
Advances in metaheuristics for gene
selection and classification of
microarray data
Be¤ atrice Duval and Jin-Kao Hao
Submitted: 5th May 2009; Received (in revised form): 12th July 2009

Abstract
Gene selection aims at identifying a (small) subset of informative genes from the initial data in order to obtain high
predictive accuracy for classification.Gene selection can be considered as a combinatorial search problem and thus
be conveniently handled with optimization methods. In this article, we summarize some recent developments of
using metaheuristic-based methods within an embedded approach for gene selection. In particular, we put forward
the importance and usefulness of integrating problem-specific knowledge into the search operators of such a
method. To illustrate the point, we explain how ranking coefficients of a linear classifier such as support vector
machine (SVM) can be profitably used to reinforce the search efficiency of Local Search and Evolutionary Search
metaheuristic algorithms for gene selection and classification.

Keywords: microarray data analysis; gene selection; classification; local search; genetic algorithm; memetic algorithm

INTRODUCTION
DNA microarray technology is a revolutionary

method enabling the measurement of expression

levels of thousands of genes in a single experiment

under diverse experimental conditions. Since its

invention, this technology has proved to be a valuable

tool for many biological and medical applications [1].

Microarray data analysis can be carried out

according to at least two different and complemen-

tary perspectives. On the one hand, data clustering

(nonsupervised classification) aims to identify groups

of genes, or groups of experimental conditions, that

exhibit similar expression patterns. In such a context,

bi-clustering is particularly interesting since it allows

the simultaneous identification of groups of genes

that show similar expression patterns across specific

groups of experimental conditions (samples) [2, 3].

On the other hand, researchers on cancer studies

are interested in categorical phenotypes like cancer

occurrences, specific tumor subtypes or cancer survi-

vals, which naturally leads to supervised classification

of the data. Supervised classification (also called class

prediction or class discrimination) aims to assign sam-

ples to predefined categories. This article will focus

on this specific task.

The aim of supervised classification is 2-fold. The

first is to build accurate classifiers that enable the

reliable discrimination between different phenotype

classes. Machine learning [4] and pattern recognition

studies [5] offer a great number of algorithms that can

be adapted for classification of microarray datasets.

We can cite, for example, k-nearest neighbor

(kNN) classifiers, neural networks and support

vector machines (SVM).

The biologists are not only interested in accurate

predictive tools, they also need to identify biomar-

kers of diseases, i.e. a small set of relevant genes that

leads to the correct discrimination between different

biological states. This second purpose of supervised

classification can be achieved by classifiers that pro-

vide understandable results and indicate which genes

contribute to the discrimination.

Be¤ atriceDuval is an associate professor in Computer Science. Her research field concerns data mining and machine learning, and for

some years, she has been working on applications in bioinformatics.

Jin-Kao Hao is a Computer Science professor. His research lies in the design of effective heuristic and metaheuristic algorithms for

solving large-scale combinatorial search problems. He is interested in various application areas including bioinformatics.

Corresponding author: Jin-Kao Hao, University of Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France. Tel: þ33-241-

735076; Fax: þ33-241-735073, E-mail: hao@info.univ-angers.fr

BRIEFINGS IN BIOINFORMATICS. VOL 11. NO 1. 127^141 doi:10.1093/bib/bbp035
Advance Access published on 29 September 2009

� The Author 2009. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article/11/1/127/192884 by guest on 20 August 2022

For microarray data, understandable results can

only be possible if the very high dimensionality of

the data is reduced by a process of gene selection. This

is a special case of attribute selection, a well-known

problem in machine learning (see [6, 7] for a general

introduction to this topic). A microarray data analysis

typically entails several thousands of genes whereas

only a few dozen of samples are available. When

faced with such dimensions, most learning algo-

rithms may exploit chance patterns and elaborate

models that perform well on training data but

poorly on new data. This risk of overfitting must

be reduced by selecting a number of genes compar-

able with the number of samples. Moreover, the

selection of a smaller number of attributes requires

less-computational efforts for model learning and

enables a better understanding of the process that

underlies the data.

Depending on how the selection process is com-

bined with the classification process, attribute selec-

tion methods belong to one of the following three

categories: filter methods, wrapper methods and

embedded methods [8].

Filter methods achieve attribute selection indepen-

dently of the classification model. They consider only

the data and rely on a ranking of the attributes

according to their correlation with the class label

with the aim to identify genes that are differentially

expressed in the different phenotypes considered.

Many filter methods are univariate since they evaluate

each attribute independently of the others, by means

of statistical measures like t-test, BW ratio [9] or infor-

mation theoretic criteria like mutual information.

These methods are computationally efficient,

but they fail to deal with redundancy between the

selected genes. Moreover, they do not take into

account complementary genes that have individually

a poor predictive performance, but jointly enable a

good classification. Finally, it is known that there

may be no agreement between the different mea-

sures, leading to contradictory rankings [10].

In wrapper methods, selection of relevant attributes

is performed in interaction with a classifier [6]. The

problem is no longer to rank the variables according

to their predictive power, but to find a gene subset

that achieves the best performance for a particular

learning model. To explore the space of attribute

subsets, a search algorithm is ‘wrapped’ around the

classification model which is used as a black box to

assess the predictive quality of the candidate gene

subsets. This problem of subset selection is known

to be NP-hard [11], so heuristic methods are often

used to select the best possible gene subset.

Wrapper methods explore the possible subsets by

deterministic greedy heuristics, like backward elim-

ination and forward selection, or by randomized

search algorithms, like local search and genetic algo-

rithms that will be further described in the

article. Compared with filter methods, one main

advantage of wrappers is that they consider interac-

tions between genes, and consequently are able to

deal with redundancy. Their main drawback is the

high-computational cost, since a classifier must be

trained to assess the quality of each candidate subset.

Embedded methods are similar to wrapper methods

in the sense that the search of an optimal subset is

performed for a specific learning algorithm, but they

are characterized by a deeper interaction between

gene selection and classifier construction. Two

main different approaches have been devised.

In the first approach, the classifier provides infor-

mation to guide the exploration of candidate subsets.

This kind of interaction is illustrated by Recursive

Feature Elimination (RFE) methods, of which

SVM-RFE is the most famous illustration [12].

These methods begin with all the genes and recur-

sively eliminate one (or several) genes. To choose

which gene can be discarded, a classifier is trained

and the gene the removal of which has the least

influence on its objective function (the objective or

cost function of a classifier evaluates the risk of mis-

classification. It is approximated by a cost function

calculated on the training examples.) is eliminated;

the process is iterated with learning of a new classifier

at each step.

Penalized methods form another family of

embedded methods where attribute selection is inte-

grated in the process of classifier construction by

adding to the objective function of the classifier

a penalty function that takes into account the

number of attributes (complexity of the model).

Ma and Huang [13] give a review of penalized meth-

ods recently proposed in bioinformatics.

In this article, we explain how metaheuristic

methods like local search, genetic and memetic algo-

rithms (MAs) can be designed to deal with gene

selection and classification of microarray data.

According to the typology of attribute selection

methods, the methods presented in this article are

clearly embedded ones since they realize a tight

interaction between the process of selection and

the classification model. Moreover, they belong

128 Duval and Hao
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

to the first kind of embedded methods since the

exploration of candidate subsets is guided by infor-

mation provided by the classifier.

CLASSIFICATION ELEMENTS FOR
EMBEDDEDMETHODS
Before presenting the general framework of meta-

heuristic search methods for gene selection and clas-

sification of microarray data, this section recalls

some fundamental elements of supervised classifica-

tion that are key points in embedded methods. We

deal with the important question of performance

evaluation of selection methods, which must be

treated with care owing to the data dimensionality.

We also provide a brief presentation of linear

SVM, which is necessary to illustrate how informa-

tion provided by a classifier can interact with a

metaheuristic-based selection process.

Validation protocol for gene selection
The importance of a rigorous estimation of the pre-

dictive accuracy of a classification model is a well-

known problem in machine learning. When the

labeled samples are scarce, which is the case for

microarray data, the estimation of prediction accu-

racy can be realized via cross-validation. In the k-fold

cross-validation protocol, the initial dataset D is split

into k subsets of approximately the same size

D1, . . . ,Dk. The learning algorithm is applied k
times to build k classifiers: in step i, the data subset

Di is left out as a test set, the classifier is induced from

the training dataset D�Di and its accuracy Acci is

estimated on Di. The accuracy estimate computed

by k-fold cross-validation is then the mean of

the Acci, for 1 � i � k. When the number of folds

(iterations) is equal to the number of initial samples,

the so-called leave-one-out cross-validation

(LOCCV) protocol provides an unbiased estimate of

the generalization accuracy. Empirical studies [14, 15]

have shown that 10-fold cross-validation is a good

choice to obtain an almost unbiased estimate, with

small variance and reasonable computational time.

When dealing with gene selection, the quality of

a selected gene subset is assessed by its capability to

lead to an efficient classifier. Therefore, to validate

the results of a selection method, we have to use

a schema that evaluates both the selection process

and the classification model.

In order to avoid the selection bias that overesti-

mates predictive accuracy, [16–19] have pointed

out that it is important to include gene selection

into the cross-validation schema. Selection bias

occurs when the accuracy of a model is assessed on

samples that play a role in the construction of the

model. Therefore, selecting a subset of genes on the

entire dataset and then performing cross-validation

to estimate a classifier model is a biased protocol.

In a correct experiment design, the dataset must be

split before gene selection is achieved: each step of

cross-validation performs gene selection and classifi-

cation, as described in figure 1. Let us notice that

when model learning also includes data preproces-

sing and preselection, these steps must also be

included into the cross-validation loop.

Ranking coefficients from linear
classifiers
Binary classification can be viewed as the task of

separating classes in the attribute space and different

types of decision boundaries can be explored. For a

linear classifier, the decision boundary is an hyper-

plane determined by a linear combination of the

input attributes.

Formally, we consider a training set of n samples

belonging to two classes; each sample is noted

Xi,Yif g where Xif g is the vector of dimension m of

attribute values describing the sample and Yi the class

label. The hyperplane is thus represented by a vector

w ¼ wið Þ and a constant b and the classification of a

sample X is decided according to the sign of the

function f ðXÞ ¼ w � X þ b. According to this equa-

tion, the inputs that are weighted by the largest

(positive or negative) values have a greater influence

on the decision. Consequently, the coefficients of

Figure 1: Cross-validation schema for gene selection
and classification.

Metaheuristics for gene selection 129
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

vector w are ranking coefficients about the relevance

of each attribute. Among the most famous linear

classifiers, we find the Fisher’s linear discriminant

analysis (LDA) and linear SVMs that we describe

now with more details.

Linear SVM
SVMs are powerful classification algorithms [20, 21].

In computational biology, they have been applied

with success to problems like protein remote homol-

ogy detection, functional classification of promoter

regions, prediction of protein–protein interactions,

etc., see [22] for a detailed review.

SVM rely on two key ideas. The first is that

SVM algorithms compute stable classifiers by search-

ing for a decision boundary that has the maximum

margin with the examples. The second is that com-

plex decision boundaries can be computed by using

linear machines in a high-dimensional feature

space, implicitly represented by a kernel function.

Our presentation will focus on linear SVMs because

they are known to be well suited to datasets of

high dimensionality [12, 23, 24] and they offer a

clear biological interpretation of the results.

For a given training set of labeled samples, a linear

SVM determines an optimal hyperplane that divides

the positively and negatively labeled samples with

the maximum margin of separation. A noteworthy

property of SVM is that the hyperplane depends

only on a small number of training examples called

the support vectors, they are the closest training

examples to the decision boundary and they deter-

mine the margin. When the samples cannot be

linearly separated, slack variables �i are added to

allow misclassification of difficult or noisy examples,

leading to a soft margin SVM.

A soft-margin linear SVM classifier aims at solving

the following optimization problem:

min
w,b,�i

1

2
wk k2þC

Xn
i¼1

�i ð1Þ

subject to Yi w � Xi þ bð Þ � 1� �i and �i � 0,

i ¼ 1, . . . , n.

In this formulation, w is the vector that deter-

mines the separating hyperplane; C is a given penalty

term that controls the cost of misclassification errors.

To solve this optimization problem, it is convenient

to consider the dual formulation [20]:

min
�i

1

2

Xn
i¼1

Xn
l¼1

�i�lYiYlXi � Xl �
Xn
i¼1

�i ð2Þ

subject to
Pn

i¼1 Yi�i ¼ 0 and 0 � �i � C.

The decision function of the linear SVM classifier

for an input vector X is given by f ðXÞ ¼ w � X þ b
with w ¼

Pn
i¼1 �iYiXi and b ¼ Yi � w � Xi. The

vector w is a linear combination of the training sam-

ples. Most coefficients �i are zero and the training

samples with nonzero coefficients are the support

vectors. Moreover, the maximum margin M is

given by

M ¼
2

wk k
ð3Þ

As stated before, the vector w, and consequently

the orientation of the hyperplane, gives information

about the relevance of each attribute. If the plane

is orthogonal to a particular dimension, then that

attribute is informative, and vice versa. Therefore,

given the vector w of a linear SVM, we define a

ranking coefficient vector c by:

cj ¼ wj
� �2

j ¼ 1, . . . ,m ð4Þ

For each of the m attributes, cj measures the rele-

vance of this attribute for the classification problem,

with the smallest values for the least relevant ones.

GENE SELECTIONAND
METAHEURISTICS
In this section, we show that gene selection can be

casted as a combinatorial search problem, and con-

sequently be handled by a class of modern optimiza-

tion methods called metaheuristics.

Gene selection and combinatorial search
A combinatorial search problem (more precisely,

a problem instance) is typically characterized by a

pair (S, f), where S is the search space composed

of the candidate solutions (or configurations) and f
a cost (or objective) function to be maximized (or

minimized). The problem is then to find a best solu-

tion I� 2 S such that f ðI�Þ � f ðIÞ for any element

I 2 S [f ðI�Þ � f ðIÞ for a minimization problem].

Such a solution I� is called an optimal solution or a

global optimum.

Gene selection can be considered from such a

combinatorial search perspective. Indeed, given a

set Ge of k candidate genes, the primary goal is to

seek, among the possible subsets of Ge, a particular

(small) subset G� such that G� leads to the highest

prediction accuracy. One easily notes that the search

space is the set of all the possible subsets. Clearly,

130 Duval and Hao
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

this space is highly combinatorial since there are 2k

possible subsets. So it will be illusory to try to carry

out an exhaustive enumeration of all the possible

candidate solutions for any reasonable value of k,

say, >20. Consequently, instead of seeking the opti-

mal subset by going through the whole search space,

one can seek the best possible subset by exploring,

in a selective way, a limited number of good candi-

date subsets. To fulfill this task, metaheuristics consti-

tute a class of prominent methods [25], which offers

different strategies to explore a large combinatorial

search space.

Metaheuristics can be roughly classified into

two large categories: neighborhood-based local

search methods [26] and population-based evolu-

tionary algorithms [27]. Representative local search

methods include Simulated Annealing and Tabu

Search (TS), while Genetic Algorithms are a well-

known example of evolutionary methods.

Common characteristics of
metaheuristics
Despite the apparent differences among different

metaheuristics, they share a number of common

characteristics concerning in particular the following

two elements:

� Encoding: the way of representing the candidate

solutions of the search space.

� Fitness evaluation: the way of measuring the quality

of the candidate solutions.

We discuss here these issues in the context of

gene selection. In later sections, we show how

they are integrated in different metaheuristic-based

algorithms for gene selection and classification.

Gene subset representationçencoding
To apply a metaheuristic search algorithm, one needs

first to find out a way to represent or encode the

candidate solutions of the search space. For gene

selection, each gene can be represented by a binary

variable such that the variable takes value 1 or 0

according to whether the gene is selected or not.

Using this simple encoding, any candidate gene

subset can be conveniently represented by a binary

vector.

More precisely, given an initial set of k genes

Ge ¼ fg1, . . . , gkg, a subset G � Ge can be identified

by the binary k-vector IG ¼ ½IG1 , . . . , IGk 	 such that

IGi ¼ 1 (i¼ 1, . . . , k), if gene gi 2 G (gi is selected),

IGi ¼ 0 otherwise. For instance, IG ¼ ½1,0,0,1	 desig-

nates a subset of two genes among a set of four genes:

the first and last genes are selected while the second

and third ones are not selected. This representation

of gene subset is widely employed in the literature in

many search algorithms, in particular in genetic algo-

rithms (see Section 7).

This basic encoding can be extended by

including additional and problem-specific informa-

tion. One possibility concerns gene ranking informa-

tion when a linear classifier is used for

prediction estimation. Such an augmented subset

representation has the advantage of enabling the

design of specialized and effective search operators

and algorithms.

In Section 2.2, we have explained that a linear

SVM provides, for each gene, a positive coefficient

that evaluates the importance of this gene in the

decision function. This ranking information can be

used to complement the binary k-vector.

Formally, given IG a binary vector representing

a candidate gene subset G (call it gene subset vector)
and IC a real-valued vector representing the gene

ranking coefficients defined by Equation (4) (call

it ranking coefficient vector), we define I¼< IG,IC >
to be our augmented representation of gene subset

G. Let us notice that for each nonselected gene

(IGi ¼ 0) the corresponding coefficient in IC is null

(ICi ¼ 0). Throughout this article, we will employ

this augmented representation.

Gene subset evaluationçfitness function
To explore the given search space, a metaheuristic

search algorithm needs a fitness function to evaluate

the quality of each candidate solution. This evalua-

tion function introduces an order among the solu-

tions of the search space, allowing thus the

comparison of a pair of solutions. For many cases,

the fitness function takes simply the form of the

initial objective function.

For gene selection, the primary goal is to select

a relevant gene subset leading to a high classification

accuracy. Consequently, a first fitness function for

a candidate subset can be defined by the prediction

accuracy achieved by a given classifier built on

this subset representation. Gene selection also

aims to select small gene subsets. The previous

fitness function can then be reinforced by a second

objective minimizing the number of selected genes.

The following fitness function f1 takes into account

Metaheuristics for gene selection 131
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

these objectives and combines them into a unique

value

f1 Ið Þ ¼
AccðIGÞ þ 1�

IGj j
k

� �
2

ð5Þ

In this formula, AccðIGÞ (0 � AccðIGÞ � 1) is the

prediction accuracy of the classifier (see Section 2.1).

Let us recall that k is the initial number of genes

in the method. Consequently, k is the size of the

encoding of an individual I whereas IG
�� �� is the

number of selected genes (the number of 1 in IG).

We can consider other fitness functions according

to the available information characterizing the qual-

ity of a gene subset. We have seen in Section 2.2 that

a SVM computes a decision function with the great-

est separation between the classes. This separation is

measured by the margin MSVM defined in Equation

(3). A greater margin means a better separation

between the classes and this element can be used

to compare different selected subsets. More precisely,

if two gene subsets enable class discrimination with

the same accuracy, we consider the margin of each

classifier to break this tie. This idea leads to the fol-

lowing fitness function f2:

f2ðIÞ ¼< AccðIGÞ,MSVMðI
GÞ > ð6Þ

Given two candidate solutions I and J, it is

possible to compare them: f2ðIÞ is better than

f2ð JÞ if the following condition is satisfied:

(AccðIGÞ > Accð JGÞ) or (AccðIGÞ ¼ Accð JGÞ and

MSVMðIGÞ >MSVMð JGÞÞ.
This fitness function is particularly useful when

a space of candidates with the same number of

genes should be explored. In this case, the number

of genes to be selected is given to the algorithm

as a parameter, the goal of the search algorithm is

then to identify the most pertinent gene subset of

the desired size for classification.

Finally, since gene selection has two different

objectives, methods such as evolutionary multiobjec-

tive optimization (EMO) algorithms constitute a

natural and interesting solution approach [28], even

if it is not exposed in this article.

Knowledge-based search operators
From a fundamental point of view, metaheuristics

offer strategies and mechanisms for exploiting and

exploring the given search space. The dual concept

of ‘exploitation and exploration’ (also known under

the term ‘intensification and diversification’) covers

two fundamental and complementary aspects of any

effective search. Exploitation emphasizes the ability

of a method to examine in depth specific search

areas, while exploration is the ability of a method

to find promising search areas. A search method

based solely on exploitation will confine the search

in a limited area and fail to visit other areas. Similarly,

a method relying heavily on exploration will lack

capacity to examine in depth a given area and miss

out the solutions of good quality. To be effective,

a search method needs to conciliate exploitation

and exploration. Different metaheuristics offer a vari-

ety of strategies and mechanisms to achieve this

objective.

From a practical perspective, metaheuristics pro-

vide just a general optimization framework that

can potentially be applied to various search

problems. However, it should also be clear that a

blind application of metaheuristics to a problem

will not be able to lead to satisfactory solutions.

To be effective, a metaheuristic must be carefully

adapted to the given problem and integrate pro-

blem-specific knowledge within its search operators

and strategies to ensure a good balance between

exploration and exploitation. In what follows, we

show how such an adaptation can be realized

within TS and Evolutionary algorithms.

TS FORGENE SELECTION
To illustrate how local search metaheuristics can be

applied to the gene selection problem, we take the

example of TS [29]. The described TS algorithm uses

the solution encoding and a fitness evaluation func-

tion defined in Section 3.2. We explain below the

general TS procedure as well as some other key

components.

Abrief review of TS
TS is an advanced metaheuristic designed for tackling

hard combinatorial optimization problems. TS relies

on a neighborhood relation as well as some forms

of memory and learning strategy to explore effec-

tively a search space.

Let (S, f) be our search problem where S and f
are, the search space and optimization objective,

respectively. A neighborhood N over S is any func-

tion that associates to each individual I 2 S some

solutions NðIÞ � S. Any solution I 0 2 NðIÞ is

called a neighboring solution or simply a neighbor

of I. For a given neighborhood N, a solution I is

132 Duval and Hao
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

a local optimum with respect to N if I is the best

among the solutions in NðIÞ.
The notion of neighborhood can be explained

in terms of move operator. Typically, applying a

move mv to a solution I changes slightly I and

leads to a neighboring solution I 0. This transition

from a solution to a neighbor is denoted by

I 0 ¼ I
 mv. Let �ðIÞ be the set of all possible

moves which can be applied to I, then the neigh-

borhood NðIÞ of I can be defined by:

NðIÞ ¼ fI
 mvjmv 2 �ðIÞg.
A typical TS algorithm begins with an initial con-

figuration I in S and proceeds iteratively to visit

a series of locally best configurations following

the neighborhood. At each iteration, a best neighbor

I 0 2 NðIÞ is sought to replace the current configura-

tion even if I 0 does not improve the current config-

uration in terms of the cost function. To avoid

the problem of possible cycling and to allow the

search to go beyond local optima, TS introduces

the notion of Tabu list, one of the most important

components of the method.

A tabu list is a special short-term memory that

maintains a selective history H, composed of pre-

viously encountered solutions or more generally per-

tinent attributes (or moves) of such solutions. A

simple TS strategy based on this short-term

memory H consists in preventing solutions of

H from being reconsidered for next tt iterations

(tt, called tabu tenure, is problem dependent).

Now, at each iteration, TS searches for a best neigh-

bor from this dynamically modified neighborhood

N(H,s), instead of N(s) itself. Such a strategy prevents

Tabu from being trapped in short-term cycling and

allows the search process to go beyond local optima.

When moves instead of solutions are recorded

in tabu list, some nonvisited, yet interesting solutions

may be prevented from being considered. Aspiration
criteria may be used to overcome this problem. One

widely used aspiration criterion consists of removing

a tabu classification from a move when the move

leads to a solution better than the best obtained so

far. In Section 4.3, an example is provided.

In what follows, we show a TS algorithm adapted

to the gene selection problem [30]. The TS algo-

rithm uses the solution encoding and fitness evalua-

tion function described in Section 3.2.

Move and neighborhood
Gene selection is a binary problem since each gene

is represented by a binary variable to indicate

whether it is selected or not. For such a problem,

there are three commonly used move operators.

� drop: change the value of a single variable from 1

to 0,

� add: change the value of a single variable from 0

to 1,

� swap: swap the values of two variables that have

different values.

For gene selection, we adopt the ‘swap’ operator

and reinforce it with additional ranking information.

The basic idea of this operator is to drop a mediocre

gene gi from a candidate solution and add

another gene gj. More precisely, let I ¼< IG,IC >
be a solution with IG ¼ ½IG1 ,I

G
2 , . . . , IGk 	 and

IC ¼ ½IC1 ,I
C
2 , . . . , ICk 	, define:

� i ¼ ArgMinjfI
C
j jI

G
j ¼ 1g, i.e. i identifies the gene

gi as the least relevant gene among the current

selected genes.

� O ¼ f jjIGj ¼ 0g, i.e. O is the set of nonselected

genes in the current solution I.

Then our move operator exchanges the gene gi
and any gene gj; j 2 O. In other words, one drops,

from the current solution I, the least informative

gene gi (identified by the above index i) and adds

a nonselected gene gj (j 2 O). This can be formally

written as: mvði, jÞ ¼ ðgi : 1! 0; gj : 0! 1Þ.

This neighborhood is very useful for exploring

gene combinations of fixed size. In order to explore

gene groups of variable sizes, one can simply change

the number of fixed genes by adding or removing

one or more genes in the group of selected genes.

Once again, the decision on the gene(s) to be added

or removed can be influenced by the ranking

information.

Tabu list management
One critical issue of TS is the tabu list management:

what to store in the tabu list T and how to define the

tabu tenure tt. For the above ‘swap’ move operator

that drops a gene gi and adds a gene gj, there are

several ways to define the tabu list. First, each time

a move mvði, jÞ is carried out, one forbids the strict

reverse move, i.e. adding gi and dropping gj. In this

case, the pair of indexes (i, j) is stored in the tabu list

for the period of the tabu tenure. Second, one can

record only the dropped gene gi in T and forbid thus

the reselection of gi for the next tt iterations. Notice

Metaheuristics for gene selection 133
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

that such a tabu list does not forbid the removal of

the newly selected gene gj during the same period.

Third, it is also possible to store only the newly

selected gene gj, making it impossible to remove

this gene for the next tt iterations.

The tabu tenure tt is a problem-dependent

parameter. Two main techniques are used in prac-

tice. The tabu tenure can be static or dynamic. Once

fixed, a static tabu tenure remains unchanged during

the search. Typically, such a tabu tenure

is determined using some preliminary experiments

or defined as a function of problem-related informa-

tion (e.g. the size of the considered problem

instance). A dynamic tabu tenure is defined as a

function of some changing information that can

be collected during the search (e.g. the objective

value, frequency of moves, etc.).

One notices that recording moves, instead of

solutions (i.e. selected gene subsets), in the tabu list

may occasionally prevent the search from reaching

a good solution. Take the swap move as an example.

Suppose one makes a move mvði,jÞ (i.e. dropping gi
and adding gj) at iteration K and stores (i, j) in the

tabu list for the next tt¼ 10 iterations. Consequently,

the reverse move mvð j, iÞ (i.e. reinserting gi and

dropping gj) is not possible until iteration K þ 10

due to its tabu status. However, a favorable situation

may appear during this period after, say, five itera-

tions such that making this move mvð j, iÞ leads to

the best gene subset even found. In this case, this

move should be accepted to obtain the best solution,

even if the move is classified as tabu. This is an

application of the so-called aspiration criterion; the

tabu status of a move is aspired or revoked.

Diversification
To be effective, TS needs specific strategies to diver-

sify the search and avoid being trapped in local

optima. We describe here a simple diversification

technique based on the perturbation of a best

solution.

More specifically, let I� be the best local optimum

recorded when TS begins to stagnate. The perturba-

tion procedure takes I� as its input and modifies I� in

some way to generate a new solution [31]. There

are several possibilities to perturb a solution. The

simplest one applies several times a move operator

to the local optimum, leading to a randomly diver-

sified new solution. For instance, one can simply

remove x (x being a small integer) genes chosen

randomly and add y other genes. A more effective

strategy would use problem-specific knowledge to

do controlled perturbations [32]. For instance, the

removal and addition of genes can be conditioned

with a probability proportional to the ranking coef-

ficient of each gene.

Whatever the perturbation is applied, we obtain

a new (diversified) solution, whereupon a new

round of TS search procedure can be launched.

Notice that the perturbation strength should be

carefully controlled. If the perturbation is too

strong, the search would resemble to a random

restart. If the perturbation is too weak, the

search would go easily back to the staring local

optimum.

GeneralTS procedure for gene selection
Algorithm 4.5 shows the general TS procedure for

gene selection. It starts with an initial gene subset I0
that can be generated randomly or provided by any

other method. It then alternates an exploitation

(intensification) phase (inner ‘while’ loop) and an

exploration (diversification) phase (outer ‘while’

loop). The outer ‘while’ loop condition fixes the

number of diversification phases wanted, while the

inner ‘while’ loop condition indicates when the TS

phase should be stopped to launch a diversification.

Each time a new solution IG (gene subset) is gener-

ated, the learning SVM model is called to assess the

predictive accuracy of the gene subset and to obtain

the ranking coefficient vector IC. This vector is

used by the move operator to favor the removal of

the least informative gene.

Algorithm1:TS for Gene Selection

1: Input: N and f - neighborhood and fitness
2:Output: I* - the best gene subset found
3: I0¼ InitGenerate() (generate an initial solution - gene subset G)
4: I¼ I0 (I is the current solution)
5: Set tabu list to empty;
6: f(I)¼ fitnessEval(I);
7: I*¼ I (I* records the best gene subset found)
8: f *¼ f(I)
9: while Not Stop-Condition-1do
10: while Not Stop-Condition-2 do
11: Choose a move mv(i, j) not forbidden by the tabu list;
12: I¼ I
mv(i, j);
13: Update tabu list;
14: f(I)¼ fitnessEval(I);
15: if f(I) is better than f* then
16: I*¼ I (update the best solution ever found); f*¼ f(I);
17: end if
18: end while
19: I¼Perturbation(I*);
20: Empty tabu list;
21: end while

134 Duval and Hao
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

GENETICALGORITHM FORGENE
SELECTION
In this section, we present a dedicated Genetic

Algorithm for gene selection and classification as an

example of evolutionary metaheuristics. Apart from

the encoding and fitness functions already defined,

we focus on two other key components: specialized

crossover and mutation operators.

Abrief review of genetic algorithm
Genetic algorithms mimic, in a very rudimentary

way, some principles of Darwin’s theory of evolution

[33–35]. For instance, by sexual reproduction, a

child inherits the genes from the parents (crossover).

A child may have genes different from those of his

parents because of alterations in genes (mutations).

Many descendants can be produced, but only those

individuals that are best adapted to the environment

survive and transmit their genes to their offspring

(natural selection). Chance plays a leading role

to produce new individuals different from their

parents.

As initially introduced by Holland [33], GAs

code the solution space using a unique encoding in

the form of binary string. Based on this universal

encoding, a set of standard genetic operators are

defined, including particularly crossover and muta-

tion. For instance, one-point crossover takes as its

input two existing solutions A and B (parents), cut

A and B at a position j chosen randomly and

exchanges the corresponding segments of A and B
after position j. This leads naturally to two new solu-

tions (offspring). Two-point and uniform crossovers

are two other examples. Similarly, mutation operates

on a given solution and changes probabilistically

some values of the given solution.

In addition to crossover and mutation, selection

decides which solutions will survive through genera-

tions. Typically, selection is stochastic and designed

such that good solutions (as measured by a fitness

function) have more chance to be conserved

than bad solutions. Well-known selection methods

include roulette wheel selection and tournament

selection. Selection is also useful to determine par-

ents for reproduction.

Despite the name, GAs are in fact more a general

computational framework than a particular algo-

rithm. Consequently, GAs should be carefully

adapted to the given problem at hand. Even if

some components of GAs such as selection and

population management are problem-independent,

most of other elements are to be tailored with

problem-specific knowledge.

In what follows, we show how the GA can

be adapted to the gene selection problem [36, 37].

The resulting GA algorithm uses the solution encod-

ing and fitness evaluation function described in

Section 3.2.

Dedicated crossover operator
Crossover is one of the key evolution operators for

a GA and constitutes one leading force for exploring

the search space. The basic idea of crossover is very

appealing since this gives a way of generating new

solutions from existing ones. In practice, instead of

applying blind crossover, it is preferable to consider

dedicated crossover operators such that they are

able to ensure the heritage of good properties

from parents to offspring. To illustrate the point,

we describe here such a specialized crossover for

gene selection.

Given the goal of selecting small subsets of pre-

dictive genes, the dedicated crossover operator will

follow two fundamental principles: (i) to conserve

the genes shared by the parents and (ii) to preserve

‘high quality’ genes from each parent even if they are

not shared by both parents.

The notion of ‘quality’ of a gene here is defined

by the corresponding ranking coefficient given by

a linear classifier (e.g. SVM). Notice that applying

the first principle will have as main effect of getting

smaller and smaller gene subsets, while applying the

second principle allows us to keep up good genes

along the search process.

More formally, let I ¼< IG, IC > and

J ¼< JG, JC > be two selected parents. The cross-

over operator combines I and J to obtain a

single child K ¼< KG,KC > by the following

steps [36]:

(1) Extract the subset of genes shared by both par-

ents by Boolean logic AND operator (�) and

arrange them in an intermediary gene subset

vector F.

F ¼ IG � JG

(2) For the subset of genes obtained from the first

step, extract the maximum coefficients maxI and

maxJ accordingly from their original ranking

vectors IC and JC .

maxI ¼ max ICi ji such that Fi ¼ 1
� �

Metaheuristics for gene selection 135
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

and

maxJ ¼ max JCi ji such that Fi ¼ 1
� �

(3) This step aims to transmit high-quality genes

from each parents I and J which are not retained

by the logic AND operator in the first step.

These are genes with a ranking coefficient

greater than maxI and maxJ . The genes selected

from I and J are stored in two intermediary vec-

tors AI and AJ

AIi ¼
1 if IGi ¼ 1 and Fi ¼ 0 and ICi > maxI
0 otherwise

	

and

AJi ¼
1 if JGi ¼ 1 and Fi ¼ 0 and JCi > maxJ
0 otherwise

	

(4) The gene subset vector KG of the offspring K
is then obtained by grouping all the genes

of F, AI and AJ using the logical ‘OR’

operator (
).

KG ¼ F
 AI
 AJ

The ranking coefficient vector KC will be filled

up when the individual K is evaluated by the SVM-

based fitness function.

Note that another dedicated crossover operator

for gene selection was presented in [37]. In this

case, ranking information from Fisher’s LDA is

favorably used during the crossover operation to

generate new solutions. The influence of these

informed crossover operators is studied in [38] in

comparison with random crossovers (one-point, uni-

form), showing a clear performance gain.

Dedicated mutation operator
Traditionally, mutation plays a role of diversification

in the search. Conventional mutation flips randomly

some variables. In the context of gene selection,

a simple mutation operator will randomly add or

drop some genes. An alternative mutation operator

can be designed such that it eliminates some ‘medi-

ocre’ genes and at the same time randomly adds

other genes to keep some degree of diversity in the

GA population.

To illustrate this point, we propose the following

operator. Given an individual I¼< IG, IC>,

applying the mutation operator to I consists in carry-

ing out the following steps.

(1) The first step calculates the average ranking

coefficient of a selected gene in the individual I.

�c ¼

Pk
i¼1

ICi

jIGj

(2) The second step eliminates (with a probability)

‘mediocre’ genes (i.e. those whith a ranking

coefficient inferior to the average) and for

each deleted gene randomly introduces a new

gene. 8IGi ¼ 1 and ICi < �c (i¼ 1, . . . , k),
mutate IGi with probability pm. If a mutation

does occur, take randomly a IGj such that

IGj ¼ 0 and set IGj to 1.

One notices that this mutation operator shares

similarities with the ‘swap’ move operator used

by the TS algorithm. Other dedicated mutation

operators may be possible. For instance, one can

design a mutation operator which removes ‘medi-

ocre’ genes, but add no additional genes. Such

a mutation, thus, plays the role of reducing the

number of selected genes.

General GA procedure
The general GA procedure for gene selection is

given in Algorithm 2. Let us recall that the initial

set of genes Ge contains k genes. An initial popula-

tion P is randomly generated such that the number

of genes in each individual varies between k and

k/2 genes. From this population, the fitness of each

individual I is evaluated using the function defined

in ‘Common characteristics of metaheunistics’

section.

To obtain a new population, a temporary popu-

lation P0 is used. To fill up P0, the top NbElit indi-

viduals of P are first copied to P0. This process named

elitism aims to keep the best individuals from one

generation to another. The rest of P0 is completed

with solutions created by applying the dedicated

crossover and mutation operators presented above.

A selection method is applied to P to generate a

pool of candidate solutions. From this pool, single

or pairs of solutions are randomly chosen for muta-

tion or crossover applications, new resulting solu-

tions being inserted in P0. Once P0 is filled up,

136 Duval and Hao
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

it replaces P to become the current population. The

GA stops when a fixed number of generations is

reached.

Algorithm 2: Genetic Algorithm for gene selection

1: Input: jPj - size of population
2: NbElit - number of elite solutions to conserve
3: maxGen - number of authorized generations
4:Output: G� - the best gene subset found
5: P¼PopGenerate(jPj)
6: for each I 2 P do f ðIÞ ¼ fitnessEvalðPÞ
7: I� ¼ bestðPÞ (I� records the best gene subset found)
8: f � ¼ f ðI�Þ
9: Iter ¼ 0

10: while Iter <maxGen do
11: Generate the temporary population P

0

12: Copy the NbElit best individuals of P into P0

13: Produce jPj � NbElit offspring by crossover and mutation
14: Add the offspring to P0

15: P¼P0

16: Iter ¼ Iterþ 1
17: end while

Additional comments: MA
From the above Genetic Algorithm and TS algo-

rithm of ‘TS for gene selection’ section, it is possible

to create a combined method by integrating the TS

procedure algorithm within the GA, leading to a so-

called MA [39]. From a general perspective, MA

combines the genetic framework and local search

framework [40]. MA proves to be quite successful

in solving many hard combinatorial search problems.

The purpose of a MA is to take advantage of

the complementary nature of the GA and TS

search methods. Indeed, it is generally believed that

the GA framework offers more facilities for explora-

tion, while neighborhood search has more capability

for exploitation. Combining them may offer a better

balance between exploitation and exploration which

is highly desirable for an effective search.

More precisely, our MA is obtained by rewriting

line 13 of Algorithm 2 such that each new solution I
created by crossover is immediately improved by the

TS procedure. In some sense, mutation is generally

replaced by the TS procedure.

PERFORMANCEOF
METAHEURISTICS FORGENE
SELECTION
As the main purpose of this article is to give a review

of metaheuristic methods for gene selection, we do

not present detailed computational results.

Nevertheless, it is useful to give some indications

about the performance of these approaches. For

this purpose, we provide a summary of a set of pub-

licly available datasets that have been the object of

many studies. We then illustrate the range of com-

putational performance that can be achieved with

the metaheuristics on these datasets.

Datasets and computational
performance of metaheuristic
algorithms
Since the first publications about molecular classifica-

tion of cancer [41, 42], several datasets have been

studied and are publicly available, for example, on

the Kent Ridge Biomedical repository (http://datam

.i2r.a-star.edu.sg/datasets/krbd/). Table 1 gives a

brief description of the datasets used in our experi-

ments. For each dataset, we recall the number of

genes and the number of samples, to illustrate the

great challenge of such dimensionality. We also indi-

cate the first paper that has proposed a detailed pre-

sentation and an analysis of this dataset. With the

constant development of microarray technology,

more datasets are now available and they provide

some kind of benchmarks for the numerous methods

of analysis that are proposed in the bioinformatics

community. It is important to test a method on sev-

eral datasets because special characteristics can be

observed in some of them and class discrimination

may be of different difficulty. For example, it is now

well recognized that the two kinds of Leukemia stu-

died in [41] can be easily discriminated even with

a very small number of genes, while the Colon

cancer dataset is more difficult, perhaps because it

contains some mis-classified samples [43].

The computational performance of a metaheuris-

tic algorithm depends first on the adaptation of

the chosen metaheuristic to the target problem. As

exposed in the previous sections, the adaptation con-

cerns a careful design of the encoding, the fitness

function, the neighborhood relations, the search

operators like crossover and mutation. The different

metaheuristic algorithms presented in this article

have been assessed through extensive experiments

on the above datasets [30, 36, 37, 39].

In these experiments, the 10-fold cross-validation

protocol exposed in ‘Classification elements for

embedded methods’ section is rigorously followed

Metaheuristics for gene selection 137
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

http://datam

for the estimation of prediction accuracy of a meta-

heuristic algorithm. Computational results obtained

from these experiments (with linear SVM and LDA

classifiers) have been compared with those from

some 14 most recent gene selection methods. The

reference methods include, for example, ensemble

machine learning methods (bootstrap, bagging) com-

bined with neural networks, neuro-fuzzy methods,

genetic algorithms, generalized discriminant analysis.

These comparisons have shown that the meta-

heuristic approach performs very well and competes

quite favorably with the reference algorithms.

Indeed, for all the nine datasets, the metaheuristic

algorithms are able to reach the same or a better

prediction accuracy (between 96% and 100%) with

a small number of selected genes (often less than 20).

For instance, one remarkable result from the meta-

heuristic approach concerns the Lymphoma47 data-

set. With the MA and the SVM classifier, the 10-fold

cross-validation accuracy is 100% for an average

number of genes of 5.7 with a SD of 2.16 (the aver-

age accuracy is 100% because each fold of cross-vali-

dation achieves this rate) [39]. Previously reported

results are <98% with at least 20 genes [50, 51].

Exploration of gene combinations
Filter methods and greedy methods like RFE use a

deterministic criterion to select genes without con-

sidering the relations among them. Consequently, if

a gene is wrongly discarded, it can never be recov-

ered to become a member of a relevant gene group.

Contrary to these methods, the metaheuristic

approach naturally explores a large number of gene

combinations, increasing considerably the possibility

of discovering interesting multiple gene groups.

From a practical point of view, multiple solutions

may constitute valuable candidates for further

biological investigations. In fact, it is well known

that there may exist several or many relevant subsets

that can lead to accurate classification of a microarray

dataset [52]. Along the exploration by a heuristic

search, one can obtain an archive of gene groups

of good quality. Information contained in these solu-

tions can be cross-validated with biological knowl-

edge and profitably explored by the biologist.

Moreover, multiple gene subsets provided by the

metaheuristic approach can be contrasted and com-

bined with gene groups provided by other indepen-

dent methods. This permits to identify frequently

selected genes that would be good candidates for

focused biological studies. At the same time, such

an archive also enables the identification of the

least frequently selected genes to understand their

contribution to the class discrimination.

Instead of this postinterpretation of list of selected

genes, it would be possible and interesting to inte-

grate a priori knowledge of gene networks into a

selection and classification method. For instance,

the authors of [53] project the expression profiles

onto a graph representing biological information

between genes (for example, a metabolic gene net-

work). The distance between expression profiles is

modified according to the proximity of nodes in the

graph. Unsupervised and supervised classification are

then applied to these transformed data and the

obtained results can easily be interpreted in terms

of the network information.

Such an idea of using a priori biological knowl-

edge could be applied in gene selection and classifi-

cation algorithms based on metaheuristics. For

instance, information about interaction network

could be used to define specific rules to transform

the neighborhood relations used in this article. More

generally, such biological information could favor-

ably be explored to refine the search operators and

devise more focused strategies of the metaheuristic

algorithm. This would help to achieve better solu-

tions, which additionally could be more apt for bio-

logical interpretations.

RELATEDRESEARCH
Since the first public datasets have appeared, a lot of

publications have been devoted to the problem of

gene selection for classification of microarray data-

sets. A great variety of approaches are now available.

Even when considering only the metaheuristics, it is

difficult to give an exhaustive list. So the goal of this

Table 1: Summary of datasets used for
experimentation

Dataset #Genes #Samples References

Colon Cancer 2000 62 [42]
Leukemia 7129 72 [41]
Breast Cancer 24481 97 [43]
Lung Cancer 12533 181 [44]
Prostate Cancer 12600 109 [45]
Ovarian Cancer 15154 253 [46]
CNS Cancer 7129 60 [47]
Lymphoma47 4026 47 [48]
Lymphoma96 4026 96 [48]

138 Duval and Hao
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

section is limited to show common properties shared

by most heuristic methods.

Several studies have used genetic algorithms to

deal with gene selection (see for instance [54–56]).

All these methods share a set of common character-

istics: they represent the selected gene subsets by

a binary vector, employ standard (blind) crossover

and mutation operators to evolve a population

and use a specific classifier (kNN, SVM for fitness

evaluation). Consequently, most of these methods

belong to the wrapper family whereas the approach

presented in this article is an embedded method with

specific genetic operators.

Additionally, a great number of studies follow

the same strategy that can be summarized by the

following procedure:

(1) Preselect a reduced number of genes (this

number may vary from 100 to 1000)

(2) Apply an evolutionary algorithm to explore the

search space and record gene subsets of good

quality (that achieve a high classification rate)

(3) Compute the frequency of each gene appearing

in these gene subsets

(4) Pick up the most frequently chosen genes to

form the final gene subset

The work reported in [57] is an illustration of

such an approach where a SVM classifier and differ-

ent kernels are experimented in order to find the best

set of parameters for the three datasets considered.

A standard genetic algorithm, with random crossover

and mutation operators, is used to select different

gene subsets from different training sets. The same

ideas were used in [58] for a kNN classifier, with an

additional feature. At the fourth step of the above

procedure, a Z-score analysis of the most frequently

selected genes identifies the most interesting genes

for discrimination and helps to find the appropriate

number of genes to consider.

Besides this class of methods, we find several

works that try to incorporate knowledge in the

metaheuristic exploration. For instance, [59] presents

a MA where a genetic algorithm is hybridized with

local search. The GA is based on standard crossover

and mutation operators and an SVM classifier for the

fitness evaluation. At each generation, the elite indi-

vidual (the one with the best fitness value) undergoes

a local search improvement that relies on two binary

operators. The Add operator ranks the unselected

genes according to a correlation measure and adds

the most relevant one to the subset. The correlation

measure also identifies the most relevant gene already

selected in the elite individual and the Del operator

removes genes that are redundant with this top

ranked gene. Redundancy between genes is evalu-

ated by the notion of Markov blanket. Local search

is used, therefore, as a kind of filter and the GA as

a wrapper that calls the SVM as a black box.

CONCLUSION
Gene selection is basically a combinatorial search

problem within very high dimensions. From this

perspective, metaheuristic optimization methods

constitute an appropriate solution approach for this

difficult task. Three examples are provided showing

how to apply a neighborhood metaheuristic (TS) and

two evolutionary metaheuristics (Genetic Algorithm

and MA) to gene selection. Through these examples,

it is argued that metaheuristics should be carefully

adapted to the given problem by integrating pro-

blem-specific knowledge within their search compo-

nents such as move operator, fitness function,

crossover and mutation. Otherwise, the goal of find-

ing high-quality solutions in a high-dimension search

space will be compromised.

Computational assessments showed that the meta-

heuristic approach is effective to find predictive gene

groups of small sizes (often less than 20 genes).

Moreover, this approach naturally provides multiple

solutions that cannot be achieved by filter methods.

These groups of genes can be further analyzed by

a posteriori biological interpretation in terms of func-

tions and pathways. For this purpose, public tools

such as Gene Ontology, Biocarta, GenMAPP and

KEGG can be used to cross-validate the gene subsets

with respect to known biological functions and

genetic networks.

As shown in [53], it is a very promising idea

to integrate a priori gene network knowledge or

other relevant biological information (to be discov-

ered) into the analysis of gene expression data. Using

such information in a metaheuristic algorithm would

further improve the search performance and perhaps

more importantly would lead to solutions that could

be interpreted more easily from a biological

perspective.

After a few years that have produced an abundant

literature on the subject, Allison et al. [19] underlines

that some good principles are now recognized for the

analysis of microarray datasets, while some questions

Metaheuristics for gene selection 139
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

remain opened. We can hope that these questions

will be solved in the near future, so that microarray

analysis can provide reliable biomarkers and valuable

diagnostic tools. In this perspective, it is important

that the community be aware of all the effective

tools available for gene selection and analysis of

microarray.

Key Points

� Review of recent advances in metaheuristics-based search
methods applied to gene selection and classification of
microarray data.

� Emphasis on the pertinence of integrating problem-specific
knowledge within the search operators and strategies to
ensure the search efficiency.

� Recall some elements about performance of metaheuristics-
based search methods and discuss possibilities for further
extensions.

Acknowledgements
We are grateful to the two reviewers of the article for their

detailed and insightful comments which helped to improve the

presentation of the work.

FUNDING
French Biogenouest�; Bioinformatics Program of

the Region Pays de La Loire.

References
1. Stoughton RB. Applications of DNA microarrays in biol-

ogy. Ann Rev Biochem 2005;74:53–82.

2. Madeira SC, Oliveira AL. Biclustering algorithms for
biological data analysis: a survey. IEEE/ACM Trans.
Comput. Biol. Bioinform. 2004;1:24–45.

3. Dimaggio P, Mcallister S, Floudas C, et al. Biclustering
via optimal re-ordering of data matrices in systems biology:
rigorous methods and comparative studies. BMC
Bioinformatics 2008;9:458.

4. Mitchell T. Machine Learning. New York: McGraw-Hill,
1997.

5. Duda RO, Hart PE, Stork DG. PatternClassification, 2nd ed
John Wiley & Sons, New York, 2001.

6. Kohavi R, John GH. Wrappers for feature subset selection.
Artif Intell 1997;97:273–324.

7. Guyon I, Elisseeff A. An introduction to variable and feature
selection. JMach Learn Res 2003;3:1157–82.

8. Saeys Y, Inza I, Larraga P. A review of feature selection
techniques in bioinformatics. Bioinformatics 2007;23:
2507–17.

9. Dudoit S, Fridlyand J, Speed T. Comparison of discrimina-
tion methods for the classification of tumors using gene
expression data. JAm Stat Assoc 2002;97:77–87.

10. Su Y, Murali TM, Pavlovic V, et al. Rankgene: identifica-
tion of diagnostic genes based on expression data.
Bioinformatics 2003;19:1578–9.

11. Amaldi E, Kann V. On the approximability of minimizing
nonzero variables or unsatisfied relations in linear systems.
Theor. Comput. Sci. 1998;209:237–60.

12. Guyon I, Weston J, Barnhill S, et al. Gene selection for
cancer classification using support vector machines. Mach
Learn 2002;46:389–422.

13. Ma S, Huang J. Penalized feature selection and classification
in bioinformatics. Brief. Bioinform. 2008;9:392–403.

14. Kohavi R. A study of cross-validation and bootstrap for
accuracy estimation and model selection. In: Proceedings of
the Fourteenth International Joint Conference on Artificial
Intelligence. CA: Morgan Kaufmann San Mateo, 1995,
1137–43.

15. Braga-Neto U, Dougherty ER. Is cross-validation valid for
small-sample microarray classification? Bioinformatics 2004;
20:374–80.

16. Ambroise C, McLachlan G. Selection bias in gene extrac-
tion on the basis of microarray gene-expression data. Proc
Natl Acad Sci USA 2002;99:6562–6.

17. Simon R, Radmacher MD, Dobbin K, et al. Pitfalls in the
use of dna microarray data for diagnostic and prognostic
classification. J Natl Cancer Inst 2003;95:14–18.

18. Lee S. Mistakes in validating the accuracy of a prediction
classifier in high-dimensional but small-sample microarray
data. StatMethodsMed Res 2008;17:635–42.

19. Allison DB, Cui X, Page GP, et al. Microarray data analysis:
from disarray to consolidation and consensus. NatRevGenet
2006;7:55–65.

20. Boser BE, Guyon I, Vapnik V. A training algorithm
for optimal margin classifiers. In: Proceedings of the 5th
Annual ACM Workshop on Computational Learning Theory.
Pittsburgh, Pennsylvania, United States: ACM Press,
1992, 144-52.

21. Vapnik V. Statistical Learning Theory. New York: John
Wiley, 1998.

22. Noble WS. Support vector machine applications in compu-
tational biology. In: Schölkopf B, Tsuda K, Vert J-P, (eds).
Kernel Methods in Computational Biology. MIT Press, 2004,
71–92.

23. Rakotomamonjy A. Variable selection using SVM-based
criteria. Mach Learn Res 2003;3:1357–70.

24. Marchiori E, Sebag M. Bayesian learning with local support
vector machines for cancer classification with gene expres-
sion data. In: EvoWorkshops-05, Lausanne, Switzerland, Vol.
3449 of Lecture Notes in Computer Science. Berlin/Heidelberg:
Springer, 2005;74–83.

25. Glover F, Kochenberger G. Handbook of Metaheuristics
(International Series in Operations Research & Management
Science). Berlin/Heidelberg: Springer, 2003.

26. Hoos H, Stutzle T. Stochastic Local Search: Foundations and
Applications. San Francisco, CA: Morgan Kaufmann
Publishers Inc., 2004.

27. Bäck T, Fogel DB, Michalewicz Z (eds). Handbook of
EvolutionaryComputation. Berlin/Heidelberg: Springer, 1997.

28. Liu J, Iba H. Selecting informative genes using a multi-
objective evolutionary algorithm. Congress on Evolutionary
Computation, Hawaii, USA, vol. 1. IEEE Press, 2002,
297–302.

140 Duval and Hao
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

29. Glover F, Laguna M. Tabu Search. Boston: Kluwer
Academic Publishers, 1997.

30. Hernandez-Hernandez JC, Duval B, Hao J-K. SVM-based
local search for gene selection and classification of micro-
array data. In: Elloumi M, Küng J, Linial M, Murphy RF,
Schneider K, Toma C (eds.) BIRD-08-Communications
in Computer and Information Science, Vol. 13. Berlin/
Heidelberg: Springer, 2008, 499–508.

31. Lourenco HR, Martin O, Stützle T. Iterated local search.
In: Glover F, Kochenberger G (eds). Handbook of
Metaheuristics. Berlin/Heidelberg: Springer, 2003.

32. Lü Z, Hao J-K. A critical element-guided perturbation
strategy for iterated local search. In: Cotta C, Cowling P,
(eds). EvoCOP-09, Tu« bingen, Germany, Vol. 5482 of Lecture
Notes in Computer Science. Berlin/Heidelberg: Springer,
2009;1–12.

33. Holland JH. Adaptation in Natural and Artificial Systems:
An Introductory Analysis with Applications to Biology, Control,
and Artificial Intelligence. Ann Arbor, MI: University of
Michigan Press, 1975.

34. Goldberg DE. Genetic Algorithms in Search, Optimization, and
Machine Learning, Vol. 3. Reading, MA: Addison-Wesley,
1989.

35. Mitchell M. An Introduction toGenetic Algorithms. USA: MIT
press, 1998.

36. Hernandez Hernandez JC, Duval B, Hao J-K. A genetic
embedded approach for gene selection and classification of
microarray data. In: Marchiori E, Moore JH, Rajapakse JC,
(eds). EvoBIO-07,Vol.4447 of LectureNotes inComputer Science.
Berlin/Heidelberg: Springer, 2007, 90–101.

37. Bonilla Huerta E, Duval B, Hao J-K. Gene selection
for microarray data by a LDA-based genetic algorithm. In:
Chetty M, Ngom A, Ahmad S (eds). PRIB-08, Melbourne,
Australia, Vol. 5265 of Lecture Notes in Bioinformatics. Berlin/
Heidelberg: Springer, 2008, 250–61.

38. Hernandez Hernandez JC, Duval B, Hao J-K. A study of
crossover operators for gene selection of microarray data. In:
Monmarché N, Talbi E-G, Collet P, Schoenauer M,
Lutton E (eds). EA-07,Vol. 4926 of Lecture Notes in Computer
Science. Berlin/Heidelberg: Springer, 2007, 243–54.

39. Duval B, Hao J-K, Hernandez Hernandez JC. A memetic
algorithm for gene selection and molecular classification
of cancer. In: Proceedings of the GECCO-09, Montre¤ al,
Canada. New York: ACM Press, 2009.

40. Moscato P. Memetic algorithms: a short introduction,
Ch. 14. In: Corne D, Dorigo M, Glover F (eds). New
Ideas in Optimization.McGraw-Hill, 1999, 219–34.

41. Golub T, Slonim D, Tamayo P, et al. Molecular classifica-
tion of cancer: class discovery and class prediction by gene
expression monitoring. Science 1999;286:531–7.

42. Alon U, Barkai N, Notterman D, et al. Broad patterns
of gene expression revealed by clustering analysis of tumor
and normal colon tissues probed by oligonucleotide arrays.
Proc Natl Acad Sci USA 1999;96:6745–50.

43. Van’t Veer LJ, Dai H, Van de Vijver MJ, et al. Gene expres-
sion profiling predicts clinical outcome of breast cancer.
Nature 2002;415:530–6.

44. Gordon GJ, Jensen RV, Hsiao LL, et al. Translation of
microarray data into clinically relevant cancer diagnostic
tests using gene expression ratios in lung cancer and
mesothelioma. Cancer Res 2002;17:4963–7.

45. Singh D, Febbo P, Ross K, et al. Gene expression correlates
of clinical prostate cancer behavior. Cancer Cell 2002;1:
203–9.

46. Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteo-
mic patterns in serum to identify ovarian cancer. Lancet
2002;359:572–7.

47. Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of
central nervous system embryonal tumour outcome based
on gene expression. Nature 2002;415:436–42.

48. Alizadeh A, Eisen MB, Davis RE, et al. Distinct types of
diffuse large (B)–cell lymphoma identified by gene expres-
sion profiling. Nature 2000;403:503–11.

49. Furey T, Cristianini N, Duffy N, et al. Support vector
machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics 2000;16:
906–14.

50. Liu B, Cui Q, Jiang T, Ma S. A combinational
feature selection and ensemble neural network method for
classification of gene expression data. BMC Bioinformatics
2004;5:1–12.

51. Cho S-B, Won H-H. Cancer classification using ensemble
of neural networks with multiple significant gene subsets.
Appl Intell 2007;26:243–50.

52. Ein-Dor L, Kela I, Getz G, et al. Outcome signature
genes in breast cancer: is there a unique set? Bioinformatics
2004;21:171–8.

53. Rapaport F, Zinovyev A, Dutreix M, et al. Classification of
microarray data using gene networks. BMC Bioinformatics
2007;8:35.

54. Li L, Weinberg C, Darden T, et al. Gene selection for
sample classification based on gene expression data: study
of sensitivity to choice of parameters of the GA/KNN
method. Bioinformatics 2001;17:1131–42.

55. Ooi CH, Tan P. Genetic algorithms applied to multi-class
prediction for the analysis of gene expression data.
Bioinformatics 2003;19:37–44.

56. Peng S, Xu Q, Ling XB, et al. Molecular classification of
cancer types from microarray data using the combination of
genetic algorithms and support vector machines. FEBSLett.
2003;555:358–62.

57. Li S, Wu X, Hu X. Gene selection using genetic
algorithm and support vectors machines. Soft Comput
2008;12:693–8.

58. Jirapech-Umpai T, Stuart Aitken J. Feature selection and
classification for microarray data analysis: evolutionary
methods for identifying predictive genes. BMC
Bioinformatics 2005;6:148.

59. Zhu Z, Ong YS, Dash M. Markov blanket-embedded
genetic algorithm for selection. Pattern Recognition 2007;40:
3236–48.

Metaheuristics for gene selection 141
D

ow
nloaded from

 https://academ
ic.oup.com

/bib/article/11/1/127/192884 by guest on 20 August 2022

