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Advances in mixed cell deconvolution enable
quantification of cell types in spatial transcriptomic
data
Patrick Danaher 1,2✉, Youngmi Kim1,2, Brenn Nelson1, Maddy Griswold1, Zhi Yang 1, Erin Piazza 1 &

Joseph M. Beechem1

Mapping cell types across a tissue is a central concern of spatial biology, but cell type

abundance is difficult to extract from spatial gene expression data. We introduce Spa-

tialDecon, an algorithm for quantifying cell populations defined by single cell sequencing

within the regions of spatial gene expression studies. SpatialDecon incorporates several

advancements in gene expression deconvolution. We propose an algorithm harnessing log-

normal regression and modelling background, outperforming classical least-squares methods.

We compile cell profile matrices for 75 tissue types. We identify genes whose minimal

expression by cancer cells makes them suitable for immune deconvolution in tumors. Using

lung tumors, we create a dataset for benchmarking deconvolution methods against marker

proteins. SpatialDecon is a simple and flexible tool for mapping cell types in spatial gene

expression studies. It obtains cell abundance estimates that are spatially resolved, granular,

and paired with highly multiplexed gene expression data.
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S ingle-cell RNA sequencing defines the cell populations
present within a tissue. But this catalog of cell types begs
a question that scRNA-seq cannot answer: how are

these cell types arranged within tissues? Spatial gene expression
technologies1,2 measure gene expression within minute regions of
a tissue, but do not report an abundance of cell types within these
regions, complicating interpretation.

A solution is offered by gene expression deconvolution, a class
of algorithms designed to quantify cell populations using gene
expression data (Fig. 1). Many algorithms address bulk expression
data3–7, but they are not optimized for the lower signal and
higher background of spatial gene expression data. Cell-type
quantification in spatial data was first performed using unsu-
pervised factor analysis8, but this approach eschews pre-specified
cell-type expression profiles and therefore loses discriminative
power. The first true deconvolution algorithm for spatial data9

requires scRNA-seq data from matching samples, limiting its use.
Here, we describe SpatialDecon, a toolkit incorporating algo-

rithmic advancements and data resources to make deconvolution
of spatial data more accurate and widely applicable. In a bench-
marking dataset, we demonstrate superior performance compared
to existing methods. In a non-small cell lung tumor, we
demonstrate the use of our method to map the cell-type com-
position and spatial organization of a tumor’s immune infiltrate.
These measurements reveal the spatial organization of cell types
defined by scRNA-seq. Furthermore, they give context to gene-
level results, resolving whether a gene’s expression pattern reflects
differential expression within a cell type or merely differences in
cell-type abundance.

Results
Log-normal regression improves deconvolution performance.
Gene expression data has extreme skewness and inconsistent
variance, but most existing deconvolution algorithms are based in
least-squares regression and implicitly assume unskewed data
with constant variance3–5. We propose to replace the least-
squares regression at the heart of classical deconvolution with
log-normal regression10. This approach retains the mean model
of least-squares regression while modeling variability on the log-
scale, which largely corrects the skewness and unequal variance of
gene expression data in both bulk and spatial experiments

(Supplementary Note and Supplementary Figs. 1 and 2). Spa-
tialDecon, the algorithm implementing this procedure, is descri-
bed in the Online Methods. Combining a linear-scale mean
model and log-scale variability was proposed before as part of the
dtangle algorithm6, which uses only cell-type-specific marker
genes. SpatialDecon assumes the same data generating model as
dtangle, but its regression framework harnesses all genes,
regardless of cell-type specificity.

To compare the performance of log-normal and least-squares
deconvolution, two cell lines, HEK293T and CCRF-CEM (Acepix
Biosciences, Inc.), were mixed in varying proportions, and
aliquoted into a FFPE cell pellet array. Expression of 1414 genes
in 700 µm diameter circular regions from the cell pellets were
measured with the GeoMx platform.

Four deconvolution methods were run: non-negative least
squares (NNLS) and v-support vector regression (v-SVR), which
both use a least-squares model; dampened weighted least squares7

(DWLS), designed for data with unequal variance; and con-
strained log-normal regression (the log-normal deconvolution
algorithm in Online Methods).

Deconvolution accuracy was evaluated by comparing the cell
lines’ estimated and true mixing proportions (Fig. 2a). The least-
squares-based methods NNLS and v-SVR were inaccurate, with
respective mean squared error (MSE) of 0.075 and 0.052, and
with estimated mixing proportions differing from the truth by
as much as 0.41 and 0.47. DWLS and log-normal regression
both performed well, with MSE’s of 0.038 and 0.009, and with
maximum errors of 0.16 and 0.12.

Least-squares deconvolution is statistically inefficient. To
investigate the poor performance of least-squares-based methods,
we measured the influence of each gene on deconvolution results
from a single region with an equal mix of HEK293T and CCRF-
CEM. Each gene’s influence was measured as the difference in
estimated HEK293T proportion using the complete gene set
compared to a leave-one-out set omitting the gene in question.

The least-squares methods NNLS and v-SVR both had genes
with high influence on deconvolution results, while DWLS and the
log-normal method were not subject to outsize influence from any
genes (Fig. 2b). For NNLS, a single high-expression gene changed
the model’s estimated mixing proportion from 66 to 22%, a
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Fig. 1 Overview of algorithm and advancements to the deconvolution field. The image summarizes the deconvolution workflow. Text boxes summarize
developments proposed in this manuscript. Source data are provided as a Source Data file.
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remarkable impact on a fit derived from 1414 genes. In v-SVR,
high-influence genes were found across all expression levels; the
most influential gene changed the estimated proportion from 31 to
83%. In contrast, removing the highest-influence gene from the log-
normal and DWLS models changed the estimate by less than 0.3%.

Pan-cancer screen for genes suitable for tumor-immune
deconvolution. Deconvolution of immune cells in tumors
encounters another complication: genes expressed by cancer cells
contaminate the data, causing overestimation of the immune
populations also expressing those genes. We analyzed 10,377
TCGA samples to identify a list of genes with minimal con-
taminating expression by cancer cells. We used marker genes11,12

(Supplementary Table 1) to score abundance of immune and
stromal cell populations in each sample, and we modeled each
gene as a function of these cell scores. For each gene, these models
estimated the proportion of transcripts derived from cancer cells
compared to immune and stromal cells in the average tumor
(Supplementary Table 2).

Genes exhibited a wide range of cancer-derived expression
(Fig. 3a). Across all non-immune cancers, 5844 genes had less
than 20% of transcripts attributed to cancer cells. Confirming the
stability of this analysis, estimates of cancer-derived expression
were largely consistent across TCGA datasets (Fig. 3b).

Confirming the specificity of this analysis, canonical marker
genes were consistently estimated to have low percentages of
transcripts from cancer cells. Gene lists used in many popular
immune deconvolution algorithms3,12–16, most of which were
designed for use in PBMCs and not in tumors, include numerous
cancer-expressed genes (Fig. 3c).

SafeTME: a cell profile matrix for tumor-immune deconvolu-
tion. To support deconvolution of the tumor microenvironment,
we assembled the SafeTME matrix, a cell profile matrix for the
immune and stromal cell types found in tumors. This matrix
combines cell profiles derived from flow-sorted PBMCs5, scRNA-
seq of tumors17, and RNA-seq of flow-sorted stromal cells18. It
includes only genes estimated by the above pan-cancer analysis to
have less than 20% of transcripts attributed to cancer cells.

A library of cell profile matrices for diverse tissue types. To
facilitate cell-type deconvolution in diverse tissue types, we
derived cell profile matrices from 75 publicly available scRNA-seq
datasets19–37 (Supplemental Table 3). These profile matrices
include 17 adult human tissues, 15 human fetal tissues, 6 SARS-
CoV-2-infected human tissues, 24 adult mouse tissues, 6 neonatal
mouse tissues, and 7 fetal mouse tissues. From each dataset, we

Fig. 2 Comparison of deconvolution algorithms in mixtures of two cell lines. The cell lines HEK293T and CCRF-CEM were mixed in varying proportions
and profiled with the GeoMx platform. a True mixing proportions plotted against estimates from four deconvolution algorithms: non-negative least squares
(NNLS), v-support vector regression (v-SVR), Dampened Weighted Least Squares regression (DWLS), and log-normal regression. b Influence of each gene
on the deconvolution result from a single cell pellet with a 50–50 mix. Point size shows the change in estimated mixing proportion when each gene is
removed. Source data are provided as a Source Data file.
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compiled the mean expression profile of each cell type, using the
cell-type classifications of the original paper.

Harnessing the GeoMx platform to enhance deconvolution.
The GeoMx DSP platform extracts gene or protein expression
readouts from precisely targeted regions of tissue. First, the tissue is
stained with up to four visualization markers, and a high-resolution
image of the tissue is captured. Using this image, precisely defined

segments of the tissue can be selected for expression profiling;
regions can be as small as a single cell or as large as a 700 × 800 µm
region, and they can have arbitrarily complex boundaries. This
flexibility in defining areas to be sampled is often used to split
regions of tissue into two segments, e.g., a PanCK+ cancer cell
segment and a PanCK- microenvironment segment.

Two features of the GeoMx platform expand the abilities of
mixed cell deconvolution. First, the GeoMx platform can profile
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Fig. 3 Genes’ proportions of cancer cell-derived expression in tumors. a For each cancer type, density of genes’ percent of transcripts attributed to cancer
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and model cell types that are absent in the pre-defined cell profile
matrix. For example, when performing immune deconvolution in
tumors, the expression profile of the cancer cells is often
unknown. In such cases, the GeoMx platform can be used to
select and profile regions of pure cancer cells, and this study-
specific cancer cell profile can be merged with the pre-defined cell
profile matrix. This method is used to account for cancer cell
expression in the deconvolution analyses of Figs. 4 and 5.

Second, the platform counts the nuclei in every tissue segment it
profiles. This nuclei count lets SpatialDecon estimate not just
proportions but absolute counts of cell populations. The results of
Fig. 5 show cell population count estimates derived in this manner.

Benchmarking with paired spatial RNA and protein expres-
sion. Due to practical limitations, most experiments bench-
marking the performance of immune cell deconvolution methods
rely on simulated data, generated either by in silico mixing of cell
expression profiles38 or by in vitro mixing of purified cell
populations39. However, simulations cannot faithfully represent
performance in tumor samples: immune cell expression differs
between blood and tumors17, and cancer cells can express puta-
tive immune genes. To benchmark deconvolution performance in
real tumor samples, we used the GeoMx platform to collect paired
measurements of gene expression and of canonical marker pro-
teins. To our knowledge, the resulting dataset assesses perfor-
mance over more cell types than any other non-simulated
benchmarking dataset.

From five FFPE lung tumors, we took two adjacent slides. We
selected 48 700 -µm regions from the first slide, and we identified
their corresponding regions in the second slide. The selected regions
in the first slide were profiled with the GeoMx protein assay, and
the corresponding regions in the second slide were profiled with the
GeoMx RNA assay, measuring 1700 genes, including 544 from the
SafeTME matrix. Within each region, the GeoMx system’s flexible
segmentation capabilities were used to collect separate profiles for
tumor cells and for microenvironment cells.

SpatialDecon outperforms alternative methods. SpatialDecon
was run on the benchmarking RNA data using the SafeTME
matrix and the unknown cell-types algorithm (Online Methods)
to model tumor expression. We compared its cell abundance
estimates with the expression of canonical marker proteins
(Fig. 4a and Supplementary Table 4). In the average tissue, the
Pearson correlation between protein expression and estimated
cell abundance was 0.93 for CD3 protein and T cells; 0.84 for
CD8 protein and CD8 T cells; 0.72 for CD68 protein and mac-
rophages; 0.80 for CD20 protein and B cells; and 0.80 for SMA
protein and fibroblasts. Neutrophils, whose low abundance in
many tissues limited the range over which correlation could be
observed, achieved an average correlation of just 0.43 with CD66b
protein. However, in the two samples with the highest estimated
neutrophils, this correlation rose to 0.86 (Tumor 1) and 0.84
(Tumor 4).

To benchmark SpatialDecon, we ran alternative methods:
NNLS, v-SVR, DWLS7, SpatialDWLS40, and Stereoscope9.
SpatialDecon was run a second time without using the unknown
cell-types algorithm to model tumor expression. All methods
used the SafeTME profile matrix. To mimic Stereoscope’s
recommended approach for tumors without scRNA-seq data,
Stereoscope was run a second time using cell profiles derived
from a lung scRNA-seq study.

For each cell type and each tissue, we recorded the Pearson
correlation between deconvolution results and protein expres-
sion (Fig. 4b, c). SpatialDecon performed best, with an average
correlation exceeding all other methods by at least 0.06
(compared to v-SVR, paired t test P= 0.024, 95% confidence
interval= (0.009, 0.117), df= 29) and by as much as 0.22
(compared to NNLS, P= 0.00018, 95% confidence interval=
(0.118, 0.332), df= 29). Stereoscope had higher correlations
using the SafeTME matrix that it did using parameters derived
from lung scRNA-seq (P= 0.038, 95% confidence interval=
(0.014, 0.419), df= 19). SpatialDecon performed better when
using the unknown cell-types algorithm to model tumor
expression (P= 0.009, 95% confidence interval= (0.018, 0.116),

Fig. 4 Benchmarking of immune deconvolution against the expression of canonical marker proteins. a Expression of marker proteins (horizontal axis)
against cell abundance estimates from the application of SpatialDecon to gene expression data (vertical axis). Each column of panels shows results from a
single protein/cell pair; each row shows results from a different lung tumor. Tumor segments are shown in blue, microenvironment segments in red.
b Pearson correlation between protein and cell abundance estimates for different deconvolution algorithms. NNLS non-negative least squares, v-SVR
v-support vector regression, DWLS Dampened Weighted Least Squares. CD8 T cells and macrophages are unavailable under the Stereoscope + scRNA-
seq lung profiles method. c Mean correlations between deconvolution methods and protein expression. Lines show 95% confidence intervals from n= 30
correlations. Source data are provided as a Source Data file.
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Fig. 5 Immune cell deconvolution in 191 microenvironment segments of a NSCLC tumor. a Image of the tumor, with segments superimposed.
Green= Pan-cytokeratin+ (tumor) segments; red= Pan-cytokeratin− (microenvironment) segments. b Color key for panels c, d, f, and g. c Abundance
estimates of 18 cell types in the microenvironment segments within 191 regions of the tumor. Wedge size is proportional to estimated cell counts.
d Abundance estimates of 12 cell populations in microenvironment segments. Point size is proportional to estimated cell counts within each panel; scale of
point size is not consistent across panels. e Dendrogram showing clustering of microenvironment segments’ abundance estimates. f Proportions of cell
populations in microenvironment segments. g, h Estimated absolute numbers of cell populations in microenvironment segments. i Spatial distribution of
microenvironment segment clusters. Point color indicates cluster from (e); point size is proportional to total estimated immune and stromal cells in
microenvironment segments. Source data are provided as a Source Data file.
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df= 29). SpatialDWLS performed well in some comparisons but
failed in others.

Mapping the immune infiltrate in a non-small cell lung cancer.
As a demonstration of spatial gene expression deconvolution,
immune cell abundances were estimated across a grid of 191
regions of a non-small cell lung cancer (NSCLC) tumor. The
GeoMx RNA assay was used to measure 1700 genes, including
544 genes from the SafeTME matrix. The tissue was stained with
fluorescent markers for PanCK (tumor and epithelial cells), CD45
(immune cells), CD3e (T cells) and DNA. In total, 191
300 × 300 µm regions of interest were arrayed in a grid across the
7.8 × 6.7 mm span of the tumor. Within each region of interest,
the flexible illumination capability of the GeoMx platform was
used to separately assay two segments: tumor segments, defined
by PanCK+ stain, and microenvironment segments, defined as
the tumor segments’ complement (Fig. 5a).

The SpatialDecon algorithm was applied to all segments in the
dataset using the SafeTME matrix along with tumor-specific
profiles derived from the study’s PanCK+ segments. On a 1.9 Ghz
laptop, deconvoluting 376 segments took 29 s. Using just the
microenvironment segments, we assembled a map of the tumor’s
immune infiltrate (Fig. 5c, d). The most abundant cell types were
CD4 T cells (11,943 across all segments), macrophages (10,055),
and CD8 T cells (7405). The algorithm estimated very low
immune cell content in the tumor segments, with a mean of 7
immune and stromal cells per tumor segment, compared to a
mean of 216 immune and stromal cells per microenvironment
segment.

Cell populations had distinct spatial distributions. Naïve and
Memory B cells had the most concentrated spatial distributions
(Gini coefficients= 0.84, 0.85), localizing primarily within a band
of regions on the left side of the tumor. Naive, memory and
regulatory CD4 T-cell populations (Gini= 0.70, 0.64, and 0.57)
had many dense foci near the B-cell-enriched regions and
sporadic foci elsewhere in the tumor. Naive CD8 T cells
(Gini= 0.52) were concentrated in the top-right of the tumor,
while memory CD8 cells were present throughout the tumor.
Macrophages (Gini= 0.48) and non-conventional/intermediate
monocytes (Gini= 0.45, 0.39) were enriched in the lower-right of
the tumor, away from the B cells and T cells, while conventional
monocytes (Gini= 0.41) were enriched in the upper-right.
Neutrophil-enriched segments (Gini= 0.41) appeared in both
lymphoid-rich and myeloid-rich areas.

Hierarchical clustering on cell abundances identified seven
subtypes of tumor microenvironment regions (Fig. 5e). The
largest cluster, Subtype O, was defined by low total numbers of
immune cells and consisted primarily of macrophages, memory
CD8 T cells, monocytes, and fibroblasts. Subtype M was
dominated by macrophages. Subtype T8 was dominated by
memory CD8 T cells, with less abundant memory CD4 T cells.
Subtype T4 was dominated by memory CD4 T cells, with less
abundant memory CD8 T cells. Subtype LT consistent almost
entirely of lymphoid cells, with majority T cells but also abundant
memory B cells. Subtype LB also consistent almost entirely of
lymphoid cells but had higher proportions of B cells, both
memory and naive. Subtype LM was lymphoid-dominated but
had as much as 15% macrophages. Each subtype was concen-
trated within, but not confined to, a distinct area of the tumor.

Reverse deconvolution gives context to gene expression results.
Variability in gene expression is driven both by changing abun-
dance of cell populations and by differential regulation within
cells. These two sources of variability can be decomposed via
reverse deconvolution, in which each gene’s expression is

predicted from cell abundance estimates. Outputs of this reverse
deconvolution include genes’ fitted expression values based on
cell abundances, and their residuals, calculated as the log2 ratio
between observed and fitted expression (Fig. 6a). These residuals
measure genes’ up- or downregulation within cells, independent
of cell abundance.

To interpret our gene expression data in the face of highly
variable cell mixing, we fit reverse deconvolution models over the
microenvironment segments of the NSCLC tumor from Fig. 5.
Each gene’s dependency on cell mixing was measured with two
metrics: the Pearson correlation between observed and fitted
expression, and the standard deviation of the residuals. Based on
these metrics, genes fell into four categories, each with a different
implication for analysis and interpretation of genes’ data (Fig. 6b).
Genes with low correlations and high residual standard devia-
tions, e.g., MT1M, are mostly independent of cell-type mixing
and can be understood without reference to cell abundances
(Fig. 6c). Genes with low correlations and low residual standard
deviations, e.g., ARG1, have little variability to analyze. Genes
with high correlations and low residual standard deviations, e.g.,
PDCD1, merely provide an obtuse readout of cell-type abun-
dance. Genes with high correlations and high residual standard
deviations, e.g., CCL19, have substantial variability unexplained
by cell mixing, but this variability is concealed by even greater
variability driven by cell mixing. Analysis of these genes’ residuals
reveals the full complexity of their behavior. For example,
CXCL13 expression was over twofold higher or lower than
expected in some regions (Fig. 6d). LYZ expression, 84% of which
was attributed to macrophages and monocytes, was highest in a
corner of the tumor where those cell populations had relatively
low abundance (Fig. 6e). CCL17 was highly expressed in sporadic
regions across the tumor, and in most of these regions the high
expression was beyond what cell abundance alone could explain
(Fig. 6f).

Residuals of reverse deconvolution reveal co-expressed genes.
Cell mixing induces correlation between genes that are expressed
by the same cell type but that are not otherwise co-expressed at
the cellular level. In the residuals of reverse deconvolution, this
unwanted correlation abates, revealing correlation induced by
coordinated expression within cell types (Fig. 6g). For example,
the Pearson correlation between CD8A and CD8B was 0.75 in the
log2-scale data from microenvironment segments; in residual
space, their correlation was −0.03. Pearson correlation between
MS4A1 and CD19 was 0.82 in the normalized data and 0.06 in
residual space.

To identify candidate co-expressed genes, we identified gene
clusters with high Pearson correlation in residual space. A cluster
of six HLA genes varied smoothly across the tissue, weakly
correlated with macrophage abundance but also elevated in many
macrophage-poor regions (Fig. 6h). In the two regions with the
most macrophages, these genes all had negative residuals,
suggesting suppressed antigen presentation by macrophages in
those regions. It has been previously shown that these HLA genes
share regulatory elements41. Another cluster consisted of lipid
metabolism and small molecule transport genes (ACP5, APOC1,
ATP6V0D2, CYP27A1, LIPA). Absolute expression of these genes
was elevated in the tissue’s lower-right corner. Analysis of
residuals reveals additional spatial expression dynamics, includ-
ing a region of up-regulation in the upper-left side of the tissue
and a region of downregulation in the lower-left (Fig. 6i).

Deconvolution of granularly defined cell types. It is common-
place for scRNA-seq studies to report multiple sub-clusters for a
given cell type. To assess SpatialDecon’s ability to deconvolve
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such closely-related cell types, we created a second, more granular
cell profile matrix. Using the same genes as the SafeTME, we
merged profiles from 42 immune cell sub-clusters defined in a
scRNA-seq study17 with the flow-sorted fibroblast and endothe-
lial cell profiles18.

To confirm the stability of SpatialDecon when using granular
cell profile matrices, we re-ran the benchmarking analysis of
Fig. 4a with this expanded matrix. We then compared marker
protein expression with the total abundance of relevant cell types,
for example comparing CD68 protein to the total abundance
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Fig. 6 Results of reverse deconvolution in a NSLCL tumor. a Schematic of reverse deconvolution approach: gene expression is predicted from cell
abundance estimates using the SpatialDecon algorithm, obtained fitted values and residuals. b Genes’ dependence on cell mixing. The horizontal axis
shows Pearson correlation between observed expression and fitted expression based on cell abundance. Vertical axis shows the standard deviation of the
log2-scale residuals from the reverse deconvolution fit. c Example genes from the extremes of the space of panel (b) are shown, with observed expression
(vertical axis) plotted against fitted expression (horizontal axis). Color scale applies to panels c, d, e, f, h, i. d–f For CXCL13, LYZ and CCL17, observed
expression is plotted against fitted expression (left), and observed expression is plotted in the space of the tissue (right). In all panels, point color indicates
residuals. In panels on the right, point size is proportional to observed expression level. g Pearson correlation matrices of genes in log-scale normalized data
(top) and in residual space (below). h, i Spatial expression of gene clusters defined by high correlation in residuals of reverse deconvolution. Wedge color
shows genes’ residual values; wedge size is proportional to genes’ expression levels. Source data are provided as a Source Data file.
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scores of the matrix’s nine macrophage sub-cluster profiles.
Concordance between deconvolution and marker proteins was
similar to the results achieved by the SafeTME matrix
(Supplementary Fig. 6).

To show the utility of SpatialDecon with granular cell profile
matrices, we used the expanded profile matrix to re-run
deconvolution of the NSCLC shown in Figs. 5 and 6
(Supplementary Fig. 7). The abundance of some cell types was
dominated by a few sub-clusters; for example, 83% of total
macrophages belonged to clusters hMac5 and hMac7. In contrast,
T-cell sub-clusters were more evenly represented, with each of the
seven sub-clusters representing between 5 and 26% of total
T cells. Sub-clusters’ spatial distributions were distinct and
consistent with known biology. For example, the cycling T-cell
cluster, hT7, was primarily present in the B-cell enriched regions.
The dense T cells and B cells of these regions suggest they are
tertiary lymphoid structures, where T cells are activated and
prompted to proliferate42. Another T-cell cluster confined to
these regions was hT4, which is defined by the expression of
CXCL13, a B-cell chemoattractant pivotal in forming and
maintaining tertiary lymphoid structures43. Finally, the cytotoxic
CD8 T-cell cluster, hT1, and the Treg cluster, hT3, invaded the
same regions of the tissue, consistent with their demonstrated
tendency to traffic together44.

Discussion
Cell deconvolution promises to be a linchpin of spatial gene
expression analysis. Cell abundance estimates offer a functional
significance and ease of interpretation unmatched by gene
expression values. Cell abundance also gives context to gene
expression results, disambiguating whether a gene’s expression
pattern results from differential cell-type abundance or differ-
ential expression within cell types.

The methods described here enable spatial studies as a natural
follow-on to scRNA-seq: given cell populations defined by
scRNA-seq, deconvolution in spatial gene expression data reveals
how those cells are arranged within tissues, obtaining a region-by-
region accounting of their abundance. This allows new questions
to be asked: How are cell types arranged and mixed with each
other? Which cell types repel or attract each other? Which cell
types explain the expression pattern of a gene of interest? How
does a cell population’s behavior change when it is co-localized
with another cell population?

While developing SpatialDecon, we found that modeling
background counts were critical to the accurate deconvolution of
spatial data. In bulk mRNA studies, where signal-to-background
ratios are stronger, we anticipate that modeling of background
will be helpful but often not essential.

Historically, gene expression deconvolution methods required
a cell profile matrix, usually derived from flow cytometry or
scRNA-seq. Many recent methods45,46 instead take a scRNA-seq

dataset as input, effectively automating the derivation of cell
profile matrices. However, requiring scRNA-seq data limits these
methods’ use to experiments where such data is available. This
limitation is most acute in cancer studies, where the heterogeneity
of tumor gene expression means public scRNA-seq data will not
be representative of a new tumor’s spatial data. In contrast,
SpatialDecon’s use of a cell profile matrix makes it applicable
across the larger set of studies where either scRNA-seq data or a
cell profile matrix is available. Critically, this includes any solid
tumor study where immune cells are of interest.

The methods and data resources described here promise to
improve deconvolution not just in spatial expression data but also
in bulk gene expression. Log-normal regression has the same
theoretical benefits in bulk expression deconvolution. Our library
of cell profile matrices for diverse tissues directly supports
deconvolution in bulk gene expression experiments. Finally,
future attempts to deconvolve immune cells in bulk tumor
expression data should confine the analysis to our list of genes not
expressed by cancer cells.

Based on cell abundances, we identified seven microenviron-
ment subtypes within one NSCLC tumor. This heterogeneity
raises the prospect that tumors could be classified not just by their
overall cell abundance, but by the localized microenvironment
subtypes they contain.

Methods
Acquisition of human samples. This research complied with all relevant ethical
regulations. All human tissue samples were sourced from ProteoGenex Inc, a
commercial tissue vendor. Informed consent was provided for all samples, and
ProteoGenex asserts that all specimens were collected under ethical regulations and
in accordance all applicable (local and international) laws. Written consent was
given for the broad research use of these samples and not specifically for this study.
Clinical information for these samples is in Supplementary Table 5.

The SpatialDecon algorithm:
Notation:
Use “observation” to denote a tissue region from which a gene expression

profile is collected.
Let i index observations, let j index genes, and let k index cell types.
Let Xp∙K be the cell profile matrix giving the linear-scale expression of p genes

over K cell types.
Let Yp∙n be the observed expression matrix of p genes over n observations.
Let βK∙n be the unobserved matrix of cell type abundances of K cell types over n

observations.
Let Bp∙n be the matrix of expected background counts corresponding to the

elements of Y.
Let ||x|| denote the operator of a vector x such that ||x|| = mean(x2).
The core log-normal deconvolution algorithm proceeds as described in Box 1.
To guard against errors in the cell profile matrix and noise in the data, the

SpatialDecon algorithm incorporates outlier removal into the log-normal
deconvolution algorithm. Outlier removal improves deconvolution accuracy in
simulated data (Supplementary Figs. 9 and 10). The SpatialDecon algorithm
proceeds as described in Box 2.

Estimating background. For GeoMx studies, each region’s background level can
be estimated by taking the mean of the negative control probes. These probes target
sequences identified by the External RNA Controls Consortium (ERCC) as alien to
the human genome.

Box 1 | Log-normal deconvolution algorithm

1. To avoid negative-infinity values when log-transforming zero-valued elements of Y, define ε equal to the minimum non-zero value in Y, and threshold
Y below so that its smallest value is ε. Supplementary Fig. 8 demonstrates the algorithm’s robustness to the choice of ε.

2. For i in {1, …, n}, take bβ:1 = argminβ.i||log(Y.i)−log(B.i+Xβ.i)||, subject to the constraint that β.i ≥ 0. This constrained optimization is performed
separately for each column of Y using the R package logNormReg9. This step assumes that different columns of Y, i.e., different tissue regions, are
statistically independent. To the extent that this assumption fails, greater accuracy could be gained by modelling the dependence between regions.
Modelling this dependence structure is a problem left for future algorithms; to our knowledge, no attempts to do so have been described.

3. For i in {1, …, n}, calculate the covariance matrix of bβ:1 by inverting the Hessian matrix returned by logNormReg. Call this covariance matrix b∑ðiÞ
:

4. Return bβ and b∑ðiÞ.
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Application to Visium data. For Visium studies, background should be set slightly
above zero to account for the diffusion of barcodes across tiles; a value of 0.01
would correspond to a belief in negligible diffusion, while a value of 1 would guard
against substantial diffusion. In an analysis of a Spatial Transcriptomics dataset
from a breast cancer47, the choices of 0.01 and 1 produced highly similar decon-
volution results, with Pearson correlation between abundance scores equal to 0.97,
and with results matching expected biology (Supplementary Fig. 12). In a Visium
dataset from an ovarian cancer, setting background at 0.01 produced results
consistent with known biology (Supplementary Fig. 13). Alternatively, more
accurate deconvolution could be achieved using a background matrix based on
each spot’s estimated burden of counts diffusing from neighboring spots.

Using the GeoMx platform to derive cell profiles for unmodelled cell types.
Many tissues will have an unmodelled cell type—a cell type known to be present in
the tissue but that is missing from the cell profile matrix. The presence of tumor
cells when performing immune deconvolution is the most common instance of
unmodelled cells.

The procedure for using GeoMx to derive the profiles of unmodelled cells and
merge them into the cell profile matrix X proceeds as described in Box 3.

The scaling operation in step 3 is arbitrary. Therefore, it is not recommended to
directly compare tumor abundance scores derived with this method to immune
abundance scores. This algorithm should primarily be considered a tool for
obtaining more accurate immune abundance scores.

The NanoString GeoMx® Digital Spatial Profiler and GeoMx assays are for
research use only and not for use in diagnostic procedures.

Converting abundance scores to cell counts. When the GeoMx system’s per-
region nuclei counts are available, the below procedure converts cell abundance
scores to estimates of absolute cell counts.

Case 1: all cell types in the tissue are modeled in the cell profile matrix: Here, we
estimate the number of each cell type in a region by the product of the nucleus
count in the region and the cell type’s estimated proportion in the region:

estimated cell counts ¼ nuclei � β̂=∑β̂: ð1Þ
Case 2: the tissue contains cell types that are not modeled by the cell profile

matrix. The motivating case here is immune deconvolution in tumors, where

cancer cell profiles are often omitted from the model. If at least one profiled region
consists of entirely cells modeled by the cell profile matrix, then call the sum of its
cell abundance scores βmax. Then for all regions, take

estimated cell counts ¼ nuclei � β̂=βmax: ð2Þ

Analysis of cell pellet array study. Genes for normalization were selected by
applying the geNorm algorithm48 to the 50 highest-expressing genes, with lower
expressing genes not considered in order to minimize the impact of system
background on normalization. Each segment’s expression profile was normalized
using the geometric mean of the resulting 27 reference genes. The expression
profiles of the pure cell lines were estimated using the median expression of the 4
unmixed replicates from each cell line. These two profiles were then scaled to have
the same median expression level.

Log-normal deconvolution was run using the log-normal deconvolution
algorithm. Non-negative least squared deconvolution was run by taking

β̂ ¼ argminβjjY � Bþ Xβ
� �jj; ð3Þ

subject to the constraint that β ≥ 0. Optimization was performed using the R
function optim. The background term B was included because ignoring
background would disadvantage NNLS in the comparison. Nu support vector
regression was run using svm function from R package e1071, with ν set to 0.75, a
linear kernel, and without scaling. v-SVR does not allow for explicit modeling of
background signal, so normalized expression data was background-subtracted
before entry into v-SVR. DWLS was run using code from https://github.com/
dtsoucas/DWLS.

To compute genes’ influence, deconvolution was run once with the complete
gene set and once with each gene omitted. Each gene’s influence was reported as
the absolute value difference in estimated HEK293T proportion between
deconvolution with the complete gene set and deconvolution with the leave-one-
out gene set.

Screening for genes suitable for tumor-immune deconvolution. Each TCGA
sample was scored for abundance of diverse immune and stromal cells using the
geometric mean of previously reported marker genes11,12. Then, in each cancer

Box 2 | The SpatialDecon algorithm

1. Run the log-normal deconvolution algorithm.
2. Choose δ as the expression level below which technical noise predominates. For GeoMx data normalized to have expected background= 1, we use

δ= 0.5.
3. Define the residuals of the algorithm fit as R = log2(pmax(Y, δ)) – log2(pmax(B + Xbβ, δ)), where pmax(x, δ) is the function replacing all elements of x
below δ with δ.

4. For all {i, j} with |Ri, j| >3, set Yi,j to NA. In simulated data, this threshold of 3 performed well, and deconvolution results were not sensitive to the
choice of threshold (Supplementary Fig. 9).

5. Re-run the log-normal deconvolution algorithm using the updated Y matrix, obtaining estimates bβ and covariance matrices b∑ðiÞ .
6. Calculate the standard error for each bβj;i with sqrt ðb∑ðiÞ

j;j Þ.
7. Calculate the p-value for each βi,j with p= 2 (1−ɸ(t = bβj;j , df= p – K – 1)), where ɸ is the cumulative distribution function of the standard normal

distribution. (bβj;i/b∑ðiÞ
j;j is the square root of the Wald statistic, which is asymptotically normal51.)

8. Calculate the 95% confidence interval for each βi,j with bβj;i ± 1.96 ðb∑ðiÞ
j;j Þ1/2

Return bβ along with the standard errors and p-values of its elements.

Box 3 | Unknown cell-types algorithm

1. Specify columns of Y corresponding to segments selected to contain a pure cell type that is missing from X. For example, for immune deconvolution in
tumors, select segments targeting purely PanCK+ cells to derive a cancer cell profile.

2. Collapse the segments into G clusters by applying the R functions hclust and cutree to their log-transformed expression profiles. The value of G
should be set large enough to capture the diversity of the segments of the unmodelled cell type and small enough to avoid adding excessive terms to
the deconvolution model. For healthy cell types with homogeneous behavior, 1–2 clusters is adequate; for tumor cells, which can be highly
heterogeneous, a higher G is recommended. We use G= 10 in the tumor analyses in this manuscript. Supplementary Fig. 11 shows the choice of G to
have a minimal impact on performance.

3. Define each cluster’s expression profile by taking each gene’s geometric mean across the observations in the cluster. To avoid convergence failures,
scale this profile similarly to the other columns of the cell profile matrix such that its 90th percentile is equal to the average 90th percentile of the
other columns.

Append the cluster expression profiles to the cell profile matrix.
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type, we used log-normal regression to model each gene as follows:

log y
� � ¼ log β0 þ XTcellβTcell þ XBcellβBcell þ Xmacrophageβmacrophage þ ¼

� �
þ ε;

ð4Þ

where y is the vector of the gene’s (linear-scale) expression across all samples in a
cancer type, Xcell is the vector of a cell type’s estimated abundance across all
samples, and ε is a vector of normally-distributed noise. We constrained all β terms
to be ≥0. The use of log-normal regression was motivated by the same con-
siderations used in our deconvolution method: expression from mixed cell types
compounds additively49, but noise in gene expression is more Gaussian and
homoscedastic after log-transformation (Supplementary Figs. 1 and 2).

In this model, the β0 term represents the gene’s average expression in a tumor
when no immune cells are present. Then we can measure a gene’s proportion of
tumor-intrinsic expression with β0/mean(y). Ideal genes for deconvolution will
have β0/mean(y) very close to 0; genes with substantial contamination from cancer
cells will have β0/mean(y) near 1.

Derivation of the SafeTME cell profile matrix. Three datasets were used to define
the SafeTME cell profile matrix for deconvolution of the tumor microenvironment:
expression profiles of flow-sorted PBMCs for use in deconvolution of blood
samples5, scRNA-seq of finely clustered immune cell types17, and RNA-seq profiles
of 6 cell populations flow-sorted from lung tumors18.

Cell-type profiles from PBMCs were used whenever possible, since flow-sorting
on surface markers is the gold standard for classifying immune cells. Profiles were
taken for naive B cells, memory B cells, plasmablasts, naive CD4 T cells, memory
CD4 T cells, naive CD8 T cells, memory CD8 T cells, T-regulatory cells, NK cells,
plasmacytoid DCs, myeloid DCs, conventional monocytes, non-conventional/
intermediate monocytes, and neutrophils. We omitted profiles of PMBC cell
populations expected to be vanishingly infrequent in tumors: basophils,
MAIT cells, and T gamma delta cells.

From the tumor scRNA-seq dataset, we took the profiles for macrophages and
mast cells, which are not present in PBMCs. We defined a mast cell profile as the
average of the two reported mast cell clusters’ profiles, and the macrophage profile
as the average of the nine reported macrophage cluster profiles17. The mast cell
profile was scaled to have the same 80th percentile and the average 80th percentile
of the PMBC cell profiles; the macrophage profile was scaled to have the same 80th
percentile as the PBMC conventional monocytes profile. The 80th percentile was
chosen to negotiate two competing criteria: the need to use a quantile high enough
to fall within the set of robustly expressed genes, and the need to use a quantile low
enough to be statistically stable. This choice of a scaling factor is necessarily
arbitrary, and error in its selection causes bias when comparing the abundance of
one cell type to another. If we had chosen 0.7, the SafeTME would return mast cell
abundances 40% higher and macrophage abundances 120% higher. If we had
chosen 0.9, we would see mast cells 43% lower and macrophages 23% lower. Due to
the uncertainty in scaling different cell type’s profiles, comparison of one cell-type’s
abundance to another’s is always fraught; the need to compute mast cell and
macrophage scaling factors across datasets makes their relative abundance
estimates subject to additional error.

From the flow-sorted lung tumor dataset18, we derived profiles for endothelial
cells and fibroblasts. Four endothelial cell samples with low signal were removed, as
were 8 fibroblast samples with low signal. The remaining replicate samples were
normalized using their 90th percentiles. In this dataset, the 90th percentile fell
within the robustly expressed genes, exceeding 2 TPM in every sample, but left over
a thousand genes above it to avoid excessive influence by noise in a small number
of extreme high expressers. For the purposes of deriving an average profile, any
standard RNA-seq normalization method would have sufficed. Endothelial cell and
fibroblast profiles were defined by the median expression profiles of their replicate
samples. We chose the median to represent a gene’s central tendency across
replicate samples because the mean was potentially too impacted by high outlier
expression values, and the geometric mean was inappropriate for data with
expression values of zero. The cell profiles extracted from the three datasets then
were combined into a single matrix, which was reduced to a subset of 1180 highly
informative genes.

It is inevitable that the combined matrix contains numerous systematic biases,
such as platform effects, noise in the experimental results of the original cell profile
matrices, and gene expression differences in blood versus tumor. To reduce these
effects, we employed the following procedure. First, we performed deconvolution
on three TCGA datasets: colon adenocarcinoma, lung adenocarcinoma, and
melanoma. Most genes were consistently over- or underestimated by the
deconvolution fits, and these biases were consistent across datasets. Each gene’s
bias was estimated with the geometric mean of the ratios between its observed
expression values and its predicted expression values from the deconvolution fits.
Finally, each gene’s row in the cell profile matrix was then rescaled by its
expected bias.

We removed genes estimated by our TCGA analysis to have more than 20% of
transcripts derived from tumor cells. The final SafeTME cell profile matrix, from 18
cell types and 906 genes, is reported in the Supplementary Data.

Derivation of profile matrices from public scRNA-seq data. Cell profile
matrices were generated using published single-cell RNA-seq datasets from
human19–33 and mouse34–37. In all datasets, each cell’s cell type was reported by the
original authors. When possible, we used the normalized data from the original
publications. When only raw data was available, cells were normalized to total
counts. These datasets were filtered for cells with at least one count from at least
100 different genes. Cell profiles were only calculated for cell types with 15 or more
cells. Cell-type profiles were created by taking the average expression of each gene
across all cells belonging to the cell type. The gene list was subset for genes that
were expressed in at least one cell type and that are present in NanoString’s GeoMx
Human Whole Transcriptome Atlas or Mouse Whole Transcriptome Atlas panels,
or, in for the SARS-CoV-2-infected tissues, from the GeoMx COVID-19 Immune
Response Atlas.

Capturing central tendencies. Both arithmetic means and geometric means are
used throughout this work. Our rule for choosing a summary statistic for the
central tendency of a variable was as follows: We used geometric means for ratios
and for highly right-skewed data with relatively few zeroes, including TCGA RNA-
seq data and lower-thresholded GeoMx data. We used arithmetic means for
naturally linear-scale data, e.g., correlations or cell counts; and for data with
abundant zeroes, e.g., scRNA-seq results. In one case of right-skewed data that
included many zeroes, we used the median.

Protein slide preparation. For GeoMx DSP slide preparation, we followed GeoMx
DSP slide prep user manual (MAN-10087-04). In all, 5 µm FFPE microtome sec-
tions of non-small-cell-lung cancers (NSCLC) (ProteoGenex) or cell pellet arrays
(Acepix Biosciences, Inc.) were mounted onto SuperFrost Plus slides (Fisher Sci-
entific, 12-550-15) and air-dried overnight. Slides were prepared by baking in a
drying oven at 60 °C for 1 h; then the paraffin was removed with CitriSolv (Fisher
Scientific, 04-355-121). The samples were rehydrated in an ethanol gradient and
final wash in DEPC-treated water (ThermoFisher, AM992). Target retrieval was
performed by placing slides in staining jars containing 1× citrate buffer pH 6
(Sigma Aldrich SKU C9999-1000ML) and heated in a pressure cooker on the high-
temperature setting for 15 min. Slides were allowed to cool to room temperature
and blocked at room temperature for an hour with Buffer W (NanoString Tech-
nologies). The primary antibody mix was made by combining the detection anti-
body modules (NanoString Technologies) at 1:25 and the visualization markers in
Buffer W. The NSCLC were visualized with CD3-647 at 1:400 (Abcam, ab196147),
CD45-594 at 1:40 (NanoString Technologies) and PanCK-532 at 1:40 (NanoString
Technologies). Slides were incubated overnight at 4 °C. Slides were fixed with 4%
paraformaldehyde (Thermo Scientific 28908) and the nuclei were stained with
SYTO 13 (Thermo Scientific S7575) at 1:10 for 15 min.

RNA/NGS slide preparation. For GeoMx DSP slide preparation, we followed
GeoMx DSP slide prep user manual (MAN-10087-04). In all, 5 µm FFPE micro-
tome sections of both non-small-cell-lung cancers (NSCLC) (ProteoGenex) were
mounted onto SuperFrost Plus slides (Fisher Scientific, 12-550-15) and air-dried
overnight. Slides were prepared by baking in a drying oven at 60 °C for 1 h. Slides
were then processed with a Leica Biosystems BOND RXm (Leica Biosystems) as
specified by the NanoString GeoMx DSP Slide Preparation User Manual (Nano-
String Technologies, MAN-10087). Briefly, slides were processed with the Staining
protocol “*GeoMx RNA DSP slide prep”, the Preparation protocol “*Bake and
Dewax”, HIER protocol “*HIER 20min with ER2 @ 100 °C, and Enzyme protocol
“*Enzyme 1 for 15 min”. For Enzyme 1 a 1 µg/mL concentration of Proteinase K
(Ambion, 2546) was used. This program included target retrieval, Proteinase K
digestion, and post fixation. Once the Leica run had finished slides were immediate
removed and placed in 1× PBS. One at a time, slides were placed in a prepared
HybEZ Slide Rack in a HybEZ Humidity Control Tray (ADC Bio, 310012) with
Kimwipes damped with 2× SSC lining the bottom. In total, 200 µL of a custom
RNA probe Mix at a concentration of 4 nM per probe in 1× Buffer R (NanoString
Technologies), was applied to each slide. A Hybridslip (Grace Biolabs, 714022) was
immediate applied over each sample. Slides were incubated in a HybEZ over
(ACDBio 321720) at 37 °C for 16–24 h. After hybridization slides were briefly
dipped into a 2× SSC+ 0.1% Tween-20 (Teknova, T0710) to allow the coverslips to
slide off then washed twice into a 2× SSC/50% formamide (ThermoFisher
AM9342) solution at 37 °C for 25 min each, followed by two washes in 2× SSC for
5 min each at room temperature. Slides were then blocked in Buffer W (NanoString
Technologies) at room temperature for 30 min. In total, 200 µL of a morphology
marker mix was them applied to each sample for 1 h. The tumors were visualized
with CD3-647 at 1:400 (Abcam, ab196147), CD45-594 at 1:10 (NanoString
Technologies), PanCK-532 at 1:20 (NanoString Technologies) and SYTO 13 at 1:10
(Thermo Scientific S7575).

GeoMx DSP sample collection. For GeoMx DSP sample collection, we followed
GeoMx DSP instrument user manual (MAN-10088-03). Briefly, tissue slides were
loaded to GeoMx DSP instrument and then scanned to visualize whole tissue
images. For cell pellet array samples, 300 µm ROIs in diameter were placed. For
each tissue sample, we placed ROIs and segmented into two regions: PanCK-high
tumor region and PanCK-low TME regions.
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GeoMx DSP NGS library preparation and sequencing. Each GeoMx DSP sample
was uniquely indexed using Illumina’s i5 × i7 dual-indexing system. In all, 4 µL of a
GeoMx DSP sample was used in a PCR reaction with 1 µM of i5 primer, 1 µM i7
primer, and 1× NSTG PCR Master Mix. Thermocycler conditions were 37 °C for
30 min, 50 °C for 10 min, 95 °C for 3 min, 18 cycles of 95 °C for 15 s, 65 °C for 60 s,
68 °C for 30 s, and final extension of 68 °C for 5 min. PCR reactions were purified
with two rounds of AMPure XP beads (Beckman Coulter) at 1.2× bead-to-sample
ratio. Libraries were paired-end sequenced (2 × 75) on a NextSeq550 up to 400M
total aligned reads.

Pre-processing of raw GeoMx data. GeoMx RNA data were collected using
development pipelines of the commercial GeoMx Data Analysis software. GeoMx
protein data were collected using nSolver (NanoString Technologies).

Analysis of GeoMx protein and RNA benchmarking data. Twelve segments
with very low signal in either the protein or RNA results were excluded. The
protein assay data were normalized with the geometric mean of the negative
control antibodies, and the RNA data were normalized with the geometric mean
of the negative control probes. Prior to deconvolution, the unknown cell-types
algorithm was used to append tumor-specific profiles to the SafeTME matrix.
Deconvolution was run using the resulting profile matrix and the SpatialDecon
algorithm.

In the benchmarking analysis, all algorithms were run using the SafeTME
matrix. The NNLS, v-SVR and DWLS algorithms were all run on background-
subtracted data. The stereoscope requires raw count data and so was run without
background subtraction. Stereoscope also requires overdispersion (logit)
parameters for all genes; as these are not available for the SafeTME, we assigned all
genes a logit value of −0.8, based on the average logit seen in Stereoscope’s example
data. In a second Stereoscope run, the SafeTME was replaced with parameters
derived from lung tumor scRNA-seq data; these parameters were downloaded from
https://github.com/almaan/stereoscope/blob/master/data/params-lc.zip.

Analysis of GeoMx RNA data from a grid over a NSCLC tumor. Raw counts
from each gene in each tissue region were extracted from the NanoString GeoMx
NGS processing pipeline. For each region, the expected background for each gene
was estimated with the mean of the panel’s 100 negative control probes. Each
region’s signal strength was measured with the 85th percentile of its expression
vector. Three PanCK+ regions with outlier low signal strength were removed from
the analysis. Each region’s data was normalized with the signal-to-background
method, scaling each region such that its negative control probe mean was 1. (This
method is one of the manufacturer’s recommended approaches for normalizing
GeoMx data; it is successful because the negative control probes respond to
technical factors like region size, region-specific RNA binding efficiency, and
region-specific density of material to which oligos might bind.)

Prior to deconvolution, the study’s pure PanCK+/tumor segments were input
into the unknown cell types algorithm, resulting in ten tumor-specific expression
profiles. These profiles were then appended to the SafeTME profile matrix.
Deconvolution was then run using the SpatialDecon algorithm.

To derive microenvironment subtypes, clustering was performed on the matrix
of estimated cell counts using the R library pheatmap.

Calculation of residuals from cell scores in NSCLC study. Reverse deconvolu-
tion was run as follows. Cell abundance estimates were taken from the Spa-
tialDecon run described above. In only the stroma segments, each gene’s linear-
scale expression was predicted from the cell abundance estimates using the R
library logNormReg10. An intercept term was included in the fit, and all estimates
were constrained to be non-negative.

Reverse deconvolution residuals were calculated for each gene as the log2 fold
change between observed expression and fitted expression, with both terms
thresholded below at 1, the expected background in the normalized data. That is, if
y.observed is a gene’s normalized expression, and y.fitted is its predicted expression
based on the reverse deconvolution fit, then

residuals ¼ log2ðmaxðy:observed; 1ÞÞ � log2ðmaxðy:fitted; 1ÞÞ: ð5Þ
The following metrics were used to measure genes’ dependency on cell mixing.

The correlation was calculated as cor(y.observed, y.fitted). Residual SD was
calculated as sd(residuals).

To identify clusters of co-expressed genes, the correlation matrix of all genes’
reverse deconvolution residuals was clustered using the R function hclust. Gene
modules were identified by applying the R function cutree to the resulting
hierarchical clustering results.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data from this study is available online without restriction. The library of cell profile
matrices is available at https://github.com/Nanostring-Biostats/CellProfileLibrary. The

in-situ benchmarking dataset is available at https://github.com/Nanostring-Biostats/
ImmuneDeconBenchmark. The data used to produce this manuscript’s results are
available at https://github.com/Nanostring-Biostats/SpatialDecon-manuscript-analyses.
The raw GeoMx gene expression datasets generated in this study are available in the
Gene Expression Omnibus under accession numbers GSE174743 (benchmarking data
from 5 NSCLC tumors from Fig. 4), GSE174746 (cell pellet array from Fig. 2), and
GSE174749 (NSCLC tumor from Figs. 5 and 6). The datasets used to derive the SafeTME
matrix are available in the Gene Expression Omnibus under accession numbers
GSE127465 (lung tumor scRNA-seq), GSE107011 (sorted PBMCs RNAseq), and
GSE111907 (stroma cells RNAseq). TCGA data was accessed through https://
gdac.broadinstitute.org/. The HER2+ breast cancer dataset was accessed at https://
github.com/almaan/her2st. The ovarian cancer dataset was accessed at https://
www.10xgenomics.com/resources/datasets. Source data are provided with this paper.

Code availability
SpatialDecon, an R library implementing these methods, is available at https://
github.com/Nanostring-Biostats/SpatialDecon and on BioConductor at https://
bioconductor.org/packages/release/bioc/html/SpatialDecon.html50. The code used to
produce this manuscript’s results can be found at https://github.com/Nanostring-
Biostats/SpatialDecon-manuscript-analyses.
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