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Advances in
Netw or k
Simulat ion

T
he Internet’s rapid growth has spurred devel-

opment of new protocols and algorithms to

meet changing operational requirements—

such as security, multicast transport, mobile

networking, policy management, and qual-

ity-of-service support. Development and evaluation

of these operational tools requires answering many

design questions. 

Despite their value, custom simulators, wide-area

testbeds, and small-scale lab evaluations all have

drawbacks. Because they use real code, experiments

run in testbeds or labs automatically capture impor-

tant details that might be missed in a simulation.

However, building testbeds and labs is expensive,

reconfiguring and sharing them is difficult, and they

are relatively inflexible. Further, reproducing some net-

working phenomena, such as wireless radio interfer-

ence, can be difficult, complicating efforts to compare

or evaluate protocol designs.

Protocol design using simulation usually begins with

an individual investigator’s simulations of isolated pro-

tocol elements using small-scale topologies and simpli-

fied or static assumptions. High start-up costs prevent

an individual group from acquiring the resources

needed to create a comprehensive and advanced net-

working simulation environment. This limitation often

causes simulations constructed by different groups to

lack standardization and reproducibility.

In the current paradigm, directly comparable data

would be available only if designers implemented all

competing mechanisms within every simulator.

Because few research groups have the resources to do

this, it is often most effective to have those who know

the most about the particular protocol construct the

component. 

ADVANTAGES OF A COMMON SIMULATOR
Multiprotocol network simulators provide a rich

opportunity for efficient experimentation. Disparate

research efforts using a common simulation environ-

ment can yield substantial benefits, including

• improved validation of the behavior of existing

protocols,

• a rich infrastructure for developing new proto-

cols,

• the opportunity to study large-scale protocol

interaction in a controlled environment, and

• easier comparison of results across research

efforts.

The Virtual InterNetwork Testbed (VINT) project

provides improved simulation tools for network

researchers to use in the design and deployment of new

wide-area Internet protocols. An understanding of the

VINT simulation framework and its principal tool, ns,

the network simulator, can help researchers determine

how best to proceed with their efforts.

SIMULATION NEEDS OF NETWORK RESEARCHERS
Simulation evaluates network protocols under vary-

ing network conditions. Studying protocols—both

individually and interactively—under varied condi-

tions is critical to understanding their behavior and

characteristics. The VINT project has used the ns sim-

ulator and related software to provide several practi-

cal innovations that broaden the conditions under

which researchers can evaluate protocols:

• Abstraction. Varying simulation granularity al-

lows a single simulator to accommodate both

Netw ork researchers must test  Internet protocols under varied condit ions
to determine w hether they are robust and reliable. The Virtual Inter-
Netw ork Testbed (VINT) project  has enhanced its netw ork simulator and
related softw are to provide several practical innovations that  broaden the
condit ions under w hich researchers can evaluate netw ork protocols.
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• Emulation. Most simulation experiments are con-

fined to a single simulated world that employs

only the protocols and algorithms in the simula-

tor. In contrast, emulation allows a running sim-

ulator to interact with operational network nodes.

• Scenario generation. Testing protocols under

appropriate network conditions is critical to

achieving valid, useful results. Automatic cre-

ation of complex traffic patterns, topologies, and
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detailed and high-level simulations. Researchers

study networking protocols at many levels, rang-

ing from the detail of an individual protocol to

the aggregation of multiple data flows and the

interaction of multiple protocols. The abstrac-

tion mechanisms in ns allow researchers to exam-

ine protocols without changing simulators and

to validate abstractions by comparing detailed

and abstract results.

Network simulation has a long history.

Ns itself derives from REAL (Realistic and

Large),1 which derives from NEST (Net-

work Simulation Testbed).2 Although we

cannot list all relevant network simulators

here, we can describe the distinguishing

features of network simulators and com-

pare prominent examples with ns.

Distinguishing features 

Simulators have widely varying focuses.

Many target a specific area of research

interest—a particular network type or pro-

tocol, for example, such as ATM or PIM

multicast. Others, including ns, REAL,

Opnet, and Insane,3 target a wider range

of protocols. The most general of these

simulators provide a simulation language

with network protocol libraries (for exam-

ple, Maisie4 and Opnet). Very focused sim-

ulators model only the details relevant to

the developer.

Ns and other network simulators use a

discrete-event processor as their engine.

Researchers have adopted several comple-

mentary approaches to improve accuracy,

performance, or scaling. Some simulators

augment event processing with analytic

models of traffic flow or queuing behavior

for better performance or accuracy (for

example, fluid network approximations).5

Parallel and distributed simulation pro-

vide a second way to improve perfor-

mance. Several simulators support multi-

processors or networks of worksta-

tions.1,4,6 Although ns focuses only on

sequential simulation, the TeD effort has

parallelized some ns modules.

Abstraction

Abstraction is a common approach to

improving simulator performance. All

simulators adopt some level of abstraction

when choosing what to simulate. FlowSim

was the first network simulator to make

this trade-off explicit.7 Ns supports sev-

eral levels of abstraction.

Numerous simulation interfaces are

possible, including programming in a

high-level scripting language, a more tra-

ditional systems language, and sometimes

both. Some systems, such as x-Sim8 and

Maisie,4 focus on allowing the same code

to run in simulation and on a live net-

work. Most systems have augmented pro-

gramming with a GUI shell of some kind.

Ns provides a split-level programming

model in which packet processing is done

in a systems language while simulation

setup is done in a scripting language.

Nam,9 currently being enhanced to sup-

port simple scenario editing, provides

visualization output.

Network emulators

Early work in network emulation

included the use of “ flakeways”  (gate-

ways that could alter or drop packets) for

early TCP/IP tests. M ore recent work

includes special-purpose stand-alone net-

work emulators supporting packet delays

and drops.10 Developers usually imple-

ment these systems as kernel drop-in

modules that intercept the IP layer

packet-forwarding path, and thus look

like routers to end stations. Their capa-

bilities are generally limited to simple

packet manipulation and do not provide

for interference from simulated cross traf-

fic. M oreover, these systems do not

include the general simulation capability

that ns provides.
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Researchers have used ns to develop

and investigate the following protocols:

• TCP behavior: selective acknowl-

edgment, forward acknowledgment,

explicit congestion notification, rate-

based pacing, asymmetric links

(satellite)

• Router queuing policies: random

early detection (RED), explicit con-

gestion notification (ECN), class-

based queuing

• Multicast transport: scalable reliable

multicast (SRM) and variants (RPM,

scalable session messages), PIM vari-

ants, router support for multicast,

congestion control, protocol valida-

tion and testing, reliable multicast

• Multimedia: layered video, audio and

video quality-of-service, transcoding

• W ireless network ing: Snoop and

split-connection TCP, multihop rout-

ing protocols

• Protocol response to topology changes

• Application-level protocols: Web

cache consistency protocols

For more details about this research, see

http://www-mash.cs.berkeley.edu/ns/ns-

research.html.

Protocols Investigated with Ns

dynamic events (link failures) can help generate

such scenarios.

• Visualization. Researchers need tools that help

them understand the complex behavior in net-

work simulation. Merely providing tables of sum-

mary performance numbers does not adequately

describe a network’s behavior. Visualization using

the network animation tool nam provides a

dynamic representation that allows researchers

to develop better protocol intuition and aids in

protocol debugging.1

• Ex tensibility. The simulator must be easy to

extend if its users are to add new functionality,

explore a range of scenarios, and study new pro-

tocols. Ns employs a split-programming model

designed to make scripts easy to write and new

protocols efficient to run.

Engineering issues also bear on a simulator’s usabil-

ity. A wide range of protocol modules must be avail-

able in the simulator. This breadth allows easy

comparison of different approaches and reduces sim-

ulation development time, enabling the researcher to

focus on the simulation aspects relevant to the design

question being studied. 

The need to compare new network variants

demands validated protocols. Ns validates other pro-

tocols to the degree their maturity warrants. The

many protocol modules in ns and the interactions

among them mandate mechanisms that prevent mod-

ifications in one module from breaking functionality

in another. To this end, ns includes many automated

test suites that keep unintentional changes in behav-

ior from creeping into the simulator.

VINT AND NS
The VINT project has developed ns as a common

simulator with advanced features to change current

protocol engineering practices by enabling the study

of protocol interactions and scaling. Public distribu-

tion of our system has helped reduce duplication of

effort within the networking research and development

community. The “Ns and Other Related Simulators”

sidebar puts ns into perspective. Ns is publicly available

at http://www-mash.cs.berkeley.edu/ns/.

Abst r act ing simulat ion

Computer resource limitations, such as memory

and processing time, often limit the number of net-

work objects (nodes, links, and protocol agents) that

designers can simulate at the packet level. A scalable

network simulator accommodates wide variations in

each kind of network object, data in transit, and

information collected. Designers use three comple-

mentary approaches in scaling a simulator: tuning the

implementation, removing unnecessary simulation

detail, and supporting parallelism.

Other researchers have successfully explored paral-

lel network simulation, and multiple efforts to paral-

lelize ns are currently under way (see the “Protocols

Investigated with Ns” sidebar). VINT’s efforts focus on

a complementary approach, tuning implementation,

and providing multiple levels of protocol abstraction.

Eliminating less important details can yield substantial

savings while preserving the model’s basic validity.

Ns provides several levels of abstraction:

• The default simulator provides a detailed model

with hop-by-hop packet forwarding and

dynamic routing updates.

• Centralized routing replaces routing messages

with a centralized computation, saving process-

ing time and memory in exchange for slightly

different timing in routing changes.

• Session-level packet forwarding replaces hop-by-

hop packet flow with a precomputed propaga-

tion delay.2

• Algorithmic routing replaces shortest-path rout-

ing with tree-based routing, transforming O(n

log n) memory requirements to O(n). 
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Each abstraction sacrifices some details to save mem-

ory, so the user must apply abstractions only when

appropriate. Users can trade simulator performance

for packet-level accuracy by adjusting the level of sim-

ulation abstraction. Increasing the simulation abstrac-

tion level permits increasingly large simulations, while

decreasing it yields a more realistic simulation. The ses-

sion-level simulator can abstract many details of links,

nodes, and crosstraffic. Users can run simulations side

by side in both detailed and session-level modes to

compare performance and accuracy across different

levels of abstraction. Figure 1 shows the memory sav-

ings possible from session-level simulations for a par-

ticular scenario with large multicast groups.

The risk in abstraction is simulation accuracy. The

degree to which abstraction sacrifices accuracy and

the impact of this sacrifice on the validity of the results

vary greatly among simulation scenarios. For exam-

ple, although the details of a particular medium’s

approach to segmentation and reassembly are impor-

tant for LAN simulations, the link’s packet-loss rate

for higher-level WAN simulations can reflect the

details adequately.

Figure 2 shows how VINT validates small-scale

simulations before projecting results at larger scales

to ensure that abstraction does not substantially alter

simulation results.2 A quantitative analysis of scalable

reliable multicast (SRM) performance across detailed

and session-level simulations suggests that although

the timing of individual SRM events varies, average

aggregate behavior changes by only 3 to 9 percent.

We are also working on hybrid abstractions in which

different portions of the same simulation operate in

detailed session levels of abstraction.

Emulat ion int er face

Ns includes an emulation interface that permits net-

work traffic to pass between real-world network

nodes and the simulator. Together with the simula-

tor’s tracing and visualization facilities, emulation pro-

vides a powerful analytical tool for evaluating the

dynamic behavior of protocols and their implemen-

tations in end systems.

Figure 3 shows how emulation scenarios interpose

the simulator as an intermediate node (or end node)

along an end-to-end network path. This passes live

network traffic through the simulation, allowing it to

experience complex dynamics, such as crosstraffic.

The simulator’s scheduler is synchronized in real time

and allows the simulated network to emulate its real-

world equivalent.

Beyond conventional simulation, emulation is also

useful in evaluating both end-system and network-ele-

ment behavior. Researchers use emulation to introduce

packet dynamics—for example, drops, reordering, and

delays—to end-system protocol implementations.

Reproducing these conditions reliably in a live network

is difficult.

Furthermore, researchers can capture traces of live

traffic injected into the simulation environment and

use visualization tools to evaluate the end system’s

responses. Conversely, researchers can evaluate net-

work element behavior (for example, a queuing or

packet-scheduling discipline) in relation to live traffic

that real-world end stations generate. Such simula-

tions help identify undesirable network-element

behavior before deployment in live networks.

The VINT ns emulation facility is currently under

development, but an experimental version has already

proven useful in diagnosing errors in protocol imple-

mentation. For example, researchers at UC Berkeley

have developed the MediaBoard, a shared whiteboard

application that uses a version of the SRM protocol

that the MASH toolkit supports.3 The simulator is
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Figure 2.  VINT validates small-scale simulations to ensure that abstraction does not

substantially alter results at larger scales.  
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placed between groups of live end stations communi-

cating via SRM.

Multicast traffic passing between groups must tra-

verse the simulator and be exposed to the dynamics of

its simulated network. Visualization of traces taken in

the simulation environment reveals end-station retrans-

missions triggered by dropped or delayed packets. This

method has helped pinpoint time-dependent Media-

Board behaviors that are otherwise difficult to diagnose.

Scenar io gener at ion

Simulation scenarios require

• network topologies that define links and their

characteristics,

• traffic models that specify sender and receiver

locations and demands, and

• network dynamics that include node and link fail-

ures.

Ns meets these needs by providing a library of pre-

defined topologies and using packages such as the

Georgia Tech models (GT-ITM) to generate random

topologies. Traffic models benefit from ns’s rich library

of protocols. VINT supports widely used topology mod-

els for Telenet and Web traffic. Ns composability is also

important here; VINT has assembled several constant-

bit-rate sources to simulate layered multicast video

(http://www-mash.cs.berkeley.edu/ns/ns-topogen.html).

Automatic scenario generation in ns plays an impor-

tant role in the STRESS (Systematic Testing of

Robustness by Evaluation of Synthesized Scenarios)

approach to systematic protocol testing.4 STRESS

automatically generates test scenarios to explore pro-

tocol correctness. This approach has discovered sev-

eral design errors in multicast routing and is now

being used for performance evaluation.

SOFTWARE ARCHITECTURE
Ns software promotes extension by users. The fun-

damental abstraction the software architecture pro-

vides is “programmable composability.”  This model

expresses simulation configurations as a program

rather than as a static configuration or through a

schematic capture system.

A simulation program composes objects dynami-

cally into arbitrary configurations to effect a simula-

tion configuration. Adopting a full-fledged pro-

gramming model for simulation configuration lets the

experimentalist extend the simulator with new prim-

itives or program in dynamic simulation “event han-

dlers”  that interact with a running simulation to

change its course as desired.

The split -pr ogr amming model

Rather than adopting a single programming lan-

guage that defines a monolithic simulation, we have

found that different simulations require different pro-

gramming models. The goal is to provide adequate

flexibility without unduly constraining performance.

In particular, tasks such as low-level event processing

or packet forwarding through a simulated router

require high performance and are modified infre-

quently once put into place. Thus, they are best served

by expressing an implementation in a compiled lan-

guage such as C++.

On the other hand, tasks such as the dynamic con-

figuration of protocol objects and the specification and

placement of traffic sources are often iteratively refined

and undergo frequent change as the research task

unfolds. Thus, they are best served by an implemen-

tation in a flexible and interactive scripting language

such as T cl.5

To this end, ns exploits a split-programming model.

C++ implements the simulation kernel—the core set of

high-performance simulation primitives—but the T cl

scripting language expresses the definition, configu-

ration, and control of the simulation. 

This split-programming approach can be a boon to

long-term productivity. It cleanly separates the bur-

den of simulator design, maintenance, extension, and

debugging from the simulation’s goal—the actual

research experiments—by providing the simulation

programmer with an easy-to-use, reconfigurable, pro-

grammable simulation environment. Moreover, ns

allows an important separation of mechanism and

policy: Core objects that represent simple and pure

operations are free of built-in control policies and

semantics and can thus be easily reused.

Vir t ues of split  pr ogr amming

Implementing fine-grained simulation objects in

C++ and combining them with Tcl scripts yields more-

powerful, higher-level macro-objects. For example, a

Simulated network

Packet  f lows

Ns simulator
(emulat ion mode)

Packet  capture
and generat ion interface

Local
operat ing system

Figure 3.  Emulation

allows live network

traffic to pass through

the simulator.
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simulated router is composed of demultiplex-

ers, queues, packet schedulers, and so forth.

The split-programming approach allows faith-

ful simulation of a range of routers. We can

configure or arrange the low-level demulti-

plexers, queues, and schedulers to model an IP

router, perhaps with multicast forwarding sup-

port, or arrange them instead into a configura-

tion that models a high-speed switch with a

new scheduling discipline. In the latter case,

protocol agents (implemented entirely in T cl)

that model an experimental signaling protocol

could easily extend the switch.

Performance also guides our use of split pro-

gramming. The model implements low-level, event-level

operations such as route lookups, packet forwarding,

and TCP protocols in C++, whereas it implements high-

level control operations such as aggregate statistics col-

lection, modeling of link failures, route changes, and

low-rate control protocols in T cl. 

Obtaining a desirable trade-off between performance

and flexibility requires careful design. This division often

migrates during the course of investigating a protocol.

Object-oriented design naturally expresses this com-

posable macro-object model. However, when we

designed ns, Tcl did not support object-oriented pro-

gramming constructs and it did not provide effective

programming constructs for building reusable modules.

Thus, VINT adopted an object-oriented extension

of T cl. Of the several T cl object extensions available,

we chose the Object T cl (OT cl) system from MIT

because it didn’t require any changes to the T cl core

and it has a particularly elegant, yet simple, design.6

We also adopted T cl with Classes (T clCL), a simple

extension of OT cl that provides object scaffolding

between C++ and OT cl. This extension facilitates use

of our split-programming model to divide an object’s

implementation across the two languages. 

With the OT cl programming model in place, each

macro-object becomes an OT cl class; a simple-to-use

set of object methods hides its complexity. Moreover,

the model can embed macro-objects in other macro-

objects, leading to a hierarchical architecture that sup-

ports multiple levels of abstraction.

As an example, high-level objects might represent

an entire network topology and set of workloads,

whereas the low-level objects represent components

such as demultiplexers and queues. This approach

frees the simulation designer to operate at various lev-

els of abstraction:

• high-level—for example, by simply creating and

configuring existing macro-objects;

• mid-level—for example, by modifying the behav-

ior of an existing macro-object in a derived sub-

class; or

• low-level—for example, by introducing new

macro-objects or splitting objects into the ns core.

Finally, class hierarchies allow users to specialize

implementations at any one of these levels—for exam-

ple, extending a “vanilla TCP”  class to implement

“TCP Reno.”  The net effect is that users can imple-

ment their simulation at the highest level of abstrac-

tion that supports the required level of flexibility, thus

minimizing exposure to unnecessary details and the

burden associated with them.

TYPES OF NS RESEARCH
Network research simulation categories represent

three broad themes:

• selecting a mechanism from among several

options,

• exploring complex behavior, and

• investigating unforeseen multiple-protocol inter-

action.

The following examples from the broad base of ns-

based simulations in the networking community illus-

trate each of these themes.

Select ing a mechanism

As in most design activities, much time is lost in

selecting which alternative to use in accomplishing a

goal. Researchers have used ns to develop TCP vari-

ants and extensions, explore reliable multicast proto-

cols, and consider packet-scheduling algorithms in

routers.

A simulator-specific TCP implementation aided the

efforts to use ns to explore TCP variants and exten-

sions, such as selective acknowledgments, forward

acknowledgments, explicit congestion notification,

and pacing. Omitting application-specific baggage

such as memory management and IP fragmentation

allows ns users to focus on research issues such as

packet retransmission policies and throughput.

Explor ing complex behavior

Complex behavior often appears as unexpected self-

organization of dynamic systems, including examples

such as

• synchronization of periodic network traffic such

as routing updates,

• TCP “ACK compression”  in asymmetric or con-

gested networks,

• undesired or unpredicted differential treatment

of TCP flows because of RTT variations,

• contention for bandwidth reservations, and

• “ACK implosion”  for large-scale reliable multi-

cast protocols.

Ns is an ideal virtual

testbed for 

comparing protocols

because it offers 

a publicly available

simulator with 

a large protocol

library.



Simulation has proved useful in helping to identify

and understand each of these phenomena.

Error recovery in SRM technology is an example of

ns’s exploration of complex behavior.7 SRM supports

reliable communication for large groups. It uses a prob-

abilistic-based negative acknowledgment (NACK) pro-

tocol to achieve reliability. A receiver detecting a loss

multicasts NACK to the group. Each group member

with the missing data prepares to repair the error. To

avoid repair implosion (everyone sending the repair at

once), SRM delays repairs by a random time propor-

tional to the estimated distance between the participants.

Although the original SRM simulations used stand-

alone simulation, we added an SRM implementation

to ns. Researchers have since used the implementation

to study SRM recovery behavior over a wide range of

variants and topologies.6,8

Compar ing r esear ch r esult s

Comparing a new protocol design against existing

protocols is a common research challenge. Com-

parisons of full protocols are often difficult because

they require a particular operating system or they are

not widely available. Ns is an ideal virtual testbed for

comparing protocols because it offers a publicly avail-

able simulator with a large protocol library.

The reliable multicast community has used ns

widely for protocol comparison. In addition to the

SRM variants previously described, Christophe Hänle

used ns to compare the multicast file transfer proto-

col,9 and Dante DeLucia used it to research represen-

tative-based congestion control.10

Mult ipr otocol int er act ions

Multiprotocol interactions include either

• the impact of protocol operation at one layer upon

another layer (for example, HTTP on TCP), or

• the interaction of unrelated protocols (for exam-

ple, the effect of uncontrolled traffic sources on

congestion-controlled traffic flows).

Studying protocol interactions requires twice the

effort that studying a single protocol does: The

designer must understand and implement protocols

at all relevant layers. Ns reduces this effort by pro-

viding a validated library of important protocols.

Random early detection (RED) and TCP Snoop are

two examples where ns greatly aided protocol stud-

ies. RED explored interactions between TCP and

router queuing policies; Snoop explored interactions

between TCP and wireless networking. RED queue

management suggests that routers should detect incip-

ient congestion (before running out of buffer capacity)

and signal the source.11 Early work on RED began on

an ancestor of ns; RED is now a standard part of the

simulator. Connection snooping proposes that

TCP performance can be improved if routers

replay TCP segments lost because of transmis-

sion failure over a wireless hop.12 Both approach-

es benefited from the rich ns protocol library.

EVALUATION
Many users have contributed to the VINT

effort. The project spans four geographically

dispersed developer groups. Messages posted

to the mailing list indicate that the user com-

munity includes more than 200 institutions world-

wide, and ns incorporates much code contributed

from this user community.

Currently, users can contribute code in two ways:

on a contributed-code Web page or through incorpo-

ration into the main ns distribution, typically with

documentation and a validation test program. Code

integrated into the main distribution will track ns as

it evolves; experience stresses the importance of auto-

mated validation tests in this process.

Although the ns user community has been steadily

growing, there will always be times when a researcher

finds it more convenient to write stand-alone code or

to choose an alternative general-purpose simulator. A

custom simulator can exactly address the problem a

researcher faces. Although ns’s abstraction techniques

allow two-orders-of-magnitude scaling, a custom sim-

ulator can get exactly the correct scaling behavior.

Also, a new simulator will avoid the cost of learning

ns. However, we have found that researchers often

underestimate the infrastructure required to build a

new simulator and interpret its results.

Wide use of a common simulation platform pro-

vides serendipitous effects, however. Ns encourages

researchers to incorporate its rich collection of alter-

natives and variants for frequently used functions—

for example, for TCP and queuing variants—into the

parameters of their own simulations. Without ns or a

similar environment, the additional cost of developing

the required infrastructure would likely prevent

researchers from delving so deeply.

This benefit particularly applies to experimental

new approaches. For example, RED queue manage-

ment in ns was widely used in many simulations well

before it was standardized and available in products.

This availability has helped develop understanding

and acceptance of RED, and it has helped other

researchers anticipate how their protocols will behave

in future networks.

On the other hand, a disadvantage of ns is that it is

a large system with a relatively steep initial learning

curve. A tutorial contributed by Marc Greis and the

continuing evolution of ns documentation have

improved the situation, but ns’s split-programming

model remains a barrier to some developers.
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We chose ns’s fine-grain object decomposition inten-

tionally because it allows two levels of programming.

Simple scripts, topology layout, and parameter vari-

ation can often be done exclusively in OTcl. Although

developers must use C++ to implement most new pro-

tocols, ns’s object-oriented structure makes it fairly

easy to implement variants of existing protocols. For

completely new protocols, the large set of existing

modules promotes reuse by advanced programmers,

as evidenced in ns’s existing protocols and classes.

S
imulation plays a valuable role in network

research. A diverse set of researchers using a

standard framework increases the reliability and

acceptance of simulation results. 

Despite the benefits of a common framework, the

network research community has largely developed

individual simulations targeted at specific studies.

Because of the focused nature of such simulators, stud-

ies that employ them often do not reflect the breadth

of experience that can result if experimenters use a

more extensive set of traffic sources, queuing tech-

niques, and protocol models.

The VINT project, using ns as its simulator base

and nam as its visualization tool, has constructed a

common simulator containing a large set of models

for use in network research. By including algorithms

still undergoing research, simulator users can explore

how their particular work interacts with these future

techniques. In several cases, we have incorporated

modules developed outside the VINT project as stan-

dard simulator components.

Although the VINT project has so far been rela-

tively successful, it and the ns simulator must address

more challenges, such as

• developing mechanisms for the successful inte-

gration of code from the user community,

• reducing the ns user’s learning curve,

• developing tools for large-scale simulations with

a diverse traffic mix, and

• providing tools for newer areas of research such

as mobility and higher-level protocols. ✸
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