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Abstract—A major impetus for scientific studies of climate 
change in the Arctic Ocean has been the reduction in the areal 
extent and thickness of its sea ice cover which has been 
experienced at accelerated rates in the past decade.  These 
dramatic changes resulted in major climate science studies being 
conducted in the Arctic Ocean as well as opening the way for 
increased shipping and offshore oil and gas activities. An 
extended measurement record of the horizontal dimensions of 
this ice cover is available for the full Arctic Ocean Basin based 
upon a record compiled from nearly 40 years of relatively 
continuous satellite based measurements.  Unfortunately, data 
accumulations for the ice cover’s vertical dimension, i.e. sea ice 
thickness, as well as full temporal resolution ice velocity and 
under-ice ocean current profiles tend to be limited to a small 
number of year-long mooring data sets with durations that are 
only a few to several years, reflecting underlying greater 
measurement challenges. Moreover, the longest duration ice 
thickness data collection efforts, spanning more than 10 years, 
have been confined only to two specific portions of the Basin, 
namely, Fram Strait and the Canadian sector of the Beaufort 
Sea. However, in the past ten years, the available year-long ice 
and oceanographic mooring data sets have greatly increased in 
total number and in the number of sites. 

Advanced upward-looking sonar (ULS) instruments operated 
from subsurface moorings has been and continues to be the 
primary source of data with volumes and accuracy sufficient for 
meaningfully monitoring ice thickness, ice velocities, ocean 
current profiles and other in-situ water properties. The ice 
thickness, or more properly ice draft (underwater ice thickness) 
data is measured continuously with temporal resolution of 1 -2 
seconds. Technological advances, since ULS instruments were 
first developed in the 1980’s have led to new generations of ice-
profiling sonar (IPS), incorporating much expanded on-board 
data storage capacities (up to 16 Gigabytes) and powerful real-
time firmware which now allow unprecedented temporal (ping 
rates of up to 1 Hz). When combined with ULS Acoustic Doppler 
Current Profiler (ADCP) instrumentation using a special ice 
tracking mode (with a temporal resolution of a few minutes), 
details of the ice topography can be realized to resolutions of 
better than 0.1 m in the vertical and 1 m in the horizontal. These 
very high resolution ice draft measurements fully resolve 
individual ice features including undeformed level ice, brash ice, 
individual large ice keels including multi-year ice, hummocky ice 
rubble fields, glacial ice including icebergs and ice islands, and 
open water interruptions of the ice cover including leads between 
ice floes. Such continuous highly detailed ice measurements, 
along with concurrent measurements of ice velocities and ocean 

current profiles, are essential to understandings of mechanical 
and thermodynamical aspects of sea ice processes which govern 
ocean-atmosphere exchanges in polar waters, thereby 
determining ice extent and thickness parameters. The ice profiler 
ULS instrument can sample at higher sampling frequencies to 
measure non-directional ocean wave spectra and parameters 
(significant and individual maximum wave heights and peak 
periods) both during the period of mostly open water, often from 
mid-summer to mid-autumn,  and also when ocean waves 
propagate into the periphery of the Arctic Ocean pack ice. Ocean 
wave interactions with pack ice are important in understanding 
the fracturing of sea ice floes and hastening the deterioration and 
melt of sea ice.  The ULS data provide the first detailed 
measurements of such ocean wave – ice processes. 

A major challenge in moored ULS measurement systems is 
the inaccessibility of the measurement sites to ship logistics due to 
the very remote areas in the Arctic Ocean and its peripheral seas 
and the difficulty, resulting in very high logistic costs, of 
deployment and servicing the moorings due to the sea ice itself. 
This challenge is being addressed through the development of 
expanded capacity and more efficient internal power capability 
and increased onboard data storage, along with very high 
instrument reliability. With expanded alkaline battery packs, 
continuous operation for 2 to 3 years is now possible; lithium 
battery packs are being developed that will extend the in-situ 
ULS instrument operation to approximately five years.  

To provide access to the ULS data between mooring servicing 
intervals, two different approaches are being developed. In some 
areas cabled underwater observatory technology can be installed 
to provide real-time access to the ULS ice measurements in 
support of navigation and oil and gas exploration activities as 
previously described in Fissel et al. (2009) for sub-Arctic 
applications.  The first such ocean observatory involving a ULS 
ice instrument was commissioned at Cambridge Bay in the 
Canadian Arctic in September 2012.  At locations far from 
shorelines, the challenges become even greater.  For offshore oil 
and gas drilling applications, an array of subsurface ULS 
moorings spanning distances of tens of kilometers, 
interconnected via bottom mounted fiber optics cable systems 
interfaced to the moored ULS instruments and to vessel 
platforms using acoustic modems, have been designed to provide 
tactical support for ice management operations in support of 
drilling activities.  An alternative approach to provide yearly 
access to the multi-year moored ULS data sets is the development 
of small expendable buoyant “datapods” which store the ULS 
data on flash cards; during times of open water or very thin ice, 



the datapods are released from the mooring
surface and the ULS data is then transmitte
provide remote access to the scientific users. Th
on this approach involving aircraft landing o
vicinity of the subsurface ULS moorings to ac
on-command acoustic modem transmission 
acoustic receivers operated through ice holes. 
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datapods are released from the mooring to float to the surface 
and the ULS data is then transmitted via satellite to provide 
remote access to the scientific users. There are variations on 
this approach involving aircraft landing on sea ice in the 
vicinity of the subsurface ULS moorings to access the data via 
on-command acoustic modem transmission of the data to 
acoustic receivers operated through ice holes.  Work on the 
datapods for ULS moorings is presently at a conceptual design 
stage and will require considerable development effort to 
proceed further. 

C. Adaptation of ULS Ice Sonars to Autonomous Underwater 
Vehicles (AUV) platforms 
Over the past ten years, the IPS5 instrument has been 

adapted so as to operate on various AUV platforms to provide 
near-real time data for sea ice measurement programs.  The 
AUV missions include those of the Monterey Bay Aquarium 
Research Institute [13, 14], Hokkaido University and the 
DAMOCLES Project (Developing Arctic Modeling and 
Observing Capabilities for Long-term Environmental Studies) 
[15] for sea ice missions and the Memorial University of 
Newfoundland for underwater profiling of icebergs.  Going 
forward, the AUV platforms provide the capability for 
detailed near-real time ice measurement programs operated 
from Arctic-capable vessels or ice camps supported by aircraft 
logistics. 

D. Other Present and Planned Improvements 
Other presently planned improvements to the ULS mooring 

instrumentation include: 

• Log Sonar electronics (status: presently underway): the 
existing linear analog electronics for transducer signal 
processing will be replaced by  logarithmic detector 
circuitry that provides improved consistency in the 
output voltages and a larger dynamic range.   

• Expanded flash data storage (status: presently 
underway):  testing and firmware changes are being 
made which will allow the use of 16 Gigabyte flash 
cards.  Further expansion of flash card capacity may be 
feasible in the future to 32 and 64 Gigabyte capacity.  

• Improved calibration of acoustic backscatter returns 
from IPS5 instrument (status: planned for 2013-2014): 
when the log sonar analog electronics is in place, 
improved calibration procedures for the acoustic 
backscatter returns will be implemented to realize 
calibrated target strength measurements to better than 2-
3 dB. 

• Multiple transducer systems for 3 D profiling (status: 
waiting on market requirements):  With the additional 
battery capacity recently achieved, a multiple transducer 
configuration can be developed to allow for up to four 
transducers. One transducer would continue to be 
operated in the vertical as this provides the greatest 
accuracy for ice draft measurements.  The other three 
transducers would be operated at 30-40 degrees from 
the vertical so as to provide three dimensional 

measurements of ice draft features rather than the 
present two dimensional ice profiles. 

In addition, the IPS Toolbox set of software programs are 
continuously undergoing updates and the addition of new 
programs for more advanced sea analyses.  The IPS Toolbox 
software package includes more than 200 individual programs 
that are available in either Matlab or as standalone executable 
versions. 

IV. SUMMARY AND CONCLUSION 
The development of advanced upward looking sonar 

(ULS) technology for measurements of marine ice has been 
underway for over 20 years,  primarily using subsurface 
moorings with unattended operation for periods of one year or 
longer.  The ULS technology provides very high accuracy and 
unprecendented resolution (1 m in the horizontal) for 
underwater ice thickness using the ASL Ice Profiler Sonar 
(IPS), as well as providing direct measurements of ice 
velocities from Acoustic Doppler Current Profilers (ADCP).  
From the combined ice draft and ice velocity measurements, 
quasi-spatical ice draft profiles are routinely measured that 
provide data on thousands of kilometers of the underside of 
the sea ice cover passing over the mooring measurement site.  

These very high resolution ice draft measurements fully 
resolve individual ice features including undeformed level ice, 
brash ice, individual large ice keels including multi-year ice, 
hummocky ice rubble fields, glacial ice including icebergs and 
ice islands, and open water interruptions of the ice cover 
including leads between ice floes. Such continuous highly 
detailed ice measurements, along with concurrent 
measurements of ice velocities and ocean current profiles, are 
essential to understandings of mechanical and 
thermodynamical aspects of sea ice processes which govern 
ocean-atmosphere exchanges in polar waters, thereby 
determining ice extent and thickness parameters. 

The capabilities of the ULS instrumentation has greatly 
expanded over the past 20 years, taking advantage of 
technological advances in miniaturized electronics and 
computer processor modules, as outlined in this paper.  

Further developments are presently underway and 
planned over the next few years to develop further 
capabilities. The most pressing issue is the inaccessibility of 
the measurement sites to ship logistics due to the very remote 
areas in the Arctic Ocean and its peripheral seas and the 
difficulty, resulting in very high logistic costs, of deployment 
and servicing the moorings due to the sea ice itself. This 
challenge is being addressed through the development of 
expanded capacity and more efficient internal power 
capability and increased onboard data storage, along with very 
high instrument reliability. A related requirement is 
developing more timely access to the measurements since 
extending the mooring operation capacity to multiple years’ 
results in a very long time to access the ULS data sets from 
the moorings. To provide more timely access to the ULS data 
between mooring servicing intervals, different approaches are 
being developed: real-time data links from the moored 
instrumentation via cabled and/or acoustic modem links to 



shore- or vessel-based platforms having satellite 
communications; the potential use of small expendable 
buoyant “datapods” which store the ULS data on flash cards; 
during times of open water or very thin ice, the datapods are 
released from the mooring to float to the surface and the ULS 
data is then transmitted via satellite to provide remote access 
to the scientific users; and the use of ship or ice-camp based 
Autonomous Underwater Vehicles (AUVs) equipment with 
ULS instruments.  
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