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Samenvatting

Softwaresystemen worden steeds complexer. Hierdoor neemt het aantal
fouten toe. Het leren van modellen wordt meer en meer een toegankelijke
techniek om deze fouten op te sporen. Algoritmen voor het leren van
modellen kijken niet naar de interne structuur, maar naar het gedrag van
een systeem. Het ontwerpen van algoritmen hiervoor is belangrijk om
de techniek beter toegankelijk en toepasbaar te maken. Dit proefschrift
presenteert hiervoor de volgende bijdragen:

1. Algoritmen voor het leren van modellen maken iteratief een hypothese
voor het systeem in kwestie. Wij zijn de eersten die het begrip kwaliteit
formaliseren voor deze hypotheses, en we presenteren een leeralgoritme
dat er voor zorgt dat de kwaliteit van een hypothese niet afneemt
(Hoofdstukken 3 en 4).

2. Hypothesen worden verfijnd door tegenvoorbeelden. Inputsequenties
die de toestanden van een hypothese onderscheiden spelen een belan-
grijke rol in het vinden van deze tegenvoorbeelden. Wij presenteren
een algoritme dat deze onderscheidende sequenties efficient construeert
(Hoofdstuk 2). Daarnaast introduceren we fuzzing als een nieuwe,
aanvullende techniek voor het vinden van tegenvoorbeelden (Hoofd-
stuk 6).

3. We leggen uit hoe verschillende modelformalismen en observaties
van hun gedrag uitgedrukt kunnen worden in een logische formule,
en we laten zien dat bestaande methoden voor satisfiabiilty modulo
theories gebruikt kunnen worden om hiervan een hypothese te maken
(Hoofdstuk 5). Deze nieuwe aanpak voor het leren van modellen
gebruikt geen overtollige inputsequenties, die wel aanwezig zijn als de
klassieke aanpak toegepast wordt in de praktijk.

4. Een eerste vereiste voor het leren van modellen is dat het inputformaat
bekend is. Wij geven een overzicht van de programma’s en technieken
die gebruikt kunnen worden om het inputformaat te reverse engineeren,
en de toepassingen hiervan voor digitale veiligheid.
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Summary

Software systems are becoming increasingly complex. This leads to an
inevitable increase in bugs. Model learning is becoming a popular technique
for finding these bugs. Instead of viewing a software system via its internal
structure, model learning algorithms construct a model from observations
of the system’s behaviour. The design of algorithms for models and model
learning is a fundamental problem, and research in the area is important for
making the techniques more applicable and accessible. This thesis presents
the following contributions in this regard:

1. Model learning algorithms work by iteratively constructing a hypothesis
for the system under learning. We are the first to formalize the notion
of quality for these hypotheses, and we present a modification for the
learning process that ensures that the quality of subsequent hypotheses
never decreases (Chapters 3 and 4).

2. Hypotheses are refined by finding counterexamples for them. Input
sequences that separate the states of an hypothesis play an impor-
tant role in finding counterexamples. We present an algorithm for
constructing these separating sequences efficiently (Chapter 2). In
addition, we introduce fuzzing as a new, complementary technique for
finding counterexamples (Chapter 6).

3. We explain how different model formalisms and observations of their
behaviour can be expressed in a logic formula, and we show that satis-
fiability modulo theories solvers can be used to construct a hypothesis
from this formula (Chapter 5). This new approach to model learning
removes redundancy that is present in the classical approach when
applied in practice.

4. A prerequisite for model learning is that the system’s input format
is known. We give an overview of the tools and techniques for re-
verse engineering the input format, and their applications in security
(Chapter 7).
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Chapter 1

Introduction

Software systems are becoming increasingly complex, and with this increase
in complexity comes an inevitable increase of bugs.

The Linux kernel, for example, was growing faster than ever in 2016,
gaining on average nearly 11 files and 4 600 lines of code every day [132].
Launched in 1991, the first Linux kernel had little over 10 thousand lines
of code. Today, it has over 22 million. Currently, there are more than 5
thousand known bugs in the Linux kernel, and possibly even more that
are not detected yet. The number of new detected bugs is increasing too,
with more than double the number of bugs reported in 2016, compared to
2015 [133].

In 2012, a similar number of lines of code (24 million) could be found in
an F-35, the combat aircraft developed in the Joint Strike Fighter (JSF)
program [13]. Already then, this was 9 million lines more than originally
envisioned. Christopher Bogdan, the JSF program head, warned that
software is the riskiest facet of F-35 development and the most likely cause
of delays [121]. Being the most expensive military weapons system in history,
these delays have far-reaching consequences. By 2014, the program was
“163 billion dollars over budget [and] seven years behind schedule” [50].

A possible explanation for the increase in bugs and unforeseen delays
is that traditional formal methods for the verification of a system can not
cope with the aforementioned increase in complexity. Formal methods are
a particular kind of mathematically based techniques that contribute to the
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reliability and robustness of a system’s design. The goal of formal methods
is to prove properties of the specification of a system, or to show that
requirements of the system hold. Often, formal methods require a model
of the system to be scalable and effective. Unfortunately, the time and
effort required to develop a model grows disproportionately as the system
increases in size. As such, the construction of models is often omitted during
software development due to the cost involved in generating and maintaining
them [129].

An alternative to constructing models manually is to learn (i.e. reverse
engineer) them. One way to approach this is by viewing a system not via its
internal structure, but through the laws which govern its behaviour. A type
of model that is well suited for describing the behaviour of software and
hardware systems is an automaton. An automaton is a mathematical model
of computation that can represent the states of a system and transitions
between these states.

The topic of learning automata has long been researched from a the-
oretical perspective in a subfield of computer science that is known to as
grammatical inference (dating back to the seminal works by Moore [104],
Gold [63] and Angluin [11]). Only in recent years, researchers have recog-
nized the practical avail of this work [114, 117, 71, 131]. This has led to the
inception of model learning [140]. The field of model learning is concerned
with the design and application of algorithms that automatically construct
models of (software) systems from their input-output behaviour. Model
learning is a fundamental problem in software science, and research in the
area is important for driving the field forward. This thesis presents several
solutions for open problems in the field that make model learning more
practically applicable for reverse engineering software systems.

The remainder of this introduction is structured as follows. First, we
give a gentle introduction model learning for software systems in Section 1.1.
Then, we outline the contributions presented in this thesis in Section 1.2. We
conclude this introduction with an overview of related work in Section 1.3.

18
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Figure 1.1: A stack with push and pop operations. The operation that is
executed is shown at the bottom, and the element is shown at the top. The
contents of the stack are shown in the middle.

1.1 Model Learning for Software Systems

It seems that we humans have an innate ability to learn the behavior
of software and hardware systems by simply interacting with them and
observing the resulting behavior. Most of us could learn how to operate a
new TV without ever consulting the manual, for example. The field of model
learning is concerned with the design and application of algorithms that
automatically construct a model from observations of a system’s behaviour.

In this section, we explain the core concepts for model learning, and
we introduce the key algorithms. Where possible, we will illustrate these
concepts by means of the following running example.

Example 1.1. A stack is an abstract data type for storing data according
to the last-in first-out (LIFO) principle. It has two operations: push(x),
which adds an element x to the stack, and pop, which removes the most
recently added element that was not yet removed. Figure 1.1 illustrates these
operations on a stack.

1.1.1 Systems, Interfaces and Protocols

A system is defined by the Merriam-Webster dictionary as “a regularly
interacting or interdependent group of items forming a unified whole” [101].
We think of a system in the context of hardware and software, where a system
consists of several separate hardware components, computer programs and
associated configuration files that operate together to accomplish a certain
task [129, Chapter 1.1.1].
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Example 1.2. A stack can be considered as a part of a system. It consists of
an underlying data structure and a set of methods that perform its operations.
Figure 1.2 shows an implementation of a stack.

The way that a system can be interacted with is defined by its interface.
The interface describes the inputs that are understood by the system (e.g.
methods, messages) and the type of data parameters that these inputs may
be supplied with.

Example 1.3. The interface for a stack consists of the method invocations
push and pop. The push input takes a single data parameter of type elem

and does not return an output (i.e. it returns void). The pop input does
not take any parameters but instead returns a data value of type elem as
an output.

The user of a system does not have to understand how a system is
implemented. Instead, he has to understand the rules for how the system
can be interacted with. These rules are described by the protocol of a
system.

Example 1.4. The protocol of a stack can be described as follows:

If the stack is not full, the push operation can be called to add
an element to the top of the stack. If the stack is not empty, the
pop operation returns the top element of the stack.

A textual description of a protocol can ambiguous or incomplete. What
happens if the push operation is called on a full stack? And what happens
if the pop operation is called on an empty stack?

1.1.2 Models

The protocol of a system can be described in a concise, complete and
unambiguous way by a model. A model is an abstract representation of a
protocol that can help people understand it better, and that can be used to
verify some of its properties, for example. Often, however, the construction
of such models is omitted during software development due to the time
and cost involved in generating and maintaining them [129]. This is where
model learning comes in.
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type elem

class stack
data : array of type elem

top : int
capacity : int

constructor(capacity : int)

this.data ← empty array of size capacity
this.top ← 0
this.capacity ← capacity

void push(element : elem)

if this.top = this.capacity then

raise overflow error
else

this.data[this.top] ← element
this.top ← this.top + 1

elem pop()

if this.top = 0 then

raise underflow error
else

this.top ← this.top − 1
element ← this.data[this.top]
return element

Figure 1.2: Implementation of a stack
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The goal of model learning is to automatically construct a model of
the protocol of a system. Specifically, it aims to discover (some of) the
control-specific and data-dependence relationships that are present in the
system by interacting with it and/ or observing its behaviour.

Different flavours of automata are extremely well suited to describe
these relationships. Conceptually, an automaton is a transition system that
consists of a finite set of states, and a set of labeled transitions between
these states. States model system configurations, and transitions model how
states change over time. The automaton starts in an initial state and is
always in one state at a time, its current state. Transitions between states
are triggered by inputs. In addition, transitions and/ or states can produce
outputs. As such, an automaton can be used to describe the outputs that a
system produces in response to sequences of inputs.

Different types of automata exist, that can be classified according to the
following dimensions.

Determinism. An automaton is deterministic if (a) each transition is
uniquely determined by its source state and input, and (b) an input is
required for triggering a transition. An automaton is nondeterminsitic
if one of these restrictions does not apply.

Probability. An automaton is probabilistic if the outcome of a transition
can be described by a probability distribution. Typically, this distribu-
tion is determined by the current state of the automaton. Automata
that are not probabilistic are called non-probabilistic.

Output. An automaton is an acceptor if it produces a single binary output
for a sequence of inputs, indicating whether or not the sequence
describes proper behaviour of the system. A probabilistic automaton
describes the probability that a sequence of inputs occurs. This is
typically the product of probabilities on the transitions that were
triggered along the way. An automaton is a transducer if it produces
outputs based on each input, or current state.

Memory. Some flavours of automata have a finite amount of registers
in which they can store data values attached to inputs for later
comparison. Others have clocks that allow to test the lapse of time
between two events. Both of these flavours are called extended finite
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automata. In an extended finite automaton, a transition can be
expressed by an if statement consisting of a set of trigger conditions.
If the trigger conditions are all satisfied, the transition is fired, bringing
the automaton from the current state to the next state and performing
the specified data operations (e.g. storing a value or setting a clock).

In this thesis, we are mainly concerned with deterministic and non-
probabilistic automata. We distinguish between three types of problems that
can be modelled by (different flavours of) deterministic, non-probabilistic
automata:

1. Distinguish between valid and invalid sequences of inputs.

2. Describe control-specific input/output behaviour.

3. Characterize data-dependent relationships between inputs and out-
puts.

Despite their differences, model learning algorithms for these problems are
remarkably similar. Let us introduce the most well known types of automata
for each problem, the deterministic finite automaton (DFA), Mealy machine
and register automaton (RA). Most model learning algorithms, as well as
the contributions in this thesis, focus on these formalisms.

Deterministic finite automata

A DFA is an automaton that accepts (and rejects) valid (and invalid)
sequences of inputs. Its states are either accepting or rejecting, and the
transitions between states are labeled with inputs. A state can not have two
outgoing transitions with the same input. A DFA has a single distinguished
initial state in which all sequences start. Upon receiving an input, it
transitions to the corresponding next state. If the automaton is in an
accepting state when no inputs are left, then the sequence of inputs was
valid. If it ends in a rejecting state, the sequence was invalid. Therefore, a
DFA is a deterministic, non-probabilistic acceptor.

The semantics of a DFA can be described as a set of input sequences.
Therefore, they are well suited for solving the first problem of distinguishing
between valid and invalid sequences of inputs.

Formally, a DFA can be described by a tuple (I,Q, q0, δ, F ), where:
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– I is a finite set of inputs,

– Q is a finite set of states,

– q0 ∈ Q is the initial state,

– δ : Q× I → Q is a transition function from states and inputs to states,
and

– F ⊆ Q is the set of accepting states.

A DFA is deterministic and input complete by definition (of the transition
function δ). An automaton is input complete if it defines a transition for
each input in each state.

A computation of a DFA A on a sequence of inputs x = x1 . . . x|x| can
be described as a sequence of states q′0 . . . q

′
|x|, where

1. q′0 = q0, and

2. q′i = δ(q′i−1, xi) for 1 ≤ i ≤ |x|

DFA A accepts x if its computation ends in an accepting state, i.e. q′|x| ∈ F .
It is said to reject x otherwise.

Let S+ be a set of sequences that should be accepted, and let S− be
a disjoint set of sequences that should be rejected. Let S be the set that
contains all of these sequences, along with their labels, i.e. S = {(x, true) :
x ∈ S+} ∪ {(x, false) : x ∈ S−}. A DFA is consistent with S if it accepts all
sequences in S+, and rejects all sequences in S−.

Example 1.5. A DFA can be used to describe whether sequences of method
calls on a stack are error-free or not. Data parameters and outputs are of
no importance for this purpose. Figure 1.3 shows such a DFA for a stack of
size 2. Here, vertices represent states and labeled edges represent transitions.
The initial state is represented by the unlabeled edge, and accepting states
are represented by double circles. This DFA accepts all sequences of method
calls that do not yield an error, i.e. in which pop is not called on an empty
stack, and push is not called on a full stack.
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0 1 2

error

push push

poppop

pop push

push, pop

Figure 1.3: A DFA for a stack of size 2

Mealy machines

A Mealy machine is a transducer that can be used to describe the input/out-
put behaviour of systems. Upon receiving an input, it produces an output
and transitions to the next state. As such, a Mealy machine can be used to
describe traces, which are sequences of alternating inputs and outputs.

Unlike a DFA, the semantics of a Mealy machine can not be described
by a set of input sequences. Instead, it can be seen as a mapping from input
sequences to output sequences. Therefore, Mealy machines are suited for
modeling control-specific input/output behaviour of a system.

Formally, a Mealy machine can be described by a tuple (I,O,Q, q0, δ, λ),
where:

– I is a finite set of inputs,

– O is a finite set of outputs,

– Q is a finite set of states,

– q0 ∈ Q is the initial state,

– δ : Q× I → Q is a transition function that maps states and inputs to
states, and

– λ : Q× I → O is an output function that maps states and inputs to
outputs.
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Like a DFA, a Mealy machine is deterministic and input complete by
definition.

A trace can be described by a pair (x, y), where x ∈ I∗ is an input
sequence and y ∈ O∗ is an output sequence of equal length. A Mealy
machine M generates y when provided with x if there exists a sequence of
states q′0 . . . q

′
|x| such that:

1. q′0 = q0,

2. q′i = δ(q′i−1, xi) for 1 ≤ i ≤ |x|, and

3. λ(q′i−1, xi) = yi for 1 ≤ i ≤ |x|.

Let S be a set of traces, then a Mealy machine is consistent with S if for
each (x, y) in S it generates y when provided with x.

Example 1.6. A Mealy machine can be used to describe input/output
behaviour of a stack if we restrict the possible data parameters and values
to a finite set. Figure 1.4 shows such a Mealy machine for a stack of size 2
that can contain elements 0 and 1. Where applicable, the inputs for this
Mealy machine are taken to be the product of the method calls and these
elements, i.e. I = {push 0, push 1, pop}. The outputs are taken to be the
actual responses to the method calls, i.e. O = {error, 1, 0}. Unlike the DFA
of Figure 1.3, this Mealy machine can be used to model the return values of
the method calls.

Register automata

DFAs and Mealy machines typically do not scale well if the domain of inputs,
or the domain of data parameters for inputs, is large. A Mealy machine
for a stack, for example, requires a number of states that is exponential in
the size of the stack and the number of possible data parameters. This is
already evident in our running example (Figure 1.4). Depending on the data
parameters, seven different states are required for two consecutive calls of
push followed by two calls of pop, despite that the behaviour is practically
the same. The reason for this is that the semantics of the data parameters
are modeled implicitly using states and transitions; inputs with different
parameters are simply regarded as different inputs. A better solution is to
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push 1/error
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push 0/error

push 1/error

pop/0

push 0/error

push 1/error

pop/1

push 0/error

push 1/error

pop/1

Figure 1.4: A Mealy machine for a stack of size 2

use a richer formalism that can model them more efficiently and exploit the
resulting symmetries in the state space.

A register automaton is such a formalism. In this section, we describe
register automata informally. We refer to Chapter 5 for a more formal
treatment.

A register automaton can be seen as an automaton that is extended
with a set of registers that can store data parameters. The values in these
registers can then be used to express conditions over the transitions of the
automaton, or guards. If the guard is satisfied, then the transition is fired,
possibly storing the provided data parameter (this is called an assignment)
and bringing the automaton from the current location to the next. In
contrast to automata without memory, we speak of locations instead of
states, because semantically, the state of a register automaton also comprises
the values of the registers. Therefore, an infinite number of possible states
can be modeled using a finite number of locations and registers.

Different flavours of register automata exist. In Chapter 5 we introduce a
flavour that takes parameterized inputs and generates parameterized output.
We restrict both inputs and outputs to a single parameter. Parameters may
be stored in registers, and may be tested for equality with a stored value, or
for inequality to all stored values. Output values can be equal to the stored
values, or may be fresh.

Because it can describe input and output parameters, a register au-
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push(p)/ OK
r0 ← p

pop/error

push(p)/OK
r1 ← p

v = r0
pop/out(v)

push(p)/ error

v = r1
pop/out(v)

Figure 1.5: An RA for a stack of size 2

tomaton can be used to model control-specific input/output behaviour of a
system and characterize relations between inputs and outputs. The data
values are not examined to any extent, however. Only their (equality)
relation to other data values is checked.

Example 1.7. An RA can be used to fully describe the behaviour of a
stack. Figure 1.5 shows such an RA for a stack of size 2. Here, guards are
represented by expressions with the = sign, and assignments are represented
by the ← operator. The RA has 2 registers (r0 and r1) that are initially
empty.

After receiving a push method call parameterized with an element p, the
RA stores this element in its first register. A subsequent parameter for a
push call gets stored in the second register. If the RA is not in its initial
location, a pop call returns the value v of a register as a parameter to the
out output.

Unlike the Mealy machine of Figure 1.4, this RA models the relations
between input and output parameters. In addition, it represents the same
behaviour more compactly.

1.1.3 Passive and Active Learning

Model learning approaches can be distinguished based on the way that
information is presented to them. We make a distinction between passive
and active learning.

In a passive setting, the learning algorithm is given a set of observations
of the system’s behaviour. As such, a typical information source for passive
learning algorithms are logs. The problem that we are interested in is that
of finding a (non-unique) smallest automaton that is consistent with these

28



Introduction

observations. Typically, the size of an automaton is measured by the number
of states it contains.

In an active setting, the learning algorithm has the ability to interact
with the system. As such, it can choose for which sequences of inputs it
wants to observe the system’s output. The problem is to find the smallest
automaton that completely describes the system’s behaviour. This means
that the automaton is consistent with any observation of the system’s
behaviour that the algorithm has seen, or might ever see.

Each approach has its strengths and weaknesses. An obvious advantage
for passive approaches is that they do not require access to the system, but
only to a set of logs. As these logs often contain repeated observations,
passive approaches can provide statistical information about the normal
behaviour of the system. Such information can provide a basis for applica-
tions that active learning approaches are not suited for, such as anomaly
detection.

The quality of a passively learned model is limited by the diversity of the
given observations, however. If certain transitions in the automaton never
occur, it is impossible to learn them. Active learning algorithms have the
advantage that they can choose to explore these transitions. They can try
out strange corner cases that never occur in practice. This may be useful
to obtain a unique fingerprint of a system, for example. In our setting,
this could be a set of accepted sequences or traces that is unique to the
automaton that describes the system (and equivalent automata).

1.1.4 Learning in the Limit

The problem of learning automata from observations of their behaviour
has been studied from a theoretical perspective for decades. The study
was initiated by Edward Moore in 1956. In his classical paper he describes
several problems, including that of inferring the state transition function of
an unknown automaton and checking its correctness [104]. This problem
has been studied in the subsequent years by many researchers, obtaining
important theoretical results. An overview of this early work can be found
in [137, Chapter 5].

In 1967, E. Mark Gold introduced the concept of learning in the limit [63].
In this setting, the problem of learning an automaton is viewed as a game
involving a learner and a teacher. The goal for the learner is to infer the
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behaviour of an unknown automaton that is known by the teacher. Initially,
the learner only knows the set of inputs for this automaton.

The game is seen as an infinite process. At each step, the learner is
given an observation from the automaton’s behaviour by the teacher. In
response, the learner has to construct an automaton that is consistent with
the observations so far. This automaton is called the hypothesis. The
learner is said to have learned in the limit if after a finite number of steps
the subsequent hypotheses are all the same, and are all equivalent to the
teacher’s automaton.

Learnability in the limit is a property of a class of automata, and is
dependent on the presentation mode of the teacher. Presentation mode is
a concept that can be used to distinguish different settings when learning
DFAs and other flavours of automata that are used to distinguish between
valid and invalid sequences of inputs. We make a distinction between the
following presentation modes:

Text. In a text presentation, the learner is given only valid (accepted)
sequences of inputs from the teacher’s automaton.

Informant. In an informant presentation, the learner is given both valid
and invalid sequences of inputs from the teacher’s automaton, along
with a label (accept or reject).

A class of automata is said to be learnable in the limit with respect to a
presentation mode if there exists an algorithm with the following property:

Given any automaton of the class and given any total enumer-
ation of observations possible in the presentation mode, the
automaton will be identified in the limit.

Learnability in the limit is an important concept in model learning. In a
typical learning setting, a learner can not help but make mistakes sometimes.
If she knows that the target automaton is learnable in the limit, however,
she will at least be wrong only a finite number of times.

Only a small, insignificant subset of automata are learnable in the limit
from text [63]. All the classes of automata that we are concerned with in this
thesis are learnable in the limit from an informant, however. This includes
Mealy machines and other automata that can be used to the input/output
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behaviour of software and hardware systems (the information provided by
input-output traces is comparable to that of an informant). This means
that there exist algorithms that can eventually learn the correct automaton
when provided with the right set of observations. In the next section we
present a framework for these algorithms.

1.1.5 The Minimally Adequate Teacher

In 1987, Dana Angluin showed that the behaviour of an automaton can
efficiently be learned if it is presented by a so-called minimally adequate
teacher (MAT) [11]. Similarly to learnability in the limit, MAT is a theoret-
ical framework for learning automata in which the learning process can be
seen as a game between a learner and a teacher. It is a framework for active
learning, however, as the learner can ask two types of questions about the
automaton:

Membership queries. What is the automaton’s response to this sequence
of inputs?

Equivalence queries. Is the behaviour of the automaton equivalent to
that of my hypothesis? If not, the teacher provides a counterexample,
which is a sequence of inputs for which a membership query and the
hypothesis yield a different output.

The learner iteratively asks membership queries to construct an hypoth-
esis. Once she has constructed one, she presents it to the teacher in an
equivalence query. If the teacher’s response is a counterexample, the learner
uses membership queries to improve the hypothesis. This process continues
until the learner’s hypothesis is equivalent to the teacher’s automaton.

A schematic overview of the MAT framework is shown in Figure 1.6.

1.1.6 The L
∗ Algorithm

In her seminal work, Angluin introduced an efficient algorithm for the MAT
framework: the L∗ algorithm. Variants of this algorithm are still widely used
today. Let us present the variant introduced by Rivest and Shapire [119],
because it is one of the easiest to understand. This variant of the algorithm
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Figure 1.6: The minimally adequate teacher framework

is for learning DFAs, but it is applicable to other flavours of automata as
well with minor modifications.

Let us assume that the teacher knows a DFA A = (I,QA, qA, δA, FA), and
that we want to infer this DFA using the L∗ algorithm. For the purpose of
this example, let us introduce an output function λA : QA → {accept, reject}
for A, such that:

λA(q) = accept ⇐⇒ q ∈ FA for all q ∈ QA

The core data structure of the L∗ algorithm is called the observation
table. The rows and columns of an observation table are labelled by prefixes
and suffixes of input sequences respectively, and the cells are filled with
the teacher’s label in response to this input sequence (i.e. accept or reject).
Membership queries are posed to fill the table. Some example observation
tables are shown in Figure 1.7. These observation tables will be explained
later.

The rows of an observation table are split in two groups. The top part is
labeled by access sequences, and is used to identify the different states and
the transitions required to reach these states. The bottom part is labeled
by one-input extensions, and is used to map the remaining transitions. The
columns are labeled by separating sequences that are used to discriminate
rows in the top part of the table.

Formally, an observation table can be described by a triple (X,E, row),
where:

– X ⊂ I∗ is a finite, prefix-closed set of access sequences, extended to
include the one-input extensions X ∪ (X · I),
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– E ⊂ I∗ is a finite, suffix-closed set of separating sequences, and

– row : (X∪ (X ·I)→ E)→ {accept, reject} is a function mapping these
prefixes and suffixes to their output.

Initially, X and E contain the empty sequence ǫ.

A hypothesis can be constructed from the observation table if it is closed.
This is the case if for each row labeled with a one-input extension there
exists a row labeled by an access sequence that has an identical value in
every column. If there is a row labeled with a one-input extension for which
this is not the case, it is added as an access sequence. This continues until
the table is closed.

Formally, the table is closed if for all x ∈ X · I there is a y ∈ X such
that row(x) = row(y). If there is a row x ∈ X · I and there is no y ∈ X
such that row(x) = row(y), then x is added to X.

Let H = (I,QH , qH , δH , FH) be a hypothesis DFA for A, and let λH :
QH → {accept, reject} be an output function for H. H can be constructed
from a closed observation table (X,E, row) as follows:

– I is given

– QH = {row(x)|x ∈ X},

– qH = row(ǫ),

– δH(row(x), a) = row(x · a) for a ∈ I and x ∈ X, and

– λH(row(x)) = row(x)(ǫ).

This hypothesis is presented to the teacher in an equivalence query. If
the hypothesis DFA is not the same as the teacher’s, an input sequence
c is returned as a counterexample. This can be any input sequence for
which the hypothesis and the teacher’s DFA produce a different label, i.e.
λA(δA(qA, c)) 6= λH(δH(qH , c)).

Several different methods for handling counterexamples exist (for an
overview, see [131]). In the variant that we are concerned with, the coun-
terexample and all of its suffixes are added to the table as suffixes (i.e. to
E), and membership queries are used to fill the cells. This will violate the
closedness of the observation table. Therefore, at least one new row will be
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added to the top part of the table, and the next hypothesis will have at
least one extra state. Indeed, each subsequent hypothesis will have more
states than the one before.

This procedure iterates until no counterexample can be found. At this
point, H is equivalent to A.

Example 1.8. Let us assume that we do not know the sequences of method
calls to a stack of size 2 that are error free, but we have access to a teacher
that knows the DFA of Figure 1.3.

Our initial observation table is shown in Figure 1.7a. This table is not
closed, because there are no rows labeled by an access sequence that are
identical to row pop. Therefore, we add pop to the top part of the table,
and its one-input extensions to the bottom part of the table.

The resulting table is shown in Figure 1.7b. This table is closed, and
can be used to construct the hypothesis shown in Figure 1.8a.

A counterexample for this hypothesis is push pop, because the hypothesis
rejects this sequence, whilst the actual automaton accepts it. We handle the
counterexample by adding it and all of its suffixes to the table as suffixes (i.e.
to E). Membership queries are posed to fill the empty cells. The resulting
observation table is shown in Figure 1.7c.

This table is not closed, because there is no rows labeled by an access
sequence that is identical to row push. Therefore, we add push to the top
part of the table, and its one-input extensions to the bottom part of the table.

The resulting table is shown in Figure 1.7d. Again, this table is not
closed because of row push push. After handling this row we obtain the
closed observation table shown in Figure 1.7e. The corresponding hypothesis
for this table is shown in Figure 1.8b. Observe that this is the same DFA
as that of Figure 1.3. Therefore, we have successfully learned a model for
sequences of method calls to a stack of size 2 that are error free.

1.1.7 Conformance Testing

In Section 1.1.4, we have established that it is possible to learn a correct
model of a real-world system, if its behaviour can be characterized by an
automaton. Moreover, in Section 1.1.5 we have sketched a framework for
doing so, and in Section 1.1.6 we have introduced an efficient algorithm for
this framework. This framework relies on the expertise of a teacher, however,
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E
ǫ

X ǫ accept

X · I
push accept
pop reject

(a) Initial, unclosed table
(row pop)

E
ǫ

X
ǫ accept

pop reject

X · I
push accept

pop push reject
pop pop reject

(b) Table for first hypothesis

E
ǫ push pop pop

X
ǫ accept accept reject

pop reject reject reject

X · I
push accept accept accept

pop push reject reject reject
pop pop reject reject reject

(c) Unclosed table after counterexample push pop (row push)

E
ǫ push pop pop

X
ǫ accept accept reject

pop reject reject reject
push accept accept accept

X · I

pop push reject reject reject
pop pop reject reject reject

push push accept reject accept
push pop accept accept reject

(d) Unclosed table (row push push)

Figure 1.7: Observation tables for the DFA of Figure 1.3
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E
ǫ push pop pop

X

ǫ accept accept reject
pop reject reject reject
push accept accept accept

push push accept reject accept

X · I

pop push reject reject reject
pop pop reject reject reject
push pop accept accept reject

push push push reject reject reject
push push pop accept accept accept

(e) Final, closed table

Figure 1.7: Observation tables for the DFA of Figure 1.3 (cont.)

a r

push

pop
push, pop

(a) First hypothesis (see Fig. 1.7b)

a a r a a a a r a

r r r

push push

poppop

pop push

push, pop

(b) Final hypothesis (see Fig. 1.7e)

Figure 1.8: Hypotheses for the DFA of Figure 1.3. The states are labeled
with a mapping from suffixes in the observation table to the outputs for
that state (a = accept, r = reject).
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Figure 1.9: Learning in practice using conformance tesing (CT)

and in most practical scenarios such a teacher does not exist. Membership
queries can be answered by interacting with the system, but there is no
trivial way of implementing equivalence queries. Therefore, researchers were
unaware of the practical avail of this work for decades.

Only in more recent years Peled et al. made the observation that equiv-
alence queries can be approximated using a technique called conformance
testing [114]. In the context of model learning, the goal of conformance
testing is to establish an equivalence relation between the current hypothesis
and the system. This is done by posing a set of so-called test queries to the
system. In a test query, similarly to a membership query, the learner asks
for the system’s response to a sequence of inputs. If the system’s response
is the same as the predicted response (by the hypothesis) for all test queries,
then the hypothesis is assumed to be equivalent to the target. Otherwise,
if there is a test for which the target and the hypothesis produce different
outputs, then this input sequence can be used as a counterexample.

A schematic overview of the MAT framework in practice (using confor-
mance testing) is shown in Figure 1.9.

One of the main advantages of using conformance testing is that it
can distinguish the hypothesis from all other automata of size at most m,
where m is a user-selected bound on the number of states. This means
that if we know a bound m for the size of the system we learn, we are
guaranteed to find a counterexample if there exists one. For an overview of
some m-complete conformance testing methods, we refer to [47].

Complete conformance testing methods require the following information:

1. A set of access sequences, possibly extended with their one-input
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extensions to obtain a transition cover set.

2. A traversal set that contains all input sequences of length l = m−n+1,
where m is the (typically unknown) number of states of the system,
and n is the number of states of our hypothesis.

3. A means of pairwise distinguishing all states of our hypothesis, such
as set of separating sequences for all pairs of states.

A test suite is then constructed by taking the product of these sets, or
subsets of these sets.

The difference between various complete conformance testing methods
is how states are distinguished (i.e. the last part). Finding such separating
sequences for all pairs of states of an automaton is a classic problem in
automata theory. When we are learning a system using the L∗ algorithm,
we can use the suffixes of the observation table for this purpose.

Example 1.9. Table 1.1 shows the access sequences, traversal set and
separating sequences for the hypothesis DFA of Figure 1.8. A 4-complete
test set can be obtained from these sets by taking the product of these sets.
As such, the complete test set contains 26 input sequences (if we do not
remove duplicates). In comparison, a 3-complete test set would have only
10 input sequences, while a 5-complete test set would have 58. Indeed, the
size of a complete test set grows exponentially.

1.2 Contributions

The remaining chapters of this thesis contain the research papers that the
author has contributed to. Each of these chapters builds upon one or more
of the concepts that have been introduced in this introduction, and can
be read independently of the others. The naming and notation of these
concepts might differ, however, as the papers were intended for different
audiences. In this section we outline the contributions of each of these
chapters.

Chapter 2: Minimal Separating Sequences for All Pairs of States

Finding minimal separating sequences for all pairs of states of an automa-
ton is a classic problem in automata theory. As we have explained in
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Table 1.1: A 4-complete test set for the hypothesis of Figure 1.8

access sequences traversal set separating sequences

ǫ
pop

ǫ

ǫ

push

pop

push push

push pop

push push push

push push pop

push pop push

push pop pop

pop push push

pop push pop

pop pop push

pop pop pop

Section 1.1.7, these sequences play a central role in conformance testing
methods. One way of obtaining separating sequences is through partition
refinement. In 1956, Edward Moore already outlined a partition refinement
algorithm that constructs a set of minimal separating sequences in O(mn)
time, where m is the number of transitions and n is the number of states of
the automaton [104].

In this chapter, we present an improved algorithm for obtaining minimal
separating sequences based on the famous partition refinement algorithm
of Hopcroft [72] that runs in O(m log n) time. The theoretical complexity
of our algorithm is empirically verified and compared to the traditional
algorithm. We found our algorithm to be faster in practice.

This chapter is based on the following publication:

R. Smetsers, J. Moerman, and D. Jansen. Minimal separating
sequences for all pairs of states. In Proceedings LATA, volume
9618 of LNCS, pages 181–193. Springer, 2016.
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The author has presented this work at the 10th International Conference
on Language and Automata Theory and Applications (LATA) in Prague,
Czech Republic on Tuesday, March 15 2016.

Chapter 3: Bigger is Not Always Better

The L∗ algorithm is characterized by its iterative construction of hypotheses.
Each subsequent hypothesis has more states than the previous one. In this
chapter, we show that a bigger model is not always better. We show that
the minimal length of a counterexample that distinguishes a hypothesis
from the system may decrease, and we present a modification of the L∗

algorithm that ensures that this is not the case. As a result, the distance
to the system never increases in a corresponding ultrametric. Preliminary
experimental evidence suggests that our algorithm speeds up learning in
practical applications by reducing the number of equivalence queries.

This chapter is based on the following publication:

R. Smetsers, M. Volpato, F. Vaandrager, and S. Verwer. Bigger
is not always better: on the quality of hypotheses in active
automata learning. In Proceedings ICGI, volume 34 of JMLR:
W&CP, pages 167–181, 2014.

The author has presented this work at the 12th International Conference
on Grammatical Inference (ICGI) in Kyoto, Japan on Friday, September 19
2014.

Chapter 4: Enhancing Automata Learning by Log-Based Metrics

In Chapter 3 we introduce the relevance of ultrametrics in the context of
model learning presented in Chapter 3. In this chapter we study a general
class of distance metrics for deterministic Mealy machines. Our metrics are
induced by weight functions that specify the relative importance of input
sequences. By choosing an appropriate weight function we may fine-tune a
metric so that it captures some intuitive notion of quality for hypotheses.

In particular, we present a metric that is based on the minimal number
of inputs that must be provided to obtain a counterexample, starting from
states that can be reached by a given set of logs.
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For any weight function, we may boost the performance of existing
model learning algorithms by introducing an extra component, which we
call the Comparator. Preliminary experiments show that the Comparator
yields a significant reduction of the number of inputs required to learn
correct models. Moreover, by generalising the result of Chapter 3, we show
that the quality of hypotheses that are generated by the Comparator never
decreases.

This chapter is based on the following publication:

P. van den Bos, R. Smetsers, and F. Vaandrager. Enhancing
automata learning by log-based metrics. In Proceedings IFM,
volume 9681 of LNCS, pages 295–310. Springer, 2016.

Petra van den Bos has presented this work at the 12th International Con-
ference on Integrated Formal Methods in Reykjavik, Iceland on Thursday,
June 2 2016.

Chapter 5: Model Learning as an SMT Problem

In this chapter we explore an approach to model learning that is based on
using satisfiability modulo theories (SMT) solvers. SMT is the problem
of deciding if there exists an assignment to a logic formula that makes
it true. We explain how the different automata formalisms introduced in
Section 1.1.2 and observations of their behaviour can be encoded as logic
formulas. An SMT solver is then tasked with finding an assignment for such
a formula, from which we can extract an automaton of minimal size.

We provide an implementation of this approach which we use to conduct
experiments on a series of benchmarks. These experiments address both the
scalability of the approach and its performance relative to existing active
learning tools.

This chapter is based on the following publication:

R. Smetsers, Paul Fiterău-Broştean, and F. Vaandrager. Model
learning as a satisfiability modulo theories problem. In Proceed-
ings LATA, volume 10792 of LNCS, in press. Springer, 2018.
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Frits Vaandrager will present this work at the 12th International Conference
on Language and Automata Theory and Applications in Bar-Ilan, Israel
between April 9 and 11, 2018.

The author has presented a preliminary version of this chapter at the 1st
Workshop on Learning and Automata (LearnAut) in Reykjavik, Iceland on
Monday, June 19 2017. This version is available on arXiv (arXiv:1705.10639).

Chapter 6: Complementing Model Learning with Fuzzing

An ongoing challenge for learning algorithms formulated in the MAT frame-
work is to efficiently implement equivalence queries. The typical approach of
using conformance testing for this purpose (as outlined in Section 1.1.7) has
some notable drawbacks. First, it is hard (or even impossible) in practice to
determine an upper-bound on the number of states of the system’s automa-
ton. Second, it is known that conformance testing becomes exponentially
more expensive for higher values of this bound. As such, the learner might
incorrectly assume that its hypothesis is correct.

In this chapter, we compare and combine conformance testing and
mutation-based fuzzing methods for obtaining counterexamples. In essence,
fuzzers are programs that apply a test (i.e. input sequence) to a target
program, and then iteratively modify this sequence to monitor whether or
not something interesting happens (e.g. crash, different output, increased
code coverage).

We have used this approach in the Rigorous Examination of Reactive
Systems (RERS) challenge of 2016 with good results, winning most of the
competition’s categories. This leads us to believe that testing and fuzzing
are orthogonal and complementary approaches in the context of model
learning. In this chapter, we therefore describe our experimental setup for
RERS in detail and we describe possible ways of combining learning and
fuzzing.

The author has presented this chapter at the Rigorous Examination
of Reactive Systems workshop at the 7th International Symposium on
Leveraging Applications of Formal Methods, Verification and Validation
on Sunday, October 9 2016. The paper is currently available on aXiv
(arXiv:1611.02429), and has been invited for a special issue on RERS in the
International Journal on Software Tools for Technology Transfer (STTT).
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Chapter 7: Protocol Message Format Inference and its Applica-

tions in Security

A promising application of model learning is in the area of protocol inference.
Protocol inference refers to some automated form of reverse engineering
the workings of a communication protocol. This can be useful for security
analysis in different ways. It can be used to reverse-engineer unknown
protocols, to detect security flaws in implementations of known protocols,
to fingerprint implementations, or to detect anomalies in protocol usage, for
example.

A prerequisite for using model learning in this area is that the protocol’s
so-called message format (i.e. input format) is known. In this chapter, we
give an overview of tools and techniques for inferring the protocol message
format, and their applications in security. It was observed by Bossert and
Guilhéry that there is a huge difference between the academic and the
applied world in the field of protocol inference for security applications [24].
This chapter aims to bridge that gap, and propagate further research in the
area.

This chapter has not been published or presented anywhere.

1.3 Related Work

Before we give a detailed outline of the related work for the contributions
of this thesis, let us refer to some excellent publications that give a more
complete overview of the different approaches for model learning. First,
Cook and Wolf present a general framework for passive learning and give
an excellent introduction to early techniques for passively learning the
behaviour of software systems [41]. Second, Vaandrager gives a concise
overview of the key advancements and current challenges in active model
learning [140]. Finally, De la Higuera has written a complete reference work
for the different algorithms that have been proposed for learning automata
(and other formalisms), independent of the application area [71].
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1.3.1 Passive Learning Algorithms

The problem of learning a minimal size automaton model from a set of
observations can be very hard. It is the optimization variant of the problem
of finding a consistent automaton of a fixed size, which has been shown to be
NP -complete [64], and in-approximable [116]. Therefore, most algorithms
for passive model learning are based on a greedy technique known as state
merging. State merging algorithms start with a tree-shaped automaton that
exactly encodes the set of observations. The algorithm then iterates through
the following steps:

Select two states q, q′ with similar and consistent futures.

Merge q and q′: all transitions from (resp. to) q′ are added as transitions
from (resp. to) q, and q′ is removed.

Determinize the automaton: iteratively merge all target states of transi-
tions from merged states.

This process continues for as long as valid merges are possible.
Merge validity can be defined in different ways, and this is where the

many different state merging algorithms differ. The following algorithms
have had the biggest impact on the field:

k-tails is a variant of state merging that computes the consistency of futures
up to a given length k [20].

RPNI only disallows merges that combine an accepting state with a re-
jecting state, either directly or during determinization [112].

RPNI2 is an incremental version of RPNI that can be used in active
learning frameworks [53].

EDSM does the same as RPNI, but in addition prioritizes merges for more
similar state pairs [90].

ALERGIA only merges states with similar outing transition frequencies,
and learns a probabilistic automaton [31].

MDI also learns a probabilistic automaton, but uses Kullback-Leibler
divergence to compute state similarity and consistency [134].

44



Introduction

EXBAR performs an iterative deepening search around EDSM [89].

BEAM uses a search method guided by the information-theoretic Occam’s
razor principle to infer probabilistic automata [118].

DFASAT first performs merges that combine the most accepting states,
and provides a search routine using a satisfiability solver [69].

State merging algorithms are typically designed to learn in the limit
from polynomial time and data [112], and have formed the basis for the
winning contributions to early model learning competitions: Abbadingo in
1998 [90] and STAMINA in 2010 [145].

A major downside of state merging is that, if errors are made early
on in the state merging process, they are compounded by future merges.
As such, the accuracy of the final result is highly dependent on the set of
observations that is available.

State merging is typically used in the context of DFA or probabilistic
automata, but has been applied to other formalisms as well, such as Moore
machines [61] and timed automata [143].

The alternative to state merging is to express the problem of learning a
minimal consistent automaton from observations as a constraint satisfaction
problem (CSP), and use a constraint solver to find a solution. The approach
that we take in Chapter 5 (satisfiability modulo theories) can be thought of
as such a constraint satisfaction problem.

Coste and Nicholas were the first to recognize that the problem of learning
a DFA from observations can be reduced to a graph coloring problem [42].
In [68, 69], Heule and Verwer show that this reduction can be encoded
in propositional logic. Satisfiability, or SAT, is the constraint satisfaction
problem of deciding if there exists an assignment to a propositional logic
formula that makes it true. As such, the tool of Heule and Verwer uses a
SAT solver to find a minimal consistent automaton.

The encoding of Heule and Verwer was adapted for learning extended
finite automata from test scenarios by Ulyantsev et al. [139]. Test scenarios
are sequences of elements that consist of an input, a guard condition over
this input and one or more outputs. As such, test scenarios contain more
information than the (parameterized) input sequences that we learn from
in Chapter 5.
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For the problem of learning minimal consistent automata from observa-
tions, an encoding in propositional logic might not be the right choice, as the
encoding might become complex very quickly, and therefore cumbersome to
maintain and adapt. A better alternative is to express it in a richer logic.
This was recognised by Bruynooghe et al. [28], who express the encoding by
Heule and Verwer in a predicate logic, and by Chivilikhin et al. [38], who
express the aforementioned problem of learning extended finite automata
from test scenarios in a higher level CSP language.

1.3.2 Passive Learning Applications

Several studies have applied passive learning to discover some of the temporal
and data dependence relationships of a software system’s protocol.

Ammons et al. have applied this technique for X11 programs, for exam-
ple [10]. Their input sequences consist of function calls and their attributes
(i.e. parameters). Because the interface of such a program is typically
open-source and well documented, no message format reverse engineering is
applied here. Instead, method calls are instrumented, and several preprocess-
ing steps are taken to make the domain of the message attributes finite and
group similar sequences. The resulting input sequences are called scenarios.
These scenarios are in turn used to learn a probabilistic automaton using
the BEAM algorithm [118].

The approach described above was applied with mixed success to a
handful of X11 programs. Scenarios were obtained from the X library
calls and callbacks from and to these programs. These scenarios were then
verified to comply to the Inter-Client Conventions Manual (ICCM), which
is a standard for interoperability between X Window System clients of the
same X server. Out of the 16 programs analysed, five violated a rule in the
ICCM. Two of these violations to the standard were caused by bugs in the
implementation.

In 2011, Lee et al. observed that sequences of method calls observed
from a system often deal with multiple independent receivers [91]. One such
example is an sequence of interleaved calls to a library from two concurrent
threads in a program. It is hard to learn something useful from interleaved
sequences, because there are many interleavings possible. Moreover, there
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might be no semantic relation between the different recipients. The authors
observe that different recipients can be distinguished based on the values of
certain message parameters. They propose jMiner, an effective and general-
purpose passive learning approach for inferring automata from interleaved
message traces.

jMiner works by first partitioning the sequence in a set of independent
ones, based on the parameters of the messages. For this, it uses a message
format specification that it infers from the source code, package name, and
unit test cases. The independent sessions are then used to learn a FSM
using the same off-the-shelf passive learner as Ammons et al. used. The
authors have successfully applied jMiner to a set of interleaved message
sequences from four packages of OpenJDK.

Yang et al. have applied passive learning for dynamically inferring func-
tional specifications from method calls [151, 152]. These specifications can
be seen as invariants for how the interaction with the interface behaves.
A functional specification for a mutex, for example, might be that “mu-
tex.acquire(X) is always followed by mutex.release(X)”. The inference engine
of their Perracotta tool uses heuristics to generalize these rules into
regular expressions. These regular expressions can be represented by a DFA.

Although the previously described tools can often be used to accurately
describe behavior of a specific system, they sometimes fail to capture
crucial dependencies between input parameters. As we have outlined in this
introduction, automata that model the control flow of a system typically only
provide a partial view of that protocol’s behaviour. In practice, behaviour is
often the result of interplay between the input sequences (as described by the
automaton), and the values of the parameters for these messages. Therefore,
most recent work focusses on learning both these facets of behaviour.

Indeed, these facets require the automaton to operate on an underlying
memory, and have its transitions annotated by guards on the memory. We
have already seen a formalism that can do this: the register automaton.

Walkinshaw et al. have recently proposed a passive technique for learning
a flavour of register automata from method calls [146]. The technique works
by combining previously mentioned passive learning techniques—which infer
the control flow from inputs—with a component that relates the input
sequences to the data state of the system. The latter process is known
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in general as data classifier inference, and refers to a range of techniques
that that map possible values for parameters to a particular class. In the
case of model learning, we are interested in the next input that will follow.
Therefore this is the class that the authors try to predict in their application
of data classifier inference.

There exist a huge number of classifiers that can solve this task. In
their experiments, Walkinshaw et al. observe that the choice of classifier
ultimately depends on the application area and the context in which the
automaton is used. Therefore, the authors have made an effort to enable
the use of an arbitrary classifier. In their reference implementation, called
Mint, they use the (fifty or so) classifiers that are in the WEKA library [66].

The approach described above was applied with mixed success to a
communications protocol that allocates frequencies to mobile phones, an
implementation of a ‘resource locker’, and three Java SDK classes. The
authors have identified two characteristics for an ideal application scenario
of the technique.

– From a data dependency point of view, an input should contain only
parameters that have a direct bearing on the subsequent behaviour,
and the number of these parameters would ideally be low for each
input.

– From a control flow point of view, the number of elements that could
possibly succeed a given input should ideally be low (to prevent incor-
rect data-based classification), however all of these possible sequences
should be represented in the set of observations.

1.3.3 Active Learning Algorithms

In Angluin’s L∗ algorithm an observation table typically contains a lot of
duplicate information. As a result, it can grow in size quickly. In recent
years, many improvements and variations on Angluin’s original algorithm
have been presented. We refer to Balcazar et al. for an overview of early
work [15], and to Steffen et al. for a more recent self-contained description
and overview [131]. Optimisations for large alphabets are discussed by Irfan
et al. [81], and practical optimisations that improve both the number of
queries and time required to answer them are given by Bauer et al. [16] and

48



Introduction

Irfan et al. [80]. Adaptations of the algorithm that handle counterexamples
differently are given by Rivest and Shapire [120] and Shahbaz and Groz [124].

The culmination of this development is the TTT algorithm by Isberner
et al. [83]. In comparison to the earlier algorithms, the TTT algorithm
is particularly well suited for handling long counterexamples. It does so
by maintaining a so-called spanning tree and a so-called discrimination
tree. The spanning tree keeps track of the message prefixes that lead to
unique states in the hypothesis. These states of the hypothesis correspond
to leaves of the discrimination tree, whose inner nodes are labelled with
distinguishing suffixes, and whose transitions are labelled with outputs. For
a node labelled with suffix x, the subtree reached by transition labelled with
output o contains the states for which o is the last output in response to x.
Hence, for every pair of states, a discriminator can be obtained by looking
at the label of the least common ancestor of the corresponding leaves. This
can be used to determine the transitions in the hypothesis.

The way that the TTT algorithm handles counterexamples is based on
the observation by Rivest and Shapire that a counterexample can be decom-
posed to point out the transition in the hypothesis that is incorrect [120].
In the discrimination tree, the leaf corresponding to the source state of this
transition is replaced with an inner node that is temporarily labelled by a
suffix from the counterexample. A technique known as discriminator final-
ization is then applied to construct the subtree of this newly created inner
node, and possibly obtain a shorter suffix. For a more in-depth description
of discriminator finalization and the TTT algorithm in general, we refer
to [83].

The aforementioned approaches can be used for learning the control flow
of a system. In some situations, however, it might be useful to learn the data
flow of the system as well. In these situations, inputs are typically drawn
from an infinite domain and automata frameworks over infinite alphabets
(such as register automata) become natural models. In recent years, several
different approaches for learning over infinite (or large) alphabets have been
developed.

Two approaches have been proposed for learning register automata.
The first approach aims to infer a so-called Nerode equivalence. Such an
equivalence provides a necessary and sufficient condition for distinguishing
the automaton’s states. This approach has been implemented as part of the
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LearnLib tool [76], and its RALib extension [33]. For an overview of this
line of work we refer to [32].

The second approach uses counterexample-guided abstraction refine-
ment to automatically construct an appropriate mapper. A mapper is a
component in the learning process that abstracts a large number of possible
(parameterized) inputs into a limited number of abstract ones in a history-
dependent manner, and vice versa [5]. The concept of a mapper has been
implemented in the Tomte tool [3]. For an overview of this line of work we
refer to [3] and [1].

Moerman et al. present an abstract approach for learning nominal
automata, a formalism that is similar to register automata [103]. Nominal
automata can be used to represent nominal sets, which are infinite sets
equipped with symmetries. The authors present a generalization of the
L∗ algorithm that follows a generic pattern for transporting computation
models from (traditional) finite sets to nominal sets, which leads to simple
correctness proofs and opens the door to further generalizations. In addition,
they present a variant for nondeterministic nominal automata, which are
strictly more expressive.

Mens et al. take a more direct approach to the problem of learning
over large or infinite alphabets [100]. They use an automaton framework
known as symbolic automata, in which transitions are labeled by elements
of a finite partition of the set of inputs. This way, symbolic automata can
represent large alphabets much more succinctly than standard automata
without memory, such as a DFA. The size of a DFA grows linearly with
the size of the set of inputs and so does the complexity of active learning
algorithms such as L∗. The authors present a variant of L∗ for symbolic
automata whose complexity is independent of the set of inputs.

Approaches that combine passive and active learning techniques are of
particular interest to us, as Chapter 4 and Chapter 5 touch upon this subject.
Walkinshaw et al. present such a hybrid approach for learning the behaviour
of software systems [144]. They present an active learning framework that is
similar to the one that we introduce in Chapter 5, in which no membership
queries are used. Instead it iteratively runs a partial conformance testing
method and a state merging algorithm that has been shown to be effective
for sparse samples of observations (EDSM, see Section 1.3.1 and [90]).
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A major strength of such an approach is that it does not rely on
systematic (complete) exploration of the state space. As such, it can arrive
at a reasonable hypothesis after a relatively small number of observations.

A downside of the approach is that, if errors are made early on in the
state-merging process, they are compounded by future merges. As such,
the accuracy of the final result is highly dependent on the testing technique
that is used, and relies on a solid set of input sequences that prevents
invalid merges from happening. The approach that we present in Chapter 5
overcomes this problem because it does not propagate errors that it makes
when there are insufficient observations available.

1.3.4 Active Learning Applications

Active model learning has been successfully applied for discovering the
behaviour of software systems on numerous occasions. In this section, we
give an overview of some of the most notable studies.

In 2010, Cho et al. were the first to demonstrate how active model
learning can be used for analysing botnets [40]. They used an adaptation of
the L∗ algorithm for learning the MegaD Command and Control (C&C)
protocol. MegaD is a botnet that at its prime accounted for 32% of global
spam [130]. In their analysis of the protocol they show how to identify
its weakest links and design flaws. Besides, they were able to prove the
existence of unobservable back-channels between botnet servers, without
having access to these servers.

By leveraging properties specific to most network protocols, the heuristics
introduced by Cho et al. allow for learning state machines in a realistic
high-latency network setting. Compared to the original L∗ algorithm, the
time to learn the MegaD C&C protocol was reduced from days to hours
with these heuristics. Primarily, the authors observed that communication
protocols typically only accept a subset of all inputs at most times. This
allowed them to greatly reduce the number of queries asked in the (active)
learning process. Also, they had great success using parallel processing and
caching of queries.

Also in 2010, Aarts et al. were the first to apply model learning for the
analysis of smart cards (i.e. a card that has a chip) [7]. They used the L∗

algorithm for analysis of electronic passports.

51



Chapter 1

Later, they have used a similar approach for learning models of bank
cards that support the EMV protocol [2]. Although they did not find any
flaws in these cards, their analysis does reveal differences in the implemen-
tation between cards that are supposed to implement the same protocol.

To be able to analyse the e.dentifier2, a USB connected bank card
reader, Chalupar et al. make use of a Lego robot in order to perform
physical interactions with the device in the learning process [36]. As the
USB implementation in the original system does not always provide reliable
results, they make use of majority voting to determine the output.

Fiterău-Broştean et al. apply model learning with mappers to the TCP
network protocol [55, 54]. They show that different implementations of
TCP in Windows 8 and Ubuntu induce different models, which allows for
fingerprinting of these implementations. Inspection of the learned models
reveals that both Windows 8 and Ubuntu violate RFC 793 – the standard
that describes the TCP protocol.

De Ruiter et al. use model learning in their analysis of nine different
TLS implementations [122]. They found security related flaws in three of
these implementations.

Fiterău-Broştean et al. apply model learning on three SSH implementa-
tions to infer automata models, and then use model checking to verify that
these models satisfy basic security properties and conform to the RFCs [56].
Their analysis showed that all tested SSH server models satisfy the stated
security properties. They did uncovered several violations of the standard,
however, which may allow for fingerprinting of the different implementations.

Model learning has been applied to industrial control software on several
occasions.

Smeenk et al. use model learning to validate the correctness of a software
component that is used in printers and copiers of Océ [127]. Their main
challenge was that traditional conformance testing methods were unable to
find counterexamples for some hypotheses. They therefore implemented an
extension of the algorithm of Lee and Yannakakis for computing an adaptive
distinguishing sequence [92]. Even when an adaptive distinguishing sequence
does not exist, Lee and Yannakakis’ algorithm produces an adaptive sequence
that ‘almost’ identifies states. In combination with a standard algorithm for
computing separating sequences for pairs of states, the authors managed to
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verify states with on average 3 test queries. Altogether, they needed around
60 million queries to learn a model of the ESM with 77 inputs and 3.410
states.

Schuts et al. use model learning and model checking to compare a
legacy implementation to a new implementation of a component at Philips
Healthcare [123]. Instead of comparing the two implementations via their
internal structure, they check the equivalence of their behaviour. First they
use model learning to construct a model for both the legacy implementation
and the new one. Then, they use model checking to see if the learned
models are equivalent. This way, they found issues in both the legacy
implementation and the new one. After solving these issues, model learning
helped to increase confidence that the two implementations behave the
same.
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Minimal Separating

Sequences for All Pairs of

States

Rick Smetsers, Joshua Moerman, and David N. Jansen

Abstract

Finding minimal separating sequences for all pairs of inequiv-
alent states in a finite state machine is a classic problem in
automata theory. Sets of minimal separating sequences, for in-
stance, play a central role in many conformance testing methods.
Moore has already outlined a partition refinement algorithm
that constructs such a set of sequences in O(mn) time, where
m is the number of transitions and n is the number of states.
In this chapter, we present an improved algorithm based on
the minimization algorithm of Hopcroft that runs in O(m log n)
time. The efficiency of our algorithm is empirically verified and
compared to the traditional algorithm.
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2.1 Introduction

In diverse areas of computer science and engineering, systems can be mod-
elled by finite state machines (FSMs). One of the cornerstones of automata
theory is minimization of such machines (and many variation thereof). In
this process one obtains an equivalent minimal FSM, where states are dif-
ferent if and only if they have different behaviour. The first to develop
an algorithm for minimization was Moore [104]. His algorithm has a time
complexity of O(mn), where m is the number of transitions, and n is the
number of states of the FSM. Later, Hopcroft improved this bound to
O(m log n) [72].

Minimization algorithms can be used as a framework for deriving a
set of separating sequences that show why states are inequivalent. The
separating sequences in Moore’s framework are of minimal length [62].
Obtaining minimal separating sequences in Hopcroft’s framework, however,
is a non-trivial task. In this chapter, we present an algorithm for finding
such minimal separating sequences for all pairs of inequivalent states of a
FSM in O(m log n) time.

Coincidentally, Bonchi and Pous recently introduced a new algorithm
for the equally fundamental problem of proving equivalence of states in
non-deterministic automata [22]. As both their and our work demonstrate,
even classical problems in automata theory can still offer surprising research
opportunities. Moreover, new ideas for well-studied problems may lead to
algorithmic improvements that are of practical importance in a variety of
applications.

One such application for our work is in conformance testing. Here, the
goal is to test if a black box implementation of a system is functioning as
described by a given FSM. It consists of applying sequences of inputs to
the implementation, and comparing the output of the system to the output
prescribed by the FSM. Minimal separating sequences are used in many test
generation methods [47]. Therefore, our algorithm can be used to improve
these methods.
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2.2 Preliminaries

We define a FSM as a Mealy machine M = (I,O, S, δ, λ), where I,O and S
are finite sets of inputs, outputs and states respectively, δ : S × I → S is a
transition function and λ : S × I → O is an output function. The functions
δ and λ are naturally extended to δ : S × I∗ → S and λ : S × I∗ → O∗.
Moreover, given a set of states S′ ⊆ S and a sequence x ∈ I∗, we define
δ(S′, x) = {δ(s, x)|s ∈ S′} and λ(S′, x) = {λ(s, x)|s ∈ S′}. The inverse
transition function δ−1 : S × I → P(S) is defined as δ−1(s, a) = {t ∈
S|δ(t, a) = s}.

Observe that Mealy machines are deterministic and input-enabled (i.e.
complete) by definition. The initial state is not specified because it is of
no importance in what follows. For the remainder of this chapter we fix a
machine M = (I,O, S, δ, λ). We use n to denote its number of states, i.e.
n = |S|, and m to denote its number of transitions, i.e. m = |S| · |I|.

Definition 2.1. States s and t are equivalent if λ(s, x) = λ(t, x) for all x
in I∗.

We are interested in the case where s and t are not equivalent, i.e.
inequivalent. If all pairs of distinct states of a machine M are inequivalent,
then M is minimal. An example of a minimal FSM is given in Figure 2.1.

Definition 2.2. A separating sequence for states s and t in s is a sequence
x ∈ i∗ such that λ(s, x) 6= λ(t, x). We say x is minimal if |y| ≥ |x| for all
separating sequences y for s and t.

A separating sequence always exists if two states are inequivalent, and
there might be multiple minimal separating sequences. Our goal is to obtain
minimal separating sequences for all pairs of inequivalent states of M .

2.2.1 Partition Refinement

In this section we will discuss the basics of minimization. Both Moore’s
algorithm and Hopcroft’s algorithm work by means of partition refinement.
A similar treatment (for DFAs) is given in [65].

A partition P of S is a set of pairwise disjoint non-empty subsets of
S whose union is exactly S. Elements in P are called blocks. If P and P ′
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are partitions of S, then P ′ is a refinement of P if every block of P ′ is
contained in a block of P . A partition refinement algorithm constructs the
finest partition under some constraint. In our context the constraint is that
equivalent states belong to the same block.

Definition 2.3. A partition is valid if equivalent states are in the same
block.

Partition refinement algorithms for FSMs start with the trivial partition
P = {S}, and iteratively refine P until it is the finest valid partition (where
all states in a block are equivalent). The blocks of such a complete partition
form the states of the minimized FSM, whose transition and output functions
are well-defined because states in the same block are equivalent.

Let B be a block and a be an input. There are two possible reasons to
split B (and hence refine the partition). First, we can split B with respect
to output after a if the set λ(B, a) contains more than one output. Second,
we can split B with respect to the state after a if there is no single block B′

containing the set δ(B, a). In both cases it is obvious what the new blocks
are: in the first case each output in λ(B, a) defines a new block, in the
second case each block containing a state in δ(B, a) defines a new block.
Both types of refinement preserve validity.

Partition refinement algorithms for FSMs first perform splits w.r.t.
output, until there are no such splits to be performed. This is precisely the
case when the partition is acceptable.

Definition 2.4. A partition is acceptable if for all pairs s, t of states
contained in the same block and for all inputs a in I, λ(s, a) = λ(t, a).

Any refinement of an acceptable partition is again acceptable. The
algorithm continues performing splits w.r.t. state, until no such splits can
be performed. This is exactly the case when the partition is stable.

Definition 2.5. A partition is stable if it is acceptable and for any input a
in I and states s and t that are in the same block, states δ(s, a) and δ(t, a)
are also in the same block.

Since an FSM has only finitely many states, partition refinement will
terminate. The output is the finest valid partition which is acceptable and
stable. For a more formal treatment on partition refinement we refer to [65].
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2.2.2 Splitting Trees and Refinable Partitions

Both types of splits described above can be used to construct a separating
sequence for the states that are split. In a split w.r.t. the output after a, this
sequence is simply a. In a split w.r.t. the state after a, the sequence starts
with an a and continues with the separating sequence for states in δ(B, a).
In order to systematically keep track of this information, we maintain a
splitting tree. The splitting tree was introduced by Lee and Yannakakis [92]
as a data structure for maintaining the operational history of a partition
refinement algorithm.

Definition 2.6. A splitting tree for M is a rooted tree T with a finite set
of nodes with the following properties:

– Each node u in T is labelled by a subset of S, denoted l(u).

– The root is labelled by S.

– For each inner node u, l(u) is partitioned by the labels of its children.

– Each inner node u is associated with a sequence σ(u) that separates
states contained in different children of u.

We use C(u) to denote the set of children of a node u. The lowest
common ancestor (lca) for a set S′ ⊆ S is the node u such that S′ ⊆ l(u)
and S′ 6⊆ l(v) for all v ∈ C(u) and is denoted by lca(S′). For a pair of states
s and t we use the shorthand lca(s, t) for lca({s, t}).

The labels l(u) can be stored as a refinable partition data structure [141].
This is an array containing a permutation of the states, ordered so that
states in the same block are adjacent. The label l(u) of a node then can
be indicated by a slice of this array. If node u is split, some states in the
slice l(u) may be moved to create the labels of its children, but this will not
change the set l(u).

A splitting tree T can be used to record the history of a partition
refinement algorithm because at any time the leaves of T define a partition
on S, denoted P (T ). We say a splitting tree T is valid (resp. acceptable,
stable, complete) if P (T ) is as such. A leaf can be expanded in one of two
ways, corresponding to the two ways a block can be split. Given a leaf u
and its block B = l(u) we define the following two splits:
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split-output. Suppose there is an input a such that B can be split w.r.t
output after a. Then we set σ(u) = a, and we create a node for each
subset of B that produces the same output x on a. These nodes are
set to be children of u.

split-state. Suppose there is an input a such that B can be split w.r.t.
the state after a. Then instead of splitting B as described before, we
proceed as follows. First, we locate the node v = lca(δ(B, a)). Since
v cannot be a leaf, it has at least two children whose labels contain
elements of δ(B, a). We can use this information to expand the tree
as follows. For each node w in C(v) we create a child of u labelled
{s ∈ B|δ(s, a) ∈ l(w)} if the label contains at least one state. Finally,
we set σ(u) = aσ(v).

A straight-forward adaptation of partition refinement for constructing a
stable splitting tree for M is shown in Algorithm 1. The termination and
the correctness of the algorithm outlined in Section 2.2.1 are preserved. It
follows directly that states are equivalent if and only if they are in the same
label of a leaf node.

Algorithm 1: Constructing a stable splitting tree

Input: A FSM M
Result: A valid and stable splitting tree T
initialize T to be a tree with a single node labeled S
repeat

find a ∈ I, B ∈ P (T ) such that we can split B w.r.t. output λ(·, a)
expand the u ∈ T with l(u) = B as described in (split-output)

until P (T ) is acceptable
repeat

find a ∈ I, B ∈ P (T ) such that we can split B w.r.t. state δ(·, a)
expand the u ∈ T with l(u) = B as described in (split-state)

until P (T ) is stable

Example 2.1. Figure 2.1 shows a FSM and a complete splitting tree for
it. This tree is constructed by Algorithm 1 as follows. First, the root node
is labelled by {s0, . . . , s5}. The even and uneven states produce different
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Figure 2.1: A FSM (a) and a complete splitting tree for it (b)

outputs after a, hence the root node is split. Then we note that s4 produces
a different output after b than s0 and s2, so {s0, s2, s4} is split as well. At
this point T is acceptable: no more leaves can be split w.r.t. output. Now,
the states δ({s1, s3, s5}, a) are contained in different leaves of T . Therefore,
{s1, s3, s5} is split into {s1, s5} and {s3} and associated with sequence ab.
At this point, δ({s0, s2}, a) contains states that are in both children of
{s1, s3, s5}, so {s0, s2} is split and the associated sequence is aab. We
continue until T is complete.

2.3 Minimal Separating Sequences

In Section 2.2.2 we have described an algorithm for constructing a complete
splitting tree. This algorithm is non-deterministic, as there is no prescribed
order on the splits. In this section we order them to obtain minimal
separating sequences.

Let u be a non-root inner node in a splitting tree, then the sequence
σ(u) can also be used to split the parent of u. This allows us to construct
splitting trees where children will never have shorter sequences than their
parents, as we can always split with those sequences first. Trees obtained
in this way are guaranteed to be layered, which means that for all nodes u
and all u′ ∈ C(u), |σ(u)| ≤ |σ(u′)|. Each layer consists of nodes for which
the associated separating sequences have the same length.

Our approach for constructing minimal sequences is to ensure that each
layer is as large as possible before continuing to the next one. This idea is
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expressed formally by the following definitions.

Definition 2.7. A splitting tree T is k-stable if for all states s and t in
the same leaf we have λ(s, x) = λ(t, x) for all x ∈ I≤k.

Definition 2.8. A splitting tree T is minimal if for all states s and t in
different leaves λ(s, x) 6= λ(t, x) implies |x| ≥ |σ(lca(s, t))| for all x ∈ I∗.

Minimality of a splitting tree can be used to obtain minimal separating
sequences for pairs of states. If the tree is in addition stable, we obtain
minimal separating sequences for all inequivalent pairs of states. Note that
if a minimal splitting tree is (n− 1)-stable (n is the number of states of M),
then it is stable (Definition 2.5). This follows from the well-known fact that
n− 1 is an upper bound for the length of a minimal separating sequence
[104].

Algorithm 2 ensures a stable and minimal splitting tree. The first
repeat-loop is the same as before (in Algorithm 1). Clearly, we obtain a
2-stable and minimal splitting tree here. It remains to show that we can
extend this to a stable and minimal splitting tree. Algorithm 3 will perform
precisely one such step towards stability, while maintaining minimality.
Termination follows from the same reason as for Algorithm 1. Correctness
for this algorithm is shown by the following key lemma. We will denote the
input tree by T and the tree after performing Algorithm 3 by T ′. Observe
that T is an initial segment of T ′.

Lemma 2.1. Algorithm 3 ensures a (k + 1)-stable minimal splitting tree.

Proof. Let us proof stability. Let s and t be in the same leaf of T ′ and let
x ∈ I∗ be such that λ(s, x) 6= λ(t, x). We show that |x| > k + 1.

Suppose for the sake of contradiction that |x| ≤ k + 1. Let u be the leaf
containing s and t and write x = ax′. We see that δ(s, a) and δ(t, a) are
separated by k-stability of T . So the node v = lca(δ(l(u), a)) has children
and an associated sequence σ(v). There are two cases:

– |σ(v)| < k, then aσ(v) separates s and t and is of length ≤ k. This
case contradicts the k-stability of T .

– |σ(v)| = k, then the loop in Alg. 3 will consider this case and split. Note
that this may not split s and t (it may occur that aσ(v) splits different
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elements in l(u)). We can repeat the above argument inductively for
the newly created leaf containing s and t. By finiteness of l(u), the
induction will stop and, in the end, s and t are split.

Both cases end in contradiction, so we conclude that |x| > k + 1.
Let us now prove minimality. It suffices to consider only newly split

states in T ′. Let s and t be two states with |σ(lca(s, t))| = k+1. Let x ∈ I∗

be a sequence such that λ(s, x) 6= λ(t, x). We need to show that |x| ≥ k+ 1.
Since x 6= ǫ we can write x = ax′ and consider the states s′ = δ(s, a) and
t′ = δ(t, a) which are separated by x′. Two things can happen:

– The states s′ and t′ are in the same leaf in T . Then by k-stability of
T we get λ(s′, y) = λ(t′, y) for all y ∈ I≤k. So |x′| > k.

– The states s′ and t′ are in different leaves in T and let u = lca(s′, t′).
Then aσ(u) separates s and t. Since s and t are in the same leaf in T
we get |aσ(u)| ≥ k + 1 by k-stability. This means that |σ(u)| ≥ k and
by minimality of T we get |x′| ≥ k.

In both cases we have shown that |x| ≥ k + 1 as required.

Algorithm 2: Constructing a stable and minimal splitting tree

Input: A FSM M with n states
Result: A stable, minimal splitting tree T
initialize T to be a tree with a single node labeled S
repeat

find a ∈ I, B ∈ P (T ) such that we can split B w.r.t. output λ(·, a)
expand the u ∈ T with l(u) = B as described in (split-output)

until P (T ) is acceptable
for k = 1 to n− 1 do

perform Algorithm 3 or Algorithm 4 on T for k

Example 2.2. Figure 2.2a shows a stable and minimal splitting tree T for
the machine in Figure 2.1a. This tree is constructed by Algorithm 2 as
follows. It executes the same as Algorithm 1 until we consider the node
labeled {s0, s2}. At this point k = 1. We observe that the sequence of
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Algorithm 3: A step towards the stability of a splitting tree

Input: a k-stable and minimal splitting tree T
Result: T is a (k + 1)-stable, minimal splitting tree
forall leaves u ∈ T and all inputs a do

locate v = lca(δ(l(u), a))
if v is an inner node and |σ(v)| = k then

expand u as described in (split-state) (which generates new
leaves)

(a)

B2

B4 B8

B6 B3 B10 B7

B0 B5 B1 B9

s2 s0 s4 s5 s1 s3

(b)

Figure 2.2: A complete and minimal splitting tree for the FSM in Figure 2.1a
(a) and its internal refinable partition data structure (b)

lca(δ({s0, s2}, a)) has length 2, which is too long, so we continue with the
next input. We find that we can indeed split w.r.t. the state after b, so
the associated sequence is ba. Continuing, we obtain the same partition as
before, but with smaller witnesses.

The internal data structure (a refinable partition) is shown in Figure 2.2b:
the array with the permutation of the states is at the bottom, and every block
includes an indication of the slice containing its label and a pointer to its
parent (as our final algorithm needs to find the parent block, but never the
child blocks).
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2.4 Optimizing the Algorithm

In this section, we present an improvement on Algorithm 3 that uses two
ideas described by Hopcroft in his seminal paper on minimizing finite
automata [72]: using the inverse transition set, and processing the smaller
half. The algorithm that we present is a drop-in replacement, so that
Algorithm 2 stays the same except for some bookkeeping. This way, we
can establish correctness of the new algorithms more easily. The variant
presented in this section reduces the amount of redundant computations
that were made in Algorithm 3.

Using Hopcroft’s first idea, we turn our algorithm upside down: instead
of searching for the lca for each leaf, we search for the leaves u for which
l(u) ⊆ δ−1(l(v), a), for each potential lca v and input a. To keep the order
of splits as before, we define k-candidates.

Definition 2.9. A k-candidate is a node v with |σ(v)| = k.

A k-candidate v and an input a can be used to split a leaf u if v =
lca(δ(l(u), a)), because in this case there are at least two states s, t in
l(u) such that δ(s, a) and δ(t, a) are in labels of different nodes in C(v).
Refining u this way is called splitting u with respect to (v, a). The set C(u)
is constructed according to (split-state), where each child w ∈ C(v) defines
a child uw of u with states

l(uw) = {s ∈ l(u) | δ(s, a) ∈ l(w)} (2.1)

= l(u) ∩ δ−1(l(w), a)

In order to perform the same splits in each layer as before, we maintain
a list Lk of k-candidates. We keep the list in order of the construction of
nodes, because when we split w.r.t. a child of a node u before we split w.r.t.
u, the result is not well-defined. Indeed, the order on Lk is the same as the
order used by Algorithm 2. So far, the improved algorithm still would have
time complexity O(mn).

To reduce the complexity we have to use Hopcroft’s second idea of
processing the smaller half. The key idea is that, when we fix a k-candidate
v, all leaves are split with respect to (v, a) simultaneously. Instead of
iterating over of all leaves to refine them, we iterate over s ∈ δ−1(l(w), a)
for all w in C(v) and look up in which leaf it is contained to move s out of
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Algorithm 4: A better step towards the stability of a splitting tree

Input: a k-stable and minimal splitting tree T , and a list Lk

Result: T is a (k + 1)-stable and minimal splitting tree, and a list
Lk+1

1 Lk+1 ← ∅
2 forall k-candidates v in Lk in order do

3 let w′ be a node in C(v) such that |l(w′)| ≥ |l(w)| for all nodes w
in C(v)

4 forall inputs a in I do

5 forall nodes w in C(v) \ w′ do
6 forall states s in δ−1(l(w), a) do
7 locate leaf u such that s ∈ l(u)
8 if C ′(u) does not contain node uw then

9 add a new node uw to C ′(u)
10 move s from l(u) to l(uw)

11 foreach leaf u with C ′(u) 6= ∅ do
12 if |l(u)| = 0 then

13 if |C ′(u)| = 1 then

14 recover u by moving its elements back and clear
C ′(u)

15 continue with the next leaf

16 set p = u and C(u) = C ′(u)

17 else

18 construct a new node p and set C(p) = C ′(u) ∪ {u}
19 insert p in the tree in the place where u was

20 set σ(p) = aσ(v)
21 append p to Lk+1 and clear C ′(u)
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it. From Lemma 8 in [84] it follows that we can skip one of the children of
v. This lowers the time complexity to O(m log n). In order to move s out
of its leaf, each leaf u is associated with a set of temporary children C ′(u)
that is initially empty, and will be finalized after iterating over all s and w.

In Algorithm 4 we use the ideas described above. For each k-candidate
v and input a, we consider all children w of v, except for the largest one
(in case of multiple largest children, we skip one of these arbitrarily). For
each state s ∈ δ−1(l(w), a) we consider the leaf u containing it. If this leaf
does not have an associated temporary child for w we create such a child
(line 9), if this child exists we move s into that child (line 10).

Once we have done the simultaneous splitting for the candidate v and
input a, we finalize the temporary children. This is done at lines 11–21.
If there is only one temporary child with all the states, no split has been
made and we recover this node (line 14). In the other case we make the
temporary children permanent.

The states remaining in u are those for which δ(s, a) is in the child of
v that we have skipped; therefore we will call it the implicit child. We
should not touch these states to keep the theoretical time bound. Therefore,
we construct a new parent node p that will “adopt” the children in C ′(u)
together with u (line 16).

We will now explain why considering all but the largest children of a
node lowers the algorithm’s time complexity. Let T be a splitting tree in
which we color all children of each node blue, except for the largest one.
Then:

Lemma 2.2. A state s is in at most (log2 n)− 1 labels of blue nodes.

Proof. Observe that every blue node u has a sibling u′ such that |l(u′)| ≥
|l(u)|. So the parent p(u) has at least 2|l(u)| states in its label, and the
largest blue node has at most n/2 states.

Suppose a state s is contained in m blue nodes. When we walk up the
tree starting at the leaf containing s, we will visit these m blue nodes. With
each visit we can double the lower bound of the number of states. Hence
n/2 ≥ 2m and m ≤ (log2 n)− 1.

Corollary 2.1. A state s is in at most log2 n sets δ−1(l(u), a), where u is
a blue node and a is an input in I.
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If we now quantify over all transitions, we immediately get the following
result. We note that the number of blue nodes is at most n− 1, but since
this fact is not used, we leave this to the reader.

Corollary 2.2. Let B denote the set of blue nodes and define

X = {(b, a, s) | b ∈ B, a ∈ I, s ∈ δ−1(l(b), a)}.

Then X has at most m log2 n elements.

The important observation is that when using Algorithm 4 we iterate in
total over every element in X at most once.

Theorem 2.1. Algorithm 2 using Algorithm 4 runs in O(m log n) time.

Proof. We prove that bookkeeping does not increase time complexity by
discussing the implementation.

Inverse transition. δ−1 can be constructed as a preprocessing step in
O(m).

State sorting. As described in Section 2.2.2, we maintain a refinable
partition data structure. Each time new pair of a k-candidate v and
input a is considered, leaves are split by performing a bucket sort.

First, buckets are created for each node in w ∈ C(v) \ w′ and each
leaf u that contains one or more elements from δ−1(l(w), a), where
w′ is a largest child of v. The buckets are filled by iterating over the
states in δ−1(l(w), a) for all w. Then, a pivot is set for each leaf u
such that exactly the states that have been placed in a bucket can be
moved right of the pivot (and untouched states in δ−1(l(w′), a) end
up left of the pivot). For each leaf u, we iterate over the states in its
buckets and the corresponding indices right of its pivot, and we swap
the current state with the one that is at the current index. For each
bucket a new leaf node is created. The refinable partition is updated
such that the current state points to the most recently created leaf.

This way, we assure constant time lookup of the leaf for a state, and
we can update the array in constant time when we move elements out
of a leaf.
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Largest child. For finding the largest child, we maintain counts for the
temporary children and a current biggest one. On finalizing the
temporary children we store (a reference to) the biggest child in the
node, so that we can skip this node later in the algorithm.

Storing sequences. The operation on line 20 is done in constant time by
using a linked list.

2.5 Application in Conformance Testing

A splitting tree can be used to extract relevant information for two classical
test generation methods: a characterization set for the W-method and a
separating family for the HSI-method. For an introduction and comparison
of FSM-based test generation methods we refer to [47].

Definition 2.10. A set W ⊂ I∗ is called a characterization set if for
every pair of inequivalent states s, t there is a sequence w ∈ W such that
λ(s, w) 6= λ(t, w).

Lemma 2.3. Let T be a complete splitting tree, then {σ(u)|u ∈ T} is a
characterization set.

Proof. Let W = {σ(u)|u ∈ T}. Let s, t ∈ S be inequivalent states, then
by completeness s and t are contained in different leaves of T . Hence
u = lca(s, t) exists and σ(u) separates s and t. Furthermore σ(u) ∈ W .
This shows that W is a characterisation set.

Lemma 2.4. A characterization set with minimal length sequences can be
constructed in time O(m log n).

Proof. By Lemma 2.3 the sequences associated with the inner nodes of a
splitting tree form a characterization set. By Theorem 2.1, such a tree
can be constructed in time O(m log n). Traversing the tree to obtain the
characterization set is linear in the number of nodes (and hence linear in
the number of states).
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Definition 2.11. A collection of sets {Hs}s∈S is called a separating family
if for every pair of inequivalent states s, t there is a sequence h such that
λ(s, h) 6= λ(t, h) and h is a prefix of some hs ∈ Hs and some ht ∈ Ht.

Lemma 2.5. Let T be a complete splitting tree, the sets {σ(u)|s ∈ l(u), u ∈
T}s∈S form a separating family.

Proof. Let Hs = {σ(u)|s ∈ l(u)}. Let s, t ∈ S be inequivalent states, then
by completeness s and t are contained in different leaves of T . Hence
u = lca(s, t) exists. Since both s and t are contained in l(u), the separating
sequence σ(u) is contained in both sets Hs and Ht. Therefore, it is a
(trivial) prefix of some word hs ∈ Hs and some ht ∈ Ht. Hence {Hs}s∈S is
a separating family.

Lemma 2.6. A separating family with minimal length sequences can be
constructed in time O(m log n+ n2).

Proof. The separating family can be constructed from the splitting tree by
collecting all sequences of all parents of a state (by Lemma 2.5). Since we
have to do this for every state, this takes O(n2) time.

For test generation one moreover needs a transition cover. This can
be constructed in linear time with a breadth first search. We conclude
that we can construct all necessary information for the W-method in time
O(m log n) as opposed to the O(mn) algorithm used in [47]. Furthermore,
we conclude that we can construct all the necessary information for the
HSI-method in time O(m log n + n2), improving on the reported bound
O(mn3) in [70]. The original HSI-method was formulated differently and
might generate smaller sets. We conjecture that our separating family has
the same size if we furthermore remove redundant prefixes. This can be
done in O(n2) time using a trie data structure.

2.6 Experimental Results

We have implemented Algorithms 3 and 4 in Go, and we have compared
their running time on two sets of FSMs.1 The first set is from [127], where

1Available at https://gitlab.science.ru.nl/rick/partition/.
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Figure 2.3: Running time in seconds of Algorithm 3 (gray) and Algorithm 4
(black)

FSMs for embedded control software were automatically constructed. These
FSMs are of increasing size, varying from 546 to 3 410 states, with 78 inputs
and up to 151 outputs. The second set is inferred from [72], where two
classes of finite automata, A and B, are described that serve as a worst case
for Algorithms 3 and 4 respectively. The FSMs that we have constructed for
these automata have 1 input, 2 outputs, and 22 – 215 states. The running
times in seconds on an Intel Core i5-2500 are plotted in Figure 2.3. We
note that different slopes imply different complexity classes, since both axes
have a logarithmic scale.

2.7 Conclusion

In this chapter we have described an efficient algorithm for constructing a
set of minimal-length sequences that pairwise distinguish all states of a finite
state machine. By extending Hopcroft’s minimization algorithm, we are able
to construct such sequences in O(m log n) for a machine with m transitions
and n states. This improves on the traditional O(mn) method that is based
on the classic algorithm by Moore. As an upshot, the sequences obtained
form a characterization set and a separating family, which play a crucial in
conformance testing.

Two key observations were required for a correct adaptation of Hopcroft’s
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algorithm. First, it is required to perform splits in order of the length of
their associated sequences. This guarantees minimality of the obtained
separating sequences. Second, it is required to consider nodes as a candidate
before any one of its children are considered as a candidate. This order
follows naturally from the construction of a splitting tree.

Experimental results show that our algorithm outperforms the classic
approach for both worst-case finite state machines and models of embedded
control software. Applications of minimal separating sequences such as the
ones occurring in [47, 127] therefore show that our algorithm is useful in
practice.
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Bigger is Not Always Better

Rick Smetsers, Michele Volpato, Frits Vaandrager, and Sicco Verwer

Abstract

In Angluin’s L∗ algorithm a learner iteratively constructs hy-
potheses in order to learn a regular language. Each hypothesis
is consistent with a larger set of observations and is described by
a bigger model. From a behavioral perspective, however, a hy-
pothesis is not always better than the previous one, in the sense
that the minimal length of a counterexample that distinguishes
a hypothesis from the target language may decrease. We present
a simple modification of the L∗ algorithm that ensures that for
subsequent hypotheses the minimal length of a counterexample
never decreases, which implies that the distance to the target
language never increases in a corresponding ultrametric. Prelim-
inary experimental evidence suggests that our algorithm speeds
up learning in practical applications by reducing the number of
equivalence queries.
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3.1 Introduction

Automata learning techniques have become increasingly important for their
applications to a wide variety of software engineering problems, especially
in the analysis and testing of complex systems. Recently, they have been
successfully applied for security protocol testing [125], for the analysis of
botnet command and control protocols [40], in regression testing of telecom-
munication protocols [77], and in conformance testing of communication
protocols [6].

Automata learning aims to identify an unknown target language from
examples of its members and nonmembers [63]. In active automata learning,
introduced in the seminal work by Angluin [11], a learner identifies the
language with the help of an oracle (in contrast to passive learning, where the
learner is provided with data). Angluin’s L∗ algorithm is characterized by
the iterative alternation between two phases. In the first phase, the learner
poses membership queries to construct a hypothesis. In the second phase it
asks an equivalence query to determine if the hypothesis correctly describes
the language. The oracle either signals success (if the hypothesis correctly
describes the language) or provides a counterexample that distinguishes
the hypothesis and the language. The algorithm iterates in this way until
it finds a hypothesis that correctly describes the target language. In the
learning process, each successive hypothesis is described by a bigger model.

In this chapter, we show that a bigger model is not always better.
Different notions of quality exist for a hypothesis and we argue that a valid
metric for quality should be based on its behaviour, i.e. the strings in its
language. In systems engineering, a potential bug in the far-away future is
less troubling than a potential bug today [9]. Based on this observation, we
study a well-known metric based on minimal-length counterexamples and
we show that the quality of successive hypotheses may decrease in such a
setting. To correct for this, we propose a simple modification to L∗ that
finds a counterexample at the cost of a membership query if this is the case.
As a result, we make sure that each hypothesis is at least as good as the
previous one, and we possibly decrease the number of equivalence queries
required in the learning process. We give preliminary experimental evidence
that in a realistic setting our modification speeds up learning, because in
practice, equivalence queries are typically expensive to answer [126]. In
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a case study, we show that our modification helps in learning a piece of
industrial control software used in Océ printers.

Recently, the L∗ algorithm has been adapted for learning the behaviour
of reactive systems [131, 124]. In practice, when learning such systems,
it is impossible to exhaustively search for counterexamples; we have to
stop learning at some point. As a result, the oracle is not always perfect
and it is possible that the final hypothesis is incorrect. Contrary to the
original L∗ algorithm, our modification guarantees that in such a case the
final hypothesis will behave correctly for at least as long as all previous
hypotheses.

Related work. Improvements of L∗ have been investigated before; we
refer to Balcázar et al. for an overview of early work [15]. Optimisations
for large alphabets are discussed in [81], and practical optimisations that
improve both the number of queries and time required to answer them are
given in [16] and [80]. Distance metrics for automata have been studied
extensively before, but the majority of this work has been done in a setting
where statistical information is available [71]. To the best of our knowledge,
no earlier work has compared successive hypotheses produced by L∗ from
the perspective of their counterexamples. Length-bounded counterexamples
have been used in [79], and minimal-length counterexamples in [21] and [78].
These are, however, strong assumptions. Instead, our modification works in
a standard L∗ setting.

Outline. We recall regular languages, Angluin’s L∗ algorithm and metric
spaces in Section 3.2. Then, in Section 3.3, we define a metric for comparing
languages, and we show that L∗ may construct hypotheses that are worse
than previous ones according to this metric. Section 3.4 provides an algo-
rithm that solves this problem and some preliminary experimental results.
We conclude our work in Section 3.6.

3.2 Preliminaries

Definitions. Let Σ be a finite alphabet of symbols. A string over Σ is a
finite sequence of symbols. We denote with Σ∗ the set of all strings over Σ.
The empty string is denoted by ǫ. A language is a subset of Σ∗. We denote
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Figure 3.1: A canonical DFA over the alphabet {a, b}. Elements of Q are
represented by nodes, and elements of F by double circle nodes. The initial
state is indicated by the non-labelled arrow. An edge between states p
and q, labeled with an element a of the alphabet, is present if and only if
δ(p, a) = q.

LΣ the set of all languages over the alphabet Σ, and we shorten it to L if Σ
is clear or not significant in the context.

A regular language is any language that is accepted by some deterministic
finite automaton (DFA), which is a tuple A = 〈Σ, Q, q0, F, δ〉, where Σ is a
finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state, F ⊆ Q
is the set of accepting states, and δ : Q× Σ→ Q is the transition function
between states. We extend δ to Q×Σ∗ → Q in the usual way. The language
accepted by A is the set of strings u such that δ(q0, u) ∈ F , and is denoted
LA. Two DFAs A and A′ are equivalent, denoted A ≡ A′ if they accept the
same language, i.e LA = LA′ . A DFA is canonical if no other equivalent
DFA has fewer states. In the rest of the chapter, all DFAs are considered
to be canonical, unless specified otherwise. Figure 3.2 shows an example
canonical DFA that we will use throughout this chapter.

We say that a string u distinguishes A and A′ if u ∈ LA ⇐⇒ u /∈ LA′ .
Such a string is called a distinguishing string for LA and LA′ . A minimal-
length distinguishing string for two languages L and L′ is defined as a string
v, such that, for each string w, |w| < |v| implies w ∈ L ⇐⇒ w ∈ L′. There
exist efficient algorithms for finding a minimal-length distinguishing string
between two DFAs (see for example [48]).

Learning regular languages with L∗. Angluin’s L∗ algorithm is an
efficient algorithm where a learner identifies an unknown regular language L
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with the help of an oracle. The oracle answers two types of queries about the
target language. In a membership query the learner asks if a string is in the
language. After having posed a number of membership queries, the learner
constructs a canonical DFA AH that is consistent with all the replies given
by the oracle so far. The language H that this DFA accepts is the learner’s
hypothesis for the target language. Depending on the context, the word
“hypothesis” is either used to refer to a language H , or to the canonical DFA
that accepts this language AH . In an equivalence query the learner asks
about the correctness of H . The oracle replies positively if H = L. If this is
not the case, the oracle returns a distinguishing string that shows that the
hypothesis is incorrect. Such a string is called a counterexample. An oracle
that answers these two types of queries is known as a minimally adequate
teacher.

The L∗ algorithm maintains an observation table in which it stores the
answers to all membership queries posed so far. The observation table
consists of a set of access strings to the states of the hypothesis DFA, their
one-symbol extensions, and a set of distinguishing suffixes. An observation
table can be visualized as a table that has the access strings and their
one-symbol extensions as its row labels and the distinguishing suffixes as
its column labels. A cell has a value of 2 if and only if the concatenation
of the corresponding prefix (access sequence or one-symbol extension) and
(distinguishing) suffix is in the language. Otherwise, a cell has a value of 0.
If all cells are filled, the table is complete. Example complete observation
tables are shown in Table 3.2.

In order to construct a hypothesis DFA from the observation table, it
needs to be closed and consistent. An observation table is closed if for each
row labeled with a one-symbol extension there exists a row with an access
string that has an identical value in every column. An observation table is
consistent if for all rows labeled with access strings that have an identical
value in every column, it holds that the rows labeled by their one-symbol
extensions have an identical value in every row as well.

We provide a high-level description of L∗ (Algorithm 5). For a more
detailed description we refer to [71]. First, the observation table is initialized
such that the set of access strings and the set of distinguishing strings both
contain ǫ, and the algorithms asks membership queries for ǫ and Σ (the
one-symbol extensions of ǫ). Then, the table is checked for closedness and
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Algorithm 5: The L∗ algorithm

Initialize observation table
Make table closed and consistent
repeat

Construct hypothesis H
Ask equivalence query for H, let c be the response
if c contains a counterexample then

Handle counterexample c
Make the table closed and consistent

until c does not contain a counterexample

consistency. If the table is not closed or not consistent, an element from the
one-symbol extensions is added to the access strings, and its one-symbol
extensions are added to the table (a new state is added). This process is
repeated until the table is closed and consistent. Once the table is closed
and consistent, a hypothesis DFA A = 〈Σ, Q, q0, F, δ〉 is constructed in the
following way:

– Q contains exactly one state for every access sequence. This ensures
that for every pair of states, the corresponding rows have different
values in at least one column;

– q0 is the state in Q for access sequence ǫ;

– F contains states in Q for access sequences that are in the language;

– The one-symbol extensions are used to define δ, where δ(δ(q0, s), a) =
δ(q0, t) if and only if (one-symbol extension) s · a and (access string) t
have identical values in every column.

The hypothesis is presented to the oracle in an equivalence query. If
the oracle replies positively, the learner has successfully learned the target
language and the algorithm terminates. Otherwise, the oracle provides a
counterexample and the algorithm modifies the observation table. There
are many different strategies for handling a counterexample (see e.g. [98,
119, 124, 131]). In this chapter we use the strategy described by Steffen
et al. [131], but our contribution is independent from the one that is used.
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(a) Initial hypothesis.
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handling ba.
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a a
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(c) Hypothesis after handling abaa.

Figure 3.2: Starting the learning process.

After handling a counterexample the table is not closed anymore, so an
element from the one-symbol extensions is added to the access strings (a
new state is added), and more membership queries are asked to obtain a
new hypothesis. The algorithm iterates in this fashion until it produces a
correct hypothesis. Each hypothesis in the learning process is described by
a canonical DFA, and each successive hypothesis has more states than the
previous one. Assume that the canonical DFA accepting the target language
has n states, then the algorithm clearly terminates, because the number of
equivalence queries is limited by n. An example run of L∗ is described in
Example 3.1.

Example 3.1. We show how L∗ constructs the first three hypotheses while
learning the language described by Figure 3.2. We start by asking member-
ship queries for ǫ, a and b and we store the answers in an observation table.
We find that the table is not closed, so we add a to S and we ask membership
queries for aa and ab. Then, we construct the table shown in Table 3.2a
and the corresponding hypothesis shown in Figure 3.2a. This hypothesis
is presented as an equivalence query. The oracle replies that our hypoth-
esis evaluates ba incorrectly. We handle this counterexample in the table
and after asking more membership queries, we construct the table shown
in Table 3.2b and we present the hypothesis shown in Figure 3.2b as an
equivalence query. This time, the oracle presents abaa as a counterexample.
We use this information to construct the table shown in Table 3.2c and the
hypothesis shown in Figure 3.2c.
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Table 3.1: Observation tables. Rows are labeled by access strings (top) and
their one-symbol extensions (bottom), columns are labeled with distinguish-
ing suffixes.

ǫ

ǫ 1
a 0

b 0
aa 1
ab 1

(a) Initial observa-
tion table.

ǫ a

ǫ 1 0
a 0 1
b 0 0

aa 1 0
ab 1 0
ba 0 1
bb 0 0

(b) Observation table af-
ter handling ba.

ǫ a aa

ǫ 1 0 1
a 0 1 0
b 0 0 1
ab 1 0 0

aba 0 0 0

aa 1 0 1
ba 0 1 0
bb 0 0 1

abb 0 0 1
abaa 0 0 1
abab 1 0 0

(c) Observation table after hand-
ing abaa.

Metric spaces. In order to reason about the quality of hypotheses pro-
duced by L∗, we need a function to compare them. A function is called a
metric, if it satisfies the conditions in Definition 3.1.

Definition 3.1. Let X be a set, then a function d : X ×X → R, where R

is the set of real numbers, is a metric on X if:

1. d(x, y) = 0 ⇐⇒ x = y (identity);

2. d(x, y) = d(y, x) (symmetry);

3. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).

A metric is an ultrametric if in addition it satisfies a stronger version of
triangle inequality:

4. d(x, y) ≤ max (d(x, z), d(z, y)) (strong triangle inequality).

Note that any metric is nonnegative. Given a set X and a metric d
on X, the pair 〈X, d〉 is called a metric space. If d is an ultrametric on
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X, we call 〈X, d〉 an ultrametric space. In metric and ultrametric spaces,
the function d provides the set X with the concept of distance between its
elements. Given three elements x, y, z ∈ X, we say that x is closer to z
than y if d(x, z) < d(y, z). In an ultrametric space 〈X, d〉, for any triple of
elements x, y, z ∈ X, two of the distances among them are equal and the
third one is equal or smaller (Lemma 3.1).

Lemma 3.1. Let 〈X, d〉 be an ultrametric space and let x, y, z be elements
of X, then:

d(x, y) 6= d(y, z) =⇒ d(x, z) = max (d(x, y), d(y, z)) .

Proof. Assume d(x, y) > d(y, z). Then, because of strong triangle inequality,
we obtain that d(x, z) ≤ max (d(x, y), d(y, z)) = d(x, y) and that d(x, y) ≤
max (d(y, z), d(x, z)) = d(x, z) (because d(y, z) < d(x, y)). Thus d(x, y) =
d(x, z).

3.3 Languages in a Metric Space

In the process of learning a language, different notions of quality exist for a
hypothesis. The L∗ algorithm guarantees that each hypothesis explains all
observations from membership queries seen so far. Moreover, each successive
hypothesis is based on more observations than the previous one, because
a counterexample adds new information. As a result, each hypothesis has
more states than the previous one (see Figure 3.2, for example).

In this section, we show that a bigger model is not always better. In
fact, the size difference between a hypothesis and the target DFA is not a
valid metric. Let AH and AH′ be DFAs with m and n states respectively,
and let H,H ′ ∈ L be the languages that they accept. Then it is possible
that m = n and H 6= H ′. Hence, a function on the number of states is
not a valid metric on L, because it does not satisfy the identity axiom of
Definition 3.1.

We argue that a valid metric should be based on the behaviour of a
hypothesis, in terms of the strings in its language. Assume that, with regard
to such a metric, a hypothesis is more distant to the target language than
the previous one. Then, if one can detect this divergence, there must be
some information that can be used to improve the hypothesis, without
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the need of asking an equivalence query. We recall a well-known metric
for comparing two languages [14]. Intuitively, this metric is based on the
minimal length of distinguishing strings: languages are more distant if they
are distinguished by shorter strings. Example 3.2 shows that in L∗, the
minimal length of a counterexample for hypotheses may decrease. As a
result, the distance to the target language increases.

Example 3.2. Let us continue the process for learning the language rep-
resented by Figure 3.2. The starting point is the hypothesis accepted by
Figure 3.3a. In this hypothesis all strings of length 4 are evaluated correctly
and we are presented bbbaa as a counterexample. While handling bbbaa

something peculiar happens: our new hypothesis (Figure 3.3b) incorrectly
changes behaviour for bbbb. Hence, an error has been introduced, and the
quality of our hypothesis has decreased.

a

b

b
a

b

a a
b

a

b

(a) Third hypothesis. The string
bbbb is evaluated correctly.

a

b

b
a

b

a

a

b
b

a

a

b

(b) Fourth hypothesis. The string bbbb is
evaluated incorrectly.

Figure 3.3: After handling bbbaa (a minimal-length counterexample), a
shorter string (bbbb) incorrectly ends in an accepting state. Grey nodes
denote the state that bbbb ends in.

Given two different languages L1 and L2, let u be a minimal-length
string that distinguishes them. Clearly, u distinguishes any DFA accepting
L1 from any DFA accepting L2 and vice versa. In Definition 3.2 we present
a metric to compare L1 and L2 based on the length of this string. Similar
metrics have been used in literature, e.g. in concurrency theory [14]. Note
that, if two languages are not equal, there must exist a distinguishing string.
The intuition is that, the longer this string is, the closer L1 and L2 are.
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Definition 3.2. Let L1 and L2 be two languages. The ultrametric d is the
function

d(L1, L2) =

{

0 if L1 = L2

2−n otherwise

where n is the minimal length of a string that distinguishes L1 and L2.

Lemma 3.2. The pair 〈L, d〉 with d defined by Definition 3.2 is an ultra-
metric space.

Proof. We prove that the pair 〈L, d〉 with d defined by Definition 3.2 satisfies
the three axioms of an ultrametric. Let L1, L2 and L3 be languages in L.
Then

i) d(L1, L2) = 0 ⇐⇒ L1 = L2: (⇐) by definition;
(⇒) it must hold that L1 = L2 because 2−|u12|, where u12 is a minimal-
length string that distinguish L2 from L2, can never evaluate to 0;

ii) d(L1, L2) = d(L2, L1): the strings that distinguish L1 from L2 are the
same that distinguish L2 from L1;

iii) d(L1, L2) ≤ max (d(L2, L3), d(L3, L1)): if any two among L1, L2 and L3

are equal, then it holds trivially. Otherwise, if they are all different, then
let u12, u23 and u31 be minimal-length strings that pairwise distinguish
them. We show that |u12| ≥ min (|u23|, |u31|) (which is equivalent
to d(L1, L2) ≤ max (d(L2, L3), d(L3, L1))). By contradiction, assume
|u12| < min (|u23|, |u31|). By definition of minimal-length distinguishing
strings, ∀w such that (|w| < |u23|) ∧ (|w| < |u31|) it holds that (w ∈
L2 ⇐⇒ w ∈ L3) ∧ (w ∈ L3 ⇐⇒ w ∈ L1), in particular for w = u12.
But, then, u12 is not a distinguishing string for L1 and L2 which is a
contradiction.

In Example 3.2 we have used minimal-length counterexamples to illus-
trate that L∗ can produce a hypothesis that is more distant to the target
language than the previous one. Unfortunately, in the process of learning
an unknown target language, finding a minimal-length counterexample for a
hypothesis is a difficult task. We can however make use of the strong triangle
inequality property of ultrametrics (see Lemma 3.1) to check a hypothesis’
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relative distance to the target at the cost of a single membership query. By
Lemma 3.1, for the ultrametric described in Definition 3.2 this means that
for any triple of elements, two of the minimal-length distinguishing strings
will have equal lengths and the third will be of equal or greater length.

Lemma 3.3. Let 〈L, d〉 be the ultrametric space with d defined by Defini-
tion 3.2. Let L,H and H ′ be languages in L with H 6= H ′ and let v be any
minimal-length distinguishing string for H and H ′. Then:

d(L,H) < d(L,H ′) =⇒ (v ∈ H ⇐⇒ v ∈ L)

Proof. Let u and u′ be minimal-length strings distinguishing L from H
and H ′, respectively. Then by Definition 3.2, d(L,H) < d(L,H ′) implies
that |u| > |u′|. Moreover, by Lemma 3.1 d(L,H) < d(L,H ′) implies that
d(L,H ′) = d(H,H ′) which in turn implies that |v| = |u′|, and hence that
|u| > |v|. It follows that v ∈ H ⇐⇒ v ∈ L, because u is a minimal-length
distinguishing string.

Assume that H and H ′ are successive hypotheses for L and that v is a
minimal-length string that distinguishes the two hypotheses. Then to verify
that H ′ is at least as close as H it suffices to ask a membership query for v.
If H evaluates v incorrectly, then according to Lemma 3.3, H ′ is at least as
close as H. If H evaluates v correctly, we cannot be sure that this is the
case, but we have found a new counterexample for H ′ without asking an
equivalence query. The algorithm that we present in Section 3.4 makes use
of this result to guarantee that the distance to L does not increase.

3.4 Monitoring the Quality of Hypotheses

In the previous section we have seen that L∗ can change the behaviour
of strings that happened to be handled correctly before. As a result, the
distance of a hypothesis to the target language can increase. In this section,
we propose a modification to L∗ which guarantees that the distance to the
target language does not increase in the ultrametric space 〈L, d〉, with d
defined in Definition 3.2.

Definition 3.3. Let H and H ′ be successive hypotheses in process of iden-
tifying an unknown language L, and let d be the ultrametric defined in
Definition 3.2, then H ′ is stable if and only if d(H,L) ≥ d(H ′, L).
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Our modification to the L∗ algorithm is shown in Algorithm 6. In the
algorithm we maintain a stable hypothesis H that is known to be the best
we have seen so far according to Definition 3.3. The main idea is that a
candidate hypothesis H ′ is refined until it is at least as good as the stable
hypothesis before asking an equivalence query. As a result, each stable
hypothesis is at least as good as the previous one.

Algorithm 6: Modified L∗ algorithm

Initialize observation table
Make table closed and consistent
repeat

Construct stable hypothesis H
Ask equivalence query for H, let c be the response
if c contains a counterexample then

Handle counterexample c
Make table closed and consistent
repeat

Construct candidate hypothesis H ′

Obtain minimal-length string v that distinguishes H and
H ′

if v distinguishes H ′ and L then

Handle counterexample v
Make table closed and consistent

until v distinguishes H and L

until c does not contain a counterexample

We start by constructing the initial stable hypothesis H that we present
in an equivalence query. If the oracle replies positively, the learner has
successfully learned the target language and the algorithm terminates. If
this is not the case we obtain a counterexample c, which we use to construct
a candidate hypothesis H ′. Then, we use a standard algorithm to obtain
a minimal-length string v that distinguishes the stable hypothesis and the
candidate hypothesis.

According to Lemma 3.3, we are sure that the candidate (H ′) is at least
as good as the previous stable hypothesis (H) if v is evaluated correctly by
the candidate H ′. If, however, v is evaluated correctly by the previous stable

87



Chapter 3

hypothesis H (and the condition is not met), then we cannot guarantee
that the candidate has improved. In this case, we have however found
a counterexample (v) without asking an equivalence query. We use this
counterexample to construct a new (and bigger) candidate H ′ (following
the standard L∗ procedure) and we again ask for a minimal-length string
v that distinguishes the new candidate from the stable hypothesis. The
algorithm iterates in this way until it finds a minimal-length distinguishing
string v that is evaluated correctly by the candidate. In this case we break
the loop, promote the candidate to stable and ask for the next equivalence
query. The correctness and termination of our algorithm are proven by
Theorem 3.1.

Theorem 3.1. The execution of Algorithm 6 terminates, and each stable
hypothesis is at least as good as the previous one.

Proof. First, note that the inner loop handles a counterexample in the
regular way. Hence, each candidate hypothesis has more states than any
previous hypothesis. We show that the number of iterations in the inner loop
is finite, which proves that the algorithm terminates, given the termination
of the original L∗ algorithm.

Let H ′ be the candidate hypothesis obtained from H by handling c, and
let v be a minimal-length distinguishing string for H ′ and H. Let u and u′

be (unknown) minimal-length counterexamples of H and H ′ respectively,
and note that u can never be longer than c. Moreover, note that v can
never be longer than c because, by construction, c ∈ H ⇐⇒ c 6∈ H ′ and v
is a string that distinguishes H and H ′.

If v distinguishes H and L, then v is a counterexample for H. Hence,
by contraposition of Lemma 3.3, d(L,H) ≥ d(L,H ′). The algorithm breaks
out of the inner loop and promotes H ′ to stable. If, instead v distinguishes
H ′ and L, then it might be the case that |u| > |u′| (and hence that
d(L,H) < d(L,H ′)). Thus, given that H ′ evaluates v incorrectly, v can
be used as a counterexample obtaining a new hypothesis H ′′ and a new
minimal-length distinguishing string v′′ for H ′′ and H . Note that v does not
distinguish H ′′ and L, and hence that v 6= v′′. Consequently, in successive
loops, the algorithm never processes v again, because all hypotheses are
consistent with the membership queries asked so far. Given that there
are a finite number of strings that are not longer than c, the inner loop
terminates.
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In Example 3.3 we show that, by using Algorithm 6, each stable hy-
pothesis is at least as good as the previous one. As a result, we reduce the
number of equivalence queries required in learning the language represented
by Figure 3.2.

Example 3.3. Let us continue the process for learning the language rep-
resented by the DFA in Figure 3.2. Our starting point is the hypothesis in
Figure 3.3a. When this hypothesis is presented as an equivalence query, the
oracle provides bbbaa as a counterexample. By handling this counterexam-
ple, we obtain the hypothesis in Figure 3.3b. The original L∗ would present
this hypothesis to the oracle in an equivalence query. Instead, Algorithm 6
first verifies that the hypothesis is at least as good as the previous one. To
do so, it finds a minimal-length string (bbbb) that distinguishes it from the
previous hypothesis (Figures 3.3a). Then, it asks a membership query to
check if the behaviour has changed. The membership query returns false,
and so does the previous hypothesis. Hence, an error was introduced in the
current hypothesis. Instead of presenting the hypothesis as an equivalence
query, it is refined by handling bbbb.

For the refined hypothesis, the algorithm performs another inequivalence
check. This time, a minimal-length string that distinguishes the current
hypothesis from the previous one is bbbaa, the initial counterexample. This
string is evaluated incorrectly in the previous hypothesis (and correctly in the
current one). Therefore, the algorithm exits the loop and continues learning.
The current hypothesis is, presented as an equivalence query, and the oracle
replies affirmatively. Algorithm 6 required four equivalence queries to learn
the target language, one less than the original L∗ algorithm. Moreover, the
algorithm guarantees that each hypothesis is at least as good as the previous
one, contrary to the original L∗ algorithm.

3.5 Experimental Results

In this section, we give preliminary experimental evidence that our algorithm
speeds up learning. We have implemented Algorithm 6 on top of L∗ in
LearnLib, a state-of-the-art tool for active automata learning [117, 102],
and we have compared the number of equivalence queries that it requires.
Compared to an implementation of the original L∗ algorithm, Algorithm 6
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requires approximately 4% less equivalence queries. The experiments were
conducted on randomly generated DFAs with a varying number of states
(100–2000) and alphabet (2–20).

To show that the contributions of this chapter are suited for practical
learning problems as well, we have applied them in a more realistic setting.
Recently, automata learning techniques have become increasingly important
for the construction of models for software components. Smeenk et al. [126,
127] used the L∗ algorithm to learn the behaviour of the Engine Status
Manager (ESM), a piece of industrial software that controls the transition
from one status to another in Océ printers1. Learning the behaviour of this
software is hard because of the many details involved. A key challenge that
the authors faced was the task of searching for a counterexample: more than
263 million sequences of input actions were not enough to fully learn the
behaviour of the system. As a result, the learning process was terminated
before the correct hypothesis was found. In total, the time required for
learning exceeded 19 hours, of which over 7 hours were spent on searching for
counterexamples. Altogether, 131 hypotheses were generated. The partially
correct final hypothesis had 3,326 states.

Using the distance metric described in Section 3.3 we were able to
verify that the partially correct final hypothesis was the best one seen so
far. However, by comparing intermediate hypotheses (Algorithm 6), we
have found a counterexample for four hypotheses without having to search
for them using an equivalence query. In these cases, a minimal-length
distinguishing string for two successive hypotheses had incorrectly changed
its behaviour. With the use of our algorithm, we would have been able to
detect these mistakes. As a result, it is highly likely that our algorithm would
have reduced the time required to learn the final hypothesis. This case study
shows the implications of our contributions in practice: behaviour-based
metrics can provide useful information about hypotheses in the learning
process. Using this information, we reduce the number of equivalence queries
required.

1A detailed description of the case study, with models and statistics, is available at
http://www.mbsd.cs.ru.nl/publications/papers/fvaan/ESM/.
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3.6 Conclusion

Bigger hypotheses in active automata learning are not always better. In
this chapter, we have shown that different notions of quality exist for a
hypothesis. We have argued that a valid metric should be based on the
behaviour of a hypothesis. To the best of our knowledge, our work is the
first to address the quality of hypotheses in active learning from such a
solid, theoretical perspective.

Using a well-known metric based on minimal-length counterexamples,
we have shown that the quality of successive hypotheses produced by L∗

may decrease. To correct this, we have proposed a simple modification to
L∗ that makes sure that each hypothesis is at least as good as the previous
one.

Experiments and a case study have provided preliminary evidence that
our contributions are effective in practice. Moreover, they have shown that
behaviour-based metrics can provide useful information about the learning
process, that can be used to reduce the number of equivalence queries
required in active learning.

The results of this chapter may provide insights in the problem of finding
counterexamples for an hypothesis. In a realistic setting, where the help of
an oracle is unavailable, we have to search for counterexamples by posing
membership queries. In our experiments, we have shown that a minimal-
length distinguishing string for successive hypotheses has a relatively high
chance to be a counterexample. In future work, we wish to investigate if
other distinguishing strings are good candidates as well. A search strategy
based on these strings might find a counterexample more quickly.
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Enhancing Automata

Learning by Log-Based

Metrics

Petra van den Bos, Rick Smetsers, and Frits Vaandrager

Abstract

We study a general class of distance metrics for deterministic
Mealy machines. The metrics are induced by weight functions
that specify the relative importance of input sequences. By
choosing an appropriate weight function we may fine-tune a
metric so that it captures some intuitive notion of quality. In
particular, we present a metric that is based on the minimal
number of inputs that must be provided to obtain a counterex-
ample, starting from states that can be reached by a given set of
logs. For any weight function, we may boost the performance of
existing model learning algorithms by introducing an extra com-
ponent, which we call the Comparator. Preliminary experiments
show that the Comparator yields a significant reduction of the
number of inputs required to learn correct models. Moreover,
by generalising a result of Chapter 3, we show that the quality
of hypotheses generated by the Comparator never decreases.
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4.1 Introduction

In the platonic boolean world view of classical computer science, which
goes back to McCarthy, Hoare, Dijkstra and others, programs can only be
correct or incorrect. Henzinger [67] argues that this boolean classification
falls short of the practical need to assess the behaviour of software in a
more nuanced fashion against multiple criteria. He proposes to introduce
quantitative fitness measures for programs, in order to measure properties
such as functional correctness, performance and robustness. This chapter
introduces such quantitative fitness measures in the context of black-box
testing, an area in which, as famously observed by Dijkstra [46], it is
impossible to establish correctness of implementations.

The scenario that we consider in this chapter starts from some legacy
software component. Being able to retrieve models of such a component is
potentially very useful. For instance, if the software is changed or enriched
with new functionality, one may use a learned model for regression testing.
Also, if the source code is hard to read and poorly documented, one may use
a model of the software for model-based testing of a new implementation,
or even for generating an implementation on a new platform automatically.

The construction of models from observations of component behaviour
can be performed using model learning (e.g. regular inference) techniques [71].
One such technique is active learning [11, 131]. In active learning, a so-
called Learner interacts with a System Under Learning (SUL), which is a
black-box reactive system the Learner can provide inputs to and observe
outputs from. By interacting with the SUL, the Learner infers a hypothesis,
a state machine model that intends to describe the behaviour of the SUL. In
order to find out whether a hypothesis is correct, we will typically use some
conformance testing method. If the SUL passes the test, then the model is
deemed correct. If the outputs of the SUL and the model differ, the test
constitutes a counterexample, which may then be used by the Learner to
construct an improved hypothesis.

Active learning has been successfully applied to learn models of (and find
mistakes in) implementations of major protocols such as TCP [55, 54] and
TLS [122]. We have also used the approach to learn models of embedded
control software at Océ [127] and to support refactoring of software at
Philips HealthTech [123]. A key issue in black-box model learning, however,
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is assessing the correctness of the learned models. Since testing may fail
to find a counterexample for a model, we can never be sure that a learned
model is correct. Hence there is an urgent need for appropriate quantitative
fitness measures.

Given a correct model S of the behaviour of the SUL, and a hypothesis
model H, we are interested in distance metrics d that satisfy the following
three criteria:

1. d(H,S) = 0 iff H and S have the same behaviour.

2. For any ε > 0, there exists a finite test suite Tε such that if H and S
behave the same for all tests in Tε, it follows that d(H,S) < ε.

3. Metric d captures some intuitive notion of quality: the smaller d(H,S),
the better the quality of hypothesis H.

The first criterion is an obvious sanity property that any metric should
satisfy. The second criterion says that, even though we can never exclude
that H and S behave differently, we may, for any ε > 0, come up with a
finite test suite Tε to check whether d(H,S) < ε. By running all the tests
in Tε we either establish that H is a ε-approximation of S, or we find a
counterexample that we can use to further improve our hypothesis model H .
The third criterion is somewhat vague, but nevertheless extremely important.
In practice, engineers will only be willing to invest further in testing if this
leads to a quantifiable increase of demonstrated quality. They usually find it
difficult to formalise their intuitive concept of quality, but typically require
that a refactored implementation of a legacy component behaves the same
for a set of common input sequences that have been recorded in log files, or
specified as part of a regression test suite.

In this chapter, we introduce a new, general class of metrics for deter-
ministic Mealy machines that satisfy criteria (1) and (2). Our metrics are
induced by weight functions that specify the relative importance of input
sequences. By choosing an appropriate weight function we may fine-tune
our metric so that it also meets criterion (3).

In particular, we present metrics that are based on the minimal number
of inputs that must be provided to obtain a counterexample starting from
states that can be reached by a given set of logs. We also show that, given
any weight function, we may boost the performance of existing learning
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algorithms by introducing an extra component, which we call the Comparator.
Preliminary experiments show that use of the Comparator yields a significant
reduction of the number of inputs required to learn a correct model for the
SUL, compared to a current state-of-the-art algorithm. Existing learning
algorithms do not ensure that the quality of subsequent hypotheses increases.
In fact, we may have d(H ′, S) < d(H,S), even when hypothesis H is a
refinement of hypothesis H ′. Generalising a result of Chapter 3, we show
that the quality of hypotheses never decreases when using the Comparator.

Related work

Our research is most closely related to the work presented in Chapter 3, in
which we study a simple distance metric known from concurrency theory
[14], in the setting of active learning. This metric is based on the minimal
number of inputs required to obtain a counterexample: the longer this
counterexample is, the closer a hypothesis is to the target model. Our
work generalises the results of Chapter 3 to a much larger class of metrics,
including log-based metrics that more accurately capture intuitive notions
of quality.

Thollard et al. study the idea of bounding the distance between between
the behaviour of a system and a learned model in a passive setting where the
learning algorithm does not have the ability to interact with the system [134].
They present an algorithm for learning a probabilistic automaton from logs
that trades off minimal distance (from the logs) and minimal size (of the
automaton). The distance is based on the Kullback-Leibner divergence,
which is a measure of how the learned probability distribution diverges
from an expected probability distribution given by the logs [86]. Since
Kullback-Leibner divergence is assymetric, it is not a distance metric and
can therefore not be used in our framework.

The area of software metrics [129] aims to measure alternative imple-
mentations against different criteria. While software metrics mostly measure
the quality of the software development process and static properties of
code, our work is more ambitious since it considers the dynamic behaviour
of software.

Henzinger [67] presents a general overview of work on behaviour-based
metrics. Most research in this area thus far has been concerned with directed
metrics, that is, metrics that are not required to be symmetrical. The idea
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is that for a given system X and requirement r, the distance function d
describes the degree to which system X satisfies requirement r. Černỳ et al.
for instance, define a metric that is applied to an implementation and a
specification [35]. It is based on simulation relations between states of the two
systems. If the specification simulates the implementation, then the distance
is 0. However, if there is a state pair (q, q′), such that q does not simulate q′,
then a ‘simulation failure game’ is played. At a point where the specification
has no transition with the same label as a transition of the implementation,
the specification is allowed to choose some transition, at the cost of one
penalty point. The distance between the two systems is then defined as the
total number of penalty points reached when the implementation maximises,
and the specification minimises the average number of penalty points. In our
work we use metrics to compare hypotheses. Since we compare hypotheses
in both directions, we use undirected (symmetric) metrics in our work.
Thrane et al [135] study directed metrics between weighted automata [49].
In contrast, our work shows how weighted automata can be used to define
undirected metrics between unweighted automata.

De Alfaro et al. study directed and undirected metrics in both a linear
time and a branching time setting [8]. Most related to our work are the
results on undirected linear distances. The starting point for the linear
distances is the distance ‖σ − ρ‖∞ between two traces σ and ρ, which
measures the supremum of the differences in propositional valuations at
corresponding positions of σ and ρ. The distance between two systems is
then defined as the Hausdorff distance of their sets of traces. De Alfaro
et al. provide a logical characterization of these distances in terms of a
quantitative version of LTL, and present algorithms for computing distances
over metric transition systems [8]. In particular, they present an O(n4)
algorithm for computing distances between states of a deterministic metric
transition system, where n is the size of the structure.

The undirected linear distance metric of De Alfaro et al. does not meet
our second criterion for distance metrics (existence of finite test suites).
However, the authors extend their results to a discounted context in which
distances occurring after i steps are multiplied by αi, where α is a discount
factor in [0, 1]. We expect that finite test suites do exist for the discounted
metrics of De Alfaro et al. but it is not evident that the O(n4) algorithm
for computing distances generalizes to the metric setting.
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There are intriguing relations between our results and the work of
Brandán Briones et al [27] on a semantic framework for test coverage. In
[27] also a general class of weight functions is introduced. These weighted
fault models includes a finiteness condition in order to enable test coverage.
However, weighted fault models do not induce a metric (since they may
assign weight 0 to certain sequences) and hence the resulting theory is quite
different.

4.2 Preliminaries

Sequences. Let I be any set. The set of finite sequences over I is denoted
I∗. Concatenation of finite sequences is denoted by juxtaposition. We use ǫ
to denote the empty sequence. The sequence containing a single element
e ∈ I is denoted as e. The length of a sequence σ ∈ I∗, i.e. the number of
concatenated elements of σ, is denoted with |σ|. We write σ ≤ ρ to denote
that σ is a prefix of ρ.

Mealy machines. We use Mealy machines as models for reactive systems.

Definition 4.1. A Mealy machine is a tuple M = (Σ,Γ, Q, q0, δ, λ), where:

– Σ is a nonempty, finite set of inputs,

– Γ is a nonempty, finite set of outputs,

– Q is a finite set of states,

– q0 ∈ Q is the initial state,

– δ : Q× Σ→ Q is a transition function, and

– λ : Q× Σ→ Γ is a transition output function.

Functions δ and λ are extended to Q × Σ∗ by defining for all q ∈ Q,
i ∈ Σ and σ ∈ Σ∗,

δ(q, ǫ) = q , δ(q, iσ) = δ(δ(q, i), σ),

λ(q, ǫ) = ǫ , λ(q, iσ) = λ(q, i)λ(δ(q, i), σ).
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Observe that for each state and input pair exactly one transition is defined.
The semantics of a Mealy machine are defined in terms of output

functions:

Definition 4.2. An output function over Σ and Γ is a function A : Σ∗ → Γ∗

that maps each sequence of inputs to a corresponding sequence of outputs
such that, for all σ, ρ ∈ Σ∗, |σ| = |A(σ)|, and σ ≤ ρ ⇒ A(σ) ≤ A(ρ).

Definition 4.3. The semantics of a Mealy machine M are defined by the
output function AM given by AM (σ) = λ(q0, σ), for all σ ∈ Σ∗.

Let M1 = (Σ,Γ, Q1, q
0
1, δ1, λ1) and M2 = (Σ,Γ, Q2, q

0
2, δ2, λ2) be two

Mealy machines that share common sets of input and output symbols. We
say M1 and M2 are equivalent, denoted M1 ≈M2, iff AM1

= AM2
. An input

sequence σ ∈ Σ∗ distinguishes states q1 ∈ Q1 and q2 ∈ Q2 iff λ1(q1, σ) 6=
λ2(q2, σ). Similarly, σ distinguishes M1 and M2 iff AM1

(σ) 6= AM2
(σ).

4.3 Weight Functions and Metrics

The metrics that we consider in this chapter are parametrized by weight
functions. Intuitively, a weight function specifies the importance of input
sequences: the more weight an input sequence has, the more important it is
that the output it generates is correct.

Definition 4.4. A weight function for a nonempty, finite set of inputs Σ
is a function w : Σ∗ → R

>0 such that, for all t > 0, {σ ∈ Σ∗ | w(σ) > t} is
finite.

The finiteness condition in the above definition asserts that, even though
the domain Σ∗ is infinite, a weight function may only assign a value larger
than t to a finite number of sequences, for any t > 0. Therefore, weight func-
tions must involve some form of discounting by which long input sequences
get smaller weights. This idea is based on the intuition that “a potential
bug in the far-away future is less troubling than a potential bug today” [9].

Example 4.1. Let us define a weight function w by w(σ) = 2−|σ|, for each
σ ∈ Σ∗. Let t ∈ R

>0. In order to see that w is a weight function, observe
that

w(σ) > t ⇔ 2−|σ| > t ⇔ |σ| < − log2 t.
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Since Σ is finite, this implies that the set {σ ∈ Σ∗ | w(σ) > t} is finite, as
required.

Below we define how a weight function induces a distance metric on
output functions. Intuitively, the most important input sequence two output
functions disagree on, i.e. the sequence with maximal weight, determines
the distance.

Definition 4.5. Let A,B be output functions over Σ and Γ, and let w be
a weight function over Σ. Then the distance metric d(A,B) induced by w is
defined as:

d(A,B) = max{w(σ) | σ ∈ Σ∗ ∧A(σ) 6= B(σ)},

with the convention that max ∅ = 0. Sequence σ ∈ Σ∗ is a w-maximal
distinguishing sequence for A and B if A(σ) 6= B(σ) and w(σ) = d(A,B).

Note that d(A,B) is well-defined: the set {w(σ) | σ ∈ Σ∗∧A(σ) 6= B(σ)}
is either empty or contains, by the finiteness restriction for weight functions,
a maximal element. Observe that for all output functions A and B with
A 6= B there exists a w-maximal distinguishing sequence.

Theorem 4.1. Let Σ and Γ be nonempty, finite sets of inputs and outputs,
and let A be the set of all output functions over Σ and Γ. Then the function d
of Definition 4.5 is an ultrametric in the space A since, for any A,B,C ∈ A,

1. d(A,B) = 0⇔ A = B (identity of indiscernibles)

2. d(A,B) = d(B,A) (symmetry)

3. d(A,B) ≤ max(d(A,C), d(C,B)) (strong triangle inequality)

Proof.

1. If A = B then d(A,B) = 0 by definition of d and the convention
max ∅ = 0. We prove the converse implication by contraposition.
Assume A 6= B. Then there exists a σ ∈ Σ∗ such that A(σ) 6= B(σ).
Since, by definition of w, w(σ) > 0 it follows, by definition of d, that
d(A,B) 6= 0.

2. Follows directly from the symmetry in the definition of d.
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3. We consider four cases:

(a) If d(A,B) = 0 then d(A,B) ≤ max(d(A,C), d(C,B)) holds triv-
ially.

(b) If d(A,C) = 0 then A = C by identity of indiscernibles and
d(A,B) ≤ max(d(A,C), d(C,B)) holds trivially.

(c) If d(C,B) = 0 then C = B by identity of indiscernibles and
d(A,B) ≤ max(d(A,C), d(C,B)) holds trivially.

(d) Assume d(A,B) 6= 0, d(A,C) 6= 0 and d(C,B) 6= 0. Let σ1 be
a w-maximal distinguishing sequence for A and B, let σ2 be a
w-maximal distinguishing sequence for A and C, and let σ3 be a
w-maximal distinguishing sequence for C and B. Let t1 = w(σ1),
t2 = w(σ2), and t3 = w(σ3). We prove t1 ≤ max(t2, t3) by
contradiction. Suppose t1 > max(t2, t3). By definition of d, we
know that for all σ with w(σ) > t2, A(σ) = C(σ). Similarly, we
know that for all σ with w(σ) > t3, C(σ) = B(σ). Thus, for all
σ with w(σ) ≥ t1, A(σ) = C(σ) = B(σ). This contradicts the
fact that w(σ1) = t1 and A(σ1) 6= B(σ1).

For any weight function w, we lift the induced distance metric from
output functions to Mealy machines by defining, for Mealy machines M
and M ′, d(M,M ′) = d(AM , AM ′). Observe that d(M,M ′) = 0 iff M ≈M ′.
Also, for each ε > 0, the set {σ ∈ Σ∗ | w(σ) ≥ ε} is finite. Thus there exists
a finite test suite that we may apply to either find a counterexample that
proves M 6≈M ′ or to establish that d(M,M ′) < ε.

4.4 Log-Based Metrics

A log τ ∈ Σ∗ is an input sequence that has been observed during execution
of the SUL. We assume a finite set L ⊂ Σ∗ of logs that have been collected
from the SUL. For technical reasons, we require that ǫ is included in L.

Let S be an unknown model of an SUL, and letH be a learned hypothesis
for S. Since S and H are Mealy Machines, we may associate to each log
τ ∈ L unique states q ∈ QS and q′ ∈ QH , that are reached by taking the
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transitions for the input symbols of τ , starting from q0S and q0H respectively.
In this case, we say that τ visits the state pair (q, q′). Next, we can search
for a sequence ρ that distinguishes q and q′. Now, τρ distinguishes q0S and
q0H , and hence S 6≈ H. We may define the distance of S and H in terms
of the minimal number of inputs required to distinguish any pair of states
(q, q′) that is visited by some log τ ∈ L.

We will now formalize the above intuition by defining a weight function
and a distance metric. For this we need an auxiliary definition that describes
how to decompose any trace σ into a maximal prefix that is contained in L,
and a subsequent suffix.

Definition 4.6. Let σ ∈ Σ∗ be an input sequence. An L-decomposition of σ
is a pair (τ, ρ) such that τ ∈ L and τρ = σ. We say that (τ, ρ) is a maximal
L-decomposition if |τ | is maximal, i.e. for all L-decompositions (τ ′, ρ′) of σ
we have |τ ′| ≤ |τ |.

Observe that, since ǫ ∈ L, each sequence σ has a unique maximal L-
decomposition (τ, ρ). We can now define the weight function wL as a variant
of the weight function of Example 4.1 in which the weight is not determined
by the length of σ but rather by the length of the suffix ρ of the maximal
L-decomposition.

Definition 4.7. Let A be an output function over Σ and Γ, and let σ ∈ Σ∗.
Then the weight function wL is defined as wL(σ) = 2−|ρ|, where (τ, ρ) is the
maximal L-decomposition of σ. We write dL for the distance metric induced
by wL.

In order to see that wL is indeed a proper weight function in the sense
of Definition 4.4, fix a t > 0 and derive:

{σ ∈ Σ∗ | wL(σ) > t} =

{σ ∈ Σ∗ | ∃τ, ρ : 2−|ρ| > t ∧ (τ, ρ) is a maximal L-decomposition of σ} ⊆

{τρ ∈ Σ∗ | 2−|ρ| > t ∧ τ ∈ L} =

{τρ ∈ Σ∗ | |ρ| < − log2 t ∧ τ ∈ L}

Since both Σ and L are finite the last set is finite, and therefore the first
set is finite as well.
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Observe that the metric dL coincides with the metric presented in
Chapter 3 if we take as set L of logs the singleton set {ǫ}, as we then only
take into account w-maximal distinguishing sequences starting in the initial
state.

Example 4.2. Let us illustrate our log-based metric with a simple coffee
machine. The machine is always used as follows. First, a coffee pod is
placed, then the machine is provided with water, then the button is pressed
to obtain coffee, and finally the machine is cleaned. The logs for the coffee
machine consist of the sequence pod water button clean and all of its proper
prefixes (i.e., pod water button, pod water, pod, and the empty sequence
ǫ).

Figure 4.1 presents three models for the coffee machine. The model shown
in Figure 4.1a is the correct model S, and the models shown in Figure 4.1b
and 4.1c, respectively, are hypotheses H ′ and H for S. Observe that both
hypotheses produce correct output for all logs, but that they nevertheless
have some incorrect transitions. In H ′, the clean transitions are incorrect
in states 2, 3 and 4. In H only the erroneous clean transition in state 3
remains.

Let us compute the distances of H ′ and H to S. A wL-maximal distin-
guishing sequence to discover inequivalence of H ′ and S is pod water clean
button.

At the end of this sequence, H ′ outputs coffee, while S remains quiescent,
i.e., output X. Despite that the sequence is of length four, it only takes two
inputs to discover the error starting from a state that can be reached via a
log, since state 4 is reached by pod water. Therefore, the distance between
H ′ and S according to our metric is 2−2.

A wL-maximal distinguishing sequence to discover the remaining error in
H is water clean pod button: H outputs coffee at the end of this sequence,
where it should remain quiescent. Since the prefix water has never been
observed in logs, it takes four inputs to discover this error starting from a
state that has been visited by a log: state 1 is known because it is reached by
the empty sequence ǫ. As a result, the distance between H and S according
to our metric is 2−4.

Observe that these distances capture the subtle improvement in H com-
pared to H ′ (as 2−4 < 2−2), despite that four inputs are required in both
hypotheses to discover an error. Both H ′ and H are wrong, but the problem
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Figure 4.1: Models of a coffee machine. The machine has one button
(abbreviated as btn. in state 2), can be provided with a pod and water, and
can be cleaned. It can produce coffee, or remain quiescent (X) after an
input. The logged trace is displayed with bold arrows. Some insignificant
self-loops are not displayed.

with H ′ is more serious, as the error is visible after two transitions starting
from a state that is reached during normal use of the system, instead of
four transitions in H. In the metric of Chapter 3, both hypotheses would be
considered equally distant to S for this reason.

Algorithm. Van den Bos [26] presents an algorithm for finding wL-
maximal distinguishing sequences for two given models. As we will see, such
an algorithm is extremely useful as a component in model learning. The
input of the algorithm of Van den Bos [26] consists of two Mealy machines
H and H ′ that agree on all inputs from L, that is, AH(σ) = AH′(σ), for
all σ ∈ L. (This can be realized, for instance, by first checking for each
hypothesis model whether it is consistent with all the logs in L.) The key
idea of the algorithm is that minimal length distinguishing sequences (for
pairs of states) are gathered by constructing a partition of indistinguishable
states. By processing the partition, a distinguishing sequence of minimal
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length is found for each pair of states in QH ×QH′ , or it is established that
the states are equivalent. After that, a wL-maximal distinguishing sequence
can be found by picking a minimal length distinguishing sequence that is
visited by some log in L. Intuitively, the time complexity of the search
for these sequences can be deferred from the fact that a table has to be
filled for all state pairs. Indeed, it follows that the algorithm is quadratic,
i.e. of O(pn2), where n is the sum of the number of states of H and H ′,
and p is the number of inputs. In Chapter 2 it is shown that minimal
length distinguishing sequences for all pairs of states can even be found in
O(pn log n).

Weighted automata. There are many possible variations of our log-
based metrics. We may for instance consider variations in which the weight
of a log is partially determined by its frequency. We may also assign a
higher weight to logs in which certain “important” inputs occur. All such
variations can be easily defined using the concept of a weighted automaton
[49], i.e., an automaton in which states and transition carry a certain weight.
Below we define a slightly restricted type of weighted automaton, called
weighted Mealy machine, which only assigns weights to transitions.

Definition 4.8. A weighted Mealy machine is a tuple M = (Σ,Γ, Q, q0, δ, λ, c),
where (Σ,Γ, Q, q0, δ, λ) is a Mealy machine and c : Q× Σ→ R

>0 is a cost
function. Cost function c is extended to Q× Σ∗ by defining, for all q ∈ Q,
i ∈ Σ and σ ∈ Σ∗, c(q, ǫ) = 1 and c(q, iσ) = c(q, i) · c(δ(q, i), σ). The cost
function cM : Σ∗ → R

>0 induced by M is defined as cM (σ) = c(q0, σ).

A cost function cM is not always a weight function in the sense of
Definition 4.4, since it may assign an unbounded weight to infinitely many
sequences. However, if the weight of any cycle in M is less than 2 then cM
is a weight function.

Definition 4.9. Let M = (Σ,Γ, Q, q0, δ, λ, c) be a weighted Mealy machine.
A path of M is an alternating sequence π = q0i0q1 · · · qn−1in−1qn of states
in Q and inputs in Σ, beginning and ending with a state, such that, for all
0 ≤ j < n, δ(qj , ij) = qj+1. Path π is a cycle if q0 = qn and n > 0. The
weight of path π is defined as the product of the weights of the contained
transitions:

∏n−1
j=0 c(qj , ij).
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Theorem 4.2. Let M be a weighted Mealy machine, then cM is a weight
function iff all cycles have weight (strictly) less than 1.

Let L be a prefix closed set of logs (i.e. all prefixes of a log in L are
also included in L). Then the weight function wL of Definition 4.7 can
alternatively be defined as the weight function cM induced by a weighted
automaton M with states taken from L ∪ {⊥}, that is, the set of logs
extended with an extra sink state ⊥, initial state ǫ, and transition function
δ and cost function c defined as:

δ(q, i) =

{

qi if q ∈ L ∧ qi ∈ L
⊥ otherwise

c(q, i) =

{

1 if q ∈ L ∧ qi ∈ L
1
2 otherwise

Note that, by Theorem 4.2, cM is indeed a weight function.

4.5 An Adapted Learning Algorithm

In this section, we will explain how weight functions and their induced
metrics can be used to improve model learning.

Active learning is a learning framework in which a Learner can ask
questions (queries) to a Teacher, as visualized in Figure 4.2a. We assume
that the Teacher is capable of answering queries correctly according to the
Minimally Adequate Teacher (MAT) model of Angluin [11]. The Teacher
knows a Mealy machine S which is unknown to the Learner. Initially, the
Learner only knows the input and output symbols of S. The task of the
Learner is to learn S by asking two types of queries:

– With a membership query (MQ), the Learner asks what the response
is to an input sequence σ ∈ Σ∗. The Teacher answers with the output
sequence AS(σ).

– With an equivalence query (EQ), the Learner asks whether a hy-
pothesized Mealy machine H is correct, that is, whether H ≈ S.
The Teacher answers yes if this is the case. Otherwise it answers
no and supplies a counterexample, which is a sequence σ ∈ Σ∗ that
produces a different output sequence for both Mealy machines, that
is, AH(σ) 6= AS(σ).
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input sequences
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Figure 4.2: Active learning framework (a) and implementation for black-box
learning (b).

Starting from Angluin’s seminal L∗ algorithm [11], many algorithms
have been proposed for learning a Mealy machine H that is equivalent to
S via a finite number of queries. We refer to [82] for an excellent recent
overview. In applications in which one wants to learn a model of a black-box
reactive system, the Teacher typically consists of a System Under Learning
(SUL) that answers the membership queries, and a conformance testing
(CT) tool [93] that approximates the equivalence queries using a set of
test queries (TQs). A test query consists of asking the SUL what the
response is to an input sequence σ ∈ Σ∗, similar to a membership query. A
schematic overview of such an implementation of active learning is shown
in Figure 4.2b.

We will now explain how weight functions and the metrics they induce
can be used to enhance active learning. Our idea is to place a new “Com-
parator” component in between the Learner and the Teacher, as displayed
in Figure 4.3. The Comparator ensures that the distance of subsequent
hypotheses to the target model S never increases. Moreover, the Com-
parator may replace an equivalence query by a single membership query.
This speeds up the learning process, since a Teacher typically answers an
equivalence query by running a large number of test queries generated by
a conformance testing algorithm. In the printer controller case study of
[127], for instance, on average more than 270.000 test queries were used to
implement a single equivalence query.

Assume we have a weight function w and an oracle which, for given
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EQ
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σ is a cex.

Figure 4.3: Active learning framework with the Comparator in the middle.

models H and H ′ with H 6≈ H ′, produces a w-maximal distinguishing
sequence, that is, a sequence σ ∈ Σ∗ with d(H,H ′) = w(σ) and AH(σ) 6=
AH′(σ). The behavior of the Comparator component can now be described
as follows:

– The first equivalence query from the Learner is forwarded to the
Teacher, and the resulting reply from the Teacher is forwarded again
to the Learner.

– The Comparator always remembers the last hypothesis that it has
forwarded to the Teacher.

– Upon receiving any subsequent equivalence query from the Learner
for the current hypothesis H , the Comparator computes a w-maximal
distinguishing sequence σ for H and the previous hypothesis H ′, as
described in the previous section. The Comparator poses a membership
query σ to the Teacher and awaits the reply AS(σ). Depending on
the reply, two things may happen:

1. AS(σ) 6= AH(σ). The Comparator has found a counterexamples
for hypothesis H , and returns no together with σ to the Learner
in response to the equivalence query.

2. AS(σ) = AH(σ). The Comparator forwards the equivalence
query to the Teacher, waits for the reply, and forwards this to
the Learner.

108



Enhancing Automata Learning by Log-Based Metrics

From the perspective of the Learner, the combination of a Comparator
and a Teacher behave like a regular Teacher, since all membership and
equivalence queries are answered appropriately and correctly. Hence the
Learner will succeed to learn a correct hypothesis H after posing a finite
number of queries.

Conversely, from the perspective of the Teacher, the Comparator and
the Learner together behave just like a regular Learner that poses member-
ship and equivalence queries. A key property of the Comparator/Learner
combination, however, is that the quality of hypotheses never decreases. We
claim that, whenever the Comparator first poses an equivalence query for
H ′ and then for H , we always have d(S,H) ≤ d(S,H ′). In order to see why
this is true, observe that when the Comparator poses the equivalence query
for H it has found a w-maximal distinguishing sequence σ for H and H ′.
Therefore we know that AH(σ) 6= AH′(σ) and

w(σ) = d(H ′, H) (4.1)

Through a membership query σ the Comparator has also discovered that
AS(σ) = AH(σ). This implies AS(σ) 6= AH′(σ) and thus

w(σ) ≤ d(S,H ′) (4.2)

Now we infer

d(S,H) ≤ (by the strong triangle inequality, Theorem 4.1)

max(d(S,H ′), d(H ′, H)) = (by equation (4.1))

max(d(S,H ′), w(σ)) = (by inequality (4.2))

d(S,H ′).

Hence, the distance between subsequent hypotheses and S never increases.

4.6 Case Studies

In this section, we present two case studies in which we measure the effect
of a Comparator for the log-based metrics from Section 4.4. In the first case
study, we learn a model for the Engine Status Manager (ESM), a piece of
industrial software that controls the transition from one status to another
in Océ printers. In the second case study we learn a model for the Windows
8 TCP server.
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Engine Status Manager. In [126], a first attempt was made to learn
a model for the ESM using the algorithm of Rivest & Schapire [119] as
implemented in LearnLib [117]. A manually constructed reference model
was used to determine the success of the learning algorithm. The author did
not succeed in learning the complete model, as it took the Teacher too long
to find a counterexample at some point. A second attempt was made in [127].
In this work, an adaptation of a finite state machine testing algorithm by Lee
and Yannakakis [93] was used by the Teacher to find counterexamples. The
authors succeeded in learning a complete, correct model with 3410 states
for the ESM through a sequence of more than 100 hypotheses. Particularly
because of the large number of hypotheses, this case study appeared to be
a suitable case to test the impact of a Comparator.

Using the same setup for the Learner and the Teacher as in [127], we
have conducted twenty independent runs for each of the following three
experiments.

(a) The classical setting without a Comparator.

(b) A setting with a Comparator and the trivial log set L = {ǫ}. This setup
resembles the algorithm presented in Chapter 3.

(c) A setting with a Comparator, using the aforementioned algorithm for
finding w-maximal distinguishing sequences on a nontrivial set of logs.

No real logs were available to us for setup (c), because no appropriate
logging method was in place to obtain real user logs from, and setting up
such logging would be tedious. Instead, we developed a method to generate
logs that resemble real logs. In [126], a couple of ‘paths’, directly inferred
from the ESM, are given. Such a path is a sequence of subsets of the input
alphabet. An input sequence for the ESM can be obtained by concatenating
inputs from the subsequent subsets of the path. More specifically, the
algorithm for doing this keeps track of the sequence σ it has constructed,
the current state q, the set of already visited states V , and the index k of
the current subset of the path. Initially, σ = ǫ, q = q0, V = {q0}, and k = 0.
The algorithm extends σ with an input i from subset k if δ(q, i) 6∈ V . In
that case, q and V are updated accordingly. Else, we search for an input
in subset k + 1. Only sequences with their last input in the last subset of
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Table 4.1: Number of inputs used to learn a model for the ESM (n = 20).

setup mean std. dev. median min max

(a) 416 519 487 219 015 166 404 307 465 209 781 273 686 385 316
(b) 371 248 375 57 005 155 377 724 597 290 072 340 545 535 231
(c) 308 928 853 50 719 369 295 863 646 243 197 179 430 523 416

Table 4.2: Number of inputs used to learn a model for a TCP server
(n = 500).

setup mean std. dev. median min max

(a) 263 463 254 353 206 750 35 694 2 076 538
(b) 262 948 291 222 205 487 40 927 2 380 343
(c) 259 409 241 255 210 545 41 471 2 168 348

a path are included in the logs. In total, we have generated 9800 logs for
each run.

Experimental results are shown in Table 4.6. On average over 20 runs,
setup (c) (with Comparator) requires 25.8% fewer inputs than setup (a)
(no Comparator), and 26.8% fewer inputs than setup (b) (the algorithm
of Chapter 3) to learn a correct model for the ESM. A non-parametrical,
distribution independent statistical test was used to determine that this
result is significant (p < 0.05, z = −4.15).

TCP. In [54], active learning was used to obtain a model for the Windows
8 TCP server. Using the aforementioned Learner and Teacher algorithms,
the authors succeeded in learning a model of 38 states through a series of 13
hypotheses. We have conducted 500 runs for each of the experimental setups
described above, using the model of [54] as an SUL. Experimental results
are shown in Table 4.6. Unfortunately, we found no significant reduction in
inputs when using the Comparator. We conjecture that this is due to the
inherent simplicity of the model.
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4.7 Conclusion

We have presented a general class of distance metrics on Mealy machines
that may be used to formalize intuitive notions of quality. Preliminary
experiments show that our metrics can be used to obtain a significant
reduction of the number of inputs required to learn large black-box models.
For smaller models, no reduction was found. Therefore, we conjecture that
the utility of our metrics increases as models become more complex.

In future work, we plan to perform more experiments to verify these
results. In addition, we wish to do experiments with real logs, instead of
generated ones. Another topic for future research is to develop efficient
algorithms for computing w-maximal distinguishing sequences for the weight
functions induced by weighted Mealy machines. Bounding the distance
between a hypothesis and the unknown target model during learning remains
a challenging problem. Our experiments have produced discouraging results
in this sense, since the quality of a hypothesis is hard to predict because of
the high variance for different experimental runs.
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Model Learning as a

Satisfiability Modulo

Theories Problem

Rick Smetsers, Paul Fiterău-Broştean and Frits Vaandrager

Abstract

We explore an approach to model learning that is based on using
satisfiability modulo theories (SMT) solvers. To that end, we
explain how DFAs, Mealy machines and register automata, and
observations of their behavior can be encoded as logic formulas.
An SMT solver is then tasked with finding an assignment for
such a formula, from which we can extract an automaton of
minimal size. We provide an implementation of this approach
which we use to conduct experiments on a series of benchmarks.
These experiments address both the scalability of the approach
and its performance relative to existing active learning tools.
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5.1 Introduction

We are interested in algorithms that construct black-box state diagram
models of software and hardware systems by observing their behavior and
performing experiments. Developing such algorithms is a fundamental
research problem that has been widely studied. Roughly speaking, two
approaches have been pursued in the literature: passive learning techniques,
where models are constructed from (sets of) runs of the system, and active
learning techniques, that accomplish their task by actively doing experiments
on the system.

Gold [63] showed that the passive learning problem of finding a minimal
DFA that is compatible with a finite set of positive and negative examples,
is NP-hard. In spite of these hardness results, many DFA identification
algorithms have been developed over time, see [71] for an overview. Some
of the most successful approaches translate the DFA identification problem
to well-known computationally hard problems, such as SAT [69], vertex
coloring [57], or SMT [108], and then use existing solvers for those problems.

Angluin [11] presented an efficient algorithm for active learning a regular
language L, which assumes a minimally adequate teacher (MAT) that
answers two types of queries about L. With a membership query, the
algorithm asks whether or not a given word w is in L, and with an equivalence
query it asks whether or not the language LH of an hypothesized DFA
H is equal to L. If LH and L are different, a word in the symmetric
difference of the two languages is returned. Angluin’s algorithm has been
successfully adapted for learning models of real-world software and hardware
systems [114, 117, 140], as shown in Figure 5.1. A membership query

TQs

SUL

CT

MQs

EQ

Learner Teacher

Figure 5.1: Model learning within the MAT framework.
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(MQ) is implemented by bringing the system under learning (SUL) in its
initial state and the observing the outputs generated in response to a given
input sequence, and an equivalence query (EQ) is approximated using a
conformance testing tool (CT) [93] via a finite number of test queries (TQ). If
these test queries do not reveal a difference in the behavior of an hypothesis
H and the SUL, then we assume the hypothesis model is correct.

Walkinshaw et al. [144] observed that from each passive learning algo-
rithm one can trivially construct an active learning algorithm that only
poses equivalence queries. Starting from the empty set of examples, the
passive algorithm constructs a first hypothesis H1 that is forwarded to the
conformance tester. The first counterexample w1 of the conformance tester
is then used to construct a second hypothesis H2. Next counterexamples
w1 and w2 are used to construct hypothesis H3, and so on, until no more
counterexamples are found.

In this chapter, we compare the performance of existing active learning
algorithms with passive learning algorithms that are ‘activated’ via the
trick of Walkinshaw et al. [144]. At first, this may sound like a crazy
thing to do: why would one compare an efficient active learning algorithm,
polynomial in the size of the unknown state machine, with an algorithm
that makes a possibly superpolynomial number of calls [12] to a solver for
an NP-hard problem? The main reason is that in practical applications i/o
interactions often take a significant amount of time. In [123], for instance, a
case study of an interventional X-ray system is described in which a single
i/o interaction may take several seconds. Therefore, the main bottleneck
in these applications is the total number of membership and test queries,
rather than the time required to decide which queries to perform. Also,
in practical applications the state machines are often small, with at most
a few dozen states (see for instance [7, 2, 123]). Therefore, even though
passive learning algorithms do not scale well, there is hope that they can
still handle these applications. Active learning algorithms rely on asking
a large number of membership queries to construct hypotheses. Passive
learning algorithms pose no membership queries, but instead need a larger
number of equivalence queries, which are then approximated using test
queries. A priori, it is not clear which approach performs best in terms of
the total number of membership and test queries needed to learn a model.

Our experiments compare the original L∗ [11] and the state-of-the-art
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TTT [83] active learning algorithm with an SMT-based passive learning
algorithm on a number of practical benchmarks. We encode the question
whether there exists a state machine with n states that is consistent with a
set of observations into a logic formula, and then use the Z3 SMT solver [105]
to decide whether this formula is satisfiable. By iteratively incrementing the
number of states we can find a minimal state machine consistent with the
observations. As equivalence oracle we use a state-of-the-art conformance
testing algorithm based on adaptive distinguishing sequences [92, 128]. In
line with our expectations, the passive learning approach is competitive
with the active learning algorithms in terms of the number of membership
and test queries needed for learning.

An advantage of SMT encodings, when compared for instance with en-
codings based on SAT or vertex coloring, is the expressivity of the underlying
logic. In recent years, much progress has been made in extending active
learning algorithms to richer classes of models, such as register automata
[76, 3, 34] in which data may be tested and stored in registers. We show
that the problem of finding a register automaton that is consistent with a
set of observations can be expressed as an SMT problem, and compare the
performance of the resulting learning algorithm with that of Tomte [3], a
tool for active learning of register automata, on some simple benchmarks.
New algorithms for active learning of FSMs, Mealy machines and various
types of register automata are often extremely complex, and building tools
implementations often takes years [3, 34, 83]. Adapting these tools to slighly
different scenarios is typically a nightmare. One such scenario is when the
system is missing reset functionality. This renders most active learning tools
impractical, as these rely on the ability to reset the system. Developing
SMT-based learning algorithms for register automata in settings with and
without resets only took us a few weeks. This shows that the SMT-approach
can be quite effective as a means for prototyping learning algorithms in
various settings.

The rest of this chapter is structured as follows. Section 5.2 describes
how one can encode the problem of learning a minimal consistent automaton
in SMT. The scalability and effectiveness of our approach, and its applica-
bility in practice are assessed in Section 5.3. Conclusions are presented in
Section 5.4.
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5.2 Model Learning as an SMT Problem

This section describes how to express this problem in a logic formula. If
and only if there exists an assignment to the variables of this formula that
makes it true, then exists an automaton A with at most n states that is
consistent with S. We use an SMT solver to find such an assignment. If
the SMT solver concludes that the formula is satisfiable, then its solution
provides us with A.

We distinguish three types of constraints:

– axioms must be satisfied for A to behave as intended by its definition.

– observation constraints must be satisfied for A to be consistent with
S.

– size constraints must be satisfied for A to have n states or less.

Hence, the problem can be solved by iteratively incrementing n until the
encoding of the axioms, observation constraints and size constraints is
satisfiable.

In the following subsections, we present encodings for deterministic finite
automata (Section 5.2.1 and Section 5.2.2), Moore and Mealy machines
(Section 5.2.3), register automata (Section 5.2.4), and input-output register
automata (Section 5.2.5).

5.2.1 An Encoding for Deterministic Finite Automata

A deterministic finite automaton (DFA) accepts and rejects strings , which
are sequences of labels. We define a DFA as follows:

Definition 5.1. A DFA is a tuple (L,Q, q0, δ, F ), where

– L is a finite set of labels,

– Q is a finite set of states,

– q0 ∈ Q is the initial state,

– δ : Q× L→ Q is a transition function for states and labels,

– F ⊆ Q is a set of accepting states.
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Let x be a string. We use xi to denote ith label of x. We use x[i,j] to
denote the substring of x starting at position i and ending at position j
(inclusive), i.e. x = x[1,|x|].

A DFA A accepts a string if its computation ends in an accepting state.
This can be formalized as follows. Let x ∈ L∗ be a string, then A accepts x
if a sequence of states q′0 . . . q

′
|x| exists such that

1. q′0 = q0,

2. q′i = δ(q′i−1, xi) for 1 ≤ i ≤ |x|, and

3. q′|x| ∈ F .

Let S+ be a set of strings that should be accepted, and let S− be a disjoint
set of strings that should be rejected. Let S be the set that contains all of
these strings, along with their labels, i.e. S = {(x, true) : x ∈ S+} ∪ {(x,
false) : x ∈ S−}. A DFA is consistent with S if it accepts all strings in S+,
and rejects all strings in S−.

This leads us to a natural encoding for finding a consistent DFA in
satisfiability modulo the theories of inequality and uninterpreted functions.
We encode a DFA as follows:

– Q is a finite subset of the (non-negative) natural numbers N,

– q0 = 0,

– The set of accepting states F is encoded as a function λ : Q → B,
such that q ∈ F ⇐⇒ λ(q) = true.

The following size constraint ensures that A has at most n states:

∀q ∈ {0, . . . , n− 1} ∀l ∈ L
n−1
∨

q′=0

δ(q, l) = q′ (5.1)

Remark 5.1. If the solver supports linear equalities, then the constraint in
Equation 5.1 can be encoded more compactly as:

∀q ∈ {0, . . . , n− 1} ∀l ∈ L δ(q, l) < n (5.2)
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If we assume without loss of generality that the initial state is 0, then
we can add the following constraints for the strings in S+:

∀x ∈ S+ λ( δ(. . . δ(δ(0, x1), x2), . . . x|x|) ) = true (5.3)

Similarly, we can add the following constraints for the strings in S−:

∀x ∈ S− λ( δ(. . . δ(δ(0, x1), x2), . . . x|x|) ) = false (5.4)

5.2.2 A Better Encoding for Deterministic Finite Automata

The nesting in the set of constraints given by Equation 5.3 and Equation 5.4
might lead to many redundant constraints for the theory solver, because
a transition might be encoded in multiple ways. One solution to this is to
define the constraints implied by strings in a non-nested way. Similarly to
Heule and Verwer [69], and Bruynooghe et. al. [28], we use an observation
tree (OT) for this. This can be considered a partial, tree-shaped automaton
that is exactly consistent with S, i.e. it accepts only the set S+ and rejects
only the set S−. We define an OT for a set of labeled strings in Definition 5.2.

Definition 5.2. An OT for a set of strings S = {S+, S−} is a tuple (L,Q,
λ), where

– L is a set of labels,

– Q = {x ∈ L∗ : x is a prefix of a string in S+ ∪ S−},

– λ : S+∪S− → B is a output function for the strings, with x ∈ S+ ⇐⇒
λ(x) = true.

Now, let us explain how one can construct a set of constraints for
finding a DFA A = (L,QA, q0, δ

A, F ) that is consistent with an OT T = (L,
QT , λT ) for a given set S = {S+, S−}. Let us (again) consider the set
of states QA as a set of non-negative integers with q0 = 0, and let us
encode the set of accepting states F as a function λ : Q → B, such that
q ∈ F ⇐⇒ λ(q) = true. Recall that a DFA is consistent if and only
if it accepts all strings in S+ and rejects all strings in S−, i.e. for each x
in S λA(δA(q0, x)) = λT (x) (we slightly abuse notation here by extending
δA : Q×L∗ → Q to strings). Such a DFA has at most as many states as the
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OT (but typically significantly less). Therefore, there must exist a surjective
(i.e. many-to-one) function from the strings of the OT to states of the DFA:

map : QT → QA (5.5)

Our goal is to find a set of constraints for map that make sure that our
target DFA A is consistent. For this we define the following observation
constraints:

map(ǫ) = q0 (5.6)

∀xl ∈ QT : x ∈ L∗, l ∈ L δA(map(x), l) = map(xl) (5.7)

∀x ∈ S+ ∪ S− λA(map(x)) = λT (x) (5.8)

Equation 5.6 maps the empty string to the initial state of A. Equation 5.7
encodes the observed prefixes as transitions of A while Equation 5.8 encodes
the observed outputs, with λA encoding F .

To meet the minimality requirement, we are interested in finding the
‘smallest’ map function; i.e. there should be no function with a smaller image
that satisfies these constraints. For this purpose we can re-use one of the
size constraints presented earlier (Equations 5.3 or 5.2).

5.2.3 A Modification for Moore and Mealy Machines

An advantage of the encoding presented in Section 5.2.2 (as opposed to the
one presented in Section 5.2.1) is that it can easily be modified to learn
transducers. Transducers are automata that generate output strings. As
such, they can be used to model input-output behaviour of software.

A Moore machine is a transducer that generates an output label ini-
tially and each time it (re-) enters a state. We define a Moore machine in
Definition 5.3.

Definition 5.3. A Moore machine is a tuple (I,O,Q, q0, δ, λ), where

– I is a finite set of input labels,

– O is a finite set of output labels,

– Q, q0 and δ are a set of states, the initial state, and a transition
function respectively, and
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– λ : Q→ O is a output function that maps states to output labels.

A set of observations S for a Moore machine consists of traces, which
are pairs (xI , xO) where xI ∈ I∗ is an input string and xO ∈ O∗ is an output
string with |xO| = |xI |+ 1. A Moore machine is consistent with a set S if
for each (xI , xO) ∈ S it generates xO when provided with xI .

A Mealy machine is a transducer that generates an output label each
time it makes a transition. We define a Mealy machine in Definition 5.4.

Definition 5.4. A Mealy machine is a tuple (I,O,Q, q0, δ, λ), where

– I,O,Q, q0 and δ are the same as for a Moore machine (Definition 5.3),
and

– λ : Q × I → O is a output function that maps transitions to output
labels.

A set of observations S for a Mealy machine consists of traces (xI , xO)
where xI ∈ I∗ is an input string and xO ∈ O∗ is an output string with
|xO| = |xI |. Similarly to a Moore machine, a Mealy machine is consistent
with a set S if for each (xI , xO) ∈ S it generates xO when provided with xI .

It has been shown that Moore and Mealy machines are equi-expressive
if we neglect the initial output label generated by a Moore machine (see
e.g. [73]). Therefore, we can define an OT for a set S of traces for a Moore
or Mealy machine A = (I,O,QA, q0, δ

A, λA) in a similar way. We choose to
define such an input-output observation tree (IOOT) as follows.

Definition 5.5. An IOOT for a set of traces S is a tuple (I,O,Q, λ), where

– I and O are sets of input labels and output labels respecitvely,

– Q = {x ∈ I∗ : x is a prefix of an input string of a trace in S},

– λ : Q→ O is a output function with λ(xI[0,i]) = xOi for all (xI , xO) ∈ S

and 1 ≤ i ≤ |xI |.

Observe that λ is defined for all states. Also, observe that there is no
need for λ to be a transition output function for Mealy machines, because
there is only one string that ends in each state of an IOOT.
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Let T = (I,O,QT , λT ) be an IOOT for a set of traces S, then we can
determine if there is a Moore or Mealy machine A with at most n states
that is consistent with S by using the set of constraints and axioms from
Section 5.2.2, if we replace Equation 5.8 with Equation 5.9 (Moore machines)
or Equation 5.10 (Mealy machines).

∀x ∈ QT λA(map(x)) = λT (x) (5.9)

∀xl ∈ QT : x ∈ I∗, l ∈ I λA(map(x), l) = λT (xl) (5.10)

5.2.4 An Encoding for Register Automata

DFAs and Mealy machines typically do not scale well if the domain of inputs,
or the domain of data parameters for inputs, is large. The reason for this
is that the semantics of the data parameters are modeled implicitly using
states and transitions; inputs with different parameters are simply regarded
as different inputs. A better solution is to use a richer formalism that can
model them more efficiently and exploit the resulting symmetries in the
state space.

A register automaton (RA) is such a formalism. An RA can be seen
as an automaton that is extended with a set of registers that can store
data parameters. The values in these registers can then be used to express
conditions over the transitions of the automaton, or guards. If the guard is
satisfied the transition is fired, possibly storing the provided data parameter
(this is called an assignment) and bringing the automaton from the current
location to the next. As such, an RA can be used to accept or reject
sequences of label-value pairs. In contrast to automata without memory,
the “states” in a register automaton are called locations because the state
of the automaton also comprises the values of the registers. Therefore, an
exponential number of possible states can be modeled using a small number
of locations and registers.

The RAs that we define here have the following restrictions:

right invariance Transitions do not imply (in) equality of distinct regis-
ters.

no shifts Values are never moved from one register to another.

unique values Registers always store unique values.
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The first two restrictions are inherent to the definition used, the third is
necessary to avoid the non-determinism caused by two used registers holding
the same value. While these restrictions may cause a blow-up in the number
of states required to be consistent with a set of action strings [32], it has
been shown that they do not affect expressivity [4, Theorem 1], i.e. for any
register automaton that does not have these restrictions, there exists an
equivalent register automaton in the class that we are concerned with. For a
formal treatment of these restrictions and their implications, we refer to [3]
and [32].

We define an RA as follows.

Definition 5.6. An RA is a tuple (L,R,Q, q0, δ, λ, τ, π), where

– L, Q, q0 and λ are a set of labels, a set of locations, the start location,
and a location output function respectively,

– R is a finite set of registers,

– δ : Q× L× (R ∪ {r⊥})→ Q is a register transition function,

– τ : Q×R→ B is a register use predicate, and

– π : Q× L→ (R ∪ {r⊥}) is a register update function.

We call a label-value pair an action and denote it l(v) for input label
l and parameter v. We assume without loss of generality that parameter
values are integers (Z). A sequence of actions is called an action string ,
and is denoted by σ. A set of observations S for an RA consists of action
strings that should be accepted S+, and a set of action strings that should
be rejected S−. An RA is consistent with S = {S+, S−} if it accepts all
action strings in S+, and rejects all action strings in S−.

Formally, an RA can be considered as a DFA (Definition 5.1) enriched
with a finite set of registers R and two additional functions. The first
function, τ , specifies which registers are in use in a location. In a location q
there can be two types of transitions for a label l and parameter value v:

– If the value v is equal to some used register r, then the transition
δ(q, l, r) is taken.
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– Else (if the value v is different to all used registers), the fresh transition
δ(q, l, r⊥) is taken.

The second function, π, specifies if and where to store a value v when this
fresh transition (δ(q, l, r⊥)) is taken:

– If π(q, l) = r⊥ then the value v on transition δ(q, l, r⊥) is not stored.

– Else (if π(q, l) = r for some register r ∈ R), the value v on transition
δ(q, l, r⊥) is stored in register r.

Let us describe the axioms that we need for the RA to behave as intended.
First, we require that no registers are used in the initial location:

∀r ∈ R τ(q0, r) = false (5.11)

Second, if a register is used after a transition, it means that it was used
before, or it was updated:

∀q ∈ Q ∀l ∈ L ∀r ∈ R ∀r′ ∈ (R ∪ {r⊥})

τ(δ(q, l, r′), r) = true =⇒
(

τ(q, r) = true ∨
(

r′ = r⊥ ∧ π(q, l) = r
) )

(5.12)

Third, if a register is updated, then it is used afterwards:

∀q ∈ Q ∀l ∈ L ∀r ∈ R π(q, l) = r =⇒ τ(δ(q, l, r⊥), r) = true (5.13)

Our goal is to learn an RA that is consistent with a set of action strings
S = {S+, S−}. For this, we need to define a function that keeps track
of the valuation of registers during runs over these action strings. Let
A = (L,RA, QA, q0, δ

A, λA, τA, πA) be an RA, and let T = (L× Z, QT , λT )
be an OT for S. In addition to the map function (Equation 5.5), we define
a valuation function val that maps a state of T and a register of A to the
value that it contains:

val : QT ×RA → Z (5.14)

Before we construct constraints for the action strings, we determinize
them by making them neat [5, Definition 7]. An action string is neat
if each parameter value is either equal to a previous value, or equal to
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the largest preceding value plus one. Let a be a parameterized input,
and let a(3)a(1)a(3)a(45) be an action string, then a(0)a(1)a(0)a(2) is its
corresponding neat action string, for example. Aarts et al. show that in
order to learn the behavior of a register automaton it suffices to study its
neat action strings, since any other action string can be obtained from a
neat one via a zero respecting automorphism [5, Section 5].

Constructing constraints for an RA is a bit more involving than for the
formalisms that we have discussed so far. First, we map empty string to
the initial location of A (Equation 5.6). Second, we assert that a register is
updated if its valuation changes, and that it is not updated if it keeps its
value:

∀σl(v) ∈ QT ∀r ∈ RA

val(σl(v), r) 6= val(σ, r) =⇒ πA(map(σ), l) = r (5.15)

∀σl(v) ∈ QT ∀r ∈ RA

val(σl(v), r) = val(σ, r) =⇒ πA(map(σ), l) 6= r (5.16)

Additionally, we assert the inverse (i.e. that a register’s valuation changes if
and only if it is updated):

∀σl(v) ∈ QT ∀r ∈ RA

val(σl(v), r) =











v
if δA(map(σ), l, r⊥) = map(σl(v))
∧ π(map(σ), l) = r

val(σ, r) otherwise

(5.17)

Third, we encode the observed transitions:

∀σl(v) ∈ QT

map(σl(v)) =











δA(map(σ), l, r)
if ∃!r ∈ R : τA(map(σ), r) = true

∧ val(σ, r) = v

δA(map(σ), l, r⊥) otherwise

(5.18)
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Finally, we encode the observed outputs. This can be done in the same way
as for DFAs (see Equation 5.8).

The task for the SMT solver is to find a solution that is consistent
with these constraints. Obviously, we are interested in an RA with the
minimal number of locations and registers. The number of locations can be
limited in the same way as states were limited for DFAs (see Equation 5.1 or
Equation 5.2). The number of registers is defined by the variables r that we
quantify over in the presented equations. Therefore, they can be limited as
such. In our case, the number of registers is never higher than the number of
locations (because we can only update a single register from each location).
Hence, the learning problem can be solved iteratively incrementing the
number of locations n, and for each n incrementing the number of registers
from 1 to n, until a satisfiable encoding is found.

5.2.5 An Extension for IO Register Automata

An input-output register automaton (IORA) is a register automaton trans-
ducer that generates an output action (i.e. label and value) after each input
action. As in the RA-case, we restrict both input and output labels to a
single parameter. Input and output values may update registers. Input
values may be tested for (dis-)equality with values in registers. Output
values can be equal to the stored values, or may be fresh. As such, an
input-output register automaton can be used for modeling software that
produces parameterized outputs.

For a formal description of IORAs we refer to [5]. We define an IORA
in Definition 5.7. Again, in the interest of our encoding, our definition is
very different from that in [5]. Despite this, the semantics are similar.

Definition 5.7. An IORA is a tuple (I,O,R,Q, q0, δ, λ, τ, π, ω), where

– I and O are finite, disjoint sets of input and output labels,

– R, Q, q0, τ and π are the same as for an RA (Definition 5.6),

– δ : (Q ∪ {q⊥}) × (I ∪ O) × (R ∪ {r⊥}) → (Q ∪ {q⊥}) is a register
transition function with a sink location,

– λ : (Q∪ {q⊥})→ B is a location output function with a sink location,
and

128



Model Learning as an SMT Problem

– ω : Q→ B is a location type function that returns true if a location
is an input location, and false if it is an output location.

A set of observations S for an IORA consists of action traces, which
are pairs (σI , σO) where σI ∈ (I × Z)∗ is an input action string , and
σO ∈ (O × Z)∗ is an output action string with |σI | = |σO|. An IORA is
consistent with a set S if for each pair (σI , σO) ∈ S it generates σO when
provided with σI .

Despite that semantically an IORA is a transducer, we define it as an
RA (Definition 5.6) which distinguishes between input and output labels,
and which defines an additional function ω for the location type. From an
input location transitions are allowed only for input actions. After an input
action the IORA reaches an output location, in which a single transition is
allowed. This transition determines the output action generated in response,
as well as the input location the IORA will transition to. Transitions that
are not allowed lead to a designated sink location, which is denoted q⊥.

Using this definition allows us to incorporate the axioms defined for our
RA encoding (Equations 5.11–5.13) also in our IORA encoding. To these,
we add the following axioms for an IORA to behave as intended.

First, observe that we do not use λ as an output function for an IORA.
Instead, we use it to denote which locations are allowed. Hence, we require
that the sink location q⊥ is the only rejecting location:

∀q ∈ (Q ∪ {q⊥}) λ(q) =

{

false if q = q⊥

true otherwise
(5.19)

Second, we require that transitions do not lead to the sink location:

∀q ∈ Q ∀o ∈ O ∀r ∈ (R ∪ {r⊥}) ω(q) = true =⇒ δ(q, o, r) = q⊥
(5.20)

∀q ∈ Q ∀i ∈ I ∀r ∈ (R ∪ {r⊥}) ω(q) = false =⇒ δ(q, i, r) = q⊥
(5.21)

∀l ∈ I ∪O ∀r ∈ (R ∪ {r⊥}) δ(q⊥, l, r) = q⊥ (5.22)

Finally, we require that input locations are input enabled (Equation 5.23),
and that there is there is only one transition possible in an output location
(Equation 5.24):

∀q ∈ Q ∀i ∈ I ∀r ∈ (R ∪ {r⊥}) ω(q) = true =⇒ δ(q, i, r) 6= q⊥
(5.23)
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∀q ∈ Q ∃!o ∈ O ∃!r ∈ (R ∪ {r⊥}) ω(q) = false =⇒ δ(q, o, r) 6= q⊥
(5.24)

Our goal is to learn an IORA A = (I,O,RA, QA, q0, δ
A, λA, τA, πA, ωA)

that is consistent with a set of action traces S. Because of the nature
of our encoding, we consider each action trace σ = (σI , σO) in S as an
interleaving of the input action string σI and the output action string σO,
i.e. σ = σI

1σ
O
1 . . . σI

|σI |
σO
|σI |

. Let T = ((I ∪ O) × Z, QT , λT ) be an OT for

such strings.
The constraints for an IORA can now be constructed in the same way

as for an RA (Equation 5.6 and Equation 5.15–5.18). Observe that we do
not use λ to encode the observed outputs (this is already done by encoding
the transitions of the OT). Instead, λ is used to denote which locations
are allowed. All the locations in Q are allowed (because we have observed
them) and q⊥ is the only location that is not allowed (λ(q⊥) = false by
Equation 5.19). As such, we add the following constraint:

∀σ ∈ QT map(σ) 6= q⊥ (5.25)

We can now determine if there is an IORA with at most n locations and
m registers in the same way as for RAs, i.e. by iteratively incrementing the
number of locations n, and for each n incrementing the number of registers
from 1 to n, until a satisfiable encoding is found.

5.3 Implementation and Evaluation

We implemented our encodings using Z3Py, the Python front-end of Z3 [105]1.
Our tool can generate an automaton model from a given set of observations
(passive learning), or a reference to the system and a tester implementation
(active learning), also when this system cannot be reset. We have also
implemented a tester for the classes of automata supported. The tester
generates test queries (or tests) each test consisting of an access sequence
to an arbitrary state in the current hypothesis, and a sequence generated
by a random walk from that state. In experiments, we configure the tester
to build shorter tests. Longer tests worsen the scalability of our tool, and
are unneeded for learning small models. All experimental results shown

1See https://gitlab.science.ru.nl/rick/z3gi/tree/lata
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were obtained using our most efficient encodings, namely, those involving
an OT and not relying on linear equalities (all other encodings performed
considerably worse in terms of scalability).Validity of the learned models
was ensured by running a large number of tests on the last hypothesis and
checking the number of states. We conducted a series of experiments to
assess the scalability and effectiveness of our approach.

Our first experiment assesses the scalability of our encodings by adapting
the scalable Login, FIFO set and Stack benchmarks of [3] to DFAs, Mealy
machines, RAs and IORAs.

The systems benchmarked are IORA by nature, and are parameteriz-
able by their size (the maximum number of registered users or the size of
the collection). The systems only generate ok and nok as output, with
no parameters. This facilitates the generation of RA/Mealy/DFA repre-
sentations by applying an adapter over the system, exposing an interface
corresponding to the respective formalism. The RA adapter, for example,
accepts a sequence of inputs only if all outputs generated by the system
are ok, otherwise it rejects the sequence. Our adaptation made the Mealy
and DFA versions of FIFO set and Stack systems equivalent, hence we only
consider FIFO sets for these formalisms. The Login systems are simplified
by removing the password parameter (so login, register and logout are
done solely by supplying a user id), as our implementation does not yet
support actions with multiple parameters.

To generate tests, we used the testing algorithm described earlier. The
maximum length of the random sequence is 3 + size, where size is the
number of users or elements in the system. The solver timeout – the amount
of time the solver was provided to compute a solution or indicate its absence
– was set to 10 seconds for the DFA and Mealy systems, and to 10 minutes
for the RA and IORA systems whose constraints could take considerably
longer to process.

We initially terminated learning runs whenever the SMT solver failed
to return a result within this time bound (or the SMT solver timed out).
We then realized that even in cases where the SMT solver timed out, it
might still find a solution in a subsequent iteration (for a greater n). This
solution might not be minimal, but it was nevertheless consistent with past
observations. We thus allowed each learning run to iterate until an upper
bound was reached.
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For each system we performed 5 learning runs and collated the resulting
statistics.

The results are shown in Table 5.1. Columns describe the system, the
number of successful learning runs, the number of states/locations (which
may vary due to loss of minimality) and registers (where applicable), average
and standard deviation for the number of tests and inputs used in learning
except for validating the last hypothesis, and for the amount of time learning
took. The table only includes entries for systems we could learn.

In our second experiment we used our tool to learn simulated models
obtained by the learning case studies described in [7, 2, 123]. These models
are Mealy machines detailing aspects of the behavior of bankcard protocols,
biometric passports and power control services (PCS). For the purpose of
this experiment we connected the open-source tester used in [128]2. This
produces tests similar to our own, but extended by distinguishing sequences.
These tests are parameterized by both the length of the random sequence
and a factor k. We set both the length and the k factor to 1. We note that
our simple tester (which doesn’t append distinguishing sequences) could not
reliably found counterexamples for several of these models. We attribute
this to the large size of the models’ input alphabets. The solver timeout
was set to 1 minute.

Results are shown in Table 5.2. Columns are as in the previous exper-
iment, with an additional column used to describe the size of the input
alphabet. Our approach is able to learn all models, though it takes a
considerable amount of time for the larger models. There are no cases where
we cannot learn the model.

Our third experiment pits our approach against LearnLib (v0.12.1) [82]
and Tomte (v0.41) [3]. LearnLib is a known FSM learning framework,
while Tomte is a learner for IORAs. Both LearnLib and Tomte are
configured to use TTT, a state-of-the-art learning algorithm within Angluin’s
framework. LearnLib is additionally configured to use the original L*
learning algorithm. The setups for all learners use caching to ensure that
only tests uncovering new observations are included in statistics. We
compare our approach to LearnLib on both the scalable and case study
models, and to Tomte on the scalable models. The testers are the same
as in previous experiments. Due to the high standard deviation, we ran 20

2See https://gitlab.science.ru.nl/moerman/Yannakakis
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experiments for each benchmark.

A comparison between the learners is drawn in Table 5.3. Our approach
needs fewer tests than L*. However, it requires more inputs on several of
the PCS case study models. This can be attributed to L* being able to
learn these systems without processing any counterexamples. By contrast,
L* severely lags behind on the scalable systems benchmarks, which require a
series of counterexamples. Our approach also largely defeats TTT on these
benchmarks, and even on some of the case study models. Our approach
defeats Tomte on all (admittedly very basic) models. In summary, although
the approach appears less effective than TTT, it is still competitive and
mostly outmatches Tomte and L*.

A reason to why our approach performs worse than TTT on the case
study models may have to do with how hypotheses are constructed. Hypothe-
ses constructed by TTT are completed in terms of their output behavior by
running new tests. In contrast, our approach constructs hypotheses solely
on the basis of counterexamples. For states whose output behavior has
not yet been covered by counterexamples, the solver just produces a guess
which is likely wrong. This may decrease the efficacy of test algorithms
which actively use outputs to compute distinguishing sequences (as does
the algorithm used in the case study models).

We remark that the seemingly better results we achieved on the scalable
systems may be due to their simplistic nature. Having only few inputs,
these systems don’t benefit as much from the smart exploratory tests a
learner may execute.

Although the sample size is small, results seem to indicate that whereas
FSM learners are efficient, active register automata learners are yet to
reach this level of optimization. These learners often resort to expensive
counterexample analysis procedures in order to simplify the counterexample,
as in shortening it or isolating the relevant data relations. This simplification
is needed in order to minimize the counterexample’s subsequent impact on
the performance of learning. By contrast, our approach does not need such
procedure. One should note however, that the models our approach can learn
lack succintness (they are unique valued and non-swapping). Consequently,
the number of tests may be adversely affected by the number of registers of
a system.

Our final experiment assesses our extension for learning systems without

136



Model Learning as an SMT Problem

T
ab

le
5.
3:

C
om

p
ar
is
on

w
it
h
ot
h
er

le
ar
n
er
s

M
o
d
el

st
at
es

al
p
h

S
M
T

T
T
T

L
*

T
om

te
lo
c

si
ze

te
st
s

in
p
u
ts

ti
m
e

te
st
s

in
p
u
ts

te
st
s

in
p
u
ts

te
st
s

in
p
u
ts

B
io
m
et
ri
c
P
as
sp
or
t

6
9

22
0

10
57

26
22

0
94

1
3
3
3

1
1
4
3

M
A
E
S
T
R
O

6
14

83
5

43
75

35
9

86
0

44
3
7

1
1
9
0

4
7
1
8

M
as
te
rC

ar
d

6
14

83
9

43
79

35
3

99
6

52
6
0

1
1
9
0

4
7
1
8

P
IN

6
14

75
7

39
45

33
8

91
1

47
6
9

1
1
9
0

4
7
1
8

S
ec
u
re
C
o
d
e

4
14

31
3

14
85

90
19

4
68

2
7
9
8

2
7
5
8

V
IS
A

9
14

79
6

47
70

21
15

75
0

40
9
4

2
0
4
0

9
0
1
5

P
C
S
1

8
9

62
9

35
30

18
9

41
7

21
7
9

6
5
7

2
6
8
2

P
C
S
2

3
9

71
27

9
9

75
19

6
2
5
2

6
5
7

P
C
S
3

7
9

50
8

26
51

15
4

47
6

24
7
2

5
7
6

2
1
9
6

P
C
S
4

7
9

55
9

30
24

15
4

45
1

22
9
7

5
7
6

2
1
9
6

P
C
S
5

9
9

11
20

62
60

77
8

41
7

17
5
3

1
3
0
8

5
3
4
0

P
C
S
6

9
9

11
58

64
42

70
4

45
7

19
7
7

1
3
0
8

5
3
4
0

M
ea
ly

F
IF
O
S
et
(2
)

3
2

6
27

0
12

3
8

1
4

3
8

M
ea
ly

F
IF
O
S
et
(7
)

8
2

52
48

1
7

71
58

8
2
3
5

2
4
9
4

M
ea
ly

F
IF
O
S
et
(1
0)

11
2

17
9

21
52

63
16

3
18

2
2

4
8
6

6
7
4
3

M
ea
ly

L
og

in
(2
)

6
3

37
21

4
7

57
24

2
5
7

2
1
9

M
ea
ly

L
og

in
(3
)

10
3

89
64

4
64

12
0

70
4

2
4
0

1
7
2
0

IO
R
A

F
IF
O
S
et
(1
)

7
2

9
31

7
21

36
.5

IO
R
A

S
ta
ck
(1
)

7
2

8.
5

33
8

19
34

IO
R
A

L
o
gi
n
(1
)

9
3

33
15

2
84

9
15

7
58

0

137



Chapter 5

Table 5.4: Learning models without resets
States succ inputs time(sec)

avg std avg std

1 5 2.0 0.0 0.03 0.0
2 5 6.0 9.55 0.13 0.07
3 5 21.0 6.4 0.43 0.11
4 5 47.0 32.9 0.88 0.21
5 5 48.0 21.48 1.89 0.6
6 5 76.0 53.18 12.95 7.7
7 2 71.5 10.61 25.65 2.59
8 1 288.0 0.0 106.35 0.0

resets using benchmarks from recent related work[115]. These benchmarks
involve learning randomly generated Mealy machines of increasing size with
2 input labels and 2 output labels. These models are connected though they
may not be minimal. We adapted our random walk algorithm for setting
without resets, using a fixed random length of 3. The solver timeout was
set to 10 seconds. Table 5.4 illustrates results. Our extension performs and
scales worse than the approach in [115] and does not provide any guarantees
of correctness. However, being able to learn such systems by a simple
extension showcases the versatility of an SMT-based approach.

Notes on scalability Scalability is the main weakness of our approach.
The IORA and RA encodings scaled up to only a maximum of size 2 for
stacks and FIFO sets. By comparison, Tomte can learn FIFO sets of size
30 [4]. The Mealy machine encoding scaled up to a size of 13 for the FIFO
set, besting the DFA encoding, which only managed 9. Learning can take
several minutes due to the large number of times the solver has to be called.
Our implementation calls the solver on every new counterexample, and
there can be hundreds of counterexamples in a learning run.

We note some of the measures adopted towards improving scalability
while maintaining simplicity of encodings. These measures largely pertain to
how the definitions were implemented into Z3Py. We initially defined sorts
for states, locations, labels, inputs and outputs using Datatype constructs,
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which provide a natural representation for expressing sets. We later found
that defining a custom sort by using DeclaredSort was more efficient (the
Mealy machine and DFA FIFO set examples could only scale to 10 and 6
states respectively when using the Datatype formulation). This optimization
was used for the DFA and Mealy machine encodings. We also found that it
was often useful to avoid universal quantifiers (and instead expand them to
quantifier-free formulas), in particular when formulating constraints over
nodes. Finally, the time the solver took to provide a solution increased with
the size in nodes of the OT. Configuring the test algorithm to generate
tests with a random sequence of size 2 meant the VISA model could not be
reliably learned with a solver timeout of 1 minute.

While some measures where taken to improve scalability, we can definitely
see room for improvement. In particular, the IORA encodings could be
made a lot more efficient by utilizing a more succint underlying definition.
The current definition requires roughly a doubling of the number of locations,
as well as a function to distinguish between input and output locations.
A more succint definition would use a transducer-style output function,
with each transition encoding both input and output semantics. Another
hindering factor is that we still use Datatype constructs for implementing
both RA and IORA encodings.

5.4 Conclusion

We have experimented with an approach for model learning which uses SMT
solvers. The approach is highly versatile, as shown in its adaptations for
learning FSMs and register automata, and for learning without resets. We
provide an open source tool implementing these adaptations. Experiments
indicate that our approach is competitive with the state-of-the-art. While
the approach does not scale well, we have shown that it can be used for
learning small models in practice. In the future we wish to improve the
scalability of the approach via more efficient encodings. We hope this
chapter gives rise to a broader direction of future work, since the presented
approach has several advantages over traditional model learning algorithms.
Notably, it appears to be quite effective for rapid prototyping of learning
algorithms for new formalisms and settings.
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Complementing Model

Learning with

Mutation-Based Fuzzing

Rick Smetsers, Joshua Moerman, Mark Janssen and Sicco Verwer

Abstract

An ongoing challenge for learning algorithms formulated in the
MAT framework is to efficiently obtain counterexamples. In
this chapter we compare and combine conformance testing and
mutation-based fuzzing methods for obtaining counterexamples
when learning finite state machine models for the reactive soft-
ware systems of the Rigorous Exampination of Reactive Systems
(RERS) challenge. We have found that for the LTL problems of
the challenge the fuzzer provided an independent confirmation
that the learning process had been successful, since no additional
counterexamples were found. For the reachability problems of
the challenge, however, the fuzzer discovered more reachable
error states than the learner and tester, albeit in some cases the
learner and tester found some that were not discovered by the
fuzzer. This leads us to believe that these orthogonal approaches
are complementary in the context of model learning.
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6.1 Introduction

Software systems are becoming increasingly complex. Model learning is
quickly becoming a popular technique for reverse engineering such systems.
Instead of viewing a system via its internal structure, model learning algo-
rithms construct a formal model from observations of a system’s behaviour.

One prominent approach for model learning is described in a seminal
paper by Angluin [11]. In this work, she proved that one can effectively learn
a model that describes the behaviour of a system if a so-called minimally
adequate teacher is available. This teacher is assumed to answer two types
of questions about the (to the learner unknown) target :

– In a membership query (MQ) the learner asks for the system’s output
in response to a sequence of inputs.

– In an equivalence query (EQ) the learner asks if its hypothesis is
equivalent to the target. If this is not the case, the teacher provides
a counterexample, which is an input sequence that distinguishes the
hypothesis and the target.

The learner iteratively asks membership queries to construct an hypothesis,
and then uses a counterexample from an equivalence query to refine the
hypothesis. This process iterates until the learner’s hypothesis is equivalent
to the target.

Peled et al. have recognized the avail of Angluin’s work for learning
models of real-world, reactive systems that can be modeled by a finite
state machine (FSM) [114]. Membership queries, on the one hand, are
implemented simply by interacting with the system. Equivalence queries,
on the other hand, require a more elaborate approach, as there is no trivial
way of implementing them. Therefore, an ongoing challenge, and the topic
of this chapter, is to efficiently obtain counterexamples.

Several techniques for obtaining counterexamples have been proposed.
The most widely studied approach for this purpose is conformance testing
[47]. In the context of learning, the goal of conformance testing is to establish
an equivalence relation between the current hypothesis and the target. This
is done by posing a set of so-called test queries to the system. In a test
query, similarly to a membership query, the learner asks for the system’s
response to a sequence of inputs. If the system’s response is the same as
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the predicted response (by the hypothesis) for all test queries, then the
hypothesis is assumed to be equivalent to the target. Otherwise, if there is
a test for which the target and the hypothesis produce different outputs,
then this input sequence can be used as a counterexample.

One of the main advantages of using conformance testing is that it can
distinguish the hypothesis from all other finite state machines of size at
most m, where m is a user-selected bound on the number of states. This
means that if we know a bound m for the size of the system we learn, we
are guaranteed to find a counterexample if there exists one. Unfortunately,
conformance testing has some notable drawbacks. First, it is hard (or even
impossible) in practice to determine an upper-bound on the number of
states of the system’s target FSM. Second, it is known that testing becomes
exponentially more expensive for higher values of m [142]. Therefore,
the learner might incorrectly assume that its hypothesis is correct. This
motivates the search for alternative techniques for implementing equivalence
queries.

The field of mutation-based fuzzing provides opportunities here. In
essence, fuzzers are programs that apply a test (i.e. input sequence) to a
target program, and then iteratively modify this sequence to monitor whether
or not something interesting happens (e.g. crash, different output, increased
code coverage . . . ). Fuzzers are mostly used for security purposes, as a crash
could uncover an exploitable buffer overflow, for example. Mutation-based
fuzzers randomly replace or append some inputs to the test query.

Recently, good results have been achieved by combining mutation-based
fuzzing with a genetic (evolutionary) algorithm. This requires a fitness
function to evaluate the performance of newly generated test query, i.e. a
measurement of ‘how interesting’ it is. In our case, this fitness function is
based on what code is executed for a certain test query. The fittest test
cases can then be used as a source for mutation-based fuzzing. Hence, tests
are mutated to see if the coverage of the program is increased. Iterating this
process creates an evolutionary approach which proves to be very effective
for various applications [155].

RERS Challenge 2016

In this chapter we describe our experiments in which we apply the afore-
mentioned techniques to the Rigorous Examination of Reactive Systems
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(RERS) challenge 2016. The RERS challenge consists of two parts:

1. problems (i.e. reactive software) for which one has to prove or disprove
certain logical properties, and

2. problems for which one has to find the reachable error states.

In our approach, we have used a state-of-the-art learning algorithm
(learner) in combination with a conformance testing algorithm (tester) to
learn models for the RERS 2016 problems. In addition, we have used a
mutation-based fuzzing tool (fuzzer) to generate potentially interesting
traces independently of the learner and the tester. We have used these
traces as a verification for the learned models and found that

– For part (1) of the challenge the fuzzer did not find any additional
counterexamples for the learner, compared to those found by the tester.
Therefore the fuzzer provided an independent confirmation that the
learning process had been successful.

– For part (2) of the challenge the fuzzer discovered more reachable error
states than the learner and tester, albeit in some cases the learner
and tester found some that were not discovered by the fuzzer.

Our experiments lead us to believe that in some applications, fuzzing
is a viable technique for finding additional counterexamples for a learning
setup. In this chapter, in addition to describing our experimental setup for
RERS in detail, we therefore describe possible ways of combining learning
and fuzzing.

Related work

Duchene et al. have used a combination of model learning and evolutionary
mutation-based fuzzing to detect web injection vulnerabilities [51]. Their
function to evaluate the fitness of a test is specific to XSS attacks, however.
This makes their approach less applicable to a more general class of software
systems.

Cho et al. have proposed to use concolic testing for implementing equiv-
alence queries [39]. Concolic testing uses a combination of symbolic and
concrete execution to build a model of the system, and then uses the model
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to guide further exploration of the state-space. Similarly to our fuzzing
approach, the aim of concolic testing is to generate tests that maximize code
coverage. The authors use a priority queue to prioritize concrete sequences
that are used for symbolic execution. The sequences that visit a larger
number of new basic blocks, unexplored by prior sequences, have higher
priority. In contrast to our approach, however, it uses a constraint solver
to evaluate the fitness of a test, and therefore requires the system to be
a white-box. If such a white-box system is available, then concolic testing
would arguably outperform fuzzing. Our fuzzing approach, however, can be
applied to learn systems for which only a binary executable is available, as
it can use runtime instrumentation to measure the fitness of a test. This
makes our approach applicable to a broader class of software systems.

Similarly, Giannakopoulou et al. have introduced a framework that
combines model learning with symbolic execution to automatically generate
models for white-box components that include methods with parameters [60].
The transitions of the generated models are labeled with method names
and guarded with constraints on the corresponding method parameters.
The guards partition the input spaces of parameters, and enable a more
precise characterization of legal orderings of method calls. The performance
bottleneck faced by this approach was that the set of test sequences used to
implement an equivalence query grew exponentially. Moreover, to handle
methods with parameters completely, each sequence in this set was fully
explored symbolically, which further increased the cost of the approach. As
a consequence, the approach could only be used to learn relatively small
models. To counteract this, Howar et al. presented a new framework based
on that of Giannakopoulou et al., with novel algorithms for performing most
of the work at a concrete level [75].

Bertolino et al. have suggested to use monitoring for implementing
equivalence queries, i.e. continuously validating the current hypothesis
against traces obtained by observing the system while it is running [19].
This approach was proposed as a focus point of the Emergent Connectors
for Eternal Software Intensive Networked Systems (CONNECT) European
project. Whilst such an approach of ‘life-long learning’ seems interesting
for some applications, its utility is (to the best of our knowledge) yet to be
proven in a convincing case study. A major limitation of this approach is
that the quality of the learned model heavily relies on the diversity of the
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traces that are (passively) being observed.

6.2 Preliminaries

In this section, we describe preliminaries on finite state machines, model
learning, conformance testing, and fuzzing.

6.2.1 Finite State Machines

A finite state machine (FSM) is a model of computation that can be used
to design computer programs. At any time, a FSM is in one of its (finite
number of) states, called the current state. Generally, the current state of a
computer program is determined by the contents of the memory locations
(i.e. variables) that it currently has access to, and the values of its registers,
in particular the program counter. Changes in state are triggered by an
event or condition, and are called transitions. We assume that transitions
are triggered based on events, or inputs, that can be observed.

Formally, we define a FSM as a Mealy machine M = (I,O,Q, qM , δ, λ),
where I,O and Q are finite sets of inputs, outputs and states respectively,
qM ∈ Q is the start state, δ : Q × I → Q is a transition function, and
λ : Q× I → O is an output function. The functions δ and λ are naturally
extended to δ : Q× I∗ → Q and λ : Q× I∗ → O∗. Observe that a FSM is
deterministic and input-enabled (i.e. complete) by definition.

For q ∈ Q, we use ⌊q⌋M to denote a representative access sequence of
q, i.e. δ(qM , ⌊q⌋M ) = q. We extend this notation to arbitrary sequences,
allowing to transform them into representative access sequences: for x ∈ I∗,
we define ⌊x⌋M = ⌊δ(qM , x)⌋M .

A discriminator for a pair of states q, q′ is an input sequence x ∈ I∗

such that λ(q, x) 6= λ(q′, x).
The behaviour of a FSM M is defined by a characterization function

AM : I∗ → O∗ with AM (x) = λ(qM , x) for x ∈ I∗. FSMs M and M ′ are
equivalent if AM (x) = AM ′(x) for x ∈ I∗.

6.2.2 Model Learning

The goal of so-called active model learning algorithms is to learn a FSM H =
(I,O,QH , qH , δH , λH) for a system whose behaviour can be characterized
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by a (unknown) FSM M = (I,O,QM , qM , δM , λM ), given the set of inputs
I and access to the characterization function AM of M .

The TTT algorithm is a novel model learning algorithm [83]. Its distin-
guishing characteristic is its redundancy-free handling of counterexamples.
The TTT algorithm maintains a prefix-closed set S of access sequences to
states. These states correspond to leaves of a discrimination tree T , in
which the inner nodes are labeled with elements from a suffix-closed set of
discriminators E, and its transitions are labeled with an output.

A hypothesis is constructed by sifting the sequences in S · I through
the discrimination tree: Given a prefix ua, with u ∈ S and a ∈ I, starting
at the root of T , at each inner node labelled with a discriminator v ∈ E a
membership query AM (uav) is posed. Depending on the last output of this
query, we move on to the respective child of the inner node. This process is
repeated until a leaf is reached. The state in the label of the leaf becomes
the target for transition δ(δ(qH , u), a).

The way that the TTT algorithm handles counterexamples is based on
the observation by Rivest and Shapire that a counterexample x ∈ I∗ can be
decomposed in a prefix u ∈ I∗, input a ∈ I, and suffix v ∈ I∗ such that x =
uav and AM (⌊u⌋Hav) 6= AM (⌊ua⌋Hv) [120]. Such a decomposition shows
that the state q = δH(δH(qH , u), a) is incorrect, and that this transition
should instead point to a new state q′ with access sequence ⌊u⌋Ha. Therefore,
this sequence is added to S. Observe that this does not affect the prefix-
closedness of S. In the discrimination tree T , the leaf corresponding to q is
replaced with an inner node labelled by the temporary discriminator v. A
technique known as discriminator finalization is applied to construct the
subtree of this newly created inner node, and obtain a minimal discriminator
for q and q′. For a description of discriminator finalization, we refer to [83].

6.2.3 Conformance Testing

Conformance testing for FSMs is an efficient way of finding counterexamples.
Let H = (I,O,QH , qH , δH , λH) be a hypothesis with n states. We call a
conformance testing method m-complete if it can identify the hypothesis in
the set of all FSMs with at most m states. Such m-complete methods are
generally polynomially in the size of the hypothesis and exponential in m−n,
which are far more efficient than an exhaustive search. For an overview of
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some m-complete methods, we refer to [47]. All of these methods require
the following information:

– A set of access sequences S = {⌊q⌋H |q ∈ QH}, possibly extended to a
transition cover set S · I.

– A traversal set I l that contains all input sequences of length l =
m− n+ 1, where m = |QM | and n = |QH |.

– A means of pairwise distinguishing all states of H, such as set of
discriminators E for all pairs of states in H.

A test suite is then constructed by combining these sets, or subsets of these
sets, e.g. S · I l · E. The difference between different testing methods is how
states are distinguished (i.e. the last part).

In the so-called partial W-method, or Wp-method, [58] states are distin-
guished pairwise: For each state q ∈ QH a set Eq ⊂ E of discriminators
is constructed, such that for each state q′ ∈ Q \ {q} there is a sequence
w ∈ Eq that distinguishes q and q′, i.e. λH(q, w) 6= λH(q′, w). Then, each
trace uv, u ∈ S · I, v ∈ I l is extended with the set Eq where q = δH(qH , uv).

Conformance testing is typically expensive due to the exponential size
of the traversal set. Given a hypothesis H with n states and k inputs, the
worst-case length of a test suite (i.e. the sum of the length of all sequences)
is of order O(kln3) (recall that l = m− n+ 1, where m is the upper bound
on the number of states of M). Moreover, it is hard to estimate an upper
bound for M in practice. Often a value close to n is picked for m, in the
hope that the test set contains at least some counterexamples. Then, for
each next hypothesis, m is assumed to be larger than before, and eventually
one hopes to obtain a correct estimate for m.

In some cases, however, the shortest counterexample for the current
hypothesis is simply too long. Therefore, alternative methods for finding
counterexamples might yield better results.

6.2.4 Fuzzing

A mutation-based fuzzer is a program that applies a set of tests (i.e. input
sequences) to a target program, and then iteratively mutates these tests
to monitor if ‘something interesting’ happens. This could be a crash of
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the target program, a change in its output, or it finds that more code
is covered (via instrumentation). The American Fuzzy Lop (AFL) fuzzer
[155] is interesting for its approach in combining mutation-based test case
generation with code coverage monitoring.

AFL supports programs written in C, C++, or Objective C and there
are variants that allow to fuzz programs written in Python, Go, Rust
or OCaml. AFL works on instrumented binaries of these programs, and
supports compile-time or runtime instrumentation. The tool is bundled with
a modified version of gcc (afl-gcc) that can add instrumentation at compile
time. The compile-time instrumentation has the best performance, but
requires the source code of the target program to be available. When the
source code is not available, AFL applies runtime instrumentation, which
uses emulation (QEMU or Intel Pin) to achieve the result. This, however,
is 2-5× slower than compile-time instrumentation [155].

From a high-level, simplified perspective, AFL works by taking a program
and a queue of tests, and iteratively mutating these tests to see if the coverage
of the program is increased; new tests that increase coverage are added to
the queue. An overview of this algorithm is shown in Algorithm 8. In the
next paragraphs, we will describe in more detail how coverage is measured
by AFL, which mutation strategies are applied, and how execution time is
minimized.

Algorithm 7: High-level overview of AFL

Input: a program and a queue of initial test cases
loop

take next test case from the queue
forall available mutation strategies do

mutate test case
run target program on test case
if coverage is increased then

add new test case to the queue
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Measuring coverage

In order to measure coverage, AFL uses instrumentation of the control flow
of the program (branches, jumps, etc.), to identify which parts of the target
program are used in a given test. Using this knowledge, AFL can decide
which test cases cover behaviour not previously seen in other test cases.

Internally, coverage is measured by using a so-called trace bitmap, which
is a 64 kB array of memory shared between the fuzzer and the instrumented
target. This array is updated by the following code every time an edge in
the control flow is taken.

c u r l o c a t i o n = <COMPILE TIME RANDOM>;
shared mem [ c u r l o c a t i o n ˆ p r e v l o c a t i o n ]++;
p r e v l o c a t i o n = cu r l o c a t i o n >> 1 ;

Every location in the array is represented by a compile-time random value.
When an edge in the control flow is taken, the bitmap is updated at the
position of the current location and an xor of the previous location value.
The intention is that every edge in the control flow is mapped to a different
byte in the bitmap.

Note that because the size of the bitmap is finite and the values that
represent locations in the code are random, the bitmap is probabilistic:
there is a chance that collisions will occur. This is especially the case when
the bitmap fills up, which can happen when fuzzing large programs with
many edges in their control flow. AFL can detect and resolve this situation
by applying instrumentation on fewer edges in the target or by increasing
the size of the bitmap.

Mutation strategies

At the core of AFL is its ‘engine’ to generate new test cases. As mentioned
earlier, AFL uses a collection of techniques to mutate existing test cases
into new ones, starting with basic deterministic techniques and progressing
onto more complex ones. The author of AFL has described the following
strategies [153]:

– Performing sequential, ordered bit flips to a sequence of one, two, or
four bits of the input.
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– An extension of bit flips to (a sequence of one, two or four) bytes.

– Applying simple arithmetic (incrementing and decrementing) to inte-
gers in the input.

– Overwriting integers in the input by values from set of pre-set integers
(such as -1, 1024 and MAX INT), that are known to trigger edge
conditions in many programs.

– When the deterministic strategies (above) are exhausted, randomised
stacked operations can be applied, i.e. a sequence of single-bit flips,
setting discovered byte values, addition and subtraction, inserting
new random single-byte sets, deletion of blocks, duplication of blocks
through overwrite or insertion, and zeroing blocks.

– The last-resort strategy involves taking two known inputs from the
queue that cover different code paths and splicing them in a random
location.

Fork server

In general, fuzzers generate a lot of tests. Therefore, many invocations of
the target process are required. Instead of starting a new process for every
test, AFL uses a fork server to speed up fuzzing. The fork server initialises
the target process only once, and then forks (clones) it to create a new
instance for each test case.

On modern operating systems, a process fork is done in a copy-on-write
fashion, which means that any memory allocated by the process is only
copied when it is modified by the new instance. This eliminates most (slow)
memory operations compared to a regular process start [154], and allows
for an execution of approximately 10 000 tests per second on a single core of
our machine.

6.3 Experimental Setup

In this section we describe the experiments in which we apply the aforemen-
tioned techniques to the Rigorous Examination of Reactive Systems (RERS)
challenge 2016. The RERS challenge consists of two parts:
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1. A set of nine problems (i.e. reactive software), numbered 1 through 9,
for which one has to prove or disprove a set of given linear temproal
logic (LTL) formulae, and

2. a set of nine problems, numbered 10 through 18, for which one has
to determine whether or not a set of error statements present in the
source code are reachable, and provide a sequence of inputs such that
the error statement is executed.

In our approach, we have used a state-of-the-art learner in combination
with a tester to learn FSMs for the RERS 2016 problems. In addition, we
have used a fuzzer to generate potentially interesting traces independently
of the learner and the tester. As we have executed the learner/tester and
the fuzzer indepenedently of one another, we describe their experimental
setup and result in turn. The code for our experiments is available at
https://gitlab.science.ru.nl/moerman/rers-2016/.

6.3.1 Learning and Testing with LearnLib

For our learning and testing experiments, we have used LearnLib, an
open-source Java library for active model learning [102]. As a learner in
LearnLib consideres its system under learning as a black-box, we have
interfaced LearnLib with a compiled binary of each of the 18 problems.
Below, we list and explain the choices we have made regarding our LearnLib
setup.

Learning algorithm For our learning algorithm, we have chosen the TTT
algoritm as implemented in LearnLib, because previous experiments
have shown that it scales up to larger systems under learning; both
in the amount of membership queries asked and in the amount of
memory used in the process.

Testing algorithm For our testing algorithm, we have used our own im-
plementation of the Wp method. Recall that the Wp method in
principle generates a test suite whose size is polynomial in the size of
the hypothesis and exponential in the upper bound of states in the
system, minus the size of the hypothesis. Instead of exhausting this
test suite, our implementation of the algorithm randomly samples test
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sequences until it finds a counterexample: First, it samples a prefix
uniformly from the state-cover set of the current hypothesis. Then, it
randomly generates an infix over all inputs according to a geometric
distribution. Finally, we sample a suffix uniformly from the set of
state-specific discriminators. By using a geometric distribution for
the infix, we are not bounding the length of the test sequence. In
our tool, the minimal and expected length of the infix can be set by
parameters. In our experiments, its minimal length was three, and its
expected length was eleven.

Counterexample handling Counterexamples were processed using the Lin-
earForward handler in LearnLib.

Cache We have used the cache that is implemented in LearnLib to avoid
sending duplicate queries to the system under learning.

The final hypothesis for each of the problems was stored as a DOT file. In
order to solve the LTL formulae for part (1) of the challenge, these DOT
files were translated to NuSMV. For part (2), it sufficed to grep the DOT
files for the unique outputs that were generated in an error state.

6.3.2 Fuzzing with AFL

Independently of learning and testing the challenge’s problems, we have
used AFL to fuzz them. Below, we give an overview of some of the details
of our experimental setup.

Instrumentation We have used the afl-gcc compiler that comes bundled
with AFL to compile the C source code for each of the problems. This
compiler instruments the control flow of the program, and implements
the fork server.

Input alphabet AFL requires an input alphabet as a source for its muta-
tion strategies. We have used the valid inputs that were defined in
the source code for each problem as an input alphabet.

Error handling In order to compile the reachability problems (10 - 18) an
external error handling function had to be provided. This function is
called with a unique identifier whenever an error state is reached. Our
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implementation of the error function prints the unique error identifier,
and then aborts the program. This way, each trace whose execution
leads to an error state is registered by AFL as a crash. As these traces
are stored in a separate results folder by AFL, we could easily separate
them from traces that did not lead to an error state.

Post-processing As the input bytes that AFL considers are not limited to
the valid inputs for the challenge problems, we filtered out the bytes
that were not accepted.

The traces that were found by AFL were simulated on the final hypothesis
of the learner to see if its output differed from that of the program binary.

6.4 Results

The results for the learning/testing setup described in Section 6.3.1 are
shown in Section 6.1 and Section 6.2.

We are confident that the learned models for the LTL problems (1–9)
are complete, as the last hypothesis was learnt within 1 day and no further
counterexamples were found in the following week. The same holds for the
first of the reachability problems (10). Beware, however, that we can never
guarantee completeness with black-box techniques.

For problems 11–18 we know that we do not have complete models, as
the learner was still finding new states every 10 minutes when the server
rebooted for maintenance. The learner ran for a bit more than 7 days and
saved all hypotheses. As a result of this reboot, we do not have statistics
on the number of queries.

The results for the fuzzing setup described in Section 6.3.2 are shown in
Table 6.3 and Table 6.4. These results should be interpreted as follows:

cycles The number of times the fuzzer went over all the interesting test
traces discovered, fuzzed them, and looped back to the very beginning.

execs The total number of test traces executed.

paths The total number of test traces found that have a unique execution
path.
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Table 6.1: Learning and testing results for the LTL problems of RERS 2016
on an Intel(R) Xeon(R) CPU E7-4870 v2 @ 2.30GHz (server), with Oracle
Java 8 JVM configured with a 40GB heap.

size plain arithmetic data structures

small Problem 1

time: 50s
states: 13
hypotheses: 6

Problem 2

time: 1m22s
states: 22
hypotheses: 10

Problem 3

time: 7m05s
states: 26
hypotheses: 13

medium Problem 4

time: 34m
states: 157
hypotheses: 77

Problem 5

time: 2h43m
states: 121
hypotheses: 50

Problem 6

time: 4h51m
states: 238
hypotheses: 156

large Problem 7

time: 11h45m
states: 610
hypotheses: 407

Problem 8

time: 24h22m
states: 646
hypotheses: 432

Problem 9

time: 18h31m
states: 854
hypotheses: 550

Table 6.2: Learning and testing results for the reachability problems of
RERS 2016 on an Intel(R) Xeon(R) CPU E7-4870 v2 @ 2.30GHz (server),
with Oracle Java 8 JVM configured with a 40GB heap.

size plain arithmetic data structures

small Problem 10

time: 2m39s
states: 59
hypotheses: 3

Problem 11

time: 1w+
states: 22 589
hypotheses: 8 314

Problem 12

time: 1w+
states: 12 771
hypotheses: 4 325

medium Problem 13

time: 1w+
states: 12 848
hypotheses: 5 564

Problem 14

time: 1w+
states: 11 632
hypotheses: 4 513

Problem 15

time: 1w+
states: 7 821
hypotheses: 3 792

large Problem 16

time: 1w+
states: 8 425
hypotheses: 3 865

Problem 17

time: 1w+
states: 11 758
hypotheses: 5 584

Problem 18

time: 1w+
states: 8 863
hypotheses: 4 246

155



Chapter 6

Table 6.3: Fuzzing results for the LTL problems of RERS 2016 on a Intel(R)
Xeon(R) CPU E7-4870 v2 @ 2.30GHz (server). The fuzzer was terminated
after approximately 10 days.

size plain arithmetic data structures

small Problem 1

cycles: 46 521
execs: 2.64× 109

paths: 253

Problem 2

cycles: 30 088
execs: 2.68× 109

paths: 480

Problem 3

cycles: 19 551
execs: 2.52× 109

paths: 453

medium Problem 4

cycles: 460
execs: 8.68× 108

paths: 3 453

Problem 5

cycles: 4 191
execs: 2.63× 109

paths: 1 115

Problem 6

cycles: 109
execs: 7.32× 108

paths: 4 494

large Problem 7

cycles: 35
execs: 6.86× 108

paths: 9 556

Problem 8

cycles: 16
execs: 6.75× 108

paths: 10 906

Problem 9

cycles: 71
execs: 7.63× 108

paths: 11 305

Table 6.4: Fuzzing results for the reachability problems of RERS 2016 on
a Intel(R) Xeon(R) CPU E7-4870 v2 @ 2.30GHz (server). The fuzzer was
terminated after approximately 10 days.

size plain arithmetic data structures

small Problem 10

cycles: 70 336
execs: 2.58× 109

paths: 139

Problem 11

cycles: 10 365
execs: 2.34× 109

paths: 801

Problem 12

cycles: 5 971
execs: 2.14× 109

paths: 1 032

medium Problem 13

cycles: 779
execs: 2.35× 109

paths: 4 235

Problem 14

cycles: 621
execs: 2.02× 109

paths: 3 838

Problem 15

cycles: 1 040
execs: 2.77× 109

paths: 3 685

large Problem 16

cycles: 50
execs: 7.22× 108

paths: 11 908

Problem 17

cycles: 19
execs: 4.58× 108

paths: 10 283

Problem 18

cycles: 21
execs: 4.58× 108

paths: 10 237
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Table 6.5: Number of error states found.
size plain arithmetic data structures

small Problem 10

learner: 45 (0)
fuzzer: 45 (0)
total: 45

Problem 11

learner: 20 (0)
fuzzer: 22 (2)
total: 22

Problem 12

learner: 21 (0)
fuzzer: 21 (0)
total: 21

medium Problem 13

learner: 28 (0)
fuzzer: 30 (2)
total: 30

Problem 14

learner: 27 (0)
fuzzer: 30 (3)
total: 30

Problem 15

learner: 27 (0)
fuzzer: 32 (5)
total: 32

large Problem 16

learner: 29 (1)
fuzzer: 31 (3)
total: 32

Problem 17

learner: 27 (1)
fuzzer: 28 (2)
total: 29

Problem 18

learner: 28 (0)
fuzzer: 32 (4)
total: 32

For the LTL problems of the challenge, none of the test traces that have
a unique execution path were counterexamples for the last hypothesis of the
learner. This, in combination with the large number of cycles completed by
the fuzzer, strengthens our belief that the learned models for these problems
(1 - 9) are complete.

The number of reachable error states found by the learner and the fuzzer
are shown in Table 6.5. The first entry in each cell is the number of unique
error states that were found, and the second entry is the number of error
states that were found by the given technique, but were not found by the
other technique (e.g. “fuzzing: 28 (2)” means that the fuzzer has found 28
error states, and 2 of those were not found by the learner).

From these results we conclude that the fuzzer discovered more reachable
error states than the learner/tester, albeit in some cases the learner/tester
found some that were not discovered by the fuzzer.
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6.5 Present and Future Work

The goal of our present and future research in this area is to combine model
learning and mutation-based fuzzing in the following ways.

1. use fuzzing as a source of counterexamples during learning, and

2. use (intermediate) learning results to guide mutation-based fuzzing.

At this point in time, we have already put some significant effort into
(1): Most importantly, we have implemented a new equivalence oracle,
AFLEQOracle, in LearnLib, which iteratively loads a traces that AFL
marks as interesting, and parses them as a test query for the learner.
Unfortunately, we were unable to apply this new equivalence oracle to
the RERS challenge due to time restrictions. The code for this project is
available at https://github.com/praseodym/learning-fuzzing.

In this section we give an overview of our current effort on using mutation-
based fuzzing as a source of counterexamples during learning.

An overview of the architecture for combining AFL and LearnLib is
shown in Figure 6.1. To establish this, we had to tackle the following main
issues:

– As AFL is provided as a standalone tool, we have created a library,
libafl, that the learner can communicate with.

– As LearnLib is written in Java, and AFL (and libafl) are written in
C, we needed to bridge all communication between the two. For this
purpose, we have used the Java Native Interface (JNI) programming
interface, which is part of the Java language. JNI allows for code
running in the Java Virtual Machine (i.e. LearnLib) to interface with
platform-specific native binaries or external libraries (i.e. libafl).

– We have added the possibility to embed the target program in AFL’s
fork server. For each membership or test query, the fork server creates
a new instance of the target process. This speeds up the execution of
learning, independent of the technique used to find counterexamples.

There were some other issues that we had to address:
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JVM

LearnLib libafl

AFL fork server

Target processJNI
queries

setup

Figure 6.1: Architecture for combining LearnLib and AFL.

– AFL is designed such that it does not care about the target program’s
output. Instead only coverage data is used as a measure for test case
relevancy. The learner, however, relies on output behaviour. Therefore,
we have extended AFL to always save data from the target’s stdout
into a shared memory buffer (shared between libafl and the fork server
process). The content of this shared memory buffer is returned to
LearnLib after a successful query.

– AFL runs the target program in a non-interactive manner, i.e. it
provides the program with input once and then expects it to terminate
and reset state. This is in contrast to the default behaviour of Learn-
Lib, which expects a single-step system under learning that repeatedly
accepts an input value and returns the associated output, and has
an explicit option to reset. We initially simulated this behaviour in
AFL by running the target program once for each prefix of an input
sequence. For the RERS challenge, however, we could run each input
sequence once, as it was easy to correlate individual inputs to their
corresponding outputs.

We have performed some inital experiments with the setup described above.
In these experiments we compared different learning setups on their ability
for finding error states in the reachability problems of the RERS 2015. For
these problems, the number of reachable error states are now known.

A selection of the results is shown in Table 6.6. In addition to the number
of (reachability) states learned, this table compares learning performance in
terms of learning time and the number of queries needed (lower is better).
In all cases, using fuzzing equivalence delivers models with more states
and more reachability states found in a shorter learning time. One remark
here is that the learning time we report only includes the time the learning
process ran, not the time that the fuzzer ran. We ran the AFL fuzzer on
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Table 6.6: Results for the RERS 2015 challenge problems on a Intel Xeon
CPU E5-2430 v2 @ 2.50GHz (virtualised server), with Oracle Java 8 JVM
configured with 4GB heap.

problem method states errors time queries
1 TTT, W-method 1 25 19/29 4s 7 342
1 L*, W-method 8 25 19/29 13h 2.46× 108

1 TTT, fuzzing 334 29/29 21s 16 731
1 L*, fuzzing 1 027 29/29 44m 2.86× 106

2 TTT, W-method 1 188 15/30 1h 8.15× 106

2 L*, W-method 3 195 15/30 17h 2.39× 107

2 TTT, fuzzing 2 985 24/30 13m 412 340
2 L*, fuzzing 3 281 24/30 13h 4.21× 107

3 L*, W-method 1 798 16/32 110h 2.42× 109

3 TTT, fuzzing 1 054 19/32 13m 698 409
3 L*, fuzzing 1 094 19/32 13h 2.34× 107

4 TTT, W-method 7 21 1/23 4h 5.17× 107

4 TTT, fuzzing 7 402 21/23 16m 458 763
5 L*, W-method 1 183 15/30 13h 2.20× 106

5 TTT, fuzzing 3 376 24/30 8m 416 943
6 L*, W-method 1 671 16/32 93h 8.89× 108

6 TTT, fuzzing 3 909 23/32 45m 2.80× 106

each problem for one day, and the test cases that were generated during
that time were used for equivalence testing using the learning process.

6.6 Conclusion

An ongoing challenge for learning algorithms formulated in the Minimally
Adequate Teacher framework is to efficiently obtain counterexamples. In this
chapter we have compared and combined conformance testing and mutation-
based fuzzing methods for obtaining counterexamples when learning finite
state machine models for the reactive software systems of the RERS challenge.
We have found that for the LTL problems of the challenge the fuzzer did
not find any additional counterexamples for the learner, compared to those
found by the tester. For the reachability problems of the challenge, however,
the fuzzer discovered more reachable error states than the learner and
tester, albeit in some cases the learner and tester found some that were not
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discovered by the fuzzer. This leads us to believe that in some applications,
fuzzing is a viable technique for finding additional counterexamples for a
learning setup.
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Protocol Message Format

Inference and its

Applications in Security

Rick Smetsers, Joeri de Ruiter, Sicco Verwer, and Erik Poll

Abstract

A promising application of model learning is in the area of
protocol inference. Protocol inference refers to some automated
form of reverse engineering the workings of a communication
protocol. This can be useful for security analysis in different
ways. It can be used to reverse-engineer unknown protocols, to
detect security flaws in implementations of known protocols, to
fingerprint implementations, or to detect anomalies in protocol
usage, for example.

A prerequisite for using model learning in this area is that the
protocol’s message format (i.e. input format) is known. In this
chapter we give an overview of tools and techniques for inferring
the protocol message format, and their applications in security.
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7.1 Introduction

Protocols play a crucial role in modern-day IT systems. They are used
between parties that communicate across a network (the prototypical exam-
ple being TCP/IP), between different hardware components (e.g., USB),
between processes on the same machine (for example OS services, such
as a CUPS printer service), and between different components within one
process (e.g., the protocols provided by APIs).

Protocols are of great importance for the security of these systems, as
any interface at which a system can be attacked comes with an associated
protocol. An attacker can try to exploit security flaws in the protocol itself
or in a particular implementation of the protocol. For protocols that involve
cryptography, such flaws may be of cryptographic nature, but more often
than not they are more mundane implementation mistakes, such as the SSL
Goto bug on Apple iOS or the Heartbleed bug in OpenSSL.

Even if different implementations of the same protocol do not contain
exploitable flaws, they can (and often do) exhibit differences in behaviour.
This is often the case because there is some form of freedom or ambiguity
in the protocol’s specification (if such a specification exists at all), or
simply because the implementations contain mistakes. As a result, an
implementation may have unique characteristics that provide a fingerprint
of that implementation. Such fingerprints can be interesting for attackers,
as it leaks information about the system they are targeting.

The characteristics of the usage of a protocol may also be used as a
basis for anomaly detection. Deviations from the normal protocol usage
may indicate malicious intent, and can thus be used for intrusion detection.

Attackers not only try to attack the protocols that their victims use, but
they may also use their own protocols as part of their attacks. The prime
example here is that controlling a botnet requires some communications
protocol between the bots and the command and control centre. Reverse
engineering such protocols, and ideally finding security flaws, may be useful
to take botnets down.

This importance of protocols has motivated a need for formalisms in
which different protocol implementations and specifications can be described
in a similar way. One way to achieve this is by viewing a protocol implemen-
tation not via its internal structure, but through the laws which govern its
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behaviour: which input messages does it accept at which point, and which
messages does it produce in response? This way, implementations (and
specifications) that exhibit completely dissimilar compositions, for example
because they are written in different programming languages, can still be
characterized and analysed through the same set of rules.

There are typically two levels at which one can formally describe the
behaviour, or ‘language’, of a protocol: the protocol message format and the
protocol state machine. The former describes the structure for individual
valid messages in the protocol and the latter describes the temporal control-
specific behaviour and data dependencies of messages that make up a
protocol session.

In this chapter, we give an overview of tools and techniques for inferring
the protocol message format and their applications in security, with the aim
to bridge the gap between the academic and applied world, and propagate
further research in the area. It was observed by Bossert and Guilhéry that
there is a huge difference between the academic and the applied world in the
field of protocol inference for security applications [24]. In the applied world
on the one hand, “experts can be [seen] as fighters specialized in one-lines
commands [that are] able to compute any CRC and format trans-coding by
heart”. In the academic world on the other hand, papers emerge in different
subfields of (software) engineering, that use different terminology for similar
problems related to protocol inference. This has resulted in a dissonance
between researchers and security experts.

Recently, two other survey papers have appeared on the subject of
protocol inference [106, 52]. Both of these surveys explicitly focus on the
tools that have been proposed. Our survey contains such an overview as
well, but in addition gives a comprehensive and cohesive overview of the
techniques that these tools implement. We believe that this approach is
more useful in bridging the gap between the academic and applied world,
and propagate further research in the area.

Overview Most of the work on protocol inference focuses on communica-
tions protocols (despite that the techniques can be applied elsewhere as well).
Therefore, we first introduce the terminology of communications protocols in
Section 7.2. Then, in Section 7.3, we give a general classification of protocol
inference techniques. In Section 7.4 we describe the techniques that have
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been proposed for reverse engineering message formats. In Section 7.5 we
give an overview of the applications of these approaches in security. Finally,
in Section 7.6 we conclude our work.

7.2 Terminology

A (communications) protocol is a set of rules that two (or more) parties
use to communicate. It defines the structure and intent of the exchange
of messages. A message is an atomic piece of the interaction. In most
practical cases, a message is defined as a sequence of bits going in the same
communication direction (i.e. going from one party to the other). The
structure of a message is determined by its message format, typically as a
collection of message fields. A message field is a sequence of consecutive
bits with some specified meaning. The values that a message field can take
are captured by its domain. The domain for the sequence number field in
the TCP protocol, for example, is the set of 32-bit integers. A value for a
message field can for instance be:

– A static value (such as a magic number).

– A value that depends on other field(s) in the same message, called an
intra-message dependency (such as a checksum).

– A value that depends on other field(s) in a different message, called an
inter-message dependency (such as a TCP acknowledgement number).

– A value depending on the environment, called an environmental de-
pendency (such as a timestamp).

– A (semi-)random value (such as a TCP sequence number).

Protocol message formats can include optional or alternative fields, and
repetitions. Moreover, a field can be composed of sub-fields. The main
challenge in message format reverse engineering is to find the boundaries and
(complex) relations between message fields and sub-fields. Some protocols
make use of delimiters to denote field boundaries. Delimiters are protocol
constants that are used to mark the boundary of variable-length fields.
Other protocols use keywords to denote the beginning of a new field (and
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hence the field boundary). Besides denoting field boundaries, keywords
often contain semantic information about the contents of a field, or its
relation with other fields (e.g. with a length field that indicates the length
of another field).

Three types of relations between fields have been distinguished in lit-
erature. The common sequential relation captures the ordering between
two adjacent fields in the message. The hierarchical relation reflects the
fact that a field can be further divided into multiple sub-fields. Finally, the
parallel relation reflects the fact that the positions of two or more fields are
interchangeable in the message format.

The relations between message fields can be captured by a message field
tree, in which each node represents a field in the message. Here, a child
node represents a subfield (and thus sub-range) of its parent. The internal
nodes of the tree represent complex [150] or hierarchical [97, 29] fields
(these notions are synonymous), and the leaf nodes represent the smallest
hierarchical units in the message. Complex fields can exhibit intra-field or
inter-field dependencies if a child refers to another part of the same field
or a different field, respectively. Moreover, each node contains an attribute
list, which captures properties of the field, such as its range.

A message type is a label that is given to a group of similar messages.
Message types are used in the protocol state machine to define when it
should transition to a different state. In some cases, message types are
derived from the message field tree. In other cases, they are an abstraction of
similar messages. Often, such an abstraction can be obtained by performing
a clustering algorithm (or other machine learning techniques) on a set of
messages.

A session describes a dialogue between two parties. It is a series of
messages that go in alternating directions of communication to accomplish
a specific task. The structure of a session is determined by the protocol
state machine, which specifies the valid messages and expected replies at
each position in a session.

Protocol inference consists of two tasks.

Message format reverse engineering is the process of automatically
extracting specifications for valid messages in a protocol. It consists
of reverse engineering the message format for one or more messages,
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header header message

IP TCP application

payloadpayload

Figure 7.1: Encapsulation of application protocol messages.

and optionally of aggregating this information to determine a more
general specification for the messages.

Protocol state machine inference is the process of inferring the input/
output behaviour of the protocol by observing protocol sessions as a
sequence of messages. This often requires that message format reverse
engineering and/ or machine learning techniques are used beforehand
to create a finite set of message types.

In this chapter, we focus on the first task.

We are particularly interested in the Internet Protocol Suite. Therefore,
we give a brief introduction to some of its relevant architectural principles
here. The Internet Protocol Suite is a collection of protocols that specify
how data should be exchanged on the Internet and similar networks. Its
functionality is divided into layers of abstraction. Of particular interest to
us are the application layer, which contains protocols for message exchange
between applications. Some notable examples of protocols in the application
layer are the Hypertext Transfer Protocol (HTTP), Simple Mail Transfer
Protocol (SMTP) and Secure Shell (SSH) protocol.

Below the application layer are the transport layer and the internet
layer, which contain the Transmission Control Protocol (TCP) and Internet
Protocol (IP) respectively. TCP/IP provides reliable, ordered, and error-
checked delivery of application layer protocol messages by encapsulating
them in a series of packets. Figure 7.1 illustrates how encapsulation works,
by making the distinction between headers and payload.
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Table 7.1: Typical information sources for protocol inference techniques.

passive active

black-box observation of network traffic testing
white-box observation of execution traces fuzzing or symbolic execution

7.3 Classification of Protocol Inference Techniques

Protocol inference techniques can be classified based on the information
that they use (this is true for those that reverse engineering the message
format, as well as for those that infer the protocol state machine). In this
section we give such a classification, and we highlight the strengths and
weaknesses of the different approaches. Typical sources of information for
the different approaches discussed in this section are shown in Table 7.1.

Passive vs active learning

One important classification of techniques for protocol inference is between
passive learning and active learning approaches. In passive learning one
observes (sequences of) messages to learn their characteristics, whilst in
active learning approaches one actively takes part in the communication,
either by playing the role of one of the involved parties, or by mutating the
observed messages.

Each approach has its strengths with regard to their application in secu-
rity. Passive learning can provide statistical information about the normal
behaviour of a protocol, which active learning cannot. Such information
can provide a basis for anomaly detection, which can be used for intrusion
detection.

Passive learning approaches have the advantage that they do not require
access to an implementation of the protocol. Instead, they only have to
be able to observe its behaviour. A message format or state machine that
is generated by a passive approach is, however, limited by the diversity of
information seen. If certain variable fields never take more than one value, for
example, it is impossible to identify those fields as variable fields. Similarly,
it is impossible to infer transitions in the state machine for messages that
never occur.
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Active learning approaches, on the other hand, have the advantage that
they can try messages for which the result is unknown. This way, they may
try out strange corner cases that never occur in practice, and which would
never be observed in passive learning. This can be useful to obtain a unique
fingerprint for an implementation, or look for security flaws that arise in
corner cases.

Black-box vs white-box

A second important classification of techniques for protocol inference is
between those that consider the protocol implementation a black box and
those that use it as a white box.

Black-box techniques only look at the messages that the implementation
receives and produces. For communication protocols, they can obtain this
information by looking at the network traffic. White-box techniques also
observe some internals of the protocol implementation. By analysing an
implementation while it processes an incoming message, for example, one
may learn that different messages result in different execution paths; or by
tracing the message through the execution, one may learn how the message
is inspected or chopped up, which reveals information about its format.

An obvious advantage of a black-box technique is that it does not require
access to the implementation. An advantage of white-box approaches is
that the additional information may provide extra insight into the protocol.
Specifically, an implementation may reveal semantic information about how
it processes and operates on these messages. As a result, techniques that
(are able to) consider the implementation as a white box are typically more
accurate and provide richer information about the message format [30].

In the context of communication protocols (passive) black-box ap-
proaches are sometimes referred to as being network based (because they
only look at network traffic), while (passive or active) white-box approaches
are considered host based (because they look at the implementation on the
host machine). We find this classification is confusing, however, because
it does not clearly communicate the (orthogonal) distinction between pas-
sive and active learning. Therefore, we use the more general classification
presented in this paragraph.
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7.4 Reverse Engineering Message Formats

The first task in protocol inference is to obtain a specification of (some
or all) valid input messages. For some protocols such specifications are
publicly available, complete and up-to-date. For others, such specifications
do not exist. The traditional way of obtaining protocol message format
specifications is a notoriously laborious task that involves a significant
amount of manual analysis [43]. Even when executable code is available,
the task is complicated and error-prone. Manually reverse engineering the
SMB protocol, for example, took 12 years in the open source SAMBA
project [138]. Hence, automatic reverse engineering of message formats is
an invaluable step in the process of protocol inference. Not only is this task
(to some extent) a prerequisite for protocol state machine learning, but also
does it have applications in security on its own.

Reverse engineering of message formats is a challenging task for a number
of reasons [97]:

1. A message may contain a large number of fields.

2. Individual fields may not be static and may have a varying size.

3. There may exist sequential, parallel or hierarchical relationships and
dependencies between fields.

To address these challenges, several tools and techniques have been
proposed. These can be distinguished by their scope and analysis type.

Analysing individual messages In the simplest case, messages are anal-
ysed in isolation. Here, the aim is to reverse engineer the individual
message formats of a protocol by identifying its fields.

Analysing multiple messages Commonly, different messages of a par-
ticular type do not contain the same fields in the same order. In
such a case, the previous notion of message format reverse engineering
falls short. A more general approach to the problem involves the
analysis of a set of messages of a particular type. This produces a
message format specification that can include alternative structures
for different message types.
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Related to the analysis scope is the type of the analysis that systems do.
As stated above, there may exist complex relationships and dependencies
between fields of a message. Most early systems, which analyse individual
messages, consider a message format to be “flat”. While this might be true
for some simple or artificial protocols, many (real-world) protocols have
sequential, parallel or hierarchical relationships between message fields [150].
To reflect this, systems that analyse multiple messages often represent them
in a message field tree.

In the following subsections, we give a general description of the different
tools and techniques that have been proposed for the task of automatically
reverse engineering protocol message formats. First, we describe the passive,
black-box approaches that focus on inferring message formats from network
traces only. Then, we describe the approaches that leverage the availability
of an implementation of the protocol. We conclude this section with an
overview of work that is closely related to message format inference. An
overview of the tools that we describe in this section, and a summary of
their contributions can be found in Table 7.2.

Table 7.2: Overview of tools for protocol message format
reverse engineering.

Tool Novelty Reference

PI Application of sequence alignment to net-
work traces for automatically finding mes-
sage field boundaries.

[17]

ScriptGen Extension of sequence alignment to region
analysis for raising the training data to a
higher level of abstraction. Application in
a protocol emulator for honeypots.

[95, 94]

RolePlayer Application of sequence alignment on a
small set of cleverly constructed training
examples for protocol replay.

[44]

Discoverer Protocol independent solution for automat-
ically reverse engineering the protocol mes-
sage formats of an application from its net-
work trace through clustering.

[43]
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TaintCheck Introduction of dynamic taint analysis for
application fingerprinting.

[110]

Polyglot Application of dynamic taint analysis for
inferring message formats.

[30]

AutoFormat Use of a context-aware execution monitor
for inferring complex relationships and de-
pendencies among message fields in a mes-
sage field tree.

[97]

Aggregation of individual message formats
to infer a more general one.

[150]

Tupni Extension of [150] to make message format
reverse engineering more applicable to se-
curity applications.

[45]

ReFormat Message format inference from encrypted
data by performing data lifetime analysis.

[149]

Dispatcher Infer encrypted message formats for both
directions of communication, and annotate
the message field tree with field semantics.

[29]

Veritas Usage of the frequency distribution of n-
grams in network traces for keyword detec-
tion.

[148]

Netzob Combination of sequence alignment and
clustering algorithms to group similar mes-
sages and associate message types.

[24]

ProDecoder Accurate network-based message format in-
ference of asynchronous and sampled pro-
tocol data.

[147]

Prisma Define similarity between messages by em-
bedding them in a vector space.

[85]

Pulsar Improving inferred message formats with
fuzzing.

[59]

AutoGram Inference of context-gree grammars for mes-
sage formats.

[74]
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7.4.1 Inference from Network Traces

Early approaches for reverse engineering message formats use machine
learning techniques to find patterns in network traces, and use these patterns
to infer a message format. They can therefore be considered as primarily
black-box, passive learning techniques. In this section, we give an overview
of the advancements in this area, and the tools that have been created over
the years.

Using sequence alignment for finding similarities

The first preliminary technique for protocol message format reverse engi-
neering was introduced by the Protocol Informatics project [17]. Inspired
by bioinformatics, it uses sequence alignment to find similarities in two or
more messages of the protocol. Sequence alignment is a way of arranging
two sequences to identify regions of similarity [107]. In bioinformatics it
is used to understand the relationship between two sequences of genetic
information, such as DNA or amino acids. For protocol analysis, the concept
is similar. The goal is to compare a message to a database of messages
belonging to a specific protocol. This allows one to determine its type and
the location and size of the fields in each individual message. Sequence
alignment is particularly effective on (sets of) messages in which dynamic
fields have variable lengths [24]. Beddoe presents preliminary results in
learning message formats for HTTP [17].

The sequence alignment algorithm of Needleman and Wunsch [107] was
later implemented in the Netzob tool for partitioning messages in simple
(i.e. non-complex) fields [24, 25]. The tool uses this technique in conjunction
with a clustering algorithm to group together similar messages. This is used
as a preprocessing step for inferring the domain of individual message fields,
and (consecutively) the message type.

Detecting fields with region analysis

Several tool extend the work done in the Protocol Informatics project by
using previously seen messages to heuristically detect some specific fields
(such as network addresses, lengths, and cookies).

One such a tool ScriptGen [95, 94], which uses sequence alignment
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as a building block for a more complex algorithm, called region analysis.
Region analysis consists of two steps. By looking at aligned sequences of
bytes, it first computes for each aligned byte:

– its most frequent type of data (binary, text or zero-value),

– its most frequent value,

– the variability of the values, and

– the presence of gaps in aligned sequences.

Then, fields are identified on this basis of sequences of bytes that have some
similar characteristics. By taking advantage of the statistical diversity of a
large number of training messages, region analysis can be used to rebuild a
partial notion of the semantics in a message format.

The independently developed RolePlayer tool [44] uses a similar
technique as ScriptGen. Instead of using a large number of training
samples, however, RolePlayer uses a small set of cleverly constructed
samples to train the sequence alignment algorithm.

Towards a more complete approach for analysing network traffic

In 2007, Cui et al. introduced Discoverer [43]. The goal of this tool is to
automatically reverse engineer message formats by analysing sequences of
network packets. The idea of Discoverer is to cluster messages with the
same record patten together and learn multiple message format specifications
for a single protocol. This is achieved in three phases: tokenization, clustering
and merging. In the following paragraphs we describe these phases in more
detail. An overview of Discoverer’s system architecture can be found in
Figure 7.2.

First, consecutive network packets are reassembled in messages deter-
mined by the direction of communication. Then, the message is split into
a sequence of tokens. A token is a sequence of consecutive bytes likely to
belong to the same message field. Two types of tokens are distinguished:
text and binary. Text segments are identified by comparing a sequence of
bytes with the ASCII values of printable characters. A set of predefined
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= =

Figure 7.2: Overview of Discoverer’s architecture [43, Figure 1]

delimiters is used to divide a text segment into tokens. The authors ar-
gue that identifying binary field boundaries is very hard. Therefore, they
consider each binary byte to be a token in its own right.

Messages are clustered based on their token pattern. However, since
messages with the same token pattern do not necessarily have the same
format, clusters of messages are further divided so that each message in a
cluster has the same format. Then, constant and variable length tokens are
identified by comparing them against their counterparts in another message
that has the same format. Three field semantics are inferred:

length the size of a field,

offset the byte offset of a field from a certain point (such as the start of
the message),

cookie session-specific data that appears in messages from both sides of
the application session (such as a session ID).

The key observation behind the merging phase is that sequence alignment
can be used to identify similar message formats across different clusters.
This is because we can leverage the token properties (text or binary, variable
or fixed length) and semantics (length, offset and cookie) inferred in the
previous phases. The authors have demonstrated that Discoverer can
partially infer message formats for three application protocols: SMB, RPC,
and HTTP.
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Discoverer has three major limitations. First, it assumes the existence
of a (set of) predefined delimiter(s) for dividing a text segment into tokens.
However, protocols may not use delimiters and even if they do, these
delimiters might not be available to the public. Second, it does not work
for asynchronous application protocols, or (synchronous) protocols that are
sampled. This is because Discoverer assembles raw packets into messages
by grouping each sequence of consecutive packets that flow in one direction.
This way of grouping packets is inappropriate, because two parties might
send packets to each other at the same time. Moreover, a raw packet trace
might be sampled, which severely reduces Discoverer’s approach for the
same reason. Third, the tool assumes that the first constant number of
bytes of a session describe the complete message format. Whilst this is the
case for the application protocols that were used in the experiments, this
assumption does not hold all application protocols. The SMTP protocol,
for example, indicates the end of the mail data by sending a line containing
only a “.”. This expression is part of the message format, while the content
of the message itself can be of any (variable) length.

Using frequency distributions and n-grams

The limitations of Discoverer were addressed by Wang et al. in their
Veritas and ProDecoder tools [148, 147]. These are fully automatic
network-based tools for learning message formats that do not assume any
prior knowledge of a protocol specification (such as delimiters). Similar to
Discoverer, they are applicable to both text and binary protocols.

The key insight behind these tools is that n-grams in protocol messages
exhibit a highly skewed frequency distribution that can be used for inferring
its message format. An n-gram is a contiguous subsequence of n elements
in a given sequence of at least n elements. In the case of Veritas and
ProDecoder, an n-gram is a sequence of n bytes in a protocol message.

Veritas and ProDecoder consists of the following modules:

n-gram generation The input to this module is a set of raw network
traces that are of the same protocol. These packets do not necessarily
have to consist of (complete) protocol messages. Therefore, the tools
are applicable to asynchronous protocols and sampled protocol data as
well. In this module the raw packets are decomposed in subsequences
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of n contiguous bytes and the count for each such n-gram are stored.
For example, if the parameter n = 4 then the n-grams from the
message MAIL FROM are MAIL, AIL , IL F, L FR, FRO and FROM.

Keyword unit selection In Veritas, a Kolmogorov-Smirnov test filter is
used to identify the frequent n-grams from the distribution created in
the previous module. These frequent subsequences are called keyword
units (Keyword units are called message units in [148]). The set of
aforementioned n-grams, for example, can be discovered as keyword
units, because they are encountered regularly. ProDecoder skips
this module.

Keyword identification This module uses the keyword units collected in
the previous module to infer keywords. Keywords are identified be
searching for keyword units that often occur together. The aforemen-
tioned keyword units can be used to reconstruct the keyword MAIL

FROM, because they occur together often. A message can have multiple
keywords.

Message clustering This module clusters messages based on their key-
words using standard machine learning techniques. Veritas uses the
Jaccard index to calculate the similarity between messages. ProDe-

coder uses a standard hierarchical clustering method. The clusters
are validated by using a metric from information theory known as the
information bottleneck method [136]. This method captures the rele-
vant information in a message with respect to the other messages by
compressing the data. This enables ProDecoder to cluster messages
based on their semantics, and distinguish among similar keywords
belonging to different protocol messages.

Sequence alignment Similar to Discoverer, this module uses sequence
alignment on the messages in each cluster to find the common byte
sequences among them. These sequences represent the stable parts
of the protocol messages, and can therefore be used to represent the
message format. Veritas does not perform this final step. Instead,
it uses the message format and the raw network traces to infer the
protocol state machine.
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Figure 7.3: Overview of Veritas’ and ProDecoder’s architectures (from
[148, Figure 1] and [147, Figure 2]).

An overview of Veritas’ and ProDecoder’s architectures is shown in
Figure 7.3. The authors have implemented and evaluated Veritas to
infer messages format specifications for SMTP and two binary peer-to-
peer protocols. ProDecoder is evaluated on SMB and SMTP network
traces. The experimental results show that both tools accurately parse the
application protocols.

Using more advanced methods

The work of Wang et al. was extended by Krueger et al. in their Prisma
tool [85]. Instead of using n-grams for finding similarities between different
messages, the authors use a more elaborate method. To find common struc-
tures in the data, they first define a similarity measure between messages.
This is done by embedding the messages in special vector spaces which are
reduced via statistical tests to focus on discriminative features. In contrast
to previous tools, the model constructed by Prisma can not only analyze
but also simulate messages.
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7.4.2 Using the Protocol Implementation

While the passive, black-box approaches presented in the previous section
have the advantage that they do not require access to an implementation of
the protocol, they have limitations.

Trace dependency The message format that is generated by a passive
approach is limited by diversity of messages seen. If certain messages
never occur, it is impossible for a tool to infer their message formats.
Similarly, if certain variable fields never take more than one value, it
is impossible to identify those fields as variable fields [43].

Semantics It was observed that the lack of protocol semantics in network
traces fundamentally limits the precision of the extracted message
formats [45, 30].

Encryption Black-box approaches are easily hampered by encryption,
because they do not take the end-points of the communication dialog
in account [97].

Instead of solely looking at network traces, most modern approaches for
message format reverse engineering leverage the availability of a (binary)
implementation of the protocol. Compared to the syntactic information
in network traces, implementation binaries contain semantic information
about how the protocol operates on the input messages.

Given an implementation of a protocol, the goal is to find the set of
messages that the implementation accepts. This is an undecidable problem
in general. Instead, one can monitor how an implementation (in the form
of an application binary) processes the input (messages) that it receives,
instead of analysing the messages or the implementation in isolation.

Indeed, most modern approaches for message format reverse engineering
can be considered white-box. Some techniques use a passive learning
approach, and analyse the implementation while it processes network traces.
Other approaches use an active learning approach, and try to fuzz the
implementation.

Both of these approaches typically consist of two phases. In the first
phase it observes an implementation (in the form of a program binary)
as it processes a message. The intuition behind this approach is that
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knowing which part of a program processes which part of an input can
reveal the structure of the input as well as the structure of the program. This
component of the system, typically called the execution monitor, takes as
input a program binary and an input (message), and applies dynamic taint
analysis to monitor how the program processes the data by instrumenting
the code [110]. Recently, the potential of dynamic taint analysis for message
format reverse engineering has increased with the introduction of general
purpose taint tracking systems (for example for JVM [18]).

As the protocol implementation executes, the propagation of tainted
input is monitored by observing memory buffers and the operations that
are applied to them. The result of this is often referred to as an execution
trace [30] (in the remainder of this section we will therefore use this term to
refer to the result of dynamic taint analysis, even if the paper we discuss
uses a different term). An execution trace typically consists of (some) of
the following information [18]:

Method calls are logged with the taint information for all argument values.

Method returns are logged with the taint information for its return value.

Arithmetic operations are logged with the taint information for its operands.

Memory access is logged with its access type (read or write) and the
taint information of the value that was read/written.

Array instructions are logged with its access type (read or write) and
the taint information of the value that was read/written.

In the second phase the execution trace is analysed. For this task, a
number of techniques have been proposed, which we will discuss in the
remainder of this section.

Using dynamic taint analysis

Dynamic taint analysis refers to monitoring how a program processes its
input data by instrumenting the code [110]. Recently, the potential of
dynamic taint analysis for message format reverse engineering has increased
with the introduction of general purpose taint tracking systems (for example
for JVM [18]).
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Figure 7.4: Overview of Polyglot’s architecture [30, Figure 1]

One of the first tools that uses dynamic taint analysis for learning
protocol message formats was introduced by Caballero et al. [30]. The
objective of their tool, called Polyglot, is to find the field boundaries
in individual input messages to form the basis for the message format
for these messages. Polyglot is based on TaintCheck [110], a tool
that used dynamic taint analysis on network traces from untrusted sources
for automatically generating signatures (fingerprints) for malware attacks.
TaintCheck monitors how each byte of a network trace is used by the
implementation at the processor-instruction level.

Polyglot uses the execution trace for reverse engineering of its message
format. The execution trace is analysed by four modules that locate the field
boundaries and keywords. In the following paragraphs, we will describe these
modules in more detail. An overview of Polyglot’s system architecture
can be found in Figure 7.4.

First, boundaries of variable-length fields are located by the direction
field and delimiter extraction1 modules. A direction field stores information
about the location of another (target) field in the message, such as its length.
The intuition behind detection direction fields is that they are used during
execution of a trace (to increment a memory pointer to the tainted data,
for example). Delimiters are elements that are used to mark the boundary
of variable-length fields. To find these delimiters, Caballero et al. look for
tokens that are compared against consecutive positions in the stream of
data [30].

The keyword extraction module takes as input the delimiters and the
execution trace and outputs the protocol keywords. The problem is to
extract the subset of keywords that are supported by the implementation

1called separator extraction in [30].
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and present in the network data. Keywords are known a priori by the pro-
tocol implementation. Hence, when a message arrives, the implementation
compares its keywords against the received data. The intuition is that one
can locate these keywords by checking for comparisons between tainted and
untainted data, since the network input will be tainted and for example
constants hardcoded in the implementation will be untainted.

Finally, the message format extraction module combines all previous
information to generate the message format. The authors have evaluated
Polyglot over five different protocols: DNS, HTTP, IRC, SMB and
IRQ. Compared to manually crafted reference specifications, the reverse
engineered message formats show minimal differences. These differences are
mostly due to different implementations handling fields in different ways.

Representing complex relationships and dependencies

One drawback of Polyglot is that it takes a “flat” view of a message
format. This problem was addressed by Lin et al., who argue that such a
flat view cannot represent complex relationships and dependencies among
the fields [97]. The authors observe that to reverse engineer message formats
more accurately and thoroughly, in addition to the extracting fields, it is
important to expose cross-field relations and reveal the hierarchical structure
of the message formats. The focus of their work is the determination of
three important types of relations between message fields:

AutoFormat [97], is one of the first tools that aims to automatically
infer such a message field tree. It distinguishes fields based on the observation
that different fields in the same message are typically handled in different
execution contexts. By monitoring program execution, a context-aware
execution monitor first collects execution context information for every byte
of the network trace. Then, the message field identifier identifies fields based
on this context information. If two successive bytes share the same context
information, then they are clustered. Finally, the field identifier constructs
a message field tree, by identifying parallel and sequential fields. Parallel
fields are discovered by comparing the execution context. Sequential fields
are discovered by recursively traversing the non-parallel fields.

Experimental results show that AutoFormat achieves high accuracy
in message field identification and message format reconstruction for seven
real-world protocols, including two text-based protocols (HTTP and SIP),
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three binary-based protocols (DHCP, RIP, and OSPF), one hybrid protocol
(SMB) and an unknown malware protocol.

Analysing different types of messages

Where Polyglot and AutoFormat infer message formats for individual
messages, the tool introduced by Wondracek et al. can aggregate these
individual message formats to infer a more general one [150]. Given a set of
input messages, the tool can be used to parse different types of messages of
the protocol. This allows them to extract some additional semantics about
the message format, such as identifying optional fields. The authors apply
their techniques to a set of real-world server applications that implement
the HTTP, DNS, SMTP, SMB and NFS protocols.

It was observed, however, that messages may have features that hamper
the applicability of the work of Wondracek et. al. First, messages may include
data records of arbitrary length, and second, there may exist arbitrary cross-
field and cross-message references (such as checksums or sequence numbers),
which cannot be captured by the proposed semantics and structure.

In response, Cui et al. propose Tupni, a tool that attempts to solve
these problems [45]. The system takes as input one or more messages of
the unknown format, and a program that can process these inputs. Unlike
the previous tools, Tupni can identify arbitrary sequences of data records
by analysing loops in the execution trace of the input message(s). The
tool recognises loops by analysing the instructions that a message invokes.
It considers messages as belonging to the same type if the loop iterations
execute mostly the same instructions.

The authors demonstrate that Tupni can be used to reverse engineer
message formats for DNS, RPC, TFTP, HTTP and FTP. Apart from
network protocols, the tool was also applied to infer file formats.

After extracting information about the structure of individual messages,
both Tupni and the tool by Wondracek et al. can aggregate this structure
over different message types: if multiple messages of an unknown message
format are available, the tools can perform their analysis on each of the
resulting execution traces, and combine the individual results into a single
message format specification.
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Handling encryption

Despite their effort, a common limitation of all aforementioned tools is that
they cannot infer the message format when the network traffic is encrypted.
This problem is addressed by Wang et al., who introduce ReFormat, a tool
that aims to derive the message format even when the message is encrypted
[149]. Their approach is based on the observation that encrypted network
traffic typically goes through two processing phases: first decryption and
then normal protocol processing. Based on this observation, the authors
use a different source of input to solve the problem: it is not the network
traffic whose message format they try to infer, but the memory buffer that
contains the decrypted message at run-time.

ReFormat can accurately identify the buffers that contain the decrypted
message, because the function calls and instructions for decrypting an
encrypted message are significantly different from those used for processing
an unencrypted message. After separating the decryption phase from the
processing phase, the tool performs so called data lifetime analysis to
pinpoint the memory buffers that contain the decrypted message (Called
buffer deconstruction in [29]).

Experimental analysis shows that ReFormat can accurately identify
message formats for four protocols that encrypt their network communica-
tions: HTTPS, IRC, MIME and an unknown malware protocol.

Understanding field semantics

The works of Lin et al. [97] and Wang et al. [149] were extended by Caballero
et al., who introduce Dispatcher [29]. In this work, they address three
problems.

First, they argue that it helps to understand what a message does when
trying to infer its message format. They address this problem by annotating
nodes in the message field tree with field semantics. Second, they extract
the message format for both directions of communication. This choice is
motivated by the observation that security analysts frequently have to
rewrite protocol messages sent by an application. Third, they extend the
approach of [149] in coping with encrypted messages.

Together, they apply these contributions to extract message formats for
unknown, encrypted, malware protocols. Dispatcher was used to analyse
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and infiltrate the previously undocumented command and control protocol
of MegaD, a spam botnet. In the following paragraphs, we will describe the
three problems that Dispatcher addresses in more detail.

Field semantics describe the type of data that a field contains, such as
the message length, a host name, or a time stamp. The intuition behind
type-inference-based techniques is that the function and system calls used
by programs contain rich semantic information about their goal, arguments
and output. This information is publicly available in so-called prototypes.
Dispatcher maintains a set of prototypes for commonly used functions and
instructions. For inferring the field semantics of received messages, it uses
dynamic taint analysis to monitor if a sequence of bytes from a received
message is used in the arguments of some function calls or instructions in
the execution trace. That sequence of bytes can then be associated with
the semantics defined in the prototype.

Similarly, for sent messages, Dispatcher taints the output of interesting
functions and instructions with unique identifiers. For each tainted sequence
in the network trace, it looks up the identifier in the set of known prototypes.
Most data in sent messages does not come from the tainted network traces.
Instead, Dispatcher uses the intuition that programs store fields in a
memory buffer and construct messages by combining these buffers.

To deal with encrypted data, Dispatcher uses the same technique as
ReFormat (it identifies the memory buffers holding the unencrypted data).
It extends this approach to analyse the data sent as well as data received:
for incoming data it identifies the memory buffers holding the incoming
data after it is decrypted (just as ReFormat does). For outgoing data it
also identifies the memory buffers that hold the outgoing data before it is
encrypted.

Once these memory buffers have been identified, the discussed message
format reverse engineering techniques can be applied on these buffers instead
of on the network traces. Here another extensions to ReFormat [149] is
introduced. ReFormat can only handle applications where there exists a
single boundary between the decryption and processing phase. Caballero
et al. observe, however, that multiple such boundaries exist for the MegaD
botnet protocol [29]. Hence, they extend the tool to identify every instance
of the decryption phase.
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Using fuzzing

The Prisma tool, introduced in the previous section, was improved by
Gascon et al. in their Pulsar tool. Pulsar proceeds by observing the
network traffic of an unknown protocol and inferring a generative model for
message formats. In contrast to previous approaches, this model enables
effectively exploring the protocol state space during fuzzing and directing
the analysis to states which are particularly suitable for fuzz testing. This
guided fuzzing allows for uncovering vulnerabilities deep inside the protocol
implementation. Moreover, by being part of the communication, Pulsar
can increase the coverage of the protocol state space, resulting in less but
more effective testing iterations.

Learning context-free grammars

Höschele et al. introduce the AutoGram tool, which can be used to infer a
context-free grammar for valid input messages [74]. Such a grammar is a
set of rewriting rules that can be used to both recognize (parse) valid input
messages, and generate (syntactically valid) unseen ones. In addition, the
inferred grammars are natural to read (for humans), because the authors
have implemented simple heuristics to label the rewrite rules with (semanti-
cally) relevant names. The authors have primarily used their tool for the
reverse engineering of data formats (URL, CSV, INI and JSON), but its
relevance for communication protocol messages is evident.

AutoGram constructs a grammar by aggregating multiple input mes-
sages. As such, it can be seen as a continuation of the line of work initiated
by Wondracek et al. [150]. For each message, the tool constructs an interval
tree. Each layer of this tree partitions a message into fragments (intervals)
based on information in the execution trace. Hence, each node in the tree
corresponds with a fragment and the set of operations (i.e. method calls,
arithmetic, return values . . . ) that were applied to that fragment. The
rewrite rules are generated from a set of interval trees by combining the
fragments in nodes whose operations are compatible.

Since AutoGram works with Java bytecode it does not have to resort
to random names for the derived rewrite rules. Instead, it uses simple
heuristics to extract a readable (and semantically relevant) name from the
execution trace. This makes the grammars that the tool generates readily
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applicable for security analysis, for example.

7.5 Applications

In the following paragraphs we give an overview of the applications of
message format reverse engineering in security.

Protocol emulation or replay Several studies have performed some
level of message format reverse engineering with a specific purpose in mind:
protocol emulation [95, 94] or protocol replay [44, 109]. Often used in the
context of malware, a protocol emulator or replayer aims to mimic an existing
system in order to learn more about (possible) attackers of a system [95].
Constructing such a tool manually is a tedious and sometimes impossible
task, especially for protocols for which no documentation exists [95].

ScriptGen and RolePlayer were developed to mimic an existing
system while interacting with a host on the network. Besides (partially)
inferring the message format, this involves learning (partially) the protocol’s
state machine. With regard to a protocol’s message format, the goal of
both tools is to identify interesting message fields to rewrite. ScriptGen

was applied in honeypots. A honeypot is a resource that is expected to get
attacked, with the aim of providing information about these attacks and
the malicious payload that they deliver. Often, an attacker delivers this
malicious payload only after a number of messages. The goal of ScriptGen

is to automatically carry on a valid conversation for as long as needed for
the attacker to deliver its malicious payload. In [94], the authors show that
this is feasible. RolePlayer was used to replay both the client and server
sides for a variety of network protocols, including NFS, FTP and SMB.

Anomaly detection Anomaly detection refers to trying to detect attacks
by detecting changes in the communication traffic. For anomaly detection
one will use passive learning techniques, during some learning phase in which
there is only normal traffic, to then later detect deviations. Information
about the normal traffic inferred can also be used to configure intrusion
detection systems (IDS) and intrusion prevention systems (IPS). Modern
IDSes and IPSes, such as FlowSifter [99], NetShield [96], GAPA [23]
and binpac [113] use protocol message formats for this purpose. However,

188



Protocol Message Format Inference

many application protocols in use are proprietary and have no publicly
released specifications [87]. To parse traffic of these application protocols,
protocol inference is required.

Fingerprinting When analysing different implementations of the same
protocol, any differences between implementations, or between an imple-
mentation and the official specification, can point to security vulnerabilities.
Such differences can also be used for fingerprinting a particular implemen-
tation of a protocol. A fingerprint can be used to uniquely identify such an
implementation. Of course, protocol inference can also be used to fingerprint
traffic of different protocols.

Security analysis A detailed understanding of a particular protocol can
be used for a security analysis of that protocol. This can be a manual
analysis, but might also be tool-supported, e.g. using model checkers (for
example to detect possibilities for deadlock and hence Denial-of-Service) or
using dedicated tools for security protocol analysis such as ProVerif [88].

Fuzzing An understanding of a protocol can also be used as a basis for
fuzzing, where one randomly generates traffic which deviates from normal
protocol traffic in the hope of catching implementation mistakes in the
handling of ‘incorrect’ or ‘malformed’ input messages or message sequences
[111].

Malware analysis Protocol inference can be used to analyse (implemen-
tations of) the benign protocols (for instance when configuring an IDS or
IPS), but it can also be used to analyse malware.

Tainting, for example, is a useful technique for malware analysis. If
tainted data is used in ways that are defined as illegitimate, the tool can
provide information about how the exploit happened and what it attempts
to do. For example, if tainted input data is executed, by loading it into
the instruction register of the CPU, this can be the sign of a classic buffer
overflow attack where the attacker is executing his own shell code [37].
This information is useful for identifying vulnerabilities and for generating
malware signatures (fingerprints). TaintCheck provides basic functionality
for this, but is used for different purposes.
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Other research in this area has focused on the automated reverse en-
gineering of the protocol used by botnets [40]. A difference is that such
protocols are typically unknown, whereas the protocols we want to protect
will be known. Note that here protocol inference can be both an offensive
and defensive technique: the aim can be to fix any of the security flaws
found, or to exploit them. There is no fundamental distinction between
the two, as the difference is often only a matter of context. Even offensive
uses of protocol inference have their white-hat uses. For example, the same
technique an attacker uses, say, to install a botnet, can then be used by a
defender to analyse this botnet in order to try to take it down. Similarly,
fingerprinting can be used as an offensive technique by an attacker when
trying to detect the use of a particular implementation (namely, one with a
known security vulnerability), but it can be used a defensive technique in
trying to detect the presence of a botnet.

7.6 Conclusion

In this chapter, we have given an overview of research on reverse engineer-
ing protocol message formats. The goal of this work was to bridge the
gap between the academic and the applied world in the field of protocol
inference for security applications. The contributions of this chapter were
threefold. First, we have given a common terminology for different aspects of
communications protocols and a general classification of protocol inference
techniques. Then, we have given a systematic overview of the techniques
that have been proposed for reverse engineering message formats. Finally,
we have given an overview of the applications of these techniques in security.
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Conclusion

This thesis addresses multiple problems in the area of model learning for
software systems. In addressing these problems, I believe that my co-authors
and I have made significant contributions to the field. It is my hope that
these contributions make model learning more practically applicable for
reverse engineering reactive software systems. In addition, I hope that the
work in this thesis sparks many interesting new directions for research in
the area.

In this conclusion, I give a brief summary of the lessons learned in this
thesis and some directions for future work.

Metrics in model learning

Chapters 3 and 4 advocate the use of metrics in model learning. We have
presented a general class of distance metrics on Mealy machines that may
be used to formalize intuitive notions of quality, and we have used two
such metrics to reduce the number of inputs required while learning. We
conjecture that the utility of metrics in model learning increases as models
become more complex – both qualitatively (i.e. that they help understanding
the quality of an hypothesis better) and quantitatively (i.e. that they may
lead to a reduction in the number of inputs). A possible direction for future
work is to verify this, by applying our methods to more complex systems.
Another related direction for future work is to devise new intuitive metrics
that can be used in this setting, and see if they result in a reduction in
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inputs required for learning.
Bounding the distance between a hypothesis and the unknown target

model during learning remains a challenging problem. Using our metrics,
the quality of a hypothesis is hard to predict because of the high variance
for different experimental runs. Different metrics might produce more
encouraging results in this sense.

SMT solvers for model learning

In Chapter 5 we explore an approach to model learning that is based on
using SMT solvers. We have provided encodings for DFAs, Mealy machines
and register automata, and an implementation of these encodings in Z3.

We believe that this chapter might give rise to a broader direction of
future work, since the approach has several advantages over traditional
model learning algorithms:

1. it typically requires fewer queries,

2. it is more easily adaptable to other formalisms, and

3. it is applicable for both active and passive learning, and a combination
of both.

Since we are not experts on SMT solvers, some effort is required to
implement the encodings that we present more efficiently. A major direction
for future work is to explore the application of this approach in a combination
of active and passive learning more. Another major direction for future
work is to encode formalisms for which no learning algorithms exist yet.

Fuzzing and model learning

In Chapter 6 we shown that conformance testing and mutation-based fuzzing
are orthogonal and complementary approaches for finding counterexamples
in model learning for software systems. A major direction for future research
is to combine these methods in more interesting ways. We have already
made some effort in this sense:

1. use fuzzing as a source of counterexamples during learning, and

2. use (intermediate) learning results to guide mutation-based fuzzing.
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Another direction for future research is to apply fuzzing while learning
more expressive formalisms, such as register automata.

Reverse engineering message formats

Chapter 7 presents an overview of the techniques for reverse engineering the
message formats of communication protocols and other reactive software
systems. In most cases, this is a prerequisite for model learning.

The goal of this work is to bridge the gap between the academic and
the applied world in this area. We believe that this chapter gives a unified
and detailed overview of the techniques that are available. It lacks an
experimental evaluation of the tools that are available, however. Therefore,
a possible direction for future work is to devise a set of benchmarks for this
purpose, and to give an quantitative assessment of the performance of the
tools that are available.
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