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Abstract

Model based vision allows use of prior knowledge of the shape and appearance of specific

objects to be used in the interpretation of a visual scene; it provides a powerful and

natural way to enforce the view consistency constraint [I]. A model based vision system

has been developed within ESPRIT VIEWS: P2152 which is able to classify and track

moving objects (cars and other vehicles) in complex, cluttered traffic scenes. The

fundamental basis of the method has been previously reported [2]. This paper presents

recent developments which have extended the scope of the system to include (i) multiple

cameras, (ii) variable camera geometry, and (Hi) articulated objects. All three

enhancements have easily been accommodated within the original model-based approach.

1 Review of methods

The models used consist of 3D geometrical representations of known objects

(vehicles) together with calibrated camera and scene models [3]. Using the known

camera and scene geometry, and given a provisional position and orientation

(derived from data-driven detection of temporal change in the image), a 3D object

can be instantiated into the 2D image plane and a "goodness-of-fit" score obtained

by comparing the modelled features with the image. An iterative search in

position-space and orientation-space is then used to maximize this evaluation

score. At each step in the search the model is re-instantiated into the scene and a

new goodness-of-fit score evaluated.

1.1 Evaluation of the "goodness-of-fit"

The vehicle model comprises a set of line features specified in a 3D object-centred

coordinate reference frame. On instantiation the model is translated and rotated to

the appropriate position in the world coordinate frame and finally all lines which

are visible from the given camera position are projected onto the image. Each

visible line is evaluated using methods similar to the one that was originally

reported [6] [7] [8]. The scores from the individual lines are aggregated to give an

overall goodness-of-fit score for the model in the given position. Evidence from
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each line is assumed to be independent, and the aggregate score is given by:

= Uyin(Pi)-
*i vis

(EQ1)

where /?, is the probability that a score at least as high would have been

obtained by randomly placing a similar feature in the scene (as determined by

empirical trials, using an image of the scene with no vehicle), and NVis is the

number of visible lines.

The main advantage of this approach is that under assumptions of

independence and "large" numbers E has a %
2 distribution, so that, assuming a

correct position for the model, the value obtained is largely independent of the

pose of the object and the number of visible lines. This technique was previously

reported in [2], with a number of recent changes reported in [4] and [5].

1.2 Pose recovery

The evaluation score defines a scalar function of 6 dimensions - in world

coordinates these are most simply defined as the three cartesian coordinates of the

object's position and the three angles needed to specify its orientation. In general,

we expea that peaks in the 6 df function will indicate likely matches between the

model and the image. The problem is to locate the peaks, and thereby to determine

the pose of a vehicle.

A considerable computational saving can be made by limiting the object's

position to the ground plane, thus only permitting 2D translation and rotation

about the vertical axis. Using this simple but realistic physical "ground-plane

constraint", only three independent dimensions remain. Even so, an exhaustive

search of three dimensions is computationally too expensive, and a number of

alternative methods have been used, including: simplex, gradient ascent, and a

method which successively performs three local one dimensional searches in the

object coordinate system, determined by the best value yet found.

In order to use the ground-plane constraint we need to determine the extrinsic

camera parameters, as well as the intrinsic parameters needed in the more general

case. This camera calibration determines the pose of the camera with respect to a

fixed world coordinate system. The calibration is achieved by matching points in

the image with points in a 3D model of the static scene by eye.
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Figure 1: Plan view of the roadway scene. One camera is located to the "south" of the
scene and the other camera is located to the "wesf. The "L" shapes
correspond to calibration marks on the roadway.

2 Multiple Cameras

Our previous work only considered a single calibrated camera, but the method is

readily extended to multiple calibrated cameras with overlapping fields of view.

The classic problem with multiple cameras is how to fuse the information from

each image. In the model-based paradigm this problem is extremely simple. We

hypothesize a pose for the model and calculate all the visible lines for each of the

camera views, and then combine the probabilities from all visible lines as in the

case of a single camera (EQ 1).

If the object is outside the field of view of a camera or occluded by a known

object (e.g. a building) the final value is largely unaffected (provided the model is

visible from at least one view). If the object is visible from two or more

substantially different views then accuracy and robustness of the system is greatly

increased, since: (i) more image evidence is available to compute E, (ii) the

evaluation scores are commonly strongly ridged, in the approximate direction of
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Figure 2: The location of the saloon car from (a) the south camera and (b) the west
camera and the estate car from (c) the south camera and (d) the west camera.

the camera and multiple cameras provide scores which are ridged in different

directions, and (iii) accidental alignment of the model with distracting features in

the scene are unlikely to occur simultaneously in all cameras.

To illustrate the method, we have used an experimental set up consisting of a

24th scale roadway scene containing buildings, a car parking area and a

roundabout (see Figure 1). Two radio-controlled cars, a saloon and an estate, can

be driven around the scene. The scene is observed by two monochrome cameras

connected to the red and green channels of a 24bit frame store. A pair of images

were captured with the two cars in view of both cameras. Close-ups of the two

cars from each view are shown in Figure 2. The poses of the cars shown in Figure

2 were initially determined by using a voting procedure to identify matches

between lines extracted from the south camera and 3D model lines [9].
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Figure 3: The X-Y location of the pose refinement: Saloon car using (a) the south
camera, (b) the west camera and (c) both cameras. Estate car using (d) the
south camera, (e) the west camera and (e) both cameras.

These initial poses were used as the basis for tests on the pose refinement. A

grid of size ±2.5m in X and Y and ±25 degrees in orientation was centred about

the initial poses. Each point on the grid was used as the start pose for the pose

refinement under three conditions; using the south camera, the west camera or

both cameras. The final X-Y location of these pose refinements are show in Figure

3. Ideally we would hope that all starting poses converge on the origin in X and Y.

In practice, the points are scattered within the X-Y plane, with clusters occurring

at many stable poses. In these examples the clusters for the two camera case

seems significantly better than for either camera alone.

3 On-line Camera Calibration

The transformation between the model and the image is controlled by three

matrices; the transformation between the model and the world, the transformation

between the world and the camera, and the projection from the camera to the
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Figure 4: Variation of the evaluation score for the scene model as the focal length of
the camera model is changed.

image. This combination can be written using left acting operators (matrices) as:

M
mw

M
wc

P
ci- CEQ2)

Our earlier work assumed that only the model-to-world transformation varies

and the other two are fixed. But the model-based approach also allows us to fix the

model-to-world transformation and vary the other two. The scene model

represents buildings and marks on the ground that are not expected to change in

the world coordinate frame. The scene model can be evaluated in the same way as

for the vehicle models in order to determine a "goodness-of-fit" for the camera

model. The intrinsic or extrinsic parameters can then be changed in order to

maximise this score. This allows the camera parameters for a "fixed" camera to be

refined or the parameters of moving cameras to be recovered on-line. Typical

results for the variation in the evaluation score for the scene model when the focal

length of the camera model is changed are shown in Figure 4.

In order to obtain sufficient resolution with current video images, practical

surveillance systems need to use cameras with variable pan, tilt and zoom. These

parameters (or rather the matrix they represent) must be known for the model-

based system to work. The pan, tilt and zoom camera parameters can determined,

by searching over the evaluation score obtained for the stationary scene model.

The results obtained when using this method to track the camera focal length
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Figure 5: Dynamic tracking of the scene model to recover focal length of a camera
with variable zoom, (a) The scene model superimposed on the initial wide-
angle view and (b) the scene after the camera has been zoomed in.
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Figure 6: An example of the construction tree for a model of a fuel tanker and it's
trailer. The links are the transformations of Rotation (R) and Translation (T).
The leaf nodes are model primitives and the other nodes represent coordinate
frames.

under conditions of variable zoom are shown in Figure 5. The tracking was started

with a wide-angle setting and the camera was then manually zoomed in to the

final position, whilst the focal length was tracked automatically.

4 Articulated Models

The vehicle models used in the system are comprised of primitives expressed as

leaf nodes in a tree structure where the other nodes of the tree are separate

coordinate frames, and the arcs are transformations between these coordinate

frames (see Figure 6). In earlier work, these internal transformations were kept

fixed, to produce a rigid model of an object. However, the system is easily adapted

to take account of articulated vehicles, such as a lorry and trailer. For example, to

model an articulated lorry, separate rigid models for the cab and trailer can be

produced and then connected with a transformation which has one degree of

freedom of rotation about the vertical axis. The pose of the articulated lorry can

then be obtained by searching over the extra parameter of articulation as well as

the three previous parameters (x, y, 8 ) . In the airport example considered in

VIEWS the fuel tanker and its trailer are connected by a tow bar with two

articulated couplings. This means the vehicle has two extra degrees of freedom.
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Figure 7: Tracking a fuel tanker and trailer with an articulated model as it turns to
come alongside the waiting aircraft

The result of tracking the tanker and trailer with this articulation is shown in

Figure 7.

5 Current status

The model-based approach to traffic understanding adopted in VIEWS has proved

rich and powerful. Many of the traditional problems in object recognition prove to

be tractable, since the vision system reasons directly in 3D space rather than with

the weak invariants of objects found in 2D images. Shape and size constancy,

colour and brightness invariance, partial occlusion, dynamic tracking, multiple

cameras, moving cameras, and articulated objects have all proved simple to

implement, within the one all-embracing paradigm.

The traffic understanding system developed in VIEWS currently exists in

several different versions. Complex scenes (airports and road junctions)

containing multiple vehicles can, at present, only be processed off-line, using a

video disc to synchronise the inflow of images to the processing speed of the

system. An initial stage of movement detection and region segmentation,
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followed by morphological filtering and tracking, is carried out on a SUN 10/30 at

speeds approaching real-time, using images sequences sampled at 5Hz. [Details

of this work, carried out by GEC-Marconi, is available as an internal project

report.] The model-based pose refinement described here currently takes about

200-500 ms per model, running on a SUN 10/41. A further stage of "arbitration"

between the image-based and model-based results introduces an additional minor

burden. The entire system, consisting of two SUN 10 workstations with a further

SUN acting as the display host, is able to cope with scenes containing about 5

vehicles at a rate only about 10 times slower than real-time (using images sampled

at5Hz).

A second version of the system has been developed to demonstrate the "live"

processing, using the purpose built 1/24 scale model road scene, and radio

controlled cars previously described. The system has been simplified to optimise

processing speed, by using a simpler movement detection system, and minimal

vehicle models. The demonstration is capable of tracking a single vehicle in real-

time (at ~5 Hz) on a single SUN 10/41 computer.
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