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Abstract: Eye movements show primary responses that reflect humans’ voluntary intention and
conscious selection. Because visual perception is one of the fundamental sensory interactions in
the brain, eye movements contain critical information regarding physical/psychological health,
perception, intention, and preference. With the advancement of wearable device technologies,
the performance of monitoring eye tracking has been significantly improved. It also has led to
myriad applications for assisting and augmenting human activities. Among them, electrooculograms,
measured by skin-mounted electrodes, have been widely used to track eye motions accurately.
In addition, eye trackers that detect reflected optical signals offer alternative ways without using
wearable sensors. This paper outlines a systematic summary of the latest research on various
materials, sensors, and integrated systems for monitoring eye movements and enabling human-
machine interfaces. Specifically, we summarize recent developments in soft materials, biocompatible
materials, manufacturing methods, sensor functions, systems’ performances, and their applications
in eye tracking. Finally, we discuss the remaining challenges and suggest research directions for
future studies.

Keywords: eye movement monitoring; human–machine interface; wearable technology; biopotential
monitoring; electrooculography

1. Introduction
1.1. Recent Advances in Eye Movement Monitoring

Electrophysiology signals are often used for health status indicators related to all
human activities and various applications. Recent advances in wearable technologies and
video monitoring systems for eye movement enabled various types of human–machine
interface (HMI) [1,2]. Among them, electrooculograms (EOGs), measured by surface-
mounted electrodes, have been widely used to track eye movements. Existing devices for
EOG signal measurements cause discomfort due to their bulky and rigid properties. More-
over, the conventional EOG measurement device can only be performed in a stationary
lab setup. Recent advances in wearable technologies, such as soft materials, manufactur-
ing technology, and electronic chip packaging, are improved to compensate for existing
problems, and these advances directly interact with electronic, mechanical, or computing
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elements, a collective practice known as HMI. Moreover, recent enhancements in com-
puting power have made it possible for real-time eye tracking to monitor changes in eye
motions with different types of cameras. Eye tracking is deployed in various research areas,
including psychology, neuroscience, and marketing, to understand human intentions and
responses (Figure 1).
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Figure 1. Recent advances in eye tracking sensors, systems, and methods (Screen-based type, Eye-
glasses type (right), and VR type: Reprinted under terms of the CC-BY license [3]. Copyright 2020,
the authors. Published by MDPI), (Headband type: Reprinted with permission [4]. Copyright 2019
Elsevier), (Eyeglasses type (left): Reprinted with permission [5]. Copyright 2020 American Chemical
Society), (Ear type: Reprinted under terms of the CC-BY license [6]. Copyright 2017, the Authors.
Published by Springer Nature), (Facemask type: Reprinted with permission [7]. Copyright 2019
Elsevier), (Metal membrane: Reprinted with permission [8]. Copyright 2013 John Wiley and Sons),
(Composite: Reprinted with permission [9]. Copyright 2021 American Chemical Society), (Tattoo:
Reprinted with permission [10]. Copyright 2017 American Chemical Society), (Smart wheelchair:
Reprinted with permission [1]. Copyright 2017, Elsevier B.V), (Drone control: Reprinted under terms
of the CC-BY license [11]. Copyright 2018, the Authors. Published by Springer Nature), (Infant Analy-
sis: Reprinted with permission [12]. Copyright 2020 Elsevier), (laparoscopic surgery: Reprinted under
terms of the CC-BY license [13]. Copyright 1969, the authors. Published by Elsevier Ltd.), (PCCR:
Reprinted with permission [14]. Copyright 2017 Springer Nature), (Machine learning: Reprinted
under terms of the CC-BY license [15]. Copyright 2021, the Authors. Published by MDPI).
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1.2. Electrooculogram-Based Approaches for Human–Machine Interfaces

EOG is one of the technologies for tracking eye movements by measuring the potential
via the positively charged cornea and negatively charged retina [1]. The measured signal
results are called EOG. Generally, the range of the measured EOG signals is from 50 µV
to 3500 µV depending on the amount of light incident on the retina [16,17]. It is common
practice to use generic electrical sensors for EOG detection. Since these conventional EOG
devices have rigid properties, wearable device platforms based on soft electronics and
wireless data communications could offer an improved user experience. The concept of a
wearable EOG device includes measuring the EOG signal in a wearable environment for
providing smart diagnostics and application controllers with embedded signal processing
such as machine learning algorithms. Building a wearable EOG system requires electrodes,
platforms, and signal processing to analyze the EOG signal. Electrodes are essential for
measuring bio-potentials. Existing metal-based electrodes are flat in shape with gels for
adhesion. Flat-shaped electrodes are not suitable for human skin due to skin deformations.
The gel also causes several skin issues such as skin irritation and poor breathability. Due to
the above problems, research groups recently studied electrodes with flexible form factors,
biocompatible materials, and cost-effective processes. As an example, polymer-based
electrodes (sponge [18–20], textile [21], and hydrogel [22–29]) have been utilized because of
their advantages such as good mechanical flexibility, low density, the ease of processing, and
low costs. Recent advances in microfabrication and print technologies enabled new ways to
design micro-patterned electrodes (gold [1,30] and graphene [11]). Due to the development
of these technologies and 3D printing, designing wearable platforms has become possible,
such as eyeglass types [5,31–39], face mask types [7,40–42], ear plug types [43–47], and
headband types [48–58] for various applications. Previously, various controllers for an
HMI such as wheelchairs [1,4,51,52], drones [11,59], game interfaces [5,36,47,60,61], and
virtual keyboards [34,38,51,62] were created by using only an EOG signal. Recently, various
healthcare monitoring systems [7,40,41,44,45,63] and medical health status analyses [64–66]
have been conducted using both the electroencephalogram (EEG) and EOG with signal
processing, such as machine learning algorithms [1,5,36,52]. The studies mentioned above
show that the advancement in wearable EOG devices makes it easier to use HMI in daily life.

1.3. Screen-Based Eye Tracking Technology

Over the past few decades, screen-based eye trackers have been successfully used
for several applications to find out the involuntary or voluntary recognition of human
intention by tracking the gaze point on the screen. The intuitive human intention could be
delivered to the human–machine interface with the exact coordinates of the gaze point on
an object or screen. The eye tracker-based signal computation process could be represented
by two types of methods: machine learning [67–70] and pupil center-corneal reflection
(PCCR) [71–73]. Each technique required several cameras to create a trace map or to detect
gaze points on the screen. These fundamentals of eye movement and eye gaze analysis are
the basic parameters of heat maps, including the area of interest, time to first fixation, dwell
time, and integration model. Moreover, recent developments in real-time computer devices
led to the emergence of mobile and stationary eye tracker platforms to change daily lives. A
new advancement in optical device-based mobile eye tracking systems presents comprehen-
sive nonintrusive human gaze points [73,74]. The form factors of recent eye tracking devices
are eyeglasses, screen-attached cameras, and screen-mounted goggles. These non-invasive
eye tracking platforms allow the collection of comprehensive eye information data. Various
applications have attempted to analyze human attention and intention from algorithmic
reproduction using eye tracking data. Here, we focus on an all-inclusive review of eye
tracking methods (such as EOG and video monitoring) and wearable systems, including
electrodes, platforms, and signal-processing technologies for various applications (Figure 1).
We summarize the types of platforms and the characteristics of the electrodes, including
biocompatible, mechanical, and electrical properties. In addition, the signal processing
strategy is discussed in view of targeted applications and data sets. Moreover, we summa-
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rize the principle, platform, and applications of eye tracking employed throughout many
fields of psychology, medical examination, cognitive science, and disease diagnosis. Finally,
we discuss future works related to next-generation eye tracking technologies, promoting
continuous development via cooperation with various technologies.

2. EOG Signals

A key metric of the positive potential on the cornea and negative potential on the
retina is shown in Figure 2a. The EOG signal is acquired from electrodes around the eyes or
forehead, as described for various EOG platforms in the above section. Because electrodes
can transduce bioelectric activities within the body into electrical currents, electrodes are
essential components for obtaining EOG signals. For EOG collection, electrodes will be
positioned on the user’s face, as shown in Figure 2b. Two electrodes are placed next to
the lateral canthus of each eye to detect horizontal (i.e., left and right) eye movements.
To detect vertical (i.e., up and down) eye movements, two electrodes are placed on the
top and bottom of one of the eyes. An electrode is placed in the middle of the forehead,
chin, or back of the ear as a reference. The electrode placed at the lateral canthus of
the left eye is connected to the positive terminal of the horizontal channel, and another
electrode placed at the lateral canthus of the right eye is connected to the negative terminal
of the vertical channel. Other electrode sets for vertical channels are similar to those for
horizontal channels. One electrode placed at the top of the left eye is connected to the
positive terminal of the vertical channel, and another electrode placed at the bottom of
the left eye is connected to the negative terminal of the vertical channel. According to the
positions of the electrodes mentioned above, we explain how EOG signals are measured.
When the electrodes capture the eye movements, the electrode nearby the eye’s direction
detects the positive potential from the cornea, and another electrode opposite of the eye’s
direction detects the negative potential from the retina. For example, when the eyes move
to the right, the pair of horizontal electrodes detect the negative potential. Alternatively,
when the eyes move to the left, the pair of horizontal electrodes set detects the positive
potential. Similarly to the horizontal electrodes above, the vertical electrodes measure the
potential according to the direction of the eye. When the eyes look up, vertical electrodes
detect the positive potential, and when they look down, vertical electrodes detect the
negative potential. The blink signal is not an EOG signal. The EOG signal is the electric
potential difference between the retina and the cornea. However, the blink signal is an
electromyography (EMG) signal from the movement of the eye muscle. EMG measures
electrical muscle responses in response to stimulation in the nerves. EOG waveforms show
the peaks when the eyes move left, right, up, and down from the first position. Here,
this section introduces various types of electrodes, such as hydrogel, fiber, polymer, and
micro-patterned types, which can solve problems with existing gel and dry electrodes.

2.1. Existing Electrodes

Wearable EOG devices that require electrodes and wearable platforms can measure
changes in eye movements during daily activities [1,75]. Conventional electrodes, wet or
dry silver/silver chloride (Ag/AgCl), are generally used to measure EOG signals [76–80].
For example, wet Ag/AgCl electrodes are used for the analysis of various activity recogni-
tion fields [65,81,82] or HMI controllers [37,60,62,83]. Dry flat Ag/AgCl electrodes are used
on various wearable platforms such as eyeglasses [35], head caps [55], and goggles [34].
From the perspective of wet Ag/AgCl electrodes (Figure 2c), conductive gel dehydration
results in electrode performance degradation over time. The conductive gel can cause
pain and skin rashes when it is used on human skin [1] and might cause a short circuit
if electrodes are placed close to each other [84]. Poor breathability is also one of the gel
electrode’s drawbacks. It is hard to use for wearable platforms such as eyeglasses because
the gel electrodes are too bulky for mounting around the nose. On the other hand, dry
Ag/AgCl electrodes are better for the long-term measurements of the EOG signal than
wet electrodes (Figure 2d). However, dry electrodes are thick and stiff, leading to a high
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electrode–skin impedance and vulnerability to motion artifacts with poor contact on the del-
icate skin around the eyes [85]. The wearable EOG device systems with existing electrodes,
such as conventional wet or dry electrodes, are often bulky and complex, as shown in
Figure 2e,f. Therefore, many research groups introduced non-invasive, bio-compatible, and
high-quality recording electrode types to address the above issues. This section introduces
the various types of electrodes, such as hydrogel, fiber, polymer, and micro-patterned types
(Table 1).
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Figure 2. EOG detection systems. (a) An anatomical illustration of the eye (cornea being positive and
retina being negative). (b) Positions of electrodes for EOG detection (reprinted under terms of the
CC-BY license [51]. Copyright 2017, the authors. Published by MDPI). (c) Conventional Ag/AgCl
electrodes. (d) Example of a stiff material (metal disc) (Reprinted with permission [86]. Copyright
2013 Institute of Physics and Engineering in Medicine). (e) Exiting EOG devices with conventional
gel electrodes (Left: Reprinted with permission [81]. Copyright 2009 Elsevier, Middle: reprinted with
permission [60]. Copyright 2018 Elsevier, Right: reprinted under terms of the CC-BY license [37].
Copyright 2021, the Authors. Published by MDPI). (f) Exiting EOG devices with dry metal electrodes
(Reprinted under terms of the CC-BY-NC license [87]. Copyright 2018, the Authors. Published by
Springer Nature).
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2.1.1. Composite Electrodes

The composite electrodes are introduced to compensate for the drawbacks of conven-
tional electrodes, such as skin irritation or motion artifacts from human skin. Composite
electrodes aim to achieve softness and high conductivity to acquire a continuous high-
quality biopotential. The composite electrodes are fabricated with various materials such
as a polymer, fibers, and hydrogel, and that could be represented as soft materials for
measuring biopotentials. We present the manufacturing method and characteristics of
the composite electrodes with various materials. In the case of elastomeric composite
electrodes, Lee et al. [5] reported soft, elastomeric composite elements for biopotential, as
shown in Figure 3a. The elastomeric composites are made of three different types of carbon
nanotubes (CNTs) (HANOS CM-95, CM- 250 and CM-280). In all cases, such as mechani-
cal endurance, robustness, and deformation, CM-280 is an optimized composite material
considering mechanical endurance, robustness, and deformation. Moreover, elastomeric
composite electrodes based on CM-280 showed the lowest rate of electrical resistance
changes among the three types of CNTs. From the signal acquisition quality perspective,
such as the signal-to-noise ratio (SNR), the elastomeric composite electrodes based on
CM-280 are comparable to commercial gel electrodes. This electrode is a representative
electrode for overcoming the disadvantages of the existing electrode, such as skin irritation
and dehydration. Lin et al. [38,84] designed conductive polymer foam electrodes based on
urethane and taffeta materials coated with Ni/Cu on all surfaces (Figure 3b). This polymer
electrode can reduce motion artifacts by absorbing the motion force and the rubbing and
sliding of the electrode on the human skin. Fiber-type electrodes are generally divided into
fabric-type and paper-type electrodes. As a flexible electronic, it has fiber-based substrate
printability and is low cost, lightweight, and can be used in disabilities [88]. As shown in
Figure 3c, fiber electronics manufacturing processes are also simple to apply in conductive
inks on a fiber-based substrate. In previous research, Antti et al. [89] reported accessible
silver-coated fiber-type electrodes (20 × 20 mm2). Fiber-based electrodes are affordable but
are vulnerable to motion artifacts from the forehead depending on the facial movements.

To overcome the disadvantages of the previous fabric electrodes, Eskandarian et al. [90]
introduced 3D-Knit fabric-type electrodes based on conductive elastomeric filaments (CEFs),
which are flexible, breathable, and washable, as shown in Figure 3d. The conductive
elastomeric materials are knitted or weaved to be electrodes, and the fabric electrodes
also can be integrated into the general garment. This unique combination of fabric-type
electrodes and garments enables one to monitor electrophysiological signals. The fabric-
type electrodes are developed with a 3D structure to be compatible with human skin. The
following is a brief summary of the manufacturing process. (1) CEF fiber is used for the
electrode’s surface. (2) The polyester yarn is then knitted as a 3D structural filler in the
spacer layer. To support the 3D structures, polyester is knitted on the back layer. With
these fabric-type electrodes, smart garments can be used for the long-term monitoring
of electrophysiological signals without severe levels of motion artifacts. Paper-based
electrodes have similar advantages to the above fabric-type electrodes but have a simpler
manufacturing process. Paper-based electrodes are fabricated using inkjet printing [91,92],
spin coating [93], and screen-printing [94]. However, Golparvar et al. [57,95,96] introduced
wearable graphene textiles with a different fabrication process [57]. First, an ordinary textile
is dipped in a graphene oxide (GO) solution. Moreover, thermal treatment and chemical
reduction are conducted to obtain reduced graphene oxide (rGO). These graphene textile
electrodes promise flexibility, breathability, and usability for a daily garment. The flexibility
is able to match skin deformations. Moreover, permeability relieves skin irritation relative
to air and moisture. Due to usability, the wearable graphene textile electrode is likely to be
adopted by sportswear companies for smart wearable devices.
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Figure 3. Examples of composite electrodes. (a) Carbon nanotubes embedded in a printed eyeglass
(Reprinted with permission [5]. Copyright 2020 American Chemical Society). (b) Conductive polymer
foam based on urethane and taffeta materials (Reprinted with permission under the terms of the
CC-BY license [38]. Copyright 2021, the Authors. Published by MDPI). (c) Silver embroidered
electrode and electrode-lead connection (Reprinted with permission under the terms of the CC-BY
license [21]. Copyright 2021, the Authors. Published by MDPI). (d) 3D-Knit dry electrodes using
conductive elastomeric fibers with CEF (Reprinted with permission [90]. Copyright 2022 Wiley-
VCH GmbH). (e) Photographs demonstrating adhesion of the flexible hydrogel (Reprinted with
permission under the terms of the CC-BY license [97]. Copyright 2021, the authors. Published by
MDPI). (f) Tortuosity of the proposed hydrogel at −115 ◦C (Reprinted with permission under the
terms of the CC-BY license [98]. Copyright 2021, the Authors. Published by IOP). (g) Photographs
demonstrating the stretchability of the starch hydrogel (Reprinted with permission [61]. Copyright
2022 Wiley-VCH GmbH).

Fiber-type electrodes have limited stretchability, which is not suitable for uneven skin.
Moreover, those fiber-type electrodes are vulnerable relative to temperature and humidity.
Some research groups presented hydrogel electrodes to overcome the limitation of the
fiber-type electrode [61,97,98] (Figure 3e). Among those research groups, Wang et al. [98]
introduced a conductive nanocomposite network hydrogel fabricated by projection mi-
crostereolithography (PµSL)-based 3D printing. This 3D-printed hydrogel shows high
stretchability with high conductivity. Moreover, it can capture biopotentials precisely.
As shown in Figure 3f, the 3D-printed hydrogel is stretchable and bendable even at low
temperatures (−115 ◦C). Wan et al. presented the starch hydrogel patch made by lotus
rhizome. As shown in Figure 3g, this conductive starch hydrogel has high stretchabil-
ity (790%), adhesion, and a low Young’s modulus (4.4 kPa). This starch hydrogel patch
enables a conformal attachment on uneven human skin based on these properties. To
fabricate a starch hydrogel patch, skeleton material (lotus rhizome) and electrolyte (NaCl)
are integrated. These materials allowed capturing EOG signals with biocompatibility and
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biodegradability. Wang et al. introduced another flexible hydrogel electrode [61], providing
exceptional breathability, a low modulus (286 kPa), and adhesion to the human skin as a
biocompatible biosensor. Compared to conventional gel electrodes, this hydrogel electrode
has biocompatibility, which causes fewer skin irritations. This flexible hydrogel electrode is
made of conductive hydroxypropyl cellulose/Polyvinyl alcohol (HPC/PVA) hydrogel and
flexible polydimethylsiloxane (PDMS) substrate.

2.1.2. Dry Electrodes

Recent advancements in microfabrication technologies opened the possibility for
micro-patterned electrode designs and facilitated the design of sophisticated micro- or nano-
scaled electrode with diverse sizes, shapes, and even mechanical and electrical properties.
Here, we introduce micro-patterned electrodes on various substrates such as polymer [11],
paper [99], and metal (gold [1] and silver [100]). Among the three types of dry electrodes
utilized for capturing EOG signals, the polymeric substrate was regarded as an attractive
material because its scaleable property enables various forms of electrode fabrication.
As shown in Figure 4a (left), Ameri et al. [11] introduced graphene electronic tattoos
with ultrathin, ultrasoft, transparent, and breathable substrates. These electrodes are
manufactured with graphene and polymethyl methacrylate (PMMA). Figure 4a (right)
shows a manufacturing process; graphene is grown on copper foil, and the 350 nm film
of PMMA is coated on graphene by spin coating. Then, the copper layer is etched away
and rinsed with deionized (DI) water. The graphene/PMMA layer is transferred onto
a commercial tattoo paper. Then, the graphene/PMMA layer on tattoo paper is carved
with the shadow mask and a mechanical cutter plotter (Silhouette America Inc., Lindon,
UT, USA). This electrode is designed in serpentine-shaped ribbons to enable stretchability
(50%) [10]. Other electrodes are applied as paper-type substrates to materialize a dry
electrode [99]. Epidermal paper-based electronic devices (EPEDs, Figure 4b (Left)) are
manufactured by a benchtop razor printer, which is simple, low-cost, and compatible. As
shown in Figure 4b (Right), to manufacture EPEDs, paper substrates are used. These paper
substrates are silanized with fluoroalkyl trichlorosilane for inexpensive, water-resistant,
and mechanically compliant materials relative to human skin. Moreover, conductive inks
or thin films are attached to the side of paper substrates. The open mesh serpentine layout
of the EPEDs is craved by a programmable razor printer (Silhouette CameoTM, Silhouette
America Inc., Lindon, UT, USA). The silanization with fluoroalkyl trichlorosilane prevents
the EPEDs from being wet because silane is used for hydrophobic paper. Due to the
low thickness, the EPED is able to be compatible with skin wrinkles [101]. Moreover,
the mechanical reinforcement of EPEDs allows withstanding accidental stresses of up to
2.5 MPa. The design of the EPED electrodes, the serpentine pattern, enables them to endure
stretching up to 58% before mechanical failure. The “skin-like” bioelectrode made of metal
(gold or silver) is feasible to draw the advantage of mesh-patterned dry electrodes (Figure 4c
(Left)). One of the representative examples utilizing Au was introduced by Mishra et al. [1].
A cleaned glass slide is coated with primer (MicroChem Corp., Westborough, MA) for
adhesion. After coating with PMMA and PI on the glass slide, curing of PMMA and PI
is followed. Au deposition on the PI and photolithography-defined patterns is designed
according to a “skin-like” fractal pattern. From the perspective of skin assessments, the
fractal bioelectrode is advantageous over the conventional gel electrode. The conventional
gel electrode causes skin irritation by heating skin temperature, while this “skin-like” fractal
electrode shows a negligible change in skin temperature. This fractal electrode demonstrates
mechanical compliance in both stretchability (30%) and bendability (up to 180◦). Another
manufacturing method of “skin-like” bioelectrode is aerosol jet printing (AJP) as shown
in Figure 4c (Right). As a potentially low-cost and scalable printing method [102], AJP
allows the direct printing of an open-mesh structure onto a soft membrane without using
an expensive nano/microfabrication facility [103]. With silver nanoparticles (AgNPs) (UT
Dots Inc., Champaign, IL, USA), AJP allows the direct printing of an open-mesh structure
onto a soft membrane. The “skin-like” bioelectrode designed by computational modeling
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showed highly flexible (180◦ with a radius of 1.5 mm) and stretchable (up to 100% in biaxial
strain) characteristics. Peng et al. [100] proposed a flexible dry electrode with an Ag pad
and ten thousand micro-AgCl pads (Figure 4d). This flexible dry electrode is manufactured
with parylene C (PC) (Sigma–Aldrich, St. Louis, MO, USA). As shown in Figure 4d (Right),
the parylene layer is deposited on a glass wafer by chemical vapor deposition (CVD). After
that, a positive photoresist (PR) spun on the parylene film is patterned by ultraviolet (UV)
light. Next, a sputtering process and a lift-off process are carried out. Ag is electroplated
and partly chloridized by electrochemical methods. Finally, the PR is removed. These
dry electrodes are based on parylene, which is biocompatible, flexible, and good adhesive.
Because this electrode is thin and flexible compared to conventional electrodes, it can
maintain a stable and low electrode–skin impedance.
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fabrication process based on a polymer material (reprinted under terms of the CC-BY license [11].
Copyright 2018, the authors. Published by Springer Nature). (b) Copper electrode fabrication
process based on paper substrate (reprinted under terms of the CC-BY license [99]. Copyright
2018, the authors. Published by MDPI). (c) AgNPs electrode fabrication process via aerosol jet
printing (reprinted under terms of the CC-BY license [30]. Copyright 2020, the authors. Published by
Science). (d) Flexible dry Ag/AgCl electrode fabrication process via screen printing (reprinted with
permission [100]. Copyright 2016 Elsevier).
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Table 1. Summary of electrodes for measuring EOG signals.

Electrode
Type

Conductive
Material

Supporting
Substrate Biopotential Biocompatibility Stretchability Bendability Fabrication Size Modulus Advantage Refs.

Polymer

CNT PDMS EOG, EEG O O O Mix and
curing

20 × 5 × 5
mm3

Elasticity
4 MPa

Less changes in electrical
resistance against mechanical
deformation
-High signal-to-noise ratio

[5]

Ni/Cu Urethane foam EOG, EEG O X X
Assembling
Metal and

foam

14 × 8 × 8
mm3

Compression
set 5%

Low interference from
skin-electrode interface [38,84]

Ag/AgCl Parylene EOG, EEG,
EMG O X O Microfabrication

process
10 × 10 × 0.05

mm3 -
Ease of thickness control,
ultrathin fabrication
Well-fitting skin topology

[100]

Graphene PDMS EOG O 50% O APCVD and
Coating 6 × 20 mm2 -

Ultrathin, ultrasoft,
transparent, and breathable.
Angular resolution of 4◦ of
eye movement

[11]

Fiber

Graphene Cotton textile
fabrics EOG O X O

Simple
pad-dry

technique

35 × 20
mm2 - Simple and scalable

production method [104]

Graphene Textile fabrics EOG O O O
Dipping and

thermal
treatment

30 × 30
mm2 - Possibility and adaptability

for mass manufacturing
[42,57,

96]

Silver Textile fabrics EOG, EMG O X O Embroidering 20 × 20
mm2 -

Comfortableness and the
usability with the
measurement head cap

[89]

CEF CEF fibers EOG, ECG O 258.12% O
Industrial
knitting
machine

20 × 20
mm2

Stress
11.99 MPa

Flexible, breathable, and
washable dry textile electrodes
Unrestricted daily activities

[90]

Silver polymer Escalade
Fabric EOG, EMG O O O

Screen and
Stencil

printing

12 × 12 × 1
mm3 -

Textile compatible, relatively
low cost for a production
lineSmaller scale
manufacturing

[105,
106]

Copper Omniphobic
paper

EOG, ECG,
EMG O 58% O Razor printer 20 × 15

mm2 Stress 2.5 MPa

Simple, inexpensive, scalable,
and fabrication
Breathable Ag/AgCl-based
EPEDs

[99]

silver/polyamide Fabric EOG O O O Mix and
coating

10 × 10
mm2 - Reduction in noise by

appropriate contact [40]
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Table 1. Cont.

Electrode
Type

Conductive
Material

Supporting
Substrate Biopotential Biocompatibility Stretchability Bendability Fabrication Size Modulus Advantage Refs.

Hydrogel

PEGDA/AAm - EOG, EEG O 2500% O PµSL-based
3D printer

15 × 15
mm2 - Excellent stability and

ultra-stretchability [98]

Starch Sodium
chloride EOG O 790% O Gelation

process
30 × 10

mm2 4.4 kPa

Adhesion, low modulus, and
stretchability
No need for crosslinker or
high pressure/temperature

[61]

HPC/PVA PDMS EOG O 20% O Coating 30 × 10
mm2 286 kPa Well-adhered to the dimpled

epidermis [97]

MXene Polyimide EOG, EEG,
ECG O O O Mix and

Sonicating
20 × 20

mm2 - Low contact impedances and
excellent flexibility [107]

PDMS-CB - EOG O O O Mix and
deposition

15 × 15
mm2 2 MPa Continuous, long-term, stable

EOG signal recording [108]

Metal
Silver Polyimide EOG O 100% O Microfabrication

process
10 × 10

mm2 - Highly stretchable, skin-like,
and biopotential electrodes [30]

Gold Polyimide EOG O 30% O Microfabrication
process

15 × 10
mm2 78 GPa Comfortable, easy-to-use, and

wireless control [1]
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2.2. Examples of Platforms for EOG Monitoring

From the wearable EOG device user’s requirement, which enables long-term comfort,
research groups designed various types of wearable EOG device platforms. As shown
in Figure 2e, previous EOG devices were bulky and many wires were attached, causing
limitations with respect to the long-term or continuous monitoring of the user’s daily eye
movements and inconveniences when incorporated the device into one’s attire. The contact
between soft human skin and rigid EOG devices causes limitations such as noise during
the collection of the biopotential [109–111]. With recent advances in wearable technologies,
Yeo et al. [1,30] suggest that wearable sensor systems should be soft, compact, and built-in
to solve the above problems [112]. In addition, researchers and subjects indicated that
wearable sensor systems should not interrupt daily behavior [112]. Advances in circuit
systems enable the wireless, real-time, continuous detection of biopotentials [113]. This
section introduces four types of wearable platforms: glasses, face masks, headbands, and
earplugs (Table 2).

2.2.1. Eyeglass Type

Glasses-type platforms enable convenient and inconspicuous applications and mini-
mize user distractions with respect to autonomous long-term usage in daily life. As another
advantage, the glasses-type platform can be used with prescription lenses because the
glasses-type EOG devices are embedded within a traditional glasses frame [114]. Among
those who wear glasses because of their eyesight, 92% of populations over 70 already
wear glasses [115]. For the above reasons, these glasses-type platforms are likely to be
adopted by elderly individuals who already require corrective eyeglasses [115]. Among
the various glasses-type platforms, we introduce goggle-based devices, commercial de-
vices, and devices manufactured by 3D printers. Figure 5a shows a goggle-based wearable
EOG device aimed at applications such as mobile with activity recognition and context
recognition. The goggle-based platform is designed to achieve the above aims with a
user-friendly fit. Compared to the existing bulky devices as shown in Figure 2c,d, the
weight of the entire device (i.e., including the goggles and circuit boards) is only 150 g
and flat metal electrodes (Figure 2d) are placed around the user’s eyes through constant
pressure. This comfort allows long-term wear to be used continuously for more than a few
hours. Andreas et al. [116] manufactured goggle-type devices and predicted that mobile
applications can be used to map a large TV as the input medium [38]. One of the com-
mercial devices, the JINS MEME (JINS MEME Inc., Tokyo, Japan) eyewear, looks similar
to a typical pair of glasses. To collect EOG biopotential with kinematic motion data, the
JINS MEME has consisted of three metal electrodes, an accelerometer, and a gyroscope.
Three metal electrodes are placed on the bridges and nose pads of the glasses to acquire
EOG signals in the horizontal and vertical dimensions. The accelerometer and gyroscope
are embedded in one of the arms of the glasses to collect motion data. These embedded
sensors and metal electrodes can real-time, continuously detect human activity data. JINS
MEME eyewear is shown in Figure 5b [39]. With the recent development of 3D printer
technology, Lee et al. [5] and Kosmyna et al. [117] are directly manufacturing wearable
platforms in the form of glasses, as shown in Figure 5c. Here, we introduce multifunctional
electronic eyeglasses (E-glasses) made using a 3D printer. In wireless, real-time modes,
these 3D-printed eyeglasses can monitor biopotentials such as EEG, EOG, and UV intensity.
Instead of conventional gel electrodes, soft conductive composite electrodes are placed on
E-glasses for electrical and mechanical superior properties. The device is designed to main-
tain seamless contact between skin and electrodes through constant pressure for reliable
biopotential measurements. Various human motions also can be observed by analyzing the
accelerometer. As one of the advantages of the glasses-type platform, this device can trans-
form the lens required by the user, such as sunglasses for the UV protection [31,118,119], or
prescription lenses for eyesight. As shown in Figure 5d, details on electrodes for recording
biopotential signals such as EOG and EEG are listed (SO: source electrode for EOG; RO:
reference electrode for EOG; SE: source electrode for EEG; RE: reference electrode for EEG;
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G: ground electrode). It is possible to apply constant pressure to the CNTs/PDMS elec-
trodes through the E-glasses legs and supports fixture [5]. Figure 5e shows that another
3D-printed glasses-type platform consists of two printed circuit boards (PCBs), two EEG
electrodes, two EOG electrodes, a reference electrode, and a lithium polymer (LiPo) battery.
This device is made of nylon plastic, which is a flexible material. The particular parts of
the eyeglasses frame are made of silver as electrodes to monitor EOG and EEG. The EOG
electrodes are located on the nose pad similar to the E-glasses structure above. Moreover,
an extra silver electrode is placed on the nose bridge of the glasses to serve as a reference
electrode (EOG electrodes (1), reference electrode (2), EEG electrodes (3), PCBs (4), LiPo
battery (5), and small open chamber for piezoelectric element to deliver bone-conducted
sound) [32].
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Figure 5. Examples of eyeglasses with electrodes. (a) Goggle type of EOG device (reprinted with
permission under the terms of the CC-BY license [38]. Copyright 2021, the authors. Published by
MDPI). (b) Eyeglass type of commercial EOG device (reprinted with permission [119]. Copyright
2016 ACM). (c) Eyeglass type of 3D-printed EOG devices (left: reprinted under terms of the CC-BY
license [11]. Copyright 2018, the authors. Published by Springer Nature, right: reprinted with
permission [32]. Copyright 2019 ACM). (d) Positions of CNTs/PDMS electrodes. (e) Positions of dry
metal electrodes (left: reprinted under terms of the CC-BY license [11]. Copyright 2018, the authors.
Published by Springer Nature, right: reprinted with permission [32]. Copyright 2019 ACM).

Table 2. Summary of wearable EOG platforms.

Wearable
Platforms

Electrodes Platforms
Refs.

Types Materials Counts Size Features

Earplug
Foam Silver 2 2 × 2 × 1 mm3 -Stable and comfy during sleep [44,45]

Foam Conductive cloth 2 2 × 2 × 1 mm2 -Stable and comfy during sleep [43]
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Table 2. Cont.

Wearable
Platforms

Electrodes Platforms
Refs.

Types Materials Counts Size Features

Eyeglass

Gel Ag/AgCl 6 15 × 14 × 5 cm3 -Lots of wires were attached [37]

Metal Silver 3 15 × 14 × 5 cm3 -Real-time delivery of feedback in the
form of an auditory [32,33,117]

Metal Ag/AgCl 5 15 × 14 × 7 cm3, 150 g -Constant pressure for electrodes [34,116]

Foam CNT/PDMS 5 15 × 14 × 5 cm3 -UV protection via sunglass lens [5]

Foam Ni/Cu 5 14 × 12 × 7 cm3 -Absorbing the motion force via Foam
and platform [38]

Facemask

Fiber Silver/Polyamide 3 14 × 7 × 2 cm3 -The wires are embedded in the eye
mask platform [40]

Metal Silver/Carbon 8 20 × 15 cm2 -Tattoo-based platform-Stable and
comfy [41]

Fiber Graphene 5 15 × 7 × 2 cm3 -High degree of flexibility and
elasticity [42]

Headband

Gel Ag/AgCl 4 15 × 7 cm2 -Waveforms were well measured on
the headband platform [51]

Metal Ag/AgCl 4 15 × 7 cm2
-Reduction in the total cost by using
disposable Ag/AgCl medical
electrodes

[55]

Fiber Graphene 3 15 × 7 cm2 -Long-term EOG monitoring
applications [21,57,96]

Fiber Silver 5 15 × 7 cm2 -Reusable and easy-to-use electrodes
are integrated into the cap. [89]

Fiber silver-plated and
nylon 3 15 × 7 cm2 -Long-term EOG monitoring

applications [58]

2.2.2. Facemask Type

For a comfortable and stable fit, a face mask-type platform was presented. Among the
various face mask type platforms, we introduce different types of eye masks (Figure 6a)
as well tattoo-based and commercial devices. In the case of the eye mask platform [40],
electrodes are made of conductive sponge materials. Three dry sponge electrodes are
placed on the eye mask around the user’s eyes. Two electrodes are used to acquire the EOG
signal, and the other one is used as a reference electrode. To reduce the pressure applied to
the skin, the manufactured eye mask platform fits the shape of the skin deformation. The
wires are embedded in the eye mask platform to reduce noise by the movement of the wire.
Another eye mask-type platform integrates a sleep eye mask with electrodes. This eye
mask platform uses EXCELLENT 47 (Moxie Corporation, Taipei, Taiwan) instead of a con-
ventional gel electrode. The proposed dry fabric electrode consists of a high-performance
silver/polyamide (20%/80%) compound. The combination of the sleep eye mask and the
soft fabric electrode enables a reduction in noise by appropriately contacting the user’s
skin to acquire a biopotential. Another face mask platform reported by Shustak et al. [41]
is a tattoo-based EOG device as shown in Figure 6b. This tattoo-based device acquires
various biopotentials such as EEG, EOG, and EMG using a dedicated electrode layout on
the user’s face. This electrode layout is implemented on thin polyurethane films with silver
electrodes coated by a bio-compatible C layer. To contact between skin and a tattoo-based
platform, a double-sided adhesive is used for a stable attachment [120]. The position of the
electrodes is shown below with a number and acquired biopotential: EMG electrodes (1
and 2), EOG electrodes (3 and 4), and forehead EEG electrodes (5~8). The Nox A1 portable
H-PSG system (Nox Medical, Reykjavík, Iceland) together with an ambulatory electrode
set is a face type of commercial device that can capture EOG and EEG signals. As shown
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in Figure 6c, EOG electrodes (F8 and F7) and EEG electrodes (Af8, Fp2, Fp1, and Af7) are
placed on the forehead [121].
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Figure 6. Examples of facemask platforms for EOG monitoring. (a) Face type of EOG device with
graphene-coated tissue electrodes (reprinted under terms of the CC-BY license [42]. Copyright 2019,
the Authors. Published by JAIC). (b) The electrode array system and a subject wearing a temporary-
tattoo eight-electrode array (reprinted with permission [41]. Copyright 2019 IOP). (c) Positions
of a screen-printed electrode set and a subject wearing screen-printed electrodes (reprinted with
permission [7]. Copyright 2019 Elsevier).

2.2.3. Headband Type

EOG signals can be sufficiently acquired not only around the eyes but also on the
forehead. Heo et al. [51] designed a wearable EOG device based on a headband to acquire
the forehead EOG signal. We introduce soft fabric headband-type and commercial devices
among the various headband-type platforms. In general, dry electrodes are placed around
the forehead inside the headband. The two electrode sets are prepared to measure hori-
zontal and vertical eye movements, and the other one is used as a reference electrode. As
shown in Figure 7a, the printed circuit board (44 mm × 55 mm) is placed on the back side
of a headband. Such a soft fabric headband-type platform can provide a comfortable fit and
can stably secure the electrodes on the human skin. One of the commercial headband types
of wearable devices (Figure 7b), NeuroSky (San Jose, CA, USA) is used for brain–computer
Interface (BCI) equipment [49]. The NeuroSky headband is adjustable and requires low
costs, with an inexpensive dry sensor. Since one dry electrode located on the forehead
acquires a biopotential, there is not enough information contained in the EOG signal with
EEG signal, but it includes built-in electrical noise reduction software/hardware, making it
easy to detect the EOG signals with the EEG signal. Another commercial headband-type
wearable device, Muse, has four biopotential channels for monitoring eye movements
and brain waves. Moreover, this device has a three-axis accelerometer and gyroscope for
detecting head motion. In the case of the Muse device (Figure 7c), the electrodes are located
on the forehead and behind the ear (as shown in Figure 7d two on the forehead (AF7 and
AF8) and two behind the ear (TP9 and TP10)), with the reference electrode located at the
center of the forehead (Fpz) [122,123].
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Figure 7. Examples of headband platforms and earplugs with electrodes. (a) Example of headband
type of EOG device. (Reproduced under terms of the CC-BY license [51]. Copyright 2017, the
Authors. Published by MDPI). (b,c) Headband type of commercial EOG devices. ((b): Reprinted
with permission [4]. Copyright 2019 Elsevier, (c): Reprinted under terms of the CC-BY license [123].
Copyright 2017, the Authors. Published by MDPI). (d) Position of embedded dry electrodes with
the subject wearing a commercial device. (Left: Reprinted with permission [124]. Copyright 2019
Elsevier, Middle and Right: Reprinted under terms of the CC-BY license [123]. Copyright 2017, the
Authors. Published by MDPI). (e) Earplugs type of EOG device. ((e): Reprinted under terms of the
CC-BY license [6]. Copyright 2017, the Authors. Published by Springer Nature).

2.2.4. Earplug Type

This earplug-type platform aims to be a human-centered, compact, non-obtrusive,
and ergonomic wearable device. In addition, because it is non-invasive, users can use
it for a long time without fatigue. Figure 7e shows that a pair of small and thin passive
electrodes are attached to the surface of the earplugs [6]. Alternatively, another style of
earplug-type platform uses an electrode that is made from a small piece of conductive silver
cloth layered by pure and thin silver leaves many times on top. This wearable platform
enables the earplugs to overcome the delicate structure of the human ear and users can
use it comfortably inside the ear when sleeping. To ensure a comfortable and snug fit, the
substrate material of the earplug-type platform is a memory foam that absorbs artifacts
stemming from small and large mechanical deformations to the ear canal’s walls. The
placement of an earplug-type platform should properly be placed to acquire the EOG signal
with the EEG signal. The suggested place is the main electrode in one ear and the reference
electrode in another.

2.3. Signal Processing Algorithms and Applications
2.3.1. EOG Signal Processing

Figure 8a shows the detailed pre-processing with EOG signals received through
Bluetooth low energy (BLE) embedded in the circuit (Sample rate of 250 Hz). Before
classification, noise and baseline drift removal and data averaging are implemented as



Biosensors 2022, 12, 1039 17 of 45

pre-processing. A band-pass filter is applied to remove noise components [125]. When the
received EOG signal (analog) from the skin is converted into a digital value, a DC offset
is generated. The first DC offset value is removed from all signal values to remove drift
(DC offset). Noise and trends can sometimes interfere with data analyses and should be
eliminated. To smooth the EOG waveforms, samples are divided into minimal sets and
averaged. It is used as a method for removing noise. EOG signals are generally classified in
five directions (left, right, up, down, and blink). To classify into five classes, thresholds are
setup with a specific value (horizontal channel: right (400 µV) and left (−400 µV); vertical
channel: up (400 µV), down (−400 µV), and blink (500 µV)). In other ways, EOG signals are
classified by comparing the amplitude or wavelength of the peak, or whether the difference
from the peak to the peak is negative or positive, as shown in Figure 8b. However, signal
processing alone cannot detect the class much. Moreover, medical analyses have many
limitations when using signal processing. Here, we introduce machine learning for more
classes or medical analyses.
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2.3.2. Machine Learning

Recently, research groups introduced machine learning to analyze EOG signals. Ma-
chine learning technologies are applied according to the purpose of each study and ap-
plication. However, different machine learning technologies can be used for the same
purpose. Researchers introduce a discrete wavelet transform (DWT) classifier and a linear
discriminant analysis (LDA) classifier among machine learning technologies. LDA is a
common classifier, which uses dimensionality reduction techniques in machine learning.
This classifier can solve two-class classification problems. Figure 9a is an example of an
LDA classifier (targeted EOG from eye movements of “blink” and “down”). To remove
noise, a third-order bandpass filter (Butterworth) is used. By using thresholds, a series of
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peaks were detected. The start time and end time detected by the threshold are factors that
increase detection accuracy. Pre-processed EOG signals are divided into test data sets and
training data sets. Test data sets and training data sets are transferred to the LDA classifier,
as shown in Figure 9a. The LDA classification plot includes both correct (o) and incorrect
(x) classes. Another machine learning technology is DWT which is one of the wavelets
transforms. The wavelets are sampled at discrete intervals. As shown in Figure 9b, the
DWT classifier targeted EOG from eye movements of “left” and “right”. The acquired
EOG signals are classified based on eye movements with an angle of eye rotation. The fifth
level of DWT coefficient with a scale of 100 and the “sym8” basis function is selected for
DWT performances. To remove noise, a third-order bandpass filter (Butterworth) is used
(fc = 0.5−50 Hz).
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2.3.3. Applications

With the recent development of wearable EOG device platforms, EOG signals can be
easily acquired and applied to HMI applications without limitations from previous bulky
and wired EOG devices. The use of HMI applications is increasing rapidly. There are
two types of applications, such as the controller type and analysis type as shown in Table 3.
As shown in Figure 10a, in the case of the controller type such as wheelchairs [1,4,51,52],
drones [11,59], game interfaces [5,36,47,60,61], and virtual keyboards [34,38,51,62], a com-
mand is put into the HMI by detecting the direction of the eye. However, the EOG signal for
HMI has eye angle and gaze detection limitations. In general, four or six eye directions can
be detected by signal processing. The limited number of eye movement detection is limited
for HMI applications, which require complex commands. The EOG signal is sensitive to
noise and users’ small movements. Therefore, there is a limit to being applied to surgical
robots that require accurate movement. To overcome the above limitations, research groups
are simultaneously analyzing biopotentials. Figure 10b shows various healthcare mon-
itoring systems [7,40,41,44,45,63], and medical health status analyses [64–66] have been
conducted using both biopotentials, such as EOG, EEG, and EMG, with signal processing.
In general, EMG, EOG, and EEG signals are simultaneously obtained from the subject’s face,
and information for healthcare analyses is obtained via signal processing with machine
learning. The field that received a lot of attention is sleep or fatigue monitoring analyses. To
monitor the sleep stage, Shustak et al. [41] recorded EMG, EOG, and EEG using a wireless
system. This sleep monitoring system showed clear differentiation of the sleep stage for
6 h. This research group showed the potential of sleep disorders monitoring systems in the
home environment by demonstrating sleep stage monitoring. Jiao et al. [63] presented a
novel model for driver sleepiness detection by simultaneously analyzing EEG and EOG
signals. The driver sleepiness detection system based on EEG and EOG is analyzed by the
long-short term memory (LSTM) classifier, achieving a mean accuracy of 98%. The research
group determined that a wearable sleepiness detection system could be used to reduce traf-
fic accidents by detecting sleepiness. From a healthcare perspective, researchers are using
EOG signals to analyze attention deficit hyperactivity disorder (ADHD) [64–66] or emotion
detection [126–128]. Soundariya et al. [127] introduced emotion-recognizing systems based
on EOG signals from eye movements. The recorded EOG signal is classified as happiness,
sadness, anger, fear, and pleasure by the supporting vector machine (SVM) classifier.

Table 3. Summary of applications using EOG signals.

Purpose Target User Signal Data Processing Refs

Wheelchairs Disabled people

EOG + EEG + EMG Signal processing [51]

EOG LDA [1]

EOG Signal processing [4]

EOG + EEG + EMG Signal processing [52]

Game controller

Anyone

EOG DWT [5]

EOG SWT [60]

EOG + EEG + EMG SVM [47]

EOG Signal processing [61]

Drone EOG Signal processing [11,59]

Virtual keyboard

EOG SVM [38]

EOG+EEG+EMG Signal processing [51]

EOG+EEG SVM [34]

EOG Signal processing [62]
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Table 3. Cont.

Purpose Target User Signal Data Processing Refs

ADHD Children

EOG Signal processing [64]

EOG Signal processing [65]

EOG WT [66]

Emotion Recognition Anyone

EOG SVM [127]

EOG + EMG SVM [128]

EOG + Eye image STFT [126]

sleepiness Driver EOG+EEG GAN + LSTM [63]

Drowsiness
Anyone

EOG Signal processing [55]

EOG+EEG Signal processing [58]

Sleep monitoring
EOG+EEG+EMG Signal processing [41]

EOG Linear classifier [40]
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Figure 10. (a) Controller-type applications such as wheelchairs, drones, game interfaces, and virtual
keyboards (1st: reprinted with permission [1]. Copyright 2017, Elsevier B.V., 2nd: reprinted under
terms of the CC-BY license [11]. Copyright 2018, the Authors. Published by Springer Nature, 3rd:
reprinted with permission [5]. Copyright 2020, American Chemical Society, 4th). (b) Healthcare
monitoring systems applications and medical health status analyses applications (2nd: reprinted
with permission [63]. Copyright 2020, Elsevier B.V., 3rd: reprinted with permission [65]. Copyright
2020, Walter de Gruyter GmbH).

3. Eye Trackers

Recent advances in computing power became powerful enough for real-time eye track-
ing, which allowed using video and screen-based eye trackers [67,129]. Since then, with
new technologies in tracking optic cameras and machine learning processes, eye tracking
has been widely utilized with stationary cameras or cameras embedded glasses [67,68].
These cameras can record corneal infrared light reflection for tracking pupil position, map-
ping the tracked gaze while recording, and calculating other parameters such as tracking
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rate, dwell time, and pupil dilation [68]. These parameters are used for dynamic stimulus
analyses to create an eye concentration marker, which is essential in tracking various hu-
man stimuli and human applications [68,130]. Recent eye tracking technology proposed
integration to virtual reality (VR) and mixed reality (MR) setups to fulfill the demand for the
entertainment domain and cognitive functioning domain for clinical assessments [131–135].

3.1. Details of Eye Trackers
3.1.1. Human Eye Movement and Stimuli

All natural main eye movements are used to reposition the eye’s visual axis on the
fovea [136]. The anatomy of the human eye is presented in Figure 11a. When the eye looks
at a target, visual axis connects fixation point to center of the entrance pupil, front, and
rear nodal point [137]. The eye moves when a user looks at an object to perceive stationary
objects [136]. In real eyes, the fovea is displayed slightly inferior and temporally displaced
from the point where the optical axis meets the retina and detects eye movement [137]. In
general, the eye has six degrees of flexibility, three rotations, and three translations inside
the eye socket [138,139]. The eye is rotated by two pairs of direct muscles that allow six
degrees of freedom in eye movement control [67,136]. Eye movements can be classified
into two main categories. First is saccadic movements. When we attempt to fixate the eye
gaze to target area of interest, the eye does not stay still but continuously moves [131]. As
known as rapid eye movements, saccade quickly adjusts visual axis of the eye on the fovea
to interest area which is highly reflexive and voluntary [135]. The movement changes the
eye’s vision to the object by gaze angle control [131]. Moreover, microsaccades (fixational
saccades) are small eye movements that constitute fixation, which is the basis of visual
perception [135]. The second category is for stabilizing movements, which attempt to hold
the eye, or movement for a stable retinal picture [3,131,135]. Fixations occur when the gaze
is fixed for a long time on a particular constrained area, providing fixational dynamics and
statistics [136,138]. Figure 11b shows the foveal angle, and human vision span around the
gaze direction; these numbers vary in different studies. While looking at an object with
each eye’s fixation point remaining on the fovea, drift is an uneven and relatively slow
movement of the eye’s axis [135]. The iris controls the amount of light admitted into the
retina by contracting and expanding the pupil [136]. The crystalline lens, located behind the
pupil, receives and focuses the image on the retina [136]. A transparent biconvex structure
of crystalline lens controls focusing and accepting the image on the retina located behind
the pupil [67]. The retina is next in control of converting the received image or visual
stimuli into electric signals, and it transmit the visual cortex through optic nerves and
stimulates the occipital lobes of the brain [133,138].

3.1.2. Principles of Eye Tracking Technology

When detecting an eye, it is essential to differentiate the eye’s appearance because
it can change depending on the angle that the user is observing [135]. Non-invasive Eye
trackers rely on measurements of the eyes’ observable characteristics, including the pupil,
iris-sclera boundary, and corneal reflection of nearby light sources [135,139]. As shown in
Figure 11a,c, a technique based on corneal reflections measures the position of the corneal
reflection of an infrared (IR) light reflected to the pupil that can track the gaze direction
accurately [129]. The most widespread method for tracking eye movements is screen-based
or uses video oculography, which includes reflection of iris and corneal or the pupil and
corneal [136,140,141]. As Figure 11c illustrates, screen-based gaze tracking technologies are
simple to use and set up for various applications [71,131–133,135]. The pupil and limbus
information are the most often used features for tracking [138]. Tracking limbus, which is
the boundary between sclera and iris, can trace horizontal eye rotations because of their
contrast [67]. Monotonous limbus tracking systems have poor vertical precision because
the eyelids partially obscure the iris [67,136]. The pupil is more challenging to track due to
less contrasts between the pupil and the iris, but it can be distinguished when illuminated
by an infrared light source on the camera axis with an on-axis light source [3,136,139].
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This produces a “red-eye” effect image [3,136]. IR light sources are frequently used in eye
trackers to increase the contrast between ocular features [138]. This is due to the fact that the
IR is invisible and does not distract or interfere with the user when tracking [136,140]. With
this unique characteristic, the eye tracker has been successfully integrated to head-mounted,
wearable, and infrared-based gaze trackers [132–134,139]. The system consists of an optical
camera, IR light sources, a CPU for data processing, and a screen or monitor to determine
the subject’s eyes’ focus [135,139]. For accurate gaze location in a video-based system, high-
resolution eye pictures are required [3,71,142]. Image processing is required to calculate the
three-dimensional rotation angles of the eye, and these algorithms are used to determine
the pupil location, cornea glint positions, and other properties of the eye [67,138,140], as
shown in Figure 11d. The point and direction of gaze can be computed instantly by an
eye tracker using low-cost cameras and image processing technology [131,138]. Recent
developments in various machine learning techniques and algorithms have been made with
an accuracy of under one degree [67,68,143]. Recent studies attempted to improve gaze data
to predict accurate eye motions by presenting an end-to-end user-specific prediction model
with convolution neural network (CNN) architectures [3,131], as shown in Figure 11e.
With human–machine interfaces, the practical AI application begins with data collection,
data cleaning, standardization, and then data interpretation using algorithms [144]. Deep-
learning prediction models have overcome limiting factors in real-world conditions [145].
Hence, bioelectrical signals provide a natural and interactive way for humans and machines
to connect and are extensively used in clinical diagnosis and rehabilitation with machine
learning [144].

3.1.3. Employment of Eye Tracking Technologies for Applications

Eye tracking is used to implement where and when the user’s eyes are focused [3].
The eye movements, such as saccades, smooth pursuit, vergence, and vestibulo-ocular
movements, indicate human perception and recognition [136,140]. An improved sensor
technology expands the possibility of a comprehensive understanding of a user’s visual
attention [149]. Recent studies show that viewing emotionally toned or visual stimuli
information is observed with an increased pupil size of the eyes, along with other features
such as fixation duration, and saccades [149,150]. within addition to the pupil’s diameter,
other variables such as fixation length, saccades, and EOG signals can also be used to
identify emotions [3,139]. While eye tracking signals and information indicates the user’s
behaviors, the system is widely used in human–computer interaction (HCI) and usability
application research studies [3,69,141,142]. Moreover, a customized and personalized eye
tracking system increases accuracy and allows more application in the areas of cognitive sci-
ence, clinical assessment, and contents creation with affective information [70,142,149,151].
The development of eye trackers allows accurate eye tracking data to be integrated into
a conventional clinical measurement system for higher brain functions such as cognition,
social behavior, and higher-level decision-making measured by eye movement [70,152].
Eye movement data have been used by several research groups to distinguish patients
with mental disorders such as schizophrenia or to examine eye movement traits that have
a genetic component in relation to finding the risk of autism before the emergence of
verbal-behavioral abnormalities [70,152]. Another study proposed a framework for vehicle
control, which anticipates a driver’s real-time intention over future maneuvers by analyz-
ing the gaze and fixation patterns of the driver [134]. Image processing and eye landmark
estimation are the primary eye tracking technology used for control, as shown in Figure 11f.
The study proposed future work for designing a customizable intention prediction model
on vehicle control using strategy synthesis [134,153]. Recent eye tracking advances will
significantly impact next-generation application solutions [69]. We will discuss these issues
and related work in Section 3.4.
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Figure 11. Eye movements and eye tracking technology. (a) Optical metric for human eye tracking
(Reprinted with permission [146]. Copyright 2020, The Psychonomic Society, Inc.). (b) Eye foveal
angle and human vision span (Reprinted under terms of the CC-BY license [131]. Copyright 2021, the
Authors. Published by Elsevier Ltd.). (c) Eye grid and corneal light reflection in eye tracking systems
(Reprinted under terms of the CC-BY license [135]. Copyright 2012, the Author. And Reprinted
with permission [141]. Copyright 2014, Elsevier). (d) Illustration of relative cornea location between
camera and eye, during eye rotation (Reprinted under terms of the CC-BY license [147]. Copyright
2021, the Authors. Published by MDPI). (e) Eye motion and gaze prediction model with CNN
(Reprinted with permission [145]. Copyright 2022, Springer Nature). (f) Eye landmark estimation
with image processing used for custom eye tracking solutions (Reprinted under terms of the CC-BY
license [148]. Copyright 2021, the Authors. Published by MDPI).
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3.2. Eye Gaze and Movement Estimation

Many pupil center identification techniques have been presented in recent years
using conventional gaze tracking with optical metrics, image processing, and machine
learning-based techniques [69,70]. Previously, conventional methods are separated into two
categories: optical modeling and characteristics modeling [136]. Optical modeling is used
to calculate optical information mathematically and to examine the location between the
angles of the input vectors and the location of intersection, which is computed as the pupil’s
center [3,71,136]. Characteristic modeling estimates the pupil’s center by segmenting the
pupil’s edge depending on its features in terms of contrast, contour, or color [136,142].

3.2.1. Eye Tracking Techniques and Algorithm

Recent appearance-based algorithms [69,71,142] estimate the pupil center and feature
with appearances when the subject focuses at a specific point in the scene. Since the method
utilizes a computational approach, a large set of computing resources, including image
dataset, processing power, and prior machine learning training, is required [154].

PCCR—Pupil Center-Corneal Reflection and Bright and dark Pupil Effect

The PCCR method is one of the eye gaze tracking techniques to measure the direction
of the eye’s gaze [155]. As shown in Figure 12a, the vector distance between the corneal
reflection and the pupil center within the camera image can be used to calculate the
eye’s orientation angle [72]. The line that connects the center of the camera lens and
the center of the corneal sphere is utilized to measure both the vertical and horizontal
elements of the eye’s orientation angle [72]. In the PCCR method, a single corneal reflection
is utilized [71,72]. In the PCCR method, the corneal surface approximates a perfectly
spherical mirror; thus, the vector from the pupil’s center to the corneal reflection within the
camera image is closely related to the direction in which the eye is looking [72,73,135]. If
the head is kept stationary while the corneal surface rotates, the glint remains stationary. By
contrasting the corneal reflection and the pupil center, the eye tracking system can identify
the direction of the gaze [71]. The corneal reflection is visible when a user stares directly
at the camera close to the center of the pupil image [69]. When the user switches their
attention upward from the corneal reflection, the pupil center shifts upward. Similarly,
when attention is shifted downward, the glint–pupil vector points, and the pupil center
moves downward [69]. Figure 12b shows the proportion of images with an error less than
each percentage value of the inter-pupillary distance (IPD) with recent work on pupil center
detection with CNN [148]. The result shows the proportion of images with an error less
than each percentage value of the inter-pupillary distance and proposes possible limitations
in tracking accuracies [148]. Inter-pupillary distances are expressed as a percentage of
distances from the accurate eye pupil landmarks as shown in Figure 12b. Figure 12c
demonstrates how the IR light source illuminates the user’s eye and creates two different
pupil images and effects: bright and dark pupil [136]. For pupil detection and tracking,
both bright and dark pupil effects are used [135,136]. A brighter pupil image can be created
when using light sources parallel to the axis of the camera [135]. Since most of the light
enters the eye along the optical axis and most of the light reflects back from the retina, this
will cause the pupil to be brighter, which is called the “bright pupil effect” [72]. If the pupil
is illuminated by light sources that are not parallel to the optical axis of the eye, it appears
to be darker than its surroundings [141]. Since multiple corneal reflections and a variety of
off-axis light sources produce darker pupil images, it is called the “dark pupil effect” [136].
The location of the illumination source and the camera’s optical axis determines how these
two types of images differ from each other. When the light source is aligned coaxially with
the optical path of the camera, the bright pupil image is created [136]. The eye then reacts
as a retroreflector as the light reflects off the retina and creates the bright pupil effect. The
pupil appears dark if the light source is located outside the camera’s optical axis because
the retina’s retro-reflection is located away and creates the dark pupil effect [135,150]. Pupil
contour extraction is a primary aspect of both feature extraction methods [135]. Due to the
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low contrast at the boundary between the pupil and iris, the pupil is difficult to distinguish
in the eye [72]. Figure 12d shows researcher’s attempt to apply pupil tracking using grey
level imagery and digital overlay indicators either of dark or bright pupils instead of
employing threshold difference photos [73,148]. By overlapping the pupil between the
images, the pupil image can detect directional movements accurately [136].

Time to first Fixation and Object of interest

The time to first fixation (TTFF) measures the speed at which respondents fixed their
attention on an area of interest. TTFF is a simple but essential eye tracking metric [156].
Fixations are eye movements that naturally correspond to the intention and desire to keep
one’s attention focused on a use interest point [72]. Fixation stabilizes the retina over a
still object of interest, and the gaze remains on a certain region for an extended period of
time [135,156]. TTFF measures how long a respondent can fixate on a particular area of
interest (AOI) after the stimulus has started. TTFF can indicate the horizontal movement of
stimulus-driven search. Fixations, which are still periods that happen in-between saccades
on static scenes, are the major periods during which visual experience and recognition
occur. Fixations are distinguished by small, high-frequency drifts and microsaccades that
oscillate. Since the responders initially prefer to focus the center of the image over its edges,
more bias toward the center occurs. This prevents the scene from being blind by preventing
the image from fading [72]. The size and color of the objects in the AOI impact measuring
TTFF. More distinguishing characteristics are frequently the subject of faster emphasis [72].

TTFF measures how quickly a target is identified and quantifies the attention; the
shorter the TTFF, the greater the target’s visual significance [73]. The fixation duration is
between 200 and 600 milliseconds, and the image formed on the retinas alters continuously
due to the eyes’ involuntary microsaccades. The fixation’s small eye movements are
essential in order to recalibrate the eye’s neuron sensors [135]. A qualitative evaluation
of the eye tracking system used to record eye movements is shown in Figure 12e, which
includes fixation time, count, and TTFF for each AOI [143]. As seen in Figure 12e, eye
fixations and their duration frequently correspond with the respondent’s interest aspects
in an image [143,149]. Therefore, by separating such components, quantitative analysis
can produce data with a higher and lower ranking and order [143]. For more precise eye
movement analysis, researchers attempted to compare different eye tracking metrics by
quantitative fixation time and recognition [73]. In addition to the TFF method, first fixation
duration (FFD), total fixation duration (TFD), and fixation count (FC) methods were used
to analyze the detailed eye fixation. The FFD measures how quickly an object is recognized
upon content identification. The shorter the period, the more effective information is
transmitted. Total fixation counts and TFD are the metrics of time and count used to
represent the participant’s distribution of interest in the target area [73]. The bigger the
metrics TFD and FC indicate, the longer a participant focuses attention on the target object,
and the more distribution of interest on the target across the entire scene [73]. The gaze
and fixation points are more influenced by our own interests and experiences or by a
user’s predetermined task. Visual scenes are perceived differently by different individuals.
Early psychological research discovered a correlation between eye movements and visual
attention [149,154]. The finding allows researchers to establish a foundation for measuring
eye movements by observing the point of gaze, fixation, and saccades [143]. Some studies
attempt to present visual information and continuous interpretation whenever the user
opens their eyes and moves [72].
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3.2.2. Visualization and Analysis of Eye Movements

Gaze Mapping and IR Technology

The gaze mapping uses time series plot maps, which show the sequential, step-by-step
process of users’ visual search techniques [72]. A sequence of uniformly sampled, raw gaze
points is transformed into a series of duration saccades and fixations using the eye gaze
and mapping application [158]. Continuous fixations are detected by examining sequences
of gaze point measurements that remain relatively consistent [72]. If a new gaze point lies



Biosensors 2022, 12, 1039 27 of 45

within a circular region, a fixation is extended to include a new gaze point by running the
average of an ongoing fixation [72,159]. Gaze plot maps can be generated using eye tracking
systems such as the Tobii (Tobii AB, Stockholm, Sweden) eye tracking systems [160]. As
shown in Figure 13a, horizontal and vertical gaze plot maps were generated by detecting
microsaccades. The figure shows the individual ongoing fixation on the gaze point and
saccades point with traces. The system can represent fixation locations as proportional
circles, colored according to time, and the sequence of saccades between fixations as line
symbols [158]. A gaze plot map shows the eye movements of a single user for a single
image trial, thus providing a graphic overview of each user’s visual search strategy [158].
As shown in Figure 13a, microsaccade movements can be detected with a trace line [135].
A saccade is the fast movement of the eye. Saccades serve as a mechanism for rapid eye
movement and fixation. They most frequently shift from 1-degree to 40-degree visual
angles and last 30 ms to 120 ms. Between each saccade, there is typically a 100 ms to
200 ms delay [148]. The point light sources that illuminate the eye are modeled as having
omnidirectional radiation. IR light-emitting sources are the primary light sources. Each
light source consists of an array that corresponds to a single-point light source at the array’s
center. The direction and position of the light sources are defined in comparison to the
global coordinate system due to them being modeled as point light sources [158]. To
define the gaze direction vector in the global coordinate system and to integrate it with the
characteristics of the scene’s objects, the point of gaze (POG) is computed as the intersection
of the vector with the screen. A mathematical model is used to calculate the corneal
curvature’s center using the concepts of refraction and reflection [135,136,158]. Studies
show that effective ways for detecting the POG could be approximated by using statistical
averages for all eye characteristics in a single camera and a single light source [131,135,150].
Both spherical surface and non-spherical cornea models are used to obtain gaze estimations
and to personalize eye parameters from the surface of the cornea model [135,150].

Heatmaps

A heatmap is a type of visualization technique that displays the variation of gaze points.
Compared with a fixation map, a heatmap is a simple approach for quickly discovering
what in the image is most interesting or where is more attractive than others [161]. A
fixation heat map, as seen in Figure 13b, presents an overview of a compound image,
including fixation locations and times [158]. Fixation heat maps and heat maps in general
are influenced by cartographic traditions such as isoline and surface mapping [136,158].
By using gaze plots and heat maps, the obtained gaze fixation data are then viewed and
evaluated [162]. Most cognitive activity occurs during fixations and not saccades, although
some components of the visual scene are perceptually processed during saccades [158].
Studies that employ eye tracking analyses frequently concentrate on the data from heat
maps. Commercial tools such as Tobii software create fixation heat maps by using red
for areas in the image [158,161]. The software continuously acquires where users were
fixated for a short period as green color in the image [161]. A fixation heat map provides
a composite graphic showing the locations and lengths of fixations, and the variations in
color value indicate the intensity of the time period [158]. Heat maps are also quantified by
the center point for easy custom applications. To obtain a general idea of what is qualified,
the user often estimates the length and width of the entire object before estimating the
distance from a spot on the object to the dimension [158,161,162]. This analysis allows
visual and statistical approaches for attention mapping and spatiotemporal eye tracking.

Area of Interest (AOI) and Dwell Time

In many eye tracking studies, researchers aim to classify and analyze how a user looks
at a specific part of a stimulus, such as an object in a scene, a particular word in a sentence,
or another human being [140,142,161]. To fulfill this goal, researchers identify an area of
interest that corresponds to a region of interest. The target AOI is used to pick out particular
parts of a visual stimulus and extract metrics for those regions. Figure 13c shows specific
AOI spots and summary statistics such as eye fixation, duration, and repeating. Recent
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eye tracking metric attempts to connect and pattern numerous AOI information to identify
user’s preferences and ranks inside the image [143]. The AOI spend time, and the statistical
data of TTFF reflect what is more interesting but needs further analysis because it is not
related to whether the assessment of the AOI is negative or positive [143]. Fixation counts,
on the other hand, are positively correlated, implying that people tend to pay more attention
to the image’s more appealing aspects [143]. Researchers proposed multiple eye tracking
systems that reflect an interactive environment of visualizing analysis [163,164] or analyzing
eye-movement protocols and object findings [165,166]. Recent eye tracking software is able
to process complex eye movement variables, generate personalized eye interactions with
objects, and analyze detailed areas of interest [142]. Figure 13d shows the eye tracking
analysis steps from eye movement variables (user’s gaze plot, velocity plot, and fixation
plot) to an AOI model. On the rectangular stimulus grid, the model indicates multiple
locations of the stimulus map with colored areas. The AOI model shows a 2D Gaussian
distribution of fixation and shadow mapping. This model map provides the meaning of
eye movement by projecting object overlay and defining semantic localizations on the
viewer’s target areas [165,166]. This real-time tracking system provides data alignment and
classification between physiological information and eye tracking information.

The amount of time a user spends viewing an AOI is known as the dwell time.
Researchers typically determine the average dwell duration, which informs how long
a user spends on average viewing an AOI [73,133]. The length of dwell time depends
on the size and informational density of the AOI. The complexity of the user’s scene
and situational awareness also impacts dwell time. The dwell time is affected by the
movement properties of the stimulus [168]. Related studies on eye movements indicate
that bottom-to-top or top-to-bottom types of attention are strongly integrated [156,168,169].
If bottom-to-top and top-to-bottom influences on attention are independent of one another,
then a simultaneous view might be anticipated [168]. It would be reasonable to assume
that the eye’s attention moves to position A on some trials and to location B on others if
top-to-bottom attention intends to guide the eyes to location A and bottom-to-up attention
is drawn to location B. However, the previous results show that the eyes often move to a
position between A and B in a similar situation [169]. As a result, the dwell time becomes a
significant statistic because it can reveal information about the cognitive eye movements
and intentions of a user [156].

3.3. Eye Tracking Platforms

Studies using eye tracking systems have grown significantly in both quantity and
variety over the past decade [170]. There has been many prior research studies that attempt
to track user and interpret intentional eye movement [170]. The early phase of eye tracking
research laid on utilizing prior observations on eye movement, perception, seeing, and
looking [74]. A new advancement in optical device-based mobile eye=tracking systems
presents the comprehensive tracking of nonintrusive human gaze points [73,74]. Recent
developments in real-time computer devices have led to the emergence of mobile and
stationary eye tracker platforms and these platforms changed daily lives.

3.3.1. Screen-Based

The majority of contemporary eye gaze-tracking devices track eye movement by pro-
cessing visual information of the eyes digitally [135]. To track the POG, high-resolution eye
images are necessary so that screen-based data acquisition system can be emerged [135,168].
In screen-based systems, infrared light is used to illuminate the eye, and produce glints
for gaze direction estimation [74]. Moreover, the system analyzes the data of distance and
experimental setups [168]. This methodology can be used for a wide range of evaluation
methods that include measuring rotation, translation, pupil’s shape, location of the limbus,
and corneal reflections by IR sources [135]. After the calibration of distance and light, the
eye tracker data usually include the gaze position and conversion of screen coordination.
The spatial accuracy of the eye is dependent on a range of motion in remote eye tracker plat-
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forms that use cameras to identify and track the eyes’ features [67]. In more recent systems,
an estimated inaccuracy rate is approximately 1 degree or under in computing the optical
target [67,135]. The POG for the projected scene that the user is viewing, is first calculated
by the eye tracker using inputs from the scene. A correct understanding of the POG is the
second prerequisite [135]. IR light sources are frequently functional elements in produced
glints on the cornea that many commercial devices compute to track [154,160,170]. As seen
in Figure 14a, a remote eye-gaze-tracking system consists of a CPU for data collections,
an image camera, infrared light sources, and a screen for determining the subject’s eye
focus, without a wired connection. The field of computer vision has long been active in the
study of screen-based real-time eye recognition and tracking. The market currently offers a
wide variety of gaze tracking hardware and software [171]. Recent research attempted to
use an eye tracking system as part of PC accessories such as replacing mouse controllers.
However, the eye tracking system has encountered limitations due to the placement of the
camera or other devices near the screen [72,169,171].
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3.3.2. Glasses Type

Eye tracking glasses are infrared sensors and camera-integrated portable devices that
can be easy to wear [172], as shown in Figure 14b. This unique platform allows the user to
move freely with the head unit’s discretion and freedom for natural head movement [160].
The system utilizes an approach of light reflection from the pupil and captures eye image
using cameras. Then, extensive image processing is used to determine the position of the
pupil [168] in eye trackers with high performances [74]. Wearable eye trackers can record
the user’s vision as well as their surroundings and background noise [74]. Compared
to screen-based systems, wearable eye trackers have advantages in recording a person’s
gaze movement in 3D real view [168,172]. With these advantages, mass data studies can
be presented by large datasets for new clinical findings and interactions [173]. Existing
commercialized wearable glasses such as Tobii and SMI (Imotions Inc, Boston, USA) made
previous research on wearable eye trackers daily human circumstances possible [171,174].
Recent experiments used glass-tupe eye trackers, enable recording eye movements in
natural settings when humans are moving freely [160]. This platform makes conducting
numerous studies that are not appropriate for screen-based eye trackers possible, such
as detecting eye contractions [175], tracking 3D gaze behavior to obtain coordinate in-
formation [162], attempting to develop a battery-free tracker for ubiquitous computing
platforms [174], and evaluating human and robot interactions with active behavior [176].
Eye tracking has been used in numerous specialized software programs that are developed
for various study fields.

3.3.3. Virtual Reality (VR)

The usage of VR technology is growing across a range of applications, including
immersive training, as well as in various fundamental research areas, such as cognitive
science, visual perception, and psychology [177,178]. Eye tracking in VR analyzes mul-
tiple computations, including perceptual depth changes, vergence, and inter-pupillary
changes [177,179]. In addition, distance virtual reality has the feature of a pre-calculated
experiment setup allowing the subject to move freely in natural settings [179]. Thus, the
VR platform can effectively integrate free eye movements and eye tracking methodology
that suggests human-centered computing approach. Eye tracker in VR technology has been
used to measure vergence eye movements and depth analysis [180,181]. Vergence, which is
the simultaneous rotation of the eyes while viewing objects, is necessary for distance mea-
surement, because of the perceived depth from monocular and binocular depth cues [179].
This depth perception requires fast and precise eye movements along with saccadic and
fixation information [136,177]. Recent researchers used the vergence movement in response
to depth changes combined with an eye tracker platform for precise clinical gaze direction
studies, as demonstrated in Figure 14c [182]. In addition, VR’s optical information is more
reliable than the glass type because of the unlimited geometries. It allows for the analysis of
individuals’ behaviors with respect to the objects they looked at as well as the locations they
looked at in relation to the behaviors they performed in the virtual environment [183]. With
the technology of using gaze-detection technology, the device can measure gaze directions
of nine in both eyes at the same time in VR eye platform [182]. This offers a dichoptic
separation structure and allows the eye to integrate with specially designed screens, such
as virtual reality environments. IPD, or the distance between the centers of the left and
right eye pupils [179], is another crucial aspect of the human binocular visual system that
changes with the object’s depth. By changing the IPD, this contour-based eye tracking data
can distinguish between a verged and gaze distance from an object. The IPD value will
become smaller if the eyes are focused at a close distance and it becomes larger if they
are focused at long distances [179]. The IPD can track changes in perceptual depth in VR
because it was recorded independently as eye tracker camera data [179]. By examining
behavior, perception, and interest, an eye tracking integrated VR platform offers a chance
to understand the human visual system [183]. One study that used an eye tracker in virtual
reality to estimate perceived depth change is shown in Figure 14d. The top convergence
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case shows how the user’s eyes move their sight from bottom-to-top and top-to-bottom.
This demonstrates how effective the platform’s angle computation is for measuring angles
in 3D maps. With eye tracking and VR, it is feasible to compute a subject’s gaze in 3D space
and to see where they are focusing while they are engaged in an activity. Unlike the real
world where it is difficult to identify the regions of interest in 3D spaces and reconstruct
the points when the regions were looked at, it is simple to do so in VR eye tracking [182]. It
is possible that in the future, virtual and augmented reality glasses will widely use this 3D
integration to simulate more realistic information [161].
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Copyright 2020, the authors. Published by MDPI). (b) Screen-based eye tracker (Left: Reprinted
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2020, the Authors. Published by DOAJ). (d) Perceptual depth change with eye trackers in virtual
reality (Reprinted under terms of the CC-BY license [177]. Copyright 2021, the authors. Published
by Frontiers).

3.4. Applications

Humans look at objects to receive visual information, which is then used to recognize
events and objects to understand the situation [185]. Eye tracking is employed throughout
many fields of psychology, medical examination, and cognitive science to study topics
including oculomotor system development, attention, perception, disease diagnosis, di-
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verse usability, and neurological findings [186]. Based on the different characteristics,
this chapter introduces examples of cognitive-based medical and educational committing
creative tasks by reading human intentions and assisting humans directly. Researchers can
determine how effectively a person executes a task by examining attentional eye behaviors
when communicating and working on a task. Additionally, observing the gaze allows
estimating the individual’s cognitive states and understanding the user’s status [185].
These approaches play a significant role in an expanding number of applications [171].
Recent technological advancements with precise quantification, large data, and automated
evaluation enable eye tracking applications available for disease diagnosis and assist-
ing roles [70,133,153,154,171,187]. Multi-disciplinary research, including driving applica-
tions [134], pattern analysis with machine learning [71], human–computer interaction [67],
and learning assistant and evaluation [151,178] are some examples of innovations.

3.4.1. Cognitive Behavior and Human Recognition

Cognitive behavior can be revealed in a variety of ways, such as changes in eye
movement, action, the inability to recognize people and objects, and even the loss of mem-
ory [170,185]. Researchers attempt to identify cognitive strategies (e.g., problem-solving)
and recognition skills when humans execute tasks to quantify and qualify human recogni-
tion [185,188]. Recent researchers presented a tangible medium of diverse applications with
eye movement analysis. Referring to Table 4, researchers attempt to measure gaze move-
ments [182], artifacts [186], and wayfinding [189] to assess the user’s intention and real-time
eye movement analysis. Additionally, for precise patient diagnosis [133,153,190,191] and
behavioral research [160,192], wearable and screen-based tracking devices guide how deep
investigations on human gaze behavior in real-world scenarios. The “individual difference”
has gained significant attention in the fields of target content and psychology in recent
years. Researchers emphasized the study of cognition and recognition, which is influenced
by cognitive psychology, in order to identify personal behavior in a diverse medium [188].
The recent study analyzed the eye movement data of student participants with different
individual cognitive styles when they read and recognized contents, as shown in Figure 15a.
The study explores the differences in visual attention among individuals with different
cognitive behaviors by identifying unique eye movements during interaction and com-
munication [188]. This non-invasive eye tracking platform allows the easy coordination
of test designs and stimuli provision, making it possible to collect robust eye information
data [171]. While eye movements were previously measured and recorded in the laboratory,
an advanced eye tracking platform proposes the use of human statuses and cognitive
monitoring. Precise data acquisition mechanisms such as disease status and monitoring of
disease progression are well established [70,153,154].

3.4.2. Contents

Using eye tracking technology, a computer can precisely track the motion of the user’s
gaze on a screen in real-time. People with physical limitations can use it as a natural and
simple interface between themselves and outside technology, giving them a potential means
of communication [193]. Recent attempts have been made to combine an eye tracker with
traditional input methods, including a mouse, keyboard, controller, and speech recognition.
Figure 15b shows one example where a robotic arm operates as a standalone hand for any
point in the workspace by simply moving the user’s eyes [193]. This eye tracker integrated
system shows HMI compatibility by creating intelligent space with the support of AR
and VR. A system architecture for using an eye tracking interface can create new artistic
mediums and content with an industrial robot, especially those targeting amputees, those
with movement disorders, or people who need an assistive device for creative drawing
and painting [193]. The researcher also presented enhanced imagery techniques for virtual
web mapping for re-producing eye movements and human strategies [158]. It opens up
the prospect of duplicating a person’s visual search approach via picture and strategy
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enhancements. The individual map identification analysis was possible by using precise
eye analyses and qualitative and quantitative analytical methodologies [158].
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3.4.3. Guided Operation

As a result of significant advancements in eye tracking technology in recent years, eye
trackers are highlighted to assist human operational tasks and supportive devices [198].
Studies using wearable eye tracking technologies, such as those attached to light eyeglass
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frames, have been able to help novice surgeons throughout various laparoscopic proce-
dures, as shown in Figure 15c [198]. Additionally, recent research has shown that analyzing
gaze and velocity provides prospective surgical risk and can help assess tasks during
simulated or real operative procedures. The eye tracker’s integration in surgery identi-
fies the task’s complexity and measures the cognitive change of the user [195]. Research
findings, including the current surgery study, have shown the sensitivity of gaze-based
metrics as an assessment tool [195] and it demonstrates the possibility of assisting surgical
education, surgical robot, and operation assessment in order to produce a more effective
and efficient health care system [195]. As shown in Figure 15d, the researcher attempts
to construct a tangible interface for task-related eye tracker applications [197,198]. The
researcher shows remote construction tasks with mobile eye trackers. The user can assist
by remote eye information input. Interface proposes expandability on collaborative tasks,
complex processes, and design interventions for safe and remote operation tasks [195].
Research in driver’s assistant technology utilizes eye gaze and fixation patterns to antic-
ipate driver’s future maneuvers [134]. Real-time intention tracking enables smart and
collaborative advanced driver assistance systems (ADAS) that can aid drivers to overcome
safety critical situations [134]. Recently, researchers presented the tangible medium of
diverse applications. Referring to Table 4, researchers attempt to guide operations with
eye tracking with respect to surgical skill and training [13] and also with respect to driver
guidance systems during driving operations [158]. Applications for supportive guidance
provide educational breakthrough opportunities [151,198] and attention evaluation tools
for learning purposes [134].

Table 4. Application examples using eye tracking systems.

Application Target User Platform Device Info. Gaze Detection Processing Method Refs.

Cognitive
Recognition

Autism Infant Screen-based ISCAN, Inc.

-Dark pupil
Tracking
-Corneal
reflection

Customized
(Eye position and fixation data
identification with MATLAB)

[153]

Impact of
slippage Any mobile user Eyeglasses

-Tobii
-SMI
-Pupil-labs

-PCCR
-Dark pupil
Tracking
-Corneal
reflection

Commercial
(Tobii Pro: Process with Two

cameras and Six glints per eye,
iViewETG: Three makers

tracking from SMI)
Customized

(EyeRecToo: Open-source pupil
Grip algorithm)

[160]

The Effects of
Mobile Phone
Use on Gaze

Behavior in Stair
Climbing

Any mobile user Eyeglasses Tobii Glasses 2.0
-PCCR
-Corneal
reflection

Customized
(Frame by frame image

classification with MATLAB)
[192]

Diagnosis and
Measurement of

Strabismus
Children Screen-based EyeTracker 4C

-PCCR
-Corneal
reflection

Customized
(EyeSwift: IR and
Image Processing)

[190]

Measurement of
nine gaze
directions

Patient with
strabismus Screen-based OMD -Pupil and

corneal reflection
Customized

(Hess screen test) [182]

ADHD ADHD Patient Screen-based Eyelink 1000

-Dark Pupil
Tracking
-Corneal
Reflection

Customized
(MOXO-dCPT Stimuli,

AOI and relative gaze analysis)
[133]

ADHD ADHD Patient Screen-based TX300 -PCCR
Customized

(Logistic regression Classification
model for pupil analysis)

[191]

Measurement of
pupil size

artefact (PSA)
Any mobile user Screen-based

EyeLink 1000
Plus,
Tobii Pro
Spectrum
(Glasses 2)

-Dark Pupil
Tracking,
-Corneal
Reflection

Commercial
(Tobii Pro: Process with Two

cameras and Six glints per eye)
[186]

A comparison
study of EXITs

design in a
wayfinding

system

Any mobile user Eyeglasses Tobii Glasses -PCCR
Customized

(Custom IR Marker, AOI
Analysis)

[73]
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Table 4. Cont.

Application Target User Platform Device Info. Gaze Detection Processing Method Refs.

Contents
Creation

Artistic Drawing
Graphic user

include people
with diabilities

Screen-based Tobii Eye Tracker
4C -PCCR

Commercial
(Tobii Pro: Process with Two

cameras and Six glints per eye)
[193]

To Enhance
Imagery Base

maps
Map User Screen-based Tobii Pro

Spectrum -PCCR

Commercial
(Tobii pro: Process with Two

cameras and Six glints per eye)
Customized

(AOI statistic and heatmap)

[158]

Guided
operation

supportive
guidance

Semi-
Autonomous

Vehicles
Driver Screen-based faceLAB -Pupil Tracking Customized

(Markov model, Pattern analysis) [134]

To capture joint
visual attention

Co-located
collaborative

learning groups
Eyeglasses SMI ETG

-Pupil/CR
-Dark pupil
tracking

Commercial
(Fiducial tracking engine) [196]

Human robot
interaction for
laparoscopic

surgery

surgeon Screen-based Tobii 1750 -PCCR Customized
(Hidden Markov model) [13]

Surgical Skills
Assessment and

Training in
Urology

surgeon Eyeglasses + VR Tobii Glasses 2.0 -PCCR Commercial
(UroMentor simulator) [198]

Architectural
Education

Ordinary Users,
Students and

Lecturers

Eyeglasses
Screen-based

VR

-Tobii
-SMI

- PCCR
- pupil/CR, dark
pupil tracking

Commercial
(BeGaze software) [151]

Education Student VR Self-made “VR
eye tracker”

-Record the
condition of the
pupils via
infrared LED
light

Customized
(Analysis of regions of interest) [188]

4. Discussion

We summarized device technologies and HMI applications in eye tracking. Previous
EOG systems were bulky and used many wires with Ag/AgCl gel electrodes. The electrode
can record signals in high fidelity, but it has issues, including poor breathability, skin
irritation, and a loss of performance during long-term usage. Moreover, EOG signals
have difficulties when detecting the detailed modality of input signals, so there is a limit
to classifying various eye angles and eyes. Due to these limited capabilities, the HMI
shown in previous studies only applies to simple motion control with a finite number of
directions. Screen-based eye trackers were also used for HMI, but they required complex
eye movements that caused extreme eye fatigue. Recent advances in electrophysiological
signal monitoring and manufacturing of wearable platforms and various types of electrodes
have enabled EOG monitoring systems with comfortable wearable EOG devices to detect
eye movements without skin issues. Many research groups have introduced biocompatible
electrodes to solve the skin issue of conventional gel electrodes. Various biocompatible
electrodes were introduced, such as hydrogel, fiber, polymer, and micro-patterned types.
These biocompatible electrodes enable long-term EOG measurements and multiple types
of wearable platforms, such as glasses, face masks, headbands, and earplugs. Video
monitoring systems have also been improved for eye tracking used in HMI applications.

Based on recent technological advances, HMI applications via EOG show the potential
for healthcare and virtual world development. We want to introduce two highly influ-
ential potential future usage. An instance of a healthcare application is the diagnosis of
blepharospasm, which is the abnormal contraction of the eyelid muscles. Currently, there
is no simple quantitative system for accurate and objective diagnosis of blepharospasm.
To diagnose blepharospasm, EMG and EOG signals could be measured simultaneously
with biocompatible electrodes. However, only using biopotentials is not easy to detect all
clinical symptoms, such as the frequency of blinking, the duration of eye closures during
spasms, and the combinations of blinking and spasms. In this case, the accurate diagno-
sis of blepharospasm will be possible via biopotentials with a camera-based eye tracker.
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Camera-based eye trackers can capture tiny eye movements that are difficult to catch via
biopotentials. Moreover, biopotentials can measure hidden eye movements that the camera-
based eye tracker cannot record. With this new mechanism, it is possible to increase the
accuracy of the diagnosis of blepharospasm while supplementing each other’s limitations.

Second is an integration of EOG technology and other biopotentials in the virtual
world, such as a metaverse. The current virtual world platforms require complex user
input to enjoy applications. For example, when moving the user’s location, users have to
press and indicate the location where the user wants to go. For the interaction choice, both
hands are the majority input source that requires clicking and moving hands. In order to
expand the application capability of complex user inputs, biopotential signals can create
new commands input. For people with disabilities who cannot move their muscles such
as their hands or mouth, they can freely move in the virtual world with only EEG and
EOG. Recent EEG technologies proposed reliable select mechanisms for long words and
sentences. Through EEG technologies, the user can communicate with other users without
speaking. In addition, EOG and EEG data in specific frequencies can track the user’s gaze
and provides an additional command input mechanism that corresponds to the user’s
additional behavior. Simple movements such as up, down, left, and right can be performed
quickly by analyzing the EOG signal in the virtual world.

Eye tracking is in its early stage. Many studies and industries show the potential of
ultimate HMI applications and next-generation diagnosis via recognition, sensing, and anal-
ysis. Researchers propose scrutinizing human intentions and integrating those intentions
to actuate the task, suggest decision guidelines, and assist during operations. However, eye
tracker technology is an insufficient data acquisition system for executing advanced and
complex structures such as exoskeletons. Moreover, the limitations of eye tracking measure-
ments using optical devices prevent it from becoming a primary parameter for clinical-level
diagnoses. However, recent machine learning and advanced computing technology have
shown the possibility of designing personalized profile modeling. Advanced technology
makes the eye tracker suitable for various HMI applications, for new medical guidelines,
or for understanding of a person’s cognitive state. Nevertheless, many aspects of eye
tracking must be further developed to realize its applications in everyday life in terms of
eye tracking usability and opportunities. Moreover, EOG data and eye tracker gaze data
can be integrated with machine learning or each other for scalability and performance. We
believe that the consideration of these challenges will provide broad scalability to further
develop eye tracking for practical applications.

5. Conclusions

This paper summarizes various wearable EOG devices and eye-tracking systems in
terms of material properties, sensing performances, and platform technologies. Specif-
ically, we outline recent developments in biocompatible materials, manufacturing tech-
nologies, signal-processing strategies, integrated systems, and applications in detecting
eye movements. Advances in wearable technologies and video monitoring systems for
electrophysiological signal monitoring enabled various human–machine interfaces. The
unique properties of flexible soft electrodes offer enhanced skin compatibility, long-term
stability, and increased skin–electrode contact. Overall, soft material-enabled electronics
and camera-based high-resolution systems are up-and-coming tools for accurately detecting
eye movements and persistent human–machine interfaces.
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Abbreviation

ADHD attention deficit hyperactivity disorder
AJP aerosol jet printing
AOI area of Interest
BCI brain–computer interface
CEFs conductive elastomeric filaments
CNN convolution neural network
CNTs carbon nanotubes
CVD chemical vapor deposition
DI deionized
DWT discrete wavelet transform
ECG electrocardiogram
EEG electroencephalogram
EMG electromyography
EOG electrooculograms
EPEDs epidermal paper-based electronic devices
FC fixation count
FFD first fixation duration
GO graphene oxide
HCI human–computer interaction
HMI human–machine interface
HPC hydroxypropyl cellulose
IPD inter-pupillary distance
IR infrared
LDA linear discriminant analysis
MR mixed reality
PCBs printed circuit boards
PCCR pupil center-corneal reflection
PDMS polydimethylsiloxane
PMMA poly methyl methacrylate
POG point of gaze
PVA polyvinyl alcohol
rGO reduced graphene oxide
SNR signal-to-noise ratio
SVM supporting vector machines
TFD total fixation duration
TTFF time to first fixation
UV ultraviolet
VR virtual reality
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74. Płużyczka, M. The first hundred years: A history of eye tracking as a research method. Appl. Linguist. Pap. 2018, 4, 101–116.
[CrossRef]

75. Stuart, S.; Hickey, A.; Galna, B.; Lord, S.; Rochester, L.; Godfrey, A. iTrack: Instrumented mobile electrooculography (EOG)
eye-tracking in older adults and Parkinson’s disease. Physiol. Meas. 2016, 38, N16. [CrossRef] [PubMed]

76. Boukadoum, A.; Ktonas, P. EOG-Based Recording and Automated Detection of Sleep Rapid Eye Movements: A Critical Review,
and Some Recommendations. Psychophysiology 1986, 23, 598–611. [CrossRef] [PubMed]

http://doi.org/10.1109/ACCESS.2017.2647851
http://doi.org/10.3390/s17071485
http://doi.org/10.4028/www.scientific.net/AST.85.11
http://doi.org/10.1109/TBCAS.2014.2384017
https://efermat.github.io/articles/Varadan-ART-2014-Vol1-Jan_Feb-004/
https://efermat.github.io/articles/Varadan-ART-2014-Vol1-Jan_Feb-004/
http://doi.org/10.1149/2.0241907jes
http://doi.org/10.18494/SAM.2020.2517
http://doi.org/10.1016/j.measurement.2018.06.017
http://doi.org/10.1002/sstr.202100105
http://doi.org/10.1016/j.neucom.2019.05.108
http://doi.org/10.1016/j.bspc.2021.102748
http://doi.org/10.1515/bmt-2019-0027
http://doi.org/10.1177/2055668318773991
http://doi.org/10.1016/j.ridd.2021.103891
http://doi.org/10.1109/TPAMI.2009.30
http://doi.org/10.32612/uw.25449354.2018.4.pp.101-116
http://doi.org/10.1088/1361-6579/38/1/N16
http://www.ncbi.nlm.nih.gov/pubmed/27941232
http://doi.org/10.1111/j.1469-8986.1986.tb00678.x
http://www.ncbi.nlm.nih.gov/pubmed/3543986


Biosensors 2022, 12, 1039 41 of 45

77. Lam, R.W.; Beattie, C.W.; Buchanan, A.; Remick, R.A.; Zis, A.P. Low electrooculographic ratios in patients with seasonal affective
disorder. Am. J. Psychiatry 1991, 148, 1526–1529.

78. Bour, L.; Ongerboer de Visser, B.; Aramideh, M.; Speelman, J. Origin of eye and eyelid movements during blinking. Mov. Disord.
2002, 17, S30–S32. [CrossRef]

79. Yamagishi, K.; Hori, J.; Miyakawa, M. Development of EOG-based communication system controlled by eight-directional eye
movements. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society,
New York, NY, USA, 30 August–3 September 2006; pp. 2574–2577.

80. Magosso, E.; Ursino, M.; Zaniboni, A.; Provini, F.; Montagna, P. Visual and computer-based detection of slow eye movements in
overnight and 24-h EOG recordings. Clin. Neurophysiol. 2007, 118, 1122–1133. [CrossRef]

81. Yazicioglu, R.F.; Torfs, T.; Merken, P.; Penders, J.; Leonov, V.; Puers, R.; Gyselinckx, B.; Van Hoof, C. Ultra-low-power biopotential
interfaces and their applications in wearable and implantable systems. Microelectron. J. 2009, 40, 1313–1321. [CrossRef]

82. Bulling, A.; Ward, J.A.; Gellersen, H.; Tröster, G. Eye movement analysis for activity recognition using electrooculography. IEEE
Trans. Pattern Anal. Mach. Intell. 2010, 33, 741–753. [CrossRef]

83. Cruz, A.; Garcia, D.; Pires, G.; Nunes, U. Facial Expression Recognition based on EOG toward Emotion Detection for Human-
Robot Interaction. In Proceedings of the Biosignals, Lisbon, Portugal, 12–15 January 2015; pp. 31–37.

84. Lin, C.-T.; Liao, L.-D.; Liu, Y.-H.; Wang, I.-J.; Lin, B.-S.; Chang, J.-Y. Novel dry polymer foam electrodes for long-term EEG
measurement. IEEE Trans. Biomed. Eng. 2010, 58, 1200–1207.

85. Searle, A.; Kirkup, L. A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol. Meas. 2000, 21, 271.
[CrossRef]

86. Meziane, N.; Webster, J.; Attari, M.; Nimunkar, A. Dry electrodes for electrocardiography. Physiol. Meas. 2013, 34, R47. [CrossRef]
[PubMed]

87. Marmor, M.F.; Brigell, M.G.; McCulloch, D.L.; Westall, C.A.; Bach, M. ISCEV standard for clinical electro-oculography (2010
update). Doc. Ophthalmol. 2011, 122, 1–7. [CrossRef] [PubMed]

88. Tobjörk, D.; Österbacka, R. Paper electronics. Adv. Mater. 2011, 23, 1935–1961. [CrossRef] [PubMed]
89. Vehkaoja, A.T.; Verho, J.A.; Puurtinen, M.M.; Nojd, N.M.; Lekkala, J.O.; Hyttinen, J.A. Wireless head cap for EOG and facial EMG

measurements. In Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China,
1–4 September 2005; pp. 5865–5868.

90. Eskandarian, L.; Toossi, A.; Nassif, F.; Golmohammadi Rostami, S.; Ni, S.; Mahnam, A.; Alizadeh Meghrazi, M.; Takarada, W.;
Kikutani, T.; Naguib, H.E. 3D-Knit Dry Electrodes using Conductive Elastomeric Fibers for Long-Term Continuous Electrophysio-
logical Monitoring. Adv. Mater. Technol. 2022, 7, 2101572. [CrossRef]

91. Calvert, P. Inkjet printing for materials and devices. Chem. Mater. 2001, 13, 3299–3305. [CrossRef]
92. Bollström, R.; Määttänen, A.; Tobjörk, D.; Ihalainen, P.; Kaihovirta, N.; Österbacka, R.; Peltonen, J.; Toivakka, M. A multilayer

coated fiber-based substrate suitable for printed functionality. Org. Electron. 2009, 10, 1020–1023. [CrossRef]
93. Kim, D.H.; Kim, Y.S.; Wu, J.; Liu, Z.; Song, J.; Kim, H.S.; Huang, Y.Y.; Hwang, K.C.; Rogers, J.A. Ultrathin silicon circuits with

strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 2009, 21,
3703–3707. [CrossRef]

94. Hyun, W.J.; Secor, E.B.; Hersam, M.C.; Frisbie, C.D.; Francis, L.F. High-resolution patterning of graphene by screen printing with
a silicon stencil for highly flexible printed electronics. Adv. Mater. 2015, 27, 109–115. [CrossRef]

95. Golparvar, A.; Ozturk, O.; Yapici, M.K. Gel-Free Wearable Electroencephalography (EEG) with Soft Graphene Textiles. In
Proceedings of the 2021 Ieee Sensors, Online, 31 October–4 November 2021; pp. 1–4.

96. Golparvar, A.J.; Yapici, M.K. Graphene-coated wearable textiles for EOG-based human-computer interaction. In Proceedings of
the 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN), Las Vegas, NV, USA,
4–7 March 2018; pp. 189–192.

97. Wang, X.; Xiao, Y.; Deng, F.; Chen, Y.; Zhang, H. Eye-Movement-Controlled Wheelchair Based on Flexible Hydrogel Biosensor
and WT-SVM. Biosensors 2021, 11, 198. [CrossRef]

98. Wang, Z.; Chen, L.; Chen, Y.; Liu, P.; Duan, H.; Cheng, P. 3D printed ultrastretchable, hyper-antifreezing conductive hydrogel for
sensitive motion and electrophysiological signal monitoring. Research 2020, 2020, 1–11. [CrossRef] [PubMed]

99. Sadri, B.; Goswami, D.; Martinez, R.V. Rapid fabrication of epidermal paper-based electronic devices using razor printing.
Micromachines 2018, 9, 420. [CrossRef] [PubMed]

100. Peng, H.-L.; Liu, J.-Q.; Dong, Y.-Z.; Yang, B.; Chen, X.; Yang, C.-S. Parylene-based flexible dry electrode for bioptential recording.
Sens. Actuators B Chem. 2016, 231, 1–11. [CrossRef]

101. Huang, J.; Zhu, H.; Chen, Y.; Preston, C.; Rohrbach, K.; Cumings, J.; Hu, L. Highly transparent and flexible nanopaper transistors.
ACS Nano 2013, 7, 2106–2113. [CrossRef] [PubMed]

102. Blumenthal, T.; Fratello, V.; Nino, G.; Ritala, K. Aerosol Jet®Printing Onto 3D and Flexible Substrates. Quest Integr. Inc.
2017. Available online: http://www.qi2.com/wp-content/uploads/2016/12/TP-460-Aerosol-Jet-Printing-onto-3D-and-Flexible-
Substrates.pdf (accessed on 19 October 2022).

103. Saengchairat, N.; Tran, T.; Chua, C.-K. A review: Additive manufacturing for active electronic components. Virtual Phys. Prototyp.
2017, 12, 31–46. [CrossRef]

http://doi.org/10.1002/mds.10047
http://doi.org/10.1016/j.clinph.2007.01.014
http://doi.org/10.1016/j.mejo.2008.08.015
http://doi.org/10.1109/TPAMI.2010.86
http://doi.org/10.1088/0967-3334/21/2/307
http://doi.org/10.1088/0967-3334/34/9/R47
http://www.ncbi.nlm.nih.gov/pubmed/24137716
http://doi.org/10.1007/s10633-011-9259-0
http://www.ncbi.nlm.nih.gov/pubmed/21298321
http://doi.org/10.1002/adma.201004692
http://www.ncbi.nlm.nih.gov/pubmed/21433116
http://doi.org/10.1002/admt.202101572
http://doi.org/10.1021/cm0101632
http://doi.org/10.1016/j.orgel.2009.04.014
http://doi.org/10.1002/adma.200900405
http://doi.org/10.1002/adma.201404133
http://doi.org/10.3390/bios11060198
http://doi.org/10.34133/2020/1426078
http://www.ncbi.nlm.nih.gov/pubmed/33623900
http://doi.org/10.3390/mi9090420
http://www.ncbi.nlm.nih.gov/pubmed/30424353
http://doi.org/10.1016/j.snb.2016.02.061
http://doi.org/10.1021/nn304407r
http://www.ncbi.nlm.nih.gov/pubmed/23350951
http://www.qi2.com/wp-content/uploads/2016/12/TP-460-Aerosol-Jet-Printing-onto-3D-and-Flexible-Substrates.pdf
http://www.qi2.com/wp-content/uploads/2016/12/TP-460-Aerosol-Jet-Printing-onto-3D-and-Flexible-Substrates.pdf
http://doi.org/10.1080/17452759.2016.1253181


Biosensors 2022, 12, 1039 42 of 45

104. Beach, C.; Karim, N.; Casson, A.J. A Graphene-Based Sleep Mask for Comfortable Wearable Eye Tracking. In Proceedings of the
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany,
23–27 July 2019; pp. 6693–6696.

105. Paul, G.M.; Cao, F.; Torah, R.; Yang, K.; Beeby, S.; Tudor, J. A smart textile based facial EMG and EOG computer interface. IEEE
Sens. J. 2013, 14, 393–400. [CrossRef]

106. Paul, G.; Torah, R.; Beeby, S.; Tudor, J. The development of screen printed conductive networks on textiles for biopotential
monitoring applications. Sens. Actuators A: Phys. 2014, 206, 35–41. [CrossRef]

107. Peng, H.-L.; Sun, Y.-l.; Bi, C.; Li, Q.-F. Development of a flexible dry electrode based MXene with low contact impedance for
biopotential recording. Measurement 2022, 190, 110782. [CrossRef]

108. Cheng, X.; Bao, C.; Dong, W. Soft dry electroophthalmogram electrodes for human machine interaction. Biomed. Microdevices
2019, 21, 1–11. [CrossRef]

109. Tian, L.; Zimmerman, B.; Akhtar, A.; Yu, K.J.; Moore, M.; Wu, J.; Larsen, R.J.; Lee, J.W.; Li, J.; Liu, Y. Large-area MRI-compatible
epidermal electronic interfaces for prosthetic control and cognitive monitoring. Nat. Biomed. Eng. 2019, 3, 194–205. [CrossRef]

110. Park, J.; Choi, S.; Janardhan, A.H.; Lee, S.-Y.; Raut, S.; Soares, J.; Shin, K.; Yang, S.; Lee, C.; Kang, K.-W. Electromechanical
cardioplasty using a wrapped elasto-conductive epicardial mesh. Sci. Transl. Med. 2016, 8, 344ra86. [CrossRef] [PubMed]

111. Norton, J.J.; Lee, D.S.; Lee, J.W.; Lee, W.; Kwon, O.; Won, P.; Jung, S.-Y.; Cheng, H.; Jeong, J.-W.; Akce, A. Soft, curved electrode
systems capable of integration on the auricle as a persistent brain–computer interface. Proc. Natl. Acad. Sci. USA 2015, 112,
3920–3925. [CrossRef] [PubMed]

112. Bergmann, J.; McGregor, A. Body-worn sensor design: What do patients and clinicians want? Ann. Biomed. Eng. 2011, 39,
2299–2312. [CrossRef] [PubMed]

113. Preece, S.J.; Goulermas, J.Y.; Kenney, L.P.; Howard, D.; Meijer, K.; Crompton, R. Activity identification using body-mounted
sensors—A review of classification techniques. Physiol. Meas. 2009, 30, R1. [CrossRef] [PubMed]

114. Kanoh, S.; Ichi-nohe, S.; Shioya, S.; Inoue, K.; Kawashima, R. Development of an eyewear to measure eye and body movements.
In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), Milan, Italy, 25–29 August 2015; pp. 2267–2270.

115. Desai, M.; Pratt, L.A.; Lentzner, H.R.; Robinson, K.N. Trends in vision and hearing among older Americans. Aging Trends 2001,
1–8. [CrossRef]

116. Bulling, A.; Roggen, D.; Tröster, G. Wearable EOG goggles: Eye-based interaction in everyday environments. In CHI’09 Extended
Abstracts on Human Factors in Computing Systems; Association for Computing Machinery: New York, NY, USA, 2009; pp. 3259–3264.

117. Kosmyna, N. AttentivU: A Wearable Pair of EEG and EOG Glasses for Real-Time Physiological Processing (Conference Presenta-
tion). In Proceedings of the Optical Architectures for Displays and Sensing in Augmented, Virtual, and Mixed Reality (AR, VR,
MR), San Francisco, CA, USA, 2 February 2020; p. 113101P.

118. Bulling, A.; Roggen, D.; Tröster, G. Wearable EOG goggles: Seamless sensing and context-awareness in everyday environments.
J. Ambient Intell. Smart Environ. 2009, 1, 157–171. [CrossRef]

119. Dhuliawala, M.; Lee, J.; Shimizu, J.; Bulling, A.; Kunze, K.; Starner, T.; Woo, W. Smooth eye movement interaction using EOG
glasses. In Proceedings of the 18th ACM International Conference on Multimodal Interaction, Tokyo, Japan, 12–16 November 2016;
pp. 307–311.

120. Inzelberg, L.; Pur, M.D.; Schlisske, S.; Rödlmeier, T.; Granoviter, O.; Rand, D.; Steinberg, S.; Hernandez-Sosa, G.; Hanein, Y.
Printed facial skin electrodes as sensors of emotional affect. Flex. Print. Electron. 2018, 3, 045001. [CrossRef]

121. Miettinen, T.; Myllymaa, K.; Hukkanen, T.; Töyräs, J.; Sipilä, K.; Myllymaa, S. Home polysomnography reveals a first-night effect
in patients with low sleep bruxism activity. J. Clin. Sleep Med. 2018, 14, 1377–1386. [CrossRef]

122. Simar, C.; Petieau, M.; Cebolla, A.; Leroy, A.; Bontempi, G.; Cheron, G. EEG-based brain-computer interface for alpha speed
control of a small robot using the MUSE headband. In Proceedings of the 2020 International Joint Conference on Neural Networks
(IJCNN), Glasgow, UK, 19-24 July 2020; pp. 1–4. [CrossRef]

123. Balconi, M.; Fronda, G.; Venturella, I.; Crivelli, D. Conscious, pre-conscious and unconscious mechanisms in emotional behaviour.
Some applications to the mindfulness approach with wearable devices. Appl. Sci. 2017, 7, 1280. [CrossRef]

124. Asif, A.; Majid, M.; Anwar, S.M. Human stress classification using EEG signals in response to music tracks. Comput. Biol. Med.
2019, 107, 182–196. [CrossRef]

125. Merino, M.; Rivera, O.; Gómez, I.; Molina, A.; Dorronzoro, E. A method of EOG signal processing to detect the direction of
eye movements. In Proceedings of the 2010 First International Conference on Sensor Device Technologies and Applications,
Washington, DC, USA, 18–25 July 2010; pp. 100–105.

126. Wang, Y.; Lv, Z.; Zheng, Y. Automatic emotion perception using eye movement information for E-healthcare systems. Sensors
2018, 18, 2826. [CrossRef] [PubMed]

127. Soundariya, R.; Renuga, R. Eye movement based emotion recognition using electrooculography. In Proceedings of the 2017
Innovations in Power and Advanced Computing Technologies (i-PACT), Vellore, India, 21–22 April 2017; pp. 1–5.

128. Kose, M.R.; Ahirwal, M.K.; Kumar, A. A new approach for emotions recognition through EOG and EMG signals. Signal Image
Video Process. 2021, 15, 1863–1871. [CrossRef]

129. Sánchez-Ferrer, M.L.; Grima-Murcia, M.D.; Sánchez-Ferrer, F.; Hernández-Peñalver, A.I.; Fernández-Jover, E.; Del Campo, F.S.
Use of eye tracking as an innovative instructional method in surgical human anatomy. J. Surg. Educ. 2017, 74, 668–673. [CrossRef]

http://doi.org/10.1109/JSEN.2013.2283424
http://doi.org/10.1016/j.sna.2013.11.026
http://doi.org/10.1016/j.measurement.2022.110782
http://doi.org/10.1007/s10544-019-0458-x
http://doi.org/10.1038/s41551-019-0347-x
http://doi.org/10.1126/scitranslmed.aad8568
http://www.ncbi.nlm.nih.gov/pubmed/27334261
http://doi.org/10.1073/pnas.1424875112
http://www.ncbi.nlm.nih.gov/pubmed/25775550
http://doi.org/10.1007/s10439-011-0339-9
http://www.ncbi.nlm.nih.gov/pubmed/21674260
http://doi.org/10.1088/0967-3334/30/4/R01
http://www.ncbi.nlm.nih.gov/pubmed/19342767
http://doi.org/10.1037/e620682007-001
http://doi.org/10.3233/AIS-2009-0020
http://doi.org/10.1088/2058-8585/aae252
http://doi.org/10.5664/jcsm.7278
http://doi.org/10.1109/ijcnn48605.2020.92
http://doi.org/10.3390/app7121280
http://doi.org/10.1016/j.compbiomed.2019.02.015
http://doi.org/10.3390/s18092826
http://www.ncbi.nlm.nih.gov/pubmed/30150554
http://doi.org/10.1007/s11760-021-01942-1
http://doi.org/10.1016/j.jsurg.2016.12.012


Biosensors 2022, 12, 1039 43 of 45

130. Vansteenkiste, P.; Cardon, G.; Philippaerts, R.; Lenoir, M. Measuring dwell time percentage from head-mounted eye-tracking
data–comparison of a frame-by-frame and a fixation-by-fixation analysis. Ergonomics 2015, 58, 712–721. [CrossRef] [PubMed]

131. Mohanto, B.; Islam, A.T.; Gobbetti, E.; Staadt, O. An integrative view of foveated rendering. Comput. Graph. 2022, 102, 474–501.
[CrossRef]

132. Holmqvist, K.; Örbom, S.L.; Zemblys, R. Small head movements increase and colour noise in data from five video-based P–CR
eye trackers. Behav. Res. Methods 2022, 54, 845–863. [CrossRef] [PubMed]

133. Lev, A.; Braw, Y.; Elbaum, T.; Wagner, M.; Rassovsky, Y. Eye tracking during a continuous performance test: Utility for assessing
ADHD patients. J. Atten. Disord. 2022, 26, 245–255. [CrossRef] [PubMed]

134. Wu, M.; Louw, T.; Lahijanian, M.; Ruan, W.; Huang, X.; Merat, N.; Kwiatkowska, M. Gaze-based intention anticipation over
driving manoeuvres in semi-autonomous vehicles. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Macau, China, 4–8 November 2019; pp. 6210–6216.

135. Taba, I.B. Improving Eye-Gaze Tracking Accuracy through Personalized Calibration of a User’s Aspherical Corneal Model; University of
British Columbia: Vancouver, BC, Canada, 2012.

136. Vázquez Romaguera, T.; Vázquez Romaguera, L.; Castro Piñol, D.; Vázquez Seisdedos, C.R. Pupil Center Detection Approaches:
A Comparative Analysis. Comput. Y Sist. 2021, 25, 67–81. [CrossRef]

137. Schwiegerling, J.T. Eye axes and their relevance to alignment of corneal refractive procedures. J. Refract. Surg. 2013, 29, 515–516.
[CrossRef]

138. Duchowski, A.T. Eye Tracking Methodology: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2017.
139. Shehu, I.S.; Wang, Y.; Athuman, A.M.; Fu, X. Remote Eye Gaze Tracking Research: A Comparative Evaluation on Past and Recent

Progress. Electronics 2021, 10, 3165. [CrossRef]
140. Mantiuk, R. Gaze-dependent tone mapping for HDR video. In High Dynamic Range Video; Elsevier: Amsterdam, The Netherlands,

2017; pp. 189–199.
141. Schall, A.; Bergstrom, J.R. Introduction to eye tracking. In Eye Tracking in User Experience Design; Elsevier: Amsterdam, The

Netherlands, 2014; pp. 3–26.
142. Carter, B.T.; Luke, S.G. Best practices in eye tracking research. Int. J. Psychophysiol. 2020, 155, 49–62. [CrossRef] [PubMed]
143. Noland, R.B.; Weiner, M.D.; Gao, D.; Cook, M.P.; Nelessen, A. Eye-tracking technology, visual preference surveys, and urban

design: Preliminary evidence of an effective methodology. J. Urban. Int. Res. Placemaking Urban Sustain. 2017, 10, 98–110.
[CrossRef]

144. Wang, M.; Wang, T.; Luo, Y.; He, K.; Pan, L.; Li, Z.; Cui, Z.; Liu, Z.; Tu, J.; Chen, X. Fusing stretchable sensing technology with
machine learning for human–machine interfaces. Adv. Funct. Mater. 2021, 31, 2008807. [CrossRef]

145. Donuk, K.; Ari, A.; Hanbay, D. A CNN based real-time eye tracker for web mining applications. Multimed. Tools Appl. 2022, 81,
39103–39120. [CrossRef]

146. Hosp, B.; Eivazi, S.; Maurer, M.; Fuhl, W.; Geisler, D.; Kasneci, E. Remoteeye: An open-source high-speed remote eye tracker.
Behav. Res. Methods 2020, 52, 1387–1401. [CrossRef]

147. Petersch, B.; Dierkes, K. Gaze-angle dependency of pupil-size measurements in head-mounted eye tracking. Behav. Res. Methods
2022, 54, 763–779. [CrossRef]

148. Larumbe-Bergera, A.; Garde, G.; Porta, S.; Cabeza, R.; Villanueva, A. Accurate pupil center detection in off-the-shelf eye tracking
systems using convolutional neural networks. Sensors 2021, 21, 6847. [CrossRef]

149. Hess, E.H.; Polt, J.M. Pupil size as related to interest value of visual stimuli. Science 1960, 132, 349–350. [CrossRef]
150. Punde, P.A.; Jadhav, M.E.; Manza, R.R. A study of eye tracking technology and its applications. In Proceedings of the 2017 1st

International Conference on Intelligent Systems and Information Management (ICISIM), Aurangabad, India, 5–6 October 2017;
pp. 86–90.

151. Rusnak, M.A.; Rabiega, M. The Potential of Using an Eye Tracker in Architectural Education: Three Perspectives for Ordinary
Users, Students and Lecturers. Buildings 2021, 11, 245. [CrossRef]

152. Edition, F. Diagnostic and statistical manual of mental disorders. Am Psychiatr. Assoc 2013, 21, 591–643.
153. Constantino, J.N.; Kennon-McGill, S.; Weichselbaum, C.; Marrus, N.; Haider, A.; Glowinski, A.L.; Gillespie, S.; Klaiman, C.;

Klin, A.; Jones, W. Infant viewing of social scenes is under genetic control and is atypical in autism. Nature 2017, 547, 340–344.
[CrossRef] [PubMed]

154. Khan, M.Q.; Lee, S. Gaze and eye tracking: Techniques and applications in ADAS. Sensors 2019, 19, 5540. [CrossRef] [PubMed]
155. Cazzato, D.; Leo, M.; Distante, C. An investigation on the feasibility of uncalibrated and unconstrained gaze tracking for human

assistive applications by using head pose estimation. Sensors 2014, 14, 8363–8379. [CrossRef] [PubMed]
156. Hessels, R.S.; Niehorster, D.C.; Nyström, M.; Andersson, R.; Hooge, I.T. Is the eye-movement field confused about fixations and

saccades? A survey among 124 researchers. R. Soc. Open Sci. 2018, 5, 180502. [CrossRef]
157. González-Mena, G.; Del-Valle-Soto, C.; Corona, V.; Rodríguez, J. Neuromarketing in the Digital Age: The Direct Relation between

Facial Expressions and Website Design. Appl. Sci. 2022, 12, 8186. [CrossRef]
158. Dong, W.; Liao, H.; Roth, R.E.; Wang, S. Eye tracking to explore the potential of enhanced imagery basemaps in web mapping.

Cartogr. J. 2014, 51, 313–329. [CrossRef]
159. Voßkühler, A.; Nordmeier, V.; Kuchinke, L.; Jacobs, A.M. OGAMA (Open Gaze and Mouse Analyzer): Open-source software

designed to analyze eye and mouse movements in slideshow study designs. Behav. Res. Methods 2008, 40, 1150–1162. [CrossRef]

http://doi.org/10.1080/00140139.2014.990524
http://www.ncbi.nlm.nih.gov/pubmed/25529829
http://doi.org/10.1016/j.cag.2021.10.010
http://doi.org/10.3758/s13428-021-01648-9
http://www.ncbi.nlm.nih.gov/pubmed/34357538
http://doi.org/10.1177/1087054720972786
http://www.ncbi.nlm.nih.gov/pubmed/33238787
http://doi.org/10.13053/cys-25-1-3385
http://doi.org/10.3928/1081597X-20130719-01
http://doi.org/10.3390/electronics10243165
http://doi.org/10.1016/j.ijpsycho.2020.05.010
http://www.ncbi.nlm.nih.gov/pubmed/32504653
http://doi.org/10.1080/17549175.2016.1187197
http://doi.org/10.1002/adfm.202008807
http://doi.org/10.1007/s11042-022-13085-7
http://doi.org/10.3758/s13428-019-01305-2
http://doi.org/10.3758/s13428-021-01657-8
http://doi.org/10.3390/s21206847
http://doi.org/10.1126/science.132.3423.349
http://doi.org/10.3390/buildings11060245
http://doi.org/10.1038/nature22999
http://www.ncbi.nlm.nih.gov/pubmed/28700580
http://doi.org/10.3390/s19245540
http://www.ncbi.nlm.nih.gov/pubmed/31847432
http://doi.org/10.3390/s140508363
http://www.ncbi.nlm.nih.gov/pubmed/24824369
http://doi.org/10.1098/rsos.180502
http://doi.org/10.3390/app12168186
http://doi.org/10.1179/1743277413Y.0000000071
http://doi.org/10.3758/BRM.40.4.1150


Biosensors 2022, 12, 1039 44 of 45

160. Niehorster, D.C.; Santini, T.; Hessels, R.S.; Hooge, I.T.; Kasneci, E.; Nyström, M. The impact of slippage on the data quality of
head-worn eye trackers. Behav. Res. Methods 2020, 52, 1140–1160. [CrossRef]

161. Hu, N. Depth Estimation Inside 3D Maps Based on Eye-Tracker. 2020. Available online: https://mediatum.ub.tum.de/doc/1615
800/1615800.pdf (accessed on 19 October 2022).

162. Takahashi, R.; Suzuki, H.; Chew, J.Y.; Ohtake, Y.; Nagai, Y.; Ohtomi, K. A system for three-dimensional gaze fixation analysis
using eye tracking glasses. J. Comput. Des. Eng. 2018, 5, 449–457. [CrossRef]

163. Špakov, O.; Miniotas, D. Visualization of eye gaze data using heat maps. Elektron. Ir Elektrotechnika 2007, 74, 55–58.
164. Maurus, M.; Hammer, J.H.; Beyerer, J. Realistic heatmap visualization for interactive analysis of 3D gaze data. In Proceedings of

the Symposium on Eye Tracking Research and Applications, Safety Harbor, FL, USA, 26–28 March 2014; pp. 295–298.
165. Pfeiffer, T.; Memili, C. Model-based real-time visualization of realistic three-dimensional heat maps for mobile eye tracking and

eye tracking in virtual reality. In Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research & Applications,
Charleston, SC, USA, 14–17 March 2016; pp. 95–102.

166. Kar, A.; Corcoran, P. Performance evaluation strategies for eye gaze estimation systems with quantitative metrics and visualiza-
tions. Sensors 2018, 18, 3151. [CrossRef]

167. Munz, T.; Chuang, L.; Pannasch, S.; Weiskopf, D. VisME: Visual microsaccades explorer. J. Eye Mov. Res. 2019, 12. [CrossRef]
[PubMed]

168. Reingold, E.M. Eye tracking research and technology: Towards objective measurement of data quality. Vis. Cogn. 2014, 22,
635–652. [CrossRef] [PubMed]

169. Godijn, R.; Theeuwes, J. Programming of endogenous and exogenous saccades: Evidence for a competitive integration model.
J. Exp. Psychol. Hum. Percept. Perform. 2002, 28, 1039. [CrossRef]

170. Ha, K.; Chen, Z.; Hu, W.; Richter, W.; Pillai, P.; Satyanarayanan, M. Towards wearable cognitive assistance. In Proceedings of the
12th annual international conference on Mobile systems, applications, and services, Bretton Woods, NH, USA, 16–19 June 2014;
pp. 68–81.

171. Larrazabal, A.J.; Cena, C.G.; Martínez, C.E. Video-oculography eye tracking towards clinical applications: A review. Comput. Biol.
Med. 2019, 108, 57–66. [CrossRef]

172. Mahanama, B.; Jayawardana, Y.; Rengarajan, S.; Jayawardena, G.; Chukoskie, L.; Snider, J.; Jayarathna, S. Eye Movement and
Pupil Measures: A Review. Front. Comput. Sci. 2022, 3, 733531. [CrossRef]

173. Hessels, R.S.; Benjamins, J.S.; Niehorster, D.C.; van Doorn, A.J.; Koenderink, J.J.; Holleman, G.A.; de Kloe, Y.J.; Valtakari, N.V.;
van Hal, S.; Hooge, I.T. Eye contact avoidance in crowds: A large wearable eye-tracking study. Atten. Percept. Psychophys. 2022,
84, 2623–2640. [CrossRef]

174. Li, T.; Zhou, X. Battery-free eye tracker on glasses. In Proceedings of the 24th Annual International Conference on Mobile
Computing and Networking, New Delhi, India, 29 October–2 November 2018; pp. 67–82.

175. Ye, Z.; Li, Y.; Fathi, A.; Han, Y.; Rozga, A.; Abowd, G.D.; Rehg, J.M. Detecting eye contact using wearable eye-tracking glasses. In
Proceedings of the 2012 ACM conference on ubiquitous computing, Pittsburgh, PA, USA, 5–8 September 2012; pp. 699–704.

176. Aronson, R.M.; Santini, T.; Kübler, T.C.; Kasneci, E.; Srinivasa, S.; Admoni, H. Eye-hand behavior in human-robot shared
manipulation. In Proceedings of the 2018 13th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Chicago,
IL, USA, 5–8 March 2018; pp. 4–13.

177. Callahan-Flintoft, C.; Barentine, C.; Touryan, J.; Ries, A.J. A Case for Studying Naturalistic Eye and Head Movements in Virtual
Environments. Front. Psychol. 2021, 12, 650693. [CrossRef]

178. Radianti, J.; Majchrzak, T.A.; Fromm, J.; Wohlgenannt, I. A systematic review of immersive virtual reality applications for higher
education: Design elements, lessons learned, and research agenda. Comput. Educ. 2020, 147, 103778. [CrossRef]

179. Arefin, M.S.; Swan II, J.E.; Cohen Hoffing, R.A.; Thurman, S.M. Estimating Perceptual Depth Changes with Eye Vergence and
Interpupillary Distance using an Eye Tracker in Virtual Reality. In Proceedings of the 2022 Symposium on Eye Tracking Research
and Applications, Seatle, WA, USA, 8–11 June 2022; pp. 1–7.

180. Puig, M.S.; Romeo, A.; Supèr, H. Vergence eye movements during figure-ground perception. Conscious. Cogn. 2021, 92, 103138.
[CrossRef]

181. Hooge, I.T.; Hessels, R.S.; Nyström, M. Do pupil-based binocular video eye trackers reliably measure vergence? Vis. Res. 2019,
156, 1–9. [CrossRef] [PubMed]

182. Iwata, Y.; Handa, T.; Ishikawa, H. Objective measurement of nine gaze-directions using an eye-tracking device. J. Eye Mov. Res.
2020, 13. [CrossRef] [PubMed]

183. Clay, V.; König, P.; Koenig, S. Eye tracking in virtual reality. J. Eye Mov. Res. 2019, 12. [CrossRef] [PubMed]
184. Biedert, R.; Buscher, G.; Dengel, A. Gazing the Text for Fun and Profit. In Eye Gaze in Intelligent User Interfaces; Springer:

Berlin/Heidelberg, Germany, 2013; pp. 137–160.
185. Nakano, Y.I.; Conati, C.; Bader, T. Eye Gaze in Intelligent User Interfaces: Gaze-Based Analyses, Models and Applications; Springer:

Berlin/Heidelberg, Germany, 2013.
186. Hooge, I.T.; Niehorster, D.C.; Hessels, R.S.; Cleveland, D.; Nyström, M. The pupil-size artefact (PSA) across time, viewing

direction, and different eye trackers. Behav. Res. Methods 2021, 53, 1986–2006. [CrossRef]
187. Shishido, E.; Ogawa, S.; Miyata, S.; Yamamoto, M.; Inada, T.; Ozaki, N. Application of eye trackers for understanding mental

disorders: Cases for schizophrenia and autism spectrum disorder. Neuropsychopharmacol. Rep. 2019, 39, 72–77. [CrossRef]

http://doi.org/10.3758/s13428-019-01307-0
https://mediatum.ub.tum.de/doc/1615800/1615800.pdf
https://mediatum.ub.tum.de/doc/1615800/1615800.pdf
http://doi.org/10.1016/j.jcde.2017.12.007
http://doi.org/10.3390/s18093151
http://doi.org/10.16910/jemr.12.6.5
http://www.ncbi.nlm.nih.gov/pubmed/33828749
http://doi.org/10.1080/13506285.2013.876481
http://www.ncbi.nlm.nih.gov/pubmed/24771998
http://doi.org/10.1037/0096-1523.28.5.1039
http://doi.org/10.1016/j.compbiomed.2019.03.025
http://doi.org/10.3389/fcomp.2021.733531
http://doi.org/10.3758/s13414-022-02541-z
http://doi.org/10.3389/fpsyg.2021.650693
http://doi.org/10.1016/j.compedu.2019.103778
http://doi.org/10.1016/j.concog.2021.103138
http://doi.org/10.1016/j.visres.2019.01.004
http://www.ncbi.nlm.nih.gov/pubmed/30641092
http://doi.org/10.16910/jemr.13.6.4
http://www.ncbi.nlm.nih.gov/pubmed/33828814
http://doi.org/10.16910/jemr.12.1.3
http://www.ncbi.nlm.nih.gov/pubmed/33828721
http://doi.org/10.3758/s13428-020-01512-2
http://doi.org/10.1002/npr2.12046


Biosensors 2022, 12, 1039 45 of 45

188. Hung, J.C.; Wang, C.-C. The Influence of Cognitive Styles and Gender on Visual Behavior During Program Debugging: A Virtual
Reality Eye Tracker Study. Hum.-Cent. Comput. Inf. Sci. 2021, 11, 1–21.

189. Obaidellah, U.; Haek, M.A. Evaluating gender difference on algorithmic problems using eye-tracker. In Proceedings of the 2018
ACM Symposium on Eye Tracking Research & Applications, Warsaw, Poland, 14–17 June 2018; pp. 1–8.

190. Yehezkel, O.; Belkin, M.; Wygnanski-Jaffe, T. Automated diagnosis and measurement of strabismus in children. Am. J. Ophthalmol.
2020, 213, 226–234. [CrossRef]

191. Nobukawa, S.; Shirama, A.; Takahashi, T.; Takeda, T.; Ohta, H.; Kikuchi, M.; Iwanami, A.; Kato, N.; Toda, S. Identification of
attention-deficit hyperactivity disorder based on the complexity and symmetricity of pupil diameter. Sci. Rep. 2021, 11, 1–14.
[CrossRef]

192. Ioannidou, F.; Hermens, F.; Hodgson, T.L. Mind your step: The effects of mobile phone use on gaze behavior in stair climbing.
J. Technol. Behav. Sci. 2017, 2, 109–120. [CrossRef]

193. Scalera, L.; Seriani, S.; Gallina, P.; Lentini, M.; Gasparetto, A. Human–robot interaction through eye tracking for artistic drawing.
Robotics 2021, 10, 54. [CrossRef]

194. Aoyama, T.; Takeno, S.; Takeuchi, M.; Hasegawa, Y. Head-mounted display-based microscopic imaging system with customizable
field size and viewpoint. Sensors 2020, 20, 1967. [CrossRef] [PubMed]

195. Mantiuk, R.; Kowalik, M.; Nowosielski, A.; Bazyluk, B. Do-it-yourself eye tracker: Low-cost pupil-based eye tracker for
computer graphics applications. In Proceedings of the International Conference on Multimedia Modeling, Klagenfurt, Austria,
4–6 January 2012; pp. 115–125.

196. Schneider, B.; Sharma, K.; Cuendet, S.; Zufferey, G.; Dillenbourg, P.; Pea, R. Leveraging mobile eye-trackers to capture joint visual
attention in co-located collaborative learning groups. Int. J. Comput.-Support. Collab. Learn. 2018, 13, 241–261. [CrossRef]

197. Hietanen, A.; Pieters, R.; Lanz, M.; Latokartano, J.; Kämäräinen, J.-K. AR-based interaction for human-robot collaborative
manufacturing. Robot. Comput.-Integr. Manuf. 2020, 63, 101891. [CrossRef]

198. Diaz-Piedra, C.; Sanchez-Carrion, J.M.; Rieiro, H.; Di Stasi, L.L. Gaze-based technology as a tool for surgical skills assessment and
training in urology. Urology 2017, 107, 26–30. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ajo.2019.12.018
http://doi.org/10.1038/s41598-021-88191-x
http://doi.org/10.1007/s41347-017-0022-6
http://doi.org/10.3390/robotics10020054
http://doi.org/10.3390/s20071967
http://www.ncbi.nlm.nih.gov/pubmed/32244620
http://doi.org/10.1007/s11412-018-9281-2
http://doi.org/10.1016/j.rcim.2019.101891
http://doi.org/10.1016/j.urology.2017.06.030
http://www.ncbi.nlm.nih.gov/pubmed/28666793

	Introduction 
	Recent Advances in Eye Movement Monitoring 
	Electrooculogram-Based Approaches for Human–Machine Interfaces 
	Screen-Based Eye Tracking Technology 

	EOG Signals 
	Existing Electrodes 
	Composite Electrodes 
	Dry Electrodes 

	Examples of Platforms for EOG Monitoring 
	Eyeglass Type 
	Facemask Type 
	Headband Type 
	Earplug Type 

	Signal Processing Algorithms and Applications 
	EOG Signal Processing 
	Machine Learning 
	Applications 


	Eye Trackers 
	Details of Eye Trackers 
	Human Eye Movement and Stimuli 
	Principles of Eye Tracking Technology 
	Employment of Eye Tracking Technologies for Applications 

	Eye Gaze and Movement Estimation 
	Eye Tracking Techniques and Algorithm 
	Visualization and Analysis of Eye Movements 

	Eye Tracking Platforms 
	Screen-Based 
	Glasses Type 
	Virtual Reality (VR) 

	Applications 
	Cognitive Behavior and Human Recognition 
	Contents 
	Guided Operation 


	Discussion 
	Conclusions 
	References

