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ABSTRACT 

In this paper, a new lattice Boltzmann model, called the 
artificial interface lattice Boltzmann model (AILB model), 
is proposed for the simulation of two-phase dynamics. The 
model is based on the principle of free energy minimization 
and invokes the Gibbs-Duhem equation in the formulation 
of non-ideal forcing function. Bulk regions of the two 
phases are governed by a non-ideal equation of state (for 
example, the van der Waals equation of state), whereas an 
artificial near-critical equation of state is applied in the 
interfacial region. The interfacial equation of state is 
described by a double well density dependence of the free 
energy. The continuity of chemical potential is enforced at 
the interface boundaries. Using the AILB model, large 
density and viscosity ratios of the two phases can be 
simulated.  The model is able to quantitatively capture the 
coexistence curve for the van der Waals equation of state 
for different temperatures. Moreover, spatially varying 
viscosities can be simulated by choosing the relaxation time 
as a function of local density. 

1. INTRODUCTION 

Dynamics of two-phase flows plays an important role in 
many fields of applied science and engineering, including 
oil-water flow in porous media, boiling fluids, liquid metal 
melting and solidification, and many more. Typically two-
phase flows manifest a wide variety of geometrical patterns 
(or flow regimes) of associated phases depending on the 
system conditions. These patterns include, but are not 
limited to, bubbly, slug, churn and annular flows. These 
multiple flow patterns significantly affect the overall 
system hydrodynamics by varying the heat transfer and 
pressure drop characteristic of a given flow.  
 
One specific example is a boiling water reactor (BWR) 
core, in which the coolant enters the core as liquid, 
undergoes a phase change as it traverses the core and exits 
as a high-quality two-phase mixture. Two-phase flows in 
BWRs typically manifest a wide variety of geometrical 

patterns of the co-existing phases depending on the local 
thermodynamic conditions [1].  

 
The accuracy in modeling is vital for the safety and 
economy of a nuclear power plant. However, modeling 
such flows―which involve bubble nucleation, bubble 
growth and coalescence, and inter-phase surface topology 
transitions―using CFD type approaches currently relies on 
empirical correlations and therefore, hinder the physics-
based insightful predictions. For example, several best 
estimate codes in nuclear industry, such as RETINA, 
CATHRE still rely on the extrapolated results from some 
simple laboratory experiments. The empiricism in the 
closure relations is a major source of error in them.  
 
To improve the accuracy, we must resolve the complexity 
of two-phase flow structures either by gathering 
information from the physical experiments (at similar 
system conditions) and/or from numerical/analytical 
methods. We should note that even now, the physics of 
very simple two-phase scenarios (for example, the growth 
of a single bubble on a heated surface and the coalescence 
of two bubbles) has not been fully understood. In an 
attempt to grasp the physics using state-of-the-art 
technologies, several experimental studies are currently 
being performed. 
 
Several computational approaches, such as molecular 
dynamics, dissipative pseudo particle dynamics, direct 
simulation Monte Carlo and Navier-Stokes based 
approaches, are best suited at different time/space scales for 
fluid simulations. Cross-scale interactions (back-and-forth 
feeding of scale-specific solutions) are required at each 
level of scale hierarchy in order to gain better predictive 
modeling. This multi-scale strategy (merging results at the 
micro-, meso- and macro-scales) to simulate fluid flow may 
be able to better address the physics of complex fluids. 
However, advances should be first made in developing the 
scale-specific approach and strategies are required to merge 
the solutions at different scales in order to obtain reliable 
results [2-3]. Because of its mesoscopic nature, lattice 
Boltzmann (LBM) methodologies are a good fit in the 
realm of multi-scale simulations and can address problems 
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that involve multiple levels of physical and mathematical 
descriptions.  

 
Unlike conventional numerical schemes based on the 
discretizations of macroscopic continuum equations, the 
LBM is a particle-based approach, in which collective 
behavior of particles is represented by a single-particle 
probability distribution function. Roots of LBM lie in the 
earlier lattice gas cellular automata (LGCA) models, in 
which, evolution of particles on a fixed lattice simulate the 
overall macroscopic behavior. The uniqueness of LBM 
stems from the fact that the macroscopic dynamics emerges 
from the simulation of very simple kinetic models that 
incorporate the essential physics of the microscopic (or 
mesoscopic) processes in the system. There underlies an 
artificial micro-world of particles ‘living’, ‘propagating’ 
and ‘colliding’ on a fixed lattice while conserving mass and 
momentum.  

 
For hydrodynamic simulations, LBM models are much 
simpler and efficient to solve on a computer compared to 
solving its macro-counterpart partial differential equations 
(PDEs). Though LBM and its variations were proposed 
several decades ago, it is only with the recent advances in 
computing power that their applications to realistic 
problems are becoming a reality. This approach appears to 
be one of the most promising approaches due to its 
scalability with computing power and short as well as long 
term promises. Computing power will no doubt continue to 
increase; and hence the LBM is likely to be applicable to 
ever larger problems [4-7]. 

2. ARTIFICIAL INTERFACE (AILB) MODEL 

A thermodynamically consistent lattice Boltzmann (LB) 
model for the two-phase simulations can be obtained if one 
treats the chemical potential as the driving force for the 
phase separation. Incorporation of the Gibbs-Duhem 
equation, which imposes constraints on thermodynamic 
variables of a given system at equilibrium, into the LB 
model can guarantee the recovery of the equilibrium phase-
thermodynamics [8].  

 
In this section, a new LB model, called the artificial 
interface lattice Boltzmann (AILB) model is proposed for 
the two-phase simulations. The model incorporates the 
Gibbs-Duhem equation in order to recover the equilibrium 
thermodynamics. In this model, a non ideal equation of 
state, such as the van der Waals equation of state (vdW 
EOS), is employed in the regions occupied by the bulk 
phases whereas an artificial equation of state is used in the 
interfacial region. The advantage of using an artificial 
equation of state in the interfacial regions is that the 
thickness of the interface can now be controlled in the two-
phase simulations. Numerical experiments show that the 

numerical stability is also enhanced if one chooses a thicker 
interface which allows simulation of large density and 
viscosity ratios. Moreover, it is proposed to choose a 
suitable scaling factor for the vdW EOS. After scaling 
down the vdW EOS, one can simulate larger 
density/viscosity ratios without even making the interface 
thicker. 

2.1. Lattice Boltzmann equation (LBE) 

The discrete Boltzmann (DB) equation in the presence of 
forcing F  can be written in the following form: 
  

( ) .
.
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where ( , )af tr  is a single-particle distribution function 

discretized in the microscopic velocity space, av  is the 
microscopic velocity of the fluid particles, ( , )tρ r  is the 
fluid density, ( , )tu r  is the fluid velocity, τ  is a relaxation 
time related to the kinematic fluid viscosity, R  is the ideal 
gas constant, T  is the temperature, F  is the force 
experienced by the fluid particles, r  is the position vector 
of the fluid particles and t  is time. 
 
In the DB equation, eq

af  is a single-particle equilibrium 
distribution function which is derived from a Maxwell-
Boltzmann distribution and can be approximated to [5]: 
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where ( )a aw t ρ≡  are lattice constants which depend upon 
the chosen lattice type.   
 
For a D2Q9 lattice, shown in Figure 1(a), we have: 
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For a D3Q19 lattice, shown in Figure 1(b), we have: 
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Figure 1. Lattice velocity directions in (a) D2Q9 and 
(b) D3Q19 lattice structures. 

 
The DB equation is solved by employing a Lagrangian 
based discretization which essentially integrates it along the 
characteristics of the underlying lattice i.e. 
( , ) ( , )at t t t→ + Δ + Δr r v . In such an integration, steps in 
space and time are coupled with the microscopic velocity 
along the characteristics such that, a tΔ = Δr v .  The 
resulting discretized equation is called the lattice 
Boltzmann (LB) equation, which is: 
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2.2. Modified LBE 

By defining the modified distribution function ( , )ag tr  as: 
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the LB equation (5) can be transformed to the following 
form: 
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The modified distribution function ( , )ag tr  can be used to 
determine the macroscopic hydrodynamics using the 
following relations: 

( ), a a
a a

t f gρ = =∑ ∑r  (8) 
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2.3. Forcing term to simulate phase segregration 

The LB equation, with a constant forcing term (which can 
be zero) possesses an inherent ideal gas equation of state, 
and is not suitable for simulating the segregated phase 
dynamics encountered in scenarios involving two 
coexisting phases. In order to model the non-ideal behavior 
of phase segregation, inter-particle interactions have to be 
introduced into the forcing term of LB equation by 
accounting for the long range attractions attrF  and short 

range repulsions repF  in addition to the constant body force 

GF . Adding those, we can define the net force F as: 

attr rep G= + +F F F F  (10) 
 
Adding the long range attractive forces attrF , the short range 

repulsive forces repF and the constant body force GF  (which 
usually is the standard gravitational force gρ ), we can 
associate the net force F  to the thermodynamic pressure 

0P  as: 

( ) 2

0 GP RTρ κρ ρ= −∇ − + ∇∇ +F F  (11) 

where 0P  follows a non-ideal equation of state: 

( ) 2

0 1P RT b aρ ρχ ρ= + −  (12) 

2.4. Gibbs-Duhem equation 

For two coexisting phases of a fluid to remain in 
equilibrium, both the mechanical as well as the chemical 
equilibrium must be established. This constraint can be 
satisfied by enforcing the Gibbs-Duhem equation for 
equilibrium, which states: 

0 0P ρ μ∇ = ∇  (13) 

where 0μ  is the bulk chemical potential which is defined as 

the first derivative of bulk free energy density 0E  with 
respect to the fluid density. Combining equations (11) and 
(13), we get:  

( ) GRTρ ρ μ= ∇ − ∇ +F F  (14) 

where 2

0μ μ κ ρ= − ∇ . 
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2.5. Chemical potential 0μ  in the AILB model 

For the bulk liquid ( ( , ) sat

liqx yρ ρ≥ ) and bulk vapor 

( ( , ) sat

vapx yρ ρ≤ ) regions, we can choose a non-ideal 
equation of state, such as the van der Waals equation of 
state (vdW EOS), which is [9]: 

20
0 1
bulk RT

P a
b

ρ
ρ

ρ
= −

−
 (15) 

 
Bulk chemical potential 0

bulkμ  for the vdW EOS can be 
obtained from: 

0
0 0 ln 2

1 1
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μ ρ

ρ ρ
= + −

− −
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The interfacial free energy density int

0E  of a fluid can be 
modeled to take the following double well form [10]: 

( ) ( )2 2int

0

sat sat

l vE β ρ ρ ρ ρ= − −  (17) 
where β  is a constant related to the surface tension of the 

fluid, and sat

lρ  and sat

vρ  are densities of the saturated liquid 
and vapor phases, respectively. 
 
A relation between the interfacial chemical potential and 
the fluid density ρ  can be derived as: 

( ) ( )( )
int

int 0
0 4 sat sat sat

l v m

E
μ β ρ ρ ρ ρ ρ ρ

ρ
∂

= = − − −
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where ( )0.5sat sat sat

m l vρ ρ ρ= +  is the mean saturation 
density. 
 
In order to ensure the continuity of the chemical potential at 
the interface boundaries, i.e. at sat

liqρ ρ=  and sat

vapρ ρ= , the 

interfacial chemical potential int

0μ  is shifted by the value of 
the bulk chemical potential at the interface boundary, i.e.  

0 sat
l

bulk

ρ ρ
μ

=
 to give: 

( )( )( )int

0 0 4
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l
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l v mρ ρ
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=
= + − − −  (19) 

3. RESULTS AND DISCUSSIONS 

A two-dimensional LBM simulation is performed using a 
D2Q9 lattice, in which, two stationary (liquid) droplets, each 
of density 1, are initialized such that they are in 
thermodynamic equilibrium with the vapor phase of density 
0.0025 (see Figure 2).  A periodic box of size 600 x 1600 lu 
(lattice units) is chosen for the simulation. Both the droplets 
are assumed to be of the same radii equal to 200 lu and are 

separated by a minimum spacing of 4 lu. Surface tension of 
fluid is specified as 0.005 (in LBM units). LBM relaxation 
times for both the liquid and vapor are taken as 0.001 and 
0.5, respectively. The interface thickness in LBM 
formulation is taken as equal to 4 lu initially. The kinematic 
viscosity ν  of the liquid and vapor are related to their 
corresponding relaxation times τ  by / 3ν τ= .  The 
temporal evolution of the above specified system of two 
droplets is shown in Figure 2 (a) to (h). 
  

 
Figure 2. LBM simulation of coalescence of two 
stationary (liquid) droplets (see (a)).  Due to the 
intermolecular attraction, a liquid bridge is initially 
formed between the two drops (see (b)) which then 
widens due to the presence of surface tension (see 
(c) to (h)) and later minimizes its surface energy by 
minimizing the perimeter of the liquid region to 
achieve the steady state in a shape of circular drop 
(not shown in figure). Other parameters of the 
simulations are: g = 0, 1.0lρ =  and 0.0025vρ = . 

The radius of the liquid bridge br  varies proportional to 

t∝  and the corresponding variation in non-dimensional 

terms (
0

* brr
R

= , *
i

t
t

τ
=  and 

3

0l
i

Rρ
τ

σ
= ) is shown in 

Figure 3 for both, simulation results and experimental data 
for droplets of different radii. Reasonably good agreement 
between the two highlights the modeling capability and 
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applicability of the LBM for such simulations.  It is 
intended that these validation studies will be followed by 
more complex LBM simulations of boiling phenomena 
relevant to BWRs in the future. 
 

 
Figure 3. Variation of the non-dimensional bridge radius 

*r  with respect to the square-root of the non-dimensional 

inertial time *t  for low viscosity fluids. Good agreement 
between the LBM simulation results (pink squares 
connected by a line) and experimental data for water drops 
of various radii (taken from [11]) is observed. 
 
Several 2D LBM simulations of a single rising vapor 
bubble in a quiescent liquid have also been performed. The 
computational domain consists of 200 x 1000 lattice points. 
No-slip LB boundary condition is specified on the bottom 
and top walls of the domain. Side boundaries are assumed 
to be periodic. A bubble of radius R = 50 is initialized at t = 
0 to be of circular shape (in 2D) and located slightly above 
(about two bubble diameters) the bottom wall in order to 
reduce the possible wall-bubble interactions. Initially, both 
liquid and bubble are assumed to be stationary. Due to 
density difference between the vapor and the liquid phase 
and the presence of gravity, an upward buoyancy force acts 
on the lower-density bubble. The bubble moves upward and 
a liquid flow surrounding the bubble sets in due to the 
bubble’s movement. This deforms the shape of the bubble 
from circular to 2D-oblate ellipsoidal. The deformation in 
bubble’s shape is a natural consequence of the fluid flow 
fields (the wake below the lower surface and the 
recirculation on the sides).  
 
The rising bubble is assumed to acquire a terminal shape 
when its area-averaged (in 2D) velocity attains a near-
constant value, which for this simulation is found to be at 
nearly t = 70,000 time steps. The terminal shape and the 
streamlines of flow around the bubble are shown in Figure 
4 (a, b) in both the laboratory and the bubble’s reference 
frame. The terminal shape from the LB simulations agrees 
well with the generalized shape regime map by Bhaga and 

Weber [12] for the non-dimensional parameters of the 
simulation. 

 

 
Figure 4. Terminal shape (oblate ellipsoidal) of a rising 
bubble and corresponding velocity stream lines after 70,000 
LB time steps: (a) in the laboratory reference frame; and (b) 
in the bubble’s reference frame. Parameters for the 
simulation are: ρ

l
 = 1.0, ρv = 0.25, R = 50, σ = 5 x 10-3, g = 

10-5, 0.5l vτ τ= = , Lx x Ly = 200 x 1000. (Red:  liquid; 
blue: vapor.)  Non-dimensional parameters are: Reynolds 
number, Re = 12.0; Eotvos number, Eo = 15.0 and Morton 
number, Mo = 0.046. Terminal velocity Ut  is taken to be 
0.02. The predicted shape agrees well with the 
corresponding shape in the regime map of Bhaga and 
Weber [12]. 

4. CONCLUSIONS 

An artificial interface lattice Boltzmann (AILB) model is 
proposed in this paper for the analysis of liquid-vapor two 
phase flows. Interface between the two fluid phases in the 
AILB model stretches across several grid points. Because 
of the diffuse interface description and the lattice 
Boltzmann evolution algorithm, moving interfaces are 
handled with a relative ease compared with the 
corresponding sharp-interface approaches. In the AILB 
algorithm, there is no need to explicitly track the phase-
interface (i.e. to explicitly follow the position of the 
interfaces) or apply any interface conditions (such as, the 
continuity of shear stress etc.). Therefore, the overall 
computational complexity is reduced. The AILB model is 
able to handle singular topological events (such as, break-
up and coalescence) without any need to introduce separate 
models for them. Simulation of such events in existing two-
phase models usually requires special treatment in the 
solution algorithm. For example, in several other models, a 
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threshold on the thickness has to be prescribed in order to 
remove any thinning neck (or film) during the simulation of 
a break-up event. In the AILB model, no artificial trigger is 
needed to simulate bubble/drop breakup and coalescence. 
Due to the free-energy minimization principal of the AILB 
model, it could easily be extended to incorporate complex 
fluids (such as, polymers, colloids etc.). Several other 
interaction models could be included in composing the net 
free energy of the system, which upon minimization could 
produce desired interfacial events.  
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