. |training| > |testing|
2. We are using 1-nearest neighbour classification.

Then we can say that, after filtering training, the maximum number of instances in training
required by the classifier to retain its original classification accuracy is in fact |testing|. This
result follows as for each instance in our testing set, from which we derive the accuracy of
the classifier, we only need one case in training to correctly classify that one test instance.
We can use this result as a guide to check if our algorithms are performing as they should.
We say that we should be left with a maximum of |testing| cases after instance selection is
complete. The minimum number of instances required to retain classification accuracy on
the testing set gives us a measure of how easy the problem is. We use this observation later.

2.2. The structure of the instance space

Traditionally, the way in which critical instances are identified in an instance space is
assumed to apply to all classification problems: we desire an algorithm which we can apply
to any domain. We argue against this position and propose two broad categories of class
structure which require dramatically different approaches.

Fortunately, the vast majority of problems we encounter, especially in the field of data
mining, fall into a single category. This category contains instance spaces whose classes are
defined by homogeneous regions of instances. To illustrate such an instance space figure 1(a)
depicts the 2d-dataset which we constructed to visualise instance selection decisions. The
three classes (black, grey, and white) are each defined by regions of instances which share a
class, i.e., each white instance is usually in the locality of other white instances. The second
category is composed of those problems which have classes defined by non-homogeneous
regions. For example, problems such as the two-spirals dataset depicted in figure 2(a). Here,
the classes are represented by a spiral structure which is not localised to one region of the
space. In the past, the characterisation of a critical instance has not been problem dependent,
partly due to rarity of non-homogeneous class structures amongst machine learning and data
mining problems.

Given a class defined by a homogeneous collection of instances, which instances are
critical to classifying instances of that class? There are many approaches which tackle
this question. For example, we might aim to identify instances that are prototypes (Chang,
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Figure 1. (a) The 2d-dataset, which is composed of homogeneous class definitions. (b) Removing instances from
the interior of class definitions does not lead to a drop in classification accuracy as discrimination is still possible.

Figure 2. (a) The two-spirals dataset, an example of a problem space not defined by homogeneous collections
of cases. (b) Chang’s prototype creation algorithm retains the class structure well.

1974; Zhang, 1992, Sebban et al., 1999) or instances with high utility (Markovitch and
Scott, 1988, 1993; Smyth and Keane, 1995; Aha et al., 1991). We argue, as others have
(Swonger, 1972; Wilson and Martinez, 1997), that instances which lie on borders between
classes are almost always critical to the classification process. The instances located at the
interior of class regions are superfluous as their removal does not lead to any loss in the
ability of the nearest neighbour learner to discriminate between classes, which, for us, is the
purpose of classification. To illustrate this point, the set of instances shown in figure 1(b)
will correctly predict queries just as well as those instances in figure 1(a). A prototype, an
instance which in some way represents the essence, average, or typicality of a class is useful
in characterising a class, but not in characterising the differences between classes.

Instances with high utility may well turn out to be critical border cases, but this is in
no way guaranteed, as the manner in which we identify these instances is not guided by
our presupposition that border cases are critical. The problem with utility-based methods
is that we require a knowledge of the prior use of instances, i.e., classification feedback.
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When instances have not been used, they may have an inaccurate measure of utility. Indeed,
border cases are less likely to be excel in this framework, as interior cases are by definition
surrounded by cases of their own class and will therefore:

1. Have a high probability of predicting queries correctly.
2. Have a high probability of being used as a classifier.

We can define a non-homogeneous class as one which is defined by a group of instances
not sharing the same locality. Here, the notion of a border instance doesn’t make sense. One
might argue that all of the instances make up the borders and they are therefore critical to the
definition of the class; instance selection is a bad proposition when working with problems
of this form. We argue that in this kind of situation keeping only prototypical instances is the
safest way to remove a number of instances. For example, we can dramatically reduce the
number of instances in the two-spirals dataset by a employing prototype selection algorithm.
Figure 2(b) shows the remaining prototypes after applying Chang’s algorithm, discussed
later. The class structure is still well defined.

2.3. Summary

To summarise, we have shown that the nature of a critical case depends on the structure of
the class definitions. The majority of problems we find fall into the first category: the classes
are defined by homogeneous regions of instances. We must be aware of other types of class
structure. Given this skew towards homogeneous class structures we argue that prototypes
might be good classifiers because they can classify many instances in the instance space.
However, they are not good discriminators.

3. Review

Selectively storing the set of presented instances has been an issue since the early work on
nearest neighbour classification. The early schemes typically concentrate on either compe-
tence enhancement (noise removal) or competence preservation. We define these schemes
as follows:

1. Competence enhancement: By removing certain instances it is often possible to increase
the classification accuracy of the learner. This is possible when noisy or corrupt instances
are isolated and removed.

2. Competence preservation: A superfluous instance is one which, when removed, will not
lead to a decrease in classification accuracy. We can therefore remove it without any loss
in classification competence.

In general, noise removal schemes will result in few cases being removed, and with little
chance of competence depreciation and a high chance of competence enhancement. On the
other hand, schemes which aim to preserve competence typically remove many cases, but
are unlikely to result in competence enhancement. We will group previous studies on the
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basis of this distinction as well as introducing another distinction for those schemes that
tackle both problems. We term the third group the hybrid approaches. Most modern instance
selection algorithms are hybrid approaches.

We have chosen, for the sake of brevity, not to consider work which addresses the prob-
lem by choosing alternative, more efficient representations (for example, Salzberg (1991),
Domingos (1995), Daelemans et al. (1997)). We view such work as a separate issue as
individual instances are not identified or removed: the schemes compress rather than filter.
Also, in the context of data mining one might be restricted, and have to employ a conven-
tional database representation. All the schemes we discus here are applicable to a simple
database model. Other interesting removal criteria have been proposed in the context of
concept drift (Salganicoff, 1993). We will not investigate such issues, as we assume our
class definitions are true over time. Few reviews have been compiled in this area, although a
good collection of the early schemes, as well as a good overview is provided by Dasarathy
(1991), but unfortunately, no experimental comparison is made between the methods.

3.1. Competence enhancement

Noise can occur for a number of reasons, and takes many forms. We restrict our treatment
of noise to what we term pointwise miss-labellings. We assume no pattern in the noise other
than a random peppering of miss-labelled instances.

The first scheme we discuss is Wilson Editing (Wilson, 1972), which attempts to remove
noisy instances by making a pass through all the instances in the training set and removing
those which satisfy an editing rule. The rule is simple: all instances which are incorrectly
classified by their nearest neighbours are assumed to be noisy instances. The instances
which satisfy such a rule will be those that have a different class to their neighbour(s).
These instances will appear as exceptions within regions containing instances of the same
class. Other candidates fulfilling this rule could be the odd instance lying on a border between
two different classes. For this reason, Wilson Editing can be thought of as smoothing the
instance-space at it removes instances that deviate from the coherent regions defined by
instances sharing the same class. Wilson reported improved classification accuracy over
a large class of problems when using the edited set rather than the original, unfiltered
set. Tomek (1976) compared Wilson’s algorithm with two new methods: Repeated Wilson
Editing, and All k-NN. Repeated Wilson Editing is identical to Wilson’s approach described
above, only it is carried out repeatedly, until the rule is not applicable to any more cases. This
approach can result in better noise detection than the basic algorithm when more than one
occurrence of noise is present in a locality. The all-kNN algorithm is similar, only after each
iteration the value k is increased. In the average case these algorithms result in improved
classification competence, but storage reduction is not significant as only noisy and fringe
instances are removed. Figure 3 illustrates the result of noise removal for a simple problem.

The problem with these schemes is that they will only work when a small amount of
noise is present. If we introduce a high percentage of noise then the noisy instances will no
longer appear as exceptions as these noisy instances will start being correctly classified by
other noisy instances. An important point to note when removing harmful instances is that
in certain domains, we cannot differentiate between noise and genuine class exceptions.
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Figure 3. (a) A simple two class problem in which noisy instances have been introduced. (b) Repeated Wilson
Editing removes all the noisy instances except the two instances of noise which lie next to each other.

Recent work by Daelemans et al. (1999) suggests that natural language domains, such
as word pronunciation, are problematic in the context of instance deletion as the class
definitions are not composed of large homogeneous regions but rather many small regions
or exceptions (also termed small disjuncts by Holte et al. (1989)). Deleting an instance in
this kind of situation is a real problem, and reinforces the point we make in Section 2: we
need a knowledge of the problem to effectively deploy a deletion scheme.

3.2. Competence preservation

The majority of work carried out on competence preservation occurred shortly after the
inception of nearest neighbour classification. One problem with work from this era is that
many of the algorithms were not compared with each other, and when they were, the
algorithms were only evaluated on a few classification problems.

Hart’s (1968) Condensed Nearest Neighbour rule (CNN) was an early attempt at finding,
using Hart’s terminology, a minimally consistent subset of the training set. A consistent
subset of a training set T is some subset S of T that correctly classifies every case in T
with the same accuracy as T itself. A consistent subset is therefore likely to preserve the
classification accuracy achieved on the testing set. The deletion criteria used by the CNN
is the opposite of that used in Wilson editing. Instead of looking to label cases which are
misclassified by T as noise, we are looking for cases for which removal does not lead to
additional miss-classifications. This criterion therefore results in superfluous cases being
weeded out. The CNN algorithm seeks a minimal consistent subset but is not guaranteed to
find one.

Gates (1972) devised the Reduced Nearest Neighbour (RNN) rule, which extends the
idea of the CNN by contracting a complete set of instances to form a consistent subset.
Again, the ideal is to find a minimally consistent subset. Both Hart and Gates use the same
criteria for case deletion, but build the edited set of cases from opposite starting positions.
The criterion used is essentially that of learning feedback: for a case to be kept it must prove
useful on the basis of classification trials. Both schemes are highly likely to retain noise.
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The Selective Nearest Neighbour Rule (SNN) devised by Ritter et al. (1975) improves
on the CNN and RNN by ensuring that a minimal consistent subset is found. The selection
criteria is strict by enforcing the following rule: all instances in the training set must be
closer to an instance in the selective set than any instance of a different class found in the
training set. Ritter et al. (1975) reported improved prediction accuracy when compared to
the CNN.

Chang’s algorithm (1974) offers a novel approach to removing cases by repeatedly at-
tempting to merge two existing cases into a new case. The process of merging cases results
in a case-base containing cases which were not actually observed, but rather constructed.
These cases are termed prototypes, which we can view as synthetic cases derived from the
exemplars which a traditional nearest neighbour classification scheme would use. Chang’s
algorithm searches for candidates for merging: We seek two cases p and q which we can
replace with a single case z. The merging process is permitted when p and q are of the same
class, and after replacing them with z, the consistency of the case-base is not breached.

Another novel approach to competence preservation is the Footprint Deletion policy of
Smyth and Keane (1995) which is a filtering scheme designed for use within the paradigm
of Case-Based Reasoning (CBR). We discuss this work here as Footprint Deletion provides
a novel approach to the problem of case deletion which is relevant to our discussion. In
previous work (Brighton, 1997) we have shown that some of the concepts introduced by
Smyth and Keane transfer to the simpler context of the nearest neighbour classification
algorithm. CBR is an approach to solving reasoning and planning tasks on the basis of
past solutions (Kolodner, 1993). The technicalities are much the same as instance-based
learning, although the concept of case adaptation is usually used as a similarity metric. A
CBR system aims to solve a new task by adapting a previously stored solution in such a
way that it can be applied to the new problem. Much of Smyth and Keane’s work relies on
the notion of case adaptation. They use the property Adaptable(c, c′) to mean case c can be
adapted to c′. Generally speaking, we can delete a case for which there are many other cases
that can be adapted to it. In our previous work we introduced a nearest neighbour parallel
termed the Local-Set of a case c to capture this property (Brighton, 1996) (see figure 4).
We define the Local-set of a case c as:

The set of cases contained in the largest hypersphere centred on c such that only cases in
the same class as c are contained in the hypersphere.

Figure 4. LocalSet(A) = {A, B} as instance C bounds the hypersphere extended from A.
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The originality of Smyth and Keane’s work stems from their proposed taxonomy of case
groups. By defining four case categories, which reflect the contribution to overall compe-
tence the case provides, we gain an insight into the effect of removing a case. We define
these categories in terms of two properties: Reachability and Coverage. These properties
are important, as the relationship between them has been used in crucial work which we
discuss later. For a case-base CB = {c1, c2, . . . , cn}, we define Coverage and Reachability
as follows:

Coverage(c) = {c′ ∈ CB : Adaptable(c, c′)} (1)

Reachable(c) = {c′ ∈ CB : Adaptable(c′, c)} (2)

Using these two properties we can define the four groups in the taxonomy using set theory.
For example, a case in the pivotal group is defined as a case with an empty reachable set. For
a more thorough definition we refer the reader to the original article. Our investigation into
the instance-based learning parallel of Footprint Deletion differs only in the replacement of
Adaptable with the Local-set property. Whether a case c can be adapted to a case c’ relies
on whether c is relevant to the solution of c′. In lazy learning this means that c is a member
of nearest neighbours of c′. However, we cannot assume that a case of a differing class is
relevant to the solution (correct prediction) of c′. We therefore bound the neighbourhood
of c’ by the first case of a differing class. Armed with this parallel we found that Footprint
deletion performed well. Perhaps more interestingly, we found that a simpler method which
uses only the local-set property, and not the case taxonomies, performs just as well. With
local-set deletion, we choose to delete cases with large local-sets, as these are cases located
at the interior of class regions. The issue of deciding how many cases to delete is the problem.
We chose to use Smyth and Keane’s methodology of imposing a swamping limit, which
is a pre-defined storage constraint. This contrasts with other algorithms, which typically
decide dynamically when to stop removing cases. Local-set deletion has subsequently been
employed in the context of natural language processing (van den Bosch and Daelemans,
1998).

3.3. Hybrid approaches

Aha et al. (1991) introduced the incremental lazy learning algorithms IB1, IB2, IB3, and
IB4. We concentrate on IB2 and IB3 as their primary function is to filter training cases.
With IB2, if a new case to be added can already be classified correctly on the basis of
the current case-base, then the case is discarded and not stored at all. Only those cases
which the learner can not classify correctly are stored. This is a measure employed to
weed out superfluous cases, and is a good one as the cases never need to be stored, unlike
the other algorithms reviewed here which operate on a batch of cases. The problem with
IB2 is its susceptibility to harmful cases. Harmful cases will nearly always be stored,
as they are exceptions and will therefore generally be misclassified. IB3 addresses this
problem. IB3 is IB2 augmented with a “wait and see” policy for removing noisy cases.
IB3 does this by keeping a record of how well the stored cases are classifying. Noisy
cases are likely to be bad classifiers, so we can try and spot them after their inclusion
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in the case-base. Stored cases that miss-classify to a statistically significant degree are
removed. Note that these cases could also be useful exceptions to the class definitions.
A number of workers have augmented the IBn algorithms (Cameron-Jones, 1992; Zhang,
1992; Brodley, 1993). To summarise, Aha’s algorithms offer an incremental approach to
filtering, and for this reason offer improved efficiency, but suffer from the order of case
presentation. Crucial cases could be rejected early on when the class definitions are poorly
defined.

Wilson and Martinez (1997) present three algorithms for reducing the size of case-bases:
RT1, RT2 and RT3. RT1 is the basic removal scheme. The algorithm proceeds by computing,
for each case, the set of k nearest neighbours (where k is small and odd). Then, another set
of cases is computed for each case p, termed the associates of the case p. The associates
of case p are the set of stored cases which have p as one of their nearest neighbours. The
set of nearest neighbours is always of size k, whereas the size of the set of associates can
be larger. RT1 removes a case p if at least as many of its associates, after the removal of
p, would be classified correctly without it, i.e., we look to see if removing a case p has a
detrimental effect on those cases which have p as a nearest neighbour.

The removal of noise is implicit in this scheme. Noise will typically not lead to an increase
in misclassification of its surrounding neighbours. It will therefore often be deleted by RT1.
RT2 is identical to RT1, only the cases in the training set are sorted by the distance from
their nearest enemy (a case of another class). Cases furthest from a case of another class
are therefore deleted first. This means that cases furthest from boundary positions will be
removed before cases in border areas. RT2 also differs from RT1 in that deletion decisions
still rely on the original set of associates. A case can therefore have associates which have
already been deleted, but are still used to guide case deletion as we continue to test the
ability to classify them. RT3 differs from RT2 though the introduction of a noise filtering
pass being executed before the RT2 procedure is carried out. The noise filtering procedure
is similar to that of Wilson’s (1972): remove those cases which are misclassified by their k
nearest neighbours.

The RT algorithms are driven by the relationship between the nearest neighbours and
the associates of each case. The relationship is analogous to that introduced by Smyth and
Keane, where Coverage and Reachability are defined in terms of the Adaptable property.
The properties used in the RT algorithm, those of bounded neighbourhood and associate
sets, are similar to the relationships we used in implementing Smyth and Keane’s work
in the context of lazy learning. The algorithms differ in how they use these relationships,
however. Wilson and Martinez have shown RT3 to consistently be the best case filter in a
comparison with IB3.

3.3.1. An iterative case filtering algorithm. We now introduce our Iterative Case Filtering
Algorithm (ICF) (Brighton and Mellish, 1999). The ICF algorithm uses the lazy learn-
ing parallels of case coverage and reachability we developed when transferring the CBR
footprint deletion policy, discussed above. Rather like the Repeated Wilson Algorithm in-
vestigated by Tomek, we apply a rule which identifies cases that should be deleted. These
cases are then removed, and the rule is applied again, iteratively, until no more cases fulfil
the pre-conditions of the rule.
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The ICF algorithm uses the reachable and coverage sets described above, which we can
liken to the neighbourhood and associate sets used by Wilson and Martinez. An important
difference is that the reachable set is not fixed in size but rather bounded by the nearest case
of different class. This difference is crucial as our algorithm relies on the relative sizes of
these sets. Our deletion rule is simple: we remove cases which have a reachable set size
greater than the coverage set size. A more intuitive reading of this rule is that a case c is
removed when more cases can solve c than c can solve itself. These cases will be those
furthest from the class borders as their reachable sets will be large. After removing these
cases the case-space will typically contain thick bands of cases either side of class borders.

This is the deletion criterion the algorithm uses; the algorithm proceeds by repeatedly
computing these properties after filtering has occurred. Usually, additional cases will begin
to fulfil the criteria as thinning proceeds and the bands surrounding the class boundaries
narrow. After a few iterations of removing cases and re-computing, the criterion no longer
holds. This point turns out to be a very good point to stop removing cases as removing
more cases tends to breach our objective of unintrusive storage reduction. Figure 5(a)–(d)
illustrates how the algorithm progresses.

The algorithm is depicted in figure 6. As with the majority of algorithms that concentrate
on removing superfluous cases, ours is likely to protect noisy cases. A noisy case will
have a singleton reachable set and a singleton coverage set. This property protects the
case from removal. For this reason we employ the noise filtering scheme based on Wilson
Editing and adopted by Wilson and Martinez. Lines 2–6 of the algorithm perform this task.

Figure 5. (a) The cases remaining from the 2d-dataset after 1 iteration of the ICF algorithm. (b) after 2 iterations,
(c) after 3 iterations, and (d) after 4 iterations.
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Figure 6. The Iterative Case Filtering Algorithm. First perform a noise filtering pass, then iteratively remove all
cases with a larger reachable set than coverage set.

The remainder of the algorithm concentrates on removing superfluous cases in the manner
described above. A check is carried out to make sure progress is being made after each
iteration. The algorithm is decremental in nature, like the RT algorithms, but it differs in
that more than one pass is required to thin the dataset.

We evaluated the ICF algorithm on 30 datasets1 taken from the UCI repository of machine
learning databases (Blake and Merz, 1998). The maximum number of iterations performed,
of the 30 datasets, was 17. This number of iterations was required for the switzerland
database, where the algorithm removed an average of 98% of cases. However, a number
of the datasets consistently require as little as 3 iterations. Examining each iteration of the
algorithm, specifically the percentage of cases removed after each iteration, provides us
with an important insight into how the algorithm is working. We call this the reduction
profile and is a characteristic of the case-base. Of the 30 datasets used, we isolated the
two extreme reduction profiles which can be seen in figure 7. These were found for the
switzerland database and the zoo database. The switzerland database exhibits a slow path
to convergence. On average, a maximum of 17 iterations are required, each one removing
at most 13% of the case-base and at minimum 2% of the case-base. The zoo database, on
the other hand, exhibits fast convergence. An average of two iterations is required, with an
average of 37% of cases being removed on the first pass.

By examining how many cases are removed after each iteration, we can imagine the
possible nature of the case-base structure. For example, with the switzerland database
many iterations are required, with a small number of cases being removed each time. This
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Figure 7. The two most extreme reduction profiles resulting from the ICF algorithm when it was applied to
30 domains. The switzerland database is hard to filter, and this is represented by a long series of iterations with
each iteration removing a small proportion of the instances. Contrast this with the zoo database which requires an
average of only 3 iterations, and on average, 37% of cases are removed after the first iteration.

observation would indicate that a high proportion of inter-related regions exist, as in order
for one region to be thinned, a series of others must be thinned first. The length of the series
reflects the complexity, rather than the size of the regions being filtered. Profiles exhibiting
a short series of iterations, each one removing a large number of cases, would indicate a
simple case-base structure containing little inter-dependency between regions. The most
problematic of case-base structures would be characterised by a long series of iterations
which results in few cases being removed.

3.4. Summary

We have discussed the principle approaches to instance set reduction devised over the last
30 years. The early schemes either address the problem of competence enhancement or
competence preservation, but not both. The more recent approaches tend to attack both
problems. The majority of methods aimed at preserving competence do not explicitly try
and retain border cases, but rather use classification trials to see if the instance is useful.
This is more a feedback driven model in comparison to the other methods, which tend to
use criteria dependent on presuppositions about structure of the class definitions. In the next
section we discuss work which compares these approaches.

Throughout this review our chief concern is with the case-removal criterion used by
each algorithm. There are important practical considerations in how an algorithm processes
the training set. With the exception of Aha’s work, the algorithms discussed above rely on
having a batch of cases on which to base case removal decisions: some of the measures used



ADVANCES IN INSTANCE SELECTION 167

rely on examining all the cases in the training set. Aha’s algorithms are incremental: they
build up a concept description case-by-case rather than examining all the cases at once. It
is important to note that with large databases, batch processing in the terms presented here
may not be possible as holding all the cases in memory might not be practical. However,
one could split a large database into manageable chunks, and process each chunk. We have
chosen not to pursue these issues as our chief concern is with the diversity and utility of
different selection criteria.

4. Comparative evaluation

Throughout the long development of instance pruning schemes one problem persists: little
comparative evaluation between methods has been carried out, and those that have are not
experimentally consistent with each other. To a degree, this problem still persists. In this
section we aim to provide a comparison of the methods. Much of the work is already done
by Wilson and Martinez (1997) and ourselves (Brighton and Mellish, 1997, 1999). For the
purposes of comparison it is useful to group the approaches into three chronological groups:

1. Early approaches: CNN, RNN, SNN, Chang, Wilson Editing, Repeated Wilson Editing,
and All k-NN.

2. Recent additions: IB2, IB3, TIBLE, Cameron-Jones’s Extensions (Cameron-Jones,
1992).

3. State of the Art: RT3, ICF.

Roughly speaking, these three groups also encapsulate three classes of performance.
Wilson and Martinez (1997) compared many of the early approaches with the recent ad-
ditions, as well as RT3. Wilson and Martinez found RT3 to be consistently superior over
30 different domains. Brighton and Mellish (1999) carried out an similar study comparing
RT3 with the ICF algorithm. In Brighton and Mellish (1997) we also compared the ICF
and RT3 algorithm with some of those algorithms drawn from the early approaches. Our
results agreed with those of Wilson and Martinez. Given this evidence it is apparent that
progress has been made despite the lack of comparison: performance has got progressively
better, we are closer to achieving our goal of unintrusive storage reduction . In this section
we will concentrate on the comparison between RT3 and ICF. The reader is referred to the
article by Wilson and Martinez for their comparison between the early methods, the recent
additions, and RT3.

4.1. ICF versus RT3

Comparing the ICF algorithm with RT3, the most successful of Wilson and Martinez’s
algorithms, we found that the average case behaviours over the 30 datasets were very similar
(See Table 1). Neither algorithm consistently outperformed the other. Both algorithms
narrowly achieved an average case generalisation accuracy greater than that of the basic
nearest-neighbour classifier. Both algorithms achieved approximately 80% reduction over
the 30 domains. More interestingly, the behaviour of the two algorithms differ considerably
on some problems. We find that no one deletion criterion consistently wins out. If we refer
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Table 1. The classification accuracy and storage requirements for each dataset. The benchmark competence,
which is the accuracy achieved without any filtering, is compared with Wilson Editing, RT3, and ICF.

Benchmark Wilson editing RT3 ICF

Dataset Acc. Stor. Acc. Stor. Acc. Stor. Acc. Stor.

abalone 19.53 100 22.01 19.64 22.11 40.95 22.74 15.11

anneal 95.28 100 93.24 95.46 91.82 20.72 91.35 22.59

balance-scale 77.36 100 86.04 77.48 83.40 18.23 81.47 14.67

breast-cancer-w 95.76 100 96.33 95.56 95.26 3.13 95.14 4.27

breast-cancer-l 62.46 100 68.42 64.69 74.42 19.94 72.81 23.51

bupa 59.71 100 61.81 60.49 61.23 35.07 60.75 24.79

cleveland 77.67 100 78.67 77.39 78.89 20.92 72.08 15.60

credit 82.32 100 84.46 81.12 83.15 19.9 82.28 16.89

ecoli 81.94 100 86.27 81.77 82.84 15.76 81.34 14.06

fleas 100.00 100 99.64 100.00 98.21 19.64 98.21 30.28

glass 71.43 100 69.05 70.17 69.05 23.26 69.64 31.40

hepatitis 85.16 100 82.10 84.48 83.33 19.15 82.26 16.33

hungarian 76.55 100 79.91 77.03 80.17 9.81 78.30 12.15

iris 95.00 100 95.33 96.21 93.61 16.04 92.56 42.08

led 63.77 100 68.27 66.11 69.62 18.04 71.74 41.81

led-17 42.82 100 43.00 43.09 41.48 46.78 42.33 27.50

lymphography 77.59 100 76.38 79.41 72.70 26.73 77.59 25.63

mushrooms 99.92 100 99.24 99.64 98.89 5.50 98.64 12.80

pima-indians 69.54 100 71.27 69.20 71.08 22.38 69.17 17.22

post-operative 57.78 100 66.94 54.65 69.44 6.45 65.28 7.18

primary-tumor 36.57 100 36.57 35.81 39.43 30.76 37.06 18.32

switzerland 92.08 100 93.54 90.45 91.67 2.15 92.28 2.02

thyroid 90.93 100 89.30 91.48 77.91 16.23 86.63 21.85

voting 92.99 100 93.28 92.76 93.77 7.43 91.19 8.88

waveform 75.36 100 76.62 76.37 76.14 22.79 73.93 18.98

wine 84.57 100 86.43 85.17 86.43 15.37 83.81 12.00

wisconsin-bc-di 93.01 100 93.85 92.94 92.92 6.95 92.99 6.38

wisconsin-bc-pr 67.18 100 75.90 72.64 76.28 15.43 75.64 18.24

yeast 52.70 100 55.39 52.97 55.32 27.03 52.25 16.62

zoo 95.50 100 96.25 95.31 87.08 26.13 92.42 52.78

Average 75.75 100 77.52 75.98 76.59 19.29 76.13 19.73

back to the theoretical limits discussed in Subsection 2.1, we notice that this is exactly
what our average case results should look like. In our experiments, we retain 20% of the
instances for testing, which means that (theoretically) only 20% of the training set is required
to achieve competence preservation, and this is what we achieve in the average case.
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We also found that the domains which suffer a competence degradation as a result of
filtering using ICF and RT3 are exactly those for which competence degrades as a result
of noise removal. This would indicate that noise removal is sometimes harmful, and both
ICF and RT3 suffer as a consequence. This result supports the conclusions of Daelemans
et al. (1999) who argue that filtering natural language problems is unwise due to the number
of class exceptions. Class exceptions in the domains we consider would appear as noise
to the filters that we employ, and would therefore be removed. However, Daelemans et al.
do not use a filtering criterion that sufficiently ensures the retention of border cases, so the
only real conclusion we can draw is that noise removal is unwise when datasets contain
many class exceptions, rather than filtering in general. This does not bode well when we
consider our objective of finding a consistent case filtering criteria: the characterisation
of noise in some domains will be analogous to the characterisation of class exceptions
in other domains. If the exceptions are single case exceptions, then it is impossible to
differentiate.

To summarise, we have presented an algorithm which iteratively filters a case-base using
an instance-based learning parallel of the two case properties used in the CBR Footprint
Deletion policy. Due to the iterative nature of the algorithm, we have gained an insight into
how the deletion of regions depend on each other. The point at which our deletion criterion
ceases to hold (quite elegantly) results in unintrusive storage reduction. Our algorithm rivals
the most successful scheme of those devised by Wilson and Martinez. Our results indicate
that in some problems, noise cannot be differentiated from class exceptions.

5. Conclusions

We began by outlining some practical issues. We argued that different domains can some-
times have drastically different class structures and classified these domains into those with
either homogeneous or non-homogeneous class structures. This is important as the notion
of an instance critical to the classification process depends on this distinction. In the field
of data mining homogeneous class definitions are the norm, and this article concentrates on
those schemes that perform instance selection on these problems.

After reviewing the principle approaches we grouped them into three classes: early
schemes, recent additions, and the state of the art. The degree to which each class of
algorithm achieves unintrusive storage reduction approximately mirrors this chronolog-
ical order. We found that our ICF algorithm and Wilson and Martinez’ RT3 algorithm
achieve the highest degree of instance set reduction as well as the retention of classifi-
cation accuracy: they are close to achieving unintrusive storage reduction. The degree to
which these algorithms perform is quite impressive: an average of 80% of cases are re-
moved and classification accuracy does not drop significantly. The comparison we provide
is important as, considering the number of approaches, few consistent comparisons have
been made. In our review we also direct the reader to the work located on the fringes of
this area.

The chief point we wish to address is that, traditionally, reduction schemes have been
seen as general solutions to the problem of instance selection. Our observations on how
these schemes work, and how well they work in different problems, suggest that the success
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of a scheme is highly dependent on the structure of the instance-space. We argue that one
selection criterion is not enough for high performance across the board. Our results rein-
force this point, especially when we consider that the problem coverage in our experiments
is minimal in comparison to the variety of databases we might encounter. If we look at
larger and more complex datasets, the point is likely to reinforced still. Similarly, in the
context of noise removal, problem specific dependency is also a problem. We do not have
a full understanding of the problem dependency, but the reduction profile provided by our
ICF algorithm is a first step in achieving more perspicuous insights into problem struc-
ture. For example, some domains may contain both homogeneous and non-homogeneous
class structures, in which case we have a problem because certain parts of the instance
space are best served by different reduction criteria: both prototypical and border cases
are required for the most effective solution. The local-set construction we introduced in
Section 3.2 could also be used as a measure of how homogeneous the class structures in
instance space are. By computing the average local-set size, we would have a measure of
how local instances of the same class are to each other. For example, an instance space
with a low average local-set size might either contain lots of noise, or plenty of class
exceptions.

To summarise, we argue that with the majority of classification problems, border cases
are critical to discrimination between classes. We introduce an algorithm which rivals the
most successful existing algorithm over 30 domains. The result of comparison of these
algorithms is that neither is consistently superior. Deployment is the issue if we wish to
ensure successful instance selection, and the key to deployment is the insights we have into
how classes are constructed within the instance space.
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