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Abstract—Improved diagnosis and treatment of traumatic

brain injury (TBI) and posttraumatic stress disorder (PTSD) are

needed for our military and veterans, their families, and society

at large. Advances in brain imaging offer important biomarkers

of structural, functional, and metabolic information concerning

the brain. This article reviews the application of various imag-

ing techniques to the clinical problems of TBI and PTSD. For

TBI, we focus on findings and advances in neuroimaging that

hold promise for better detection, characterization, and monitor-

ing of objective brain changes in symptomatic patients with

combat-related, closed-head brain injuries not readily apparent

by standard computed tomography or conventional magnetic

resonance imaging techniques.
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TRAUMATIC BRAIN INJURY AND 

POSTTRAUMATIC STRESS DISORDER: 

“INVISIBLE WOUNDS”

Improved diagnosis and treatment of traumatic brain
injury (TBI) and posttraumatic stress disorder (PTSD) are
needed for our military and veterans, their families, and

society at large. According to a RAND Corporation study
based on screening questionnaire data, nearly one out of
five Operation Iraqi Freedom/Operation Enduring Free-
dom (OIF/OEF) servicemembers (300,000) are estimated
to experience symptoms of PTSD or depression and more
than 320,000 OIF/OEF servicemembers have sustained a
TBI [1]. Similarly, 23 percent (907/3,973) of a returning
brigade combat team were clinician-identified to have a
history of TBI [2].

The majority of cases of TBI in civilian and combat-
related settings are categorized as “mild,” a category based
primarily on the characteristics of the acute sequelae follow-
ing the injury. The criteria for the classification of mild can
vary, but the Department of Defense/Department of Veter-
ans Affairs March 2009 Clinical Practice Guideline has
adopted the following criteria: (1) brief loss of conscious-

ness (30 minutes or less), (2) brief alteration of conscious-
ness (up to 24 hours), (3) posttraumatic amnesia for 0 to
1 days, or (4) Glasgow Coma Score (best score within the
first 24 hours) of 13 to 15 (15 = normal), and (5) a normal-
appearing brain on computed tomography (CT) scan [344].

In contrast to civilian TBIs due to falls, sports, etc.,
nearly 70 percent of combated-related TBIs are a result of
blast “plus” injuries, i.e., the effects of blast plus another
modality [3]. In mild TBI, the underlying pathology is not
well understood and the lesion(s) may be subtle, scattered,
varied, and, as indicated above, not detected on conven-
tional brain CT studies. Further diagnostic challenges are
posed by virtue of the varied and nonspecific postconcus-
sion symptoms (e.g., concentration problems, irritability,
headaches) that are also found in PTSD, depression, sleep

disorders, or in otherwise healthy persons. However,
improving the sensitivity of neuroimaging to subtle brain
perturbations and combining these objective measures
with careful clinical characterization of patients may facili-
tate better understanding of the neural bases and treatment
of the signs and symptoms of mild TBI.

For combat-related PTSD, the clinical manifestations
include not only intrusive recurrent memories and hyper-
vigilance but also nonspecific symptoms, including insom-
nia, concentration difficulties, irritability, impaired decision-
making abilities, and memory problems. Moreover, overlap
of symptoms and the comorbidities of PTSD, TBI, depres-
sion, and their sequelae (e.g., sleep deprivation, drug or
alcohol abuse) make assessment, diagnosis, and manage-
ment of these patients very difficult. As in the case of TBI,
objective and specific biological or anatomical markers
would be invaluable in the diagnosis of PTSD. Neuroimag-
ing assays could also aid in the monitoring and evaluation of
treatment approaches. In addition, these data may also pro-
vide information on brain vulnerability to subsequent injury
and help establish guidelines for safe return to duty.

Brain imaging offers an important class of biomarkers
because of its ability to obtain structural, functional, and
metabolic information concerning the brain with various
X-ray CT, magnetic resonance (MR) imaging (MRI), and
positron emission tomography (PET) scanning techniques.
CT remains an extremely valuable and the most commonly
utilized imaging modality. It is very sensitive to fractures
of the skull and facial bones and can rapidly assess the pos-
sible need for urgent neurosurgical interventions, such as
evacuation of hematomas [4]. MRI has exquisite soft-
tissue contrast and also can measure function and metabo-
lism. Various PET scanning techniques can measure brain
function and amyloid deposition.

This article reviews the application of various imaging
techniques to the clinical problems of TBI and PTSD. For
TBI, we focus on findings and advances in neuroimaging
that hold promise for better detection, characterization, and
monitoring of objective brain changes in symptomatic
patients with combat-related, closed-head brain injuries
not readily apparent by standard CT or conventional MRI
techniques.

OVERVIEW: NEUROIMAGING IN TRAUMATIC 

BRAIN INJURY

Advanced neuroimaging techniques are finding
increased use in the study of TBI. Whereas CT and standard
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MRI structural images can readily demonstrate large focal

contusions or bleeds, diffuse axonal injury may be detected
indirectly by brain volume loss (volumetric analysis) or dif-

fusion tensor imaging (DTI). DTI studies have shown

reductions in fractional anisotropy (FA) at sites of traumatic
axonal shearing injury, corresponding to a loss of micro-

structural fiber integrity, resulting in the reduced direction-
ality of microscopic water motion [5–6]. More recently, an

increasing number of DTI studies in TBI have been emerg-

ing [5–33], a few of which also indicate correlations
between DTI findings and neurocognition [10,32,34]. Sev-

eral studies have confirmed the potential of single-voxel

proton MR spectroscopy (1H-MRS or MRS) for the detec-
tion of neuronal injury following TBI [35–44]. One com-

mon finding includes altered metabolite concentrations

in regions that appear normal on structural MR images,
suggesting widespread and diffuse tissue damage. In par-

ticular, studies using single-voxel techniques have shown
a significant correlation between unfavorable clinical

outcome and reduced N-acetylaspartate (NAA), a marker of

neuronal integrity [40,45–47], and increased choline (Cho)
[45,47–48]. Proton MR spectroscopic imaging (MRSI) is a

technique similar to MRS, except instead of acquiring data

from a single region or voxel, spectroscopic information is
collected from multiple voxels during the same imaging

acquisition. MRSI, like MRS, has been found useful in the
detection of metabolic abnormalities that predict outcome

[36]. In addition, a few investigators have studied relation-

ships between metabolic and neurocognitive effects with
the use of MRS [49–50] and MRSI [42]. Susceptibility-

weighted imaging (SWI) has been applied on a clinical

1.5 T MRI scanner in several studies of pediatric TBI
[41,51–53]. These studies demonstrated that SWI allows

detection of hemorrhagic lesions in children with TBI with

significantly higher sensitivity than conventional gradient-
echo MRI [52]. The number and volume of hemorrhagic

lesions correlated with the Glasgow Coma Scale score [54]
as well as with other clinical measures of TBI severity and

with outcome at 6 to 12 months postinjury [53]. Significant

differences were detected between children with normal
outcome or mild disability and children with moderate or

severe disability when regional injury was compared with

clinical variables [53]. In addition, negative correlations
between lesion number and volume with measures of neu-

ropsychological functioning at 1 to 4 years postinjury were

demonstrated [41]. Studies using functional MRI (fMRI) in
patients with TBI show abnormal patterns of brain activa-

tion in patients compared with healthy control subjects [55–
73]. While dynamic contrast-enhanced perfusion-weighted

MRI (PW-MRI) has shown that regions of both normal-
appearing and contused brain may have an abnormal

regional cerebral blood volume (rCBV) and that alterations
in rCBV may play a role in determining the clinical outcome
of patients [74], to our knowledge, no studies using arterial
spin labeling PW-MRI in TBI have been published to date.

PET studies in TBI demonstrate that early reductions in
cerebral perfusion can result in cerebral ischemia that is
associated with poor outcome [75–82]. Finally, a potential
new avenue of research in TBI involves imaging amyloid

plaque depositions in TBI, particularly using Pittsburgh
Compound B (PIB). Currently, no published studies have
employed imaging with PIB in combat-related TBI.

OVERVIEW: NEUROIMAGING IN 

POSTTRAUMATIC STRESS DISORDER

Brain imaging studies in PTSD have implicated a cir-

cuit of brain regions, including the hippocampus, prefron-

tal cortex (including anterior cingulate), and amygdala, in

the symptoms of PTSD.

Numerous studies used structural MRI to show smaller

volume of the hippocampus and/or used MRS to show

reduced NAA in the hippocampus, a brain area that medi-

ates verbal declarative memory [83–100]. However, some

studies of adults did not show smaller hippocampal volume

to be specific to PTSD [101–103] and studies in children

have not found smaller hippocampal volume to be associ-

ated with PTSD [104–106]. Results are mixed regarding

whether new onset or recent PTSD is associated with

smaller hippocampal volumes [107–109]. Two meta-

analyses pooled data from all the published studies and

found smaller hippocampal volume for both the left and

right sides equally in adult men and women with chronic

PTSD and no change in children [110–111]. Interestingly,

paroxetine, a selective serotonin reuptake inhibitor, appears

to effectively improve short-term memory deficits and pos-

sibly reverse hippocampal atrophy [112]. These data suggest

that PTSD is associated with deficits in verbal declarative

memory and with smaller hippocampal volume.

Multiple studies have shown smaller volume of the

anterior cingulate in PTSD [113–118]. A recent twin study

of combat-related PTSD suggests that atrophic changes in

the pregenual anterior cingulate cortex (ACC) and both

insula may represent (or at least be contributed to by) an

acquired stress-induced loss rather than a preexisting con-

dition [115]. In contrast, the authors concluded that the
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reduced hippocampal volume found in these subjects rep-

resented a pretrauma vulnerability factor and was not

related to stress-induced losses [90].

Regarding functional neuroimaging data of PTSD,

exposure to traumatic reminders in the form of traumatic

slides and/or sounds or traumatic scripts is associated with

increased PTSD symptoms and decreased blood flow and/

or failure of activation in the medial prefrontal cortex/ante-

rior cingulate, including Brodmann (area 25) or the subcal-

losal gyrus (areas 32 and 24), as measured with PET or

fMRI [93,119–126]. Other findings in studies of traumatic-

reminder exposure include decreased function in the hip-

pocampus [119], visual association cortex [119,125], pari-

etal cortex, and inferior frontal gyrus [119,124–125,127]

and increased function in the amygdala [127–128], poste-

rior cingulate [119,121–122,125], and parahippocampal

gyrus [119,121,123]. Several studies have shown that

PTSD patients have deficits in hippocampal activation

while performing a verbal declarative memory task [88,93]

or a virtual water-maze task [129]. Other studies found

increased posterior cingulate and parahippocampal gyrus

activation and decreased medial prefrontal and dorsolateral

prefrontal activation during an emotional Stroop paradigm

[130] and increased amygdala function with exposure to

masked fearful faces [131] or during classical fear condi-

tioning, with decreased medial prefrontal function with

extinction in PTSD [132]. Retrieval of words with emo-

tional valence [133] or emotional Stroop tasks [134] were

associated with decreased medial prefrontal function. The

findings point to a network of related regions mediating

symptoms of PTSD, including the medial prefrontal cortex,

anterior cingulate, hippocampus, and amygdala [135].

Neuroreceptor studies are consistent with prefrontal

dysfunction in PTSD. Bremner et al. used single photon

emission CT (SPECT) and the benzodiazepine receptor

ligand [123I] iomazenil and found decreased prefrontal

cortical binding in Vietnam combat veterans with PTSD

[136]. Another study by Fujita et al. in First Gulf War veter-

ans with PTSD showed no difference in binding with

SPECT [123I] iomazenil from controls [137], although this

study did show a significant negative correlation between

binding in the right superior temporal gyrus and severity of

childhood trauma in PTSD patients. In this study, the sub-

jects also had less severe PTSD than those included in the

study by Bremner and colleagues.

In summary, these studies are consistent with dysfunc-

tion of the prefrontal cortex, hippocampus, and amygdala

in PTSD.

IMAGING MODALITIES

The following sections will discuss applications of

advanced neuroimaging modalities to TBI and PTSD.

The primary focus will be on advanced MRI techniques

(Table).

Diffusion Magnetic Resonance Imaging

The ability to visualize anatomical connections between

different parts of the brain, noninvasively and on an individ-

ual basis, has opened a new era in the field of functional

neuroimaging. This major breakthrough for neuroscience

and related clinical fields has developed over the past

10 years through the advance of “diffusion magnetic reso-

nance imaging” or D-MRI. D-MRI produces MRI quanti-

tative maps of microscopic, natural displacements of

water molecules that occur in brain tissues as part of the

physical diffusion process. Water molecules are thus used

as a probe that can reveal microscopic details about tissue

architecture, either normal or diseased.

Concept of Molecular Diffusion

Molecular diffusion refers to the random translational

motion of molecules (also called Brownian motion) that

results from the thermal energy carried by these mole-

cules. Molecules travel randomly in space over a distance

that is statistically well described by a “diffusion coeffi-

cient.” This coefficient depends only on the size (mass) of

the molecules, the temperature, and the nature (viscosity)

of the medium.

D-MRI is, thus, deeply rooted in the concept that dur-

ing their diffusion-driven displacements, molecules probe

tissue structure at a microscopic scale well beyond the

usual millimeter image resolution. During typical diffu-

sion times of about 50 to 100 ms, water molecules move

in brain tissues on average over distances around 1 to

15 m, bouncing, crossing, or interacting with many tissue

components, such as cell membranes, fibers, or macro-

molecules. Because of the tortuous movement of water

molecules around those obstacles, the actual diffusion dis-

tance is reduced compared with free water. Hence, the

noninvasive observation of the water diffusion-driven dis-

placement distributions in vivo provides unique clues to

the fine structural features and geometric organization of

neural tissues and to changes in those features with physi-

ological or pathological states.
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Imaging Diffusion with Magnetic Resonance Imaging: 

Principles

While early water diffusion measurements were made

in biological tissues with the use of Nuclear Magnetic

Resonance in the 1960s and 1970s, it was not until the

mid-1980s that the basic principles of D-MRI were laid

out [138–140]; see, for instance, Le Bihan [141] for a

review. MRI signals can be made sensitive to diffusion

through the use of a pair of sharp magnetic field gradient

pulses, the duration and separation of which can be

adjusted. The result is a signal (echo) attenuation that is

precisely and quantitatively linked to the amplitude of the

molecular displacement distribution: fast diffusion results

in a large distribution and a large signal attenuation, while

slow diffusion results in a small distribution and a small

signal attenuation. Of course, the effect also depends on

the intensity of the magnetic field gradient pulses.

In practice, any MRI imaging technique can be sensi-

tized to diffusion by the insertion of the adequate magnetic

field gradient pulses [142]. By acquiring data with various

gradient pulse amplitudes, one gets images with different

degrees of diffusion sensitivity (Figure 1). Contrast in

these images depends not only on diffusion but also on

other MRI parameters, such as the water relaxation times.

Hence, these images are often numerically combined to

determine, with use of a global diffusion model, an esti-

mate of the diffusion coefficient in each image location.

The resulting images are maps of the diffusion process and

can be visualized with a quantitative scale.

Because the overall signal observed in a “diffusion”

MRI image voxel, at a millimetric resolution, results from

the statistical integration of all the microscopic displace-

ment distributions of the water molecules present in this

voxel, Le Bihan et al. suggested portraying the complex

diffusion processes that occur in a biological tissue on a

voxel scale by using a global statistical parameter, the

Apparent Diffusion Coefficient (ADC) [143]. The ADC

concept has been largely used since then in the literature.

The ADC now depends not only on the actual diffusion

coefficients of the water molecular populations in the

voxel but also on experimental technical parameters, such

as the voxel size and the diffusion time.

Although the first diffusion images of the brain were

obtained in the mid-1980s in normal subjects and in

patients [143], D-MRI did not really take off until the

mid-1990s. Initially, the specifications of the clinical MRI

scanners made obtaining reliable diffusion images diffi-

cult because acquisition times were long (10 to 20 min-

utes) and the large gradient pulses required for diffusion

also made the images very sensitive to macroscopic

motion artifacts, such as those induced by head motion,

breathing, or even cardiac-related brain pulsation [144].

Therefore, although D-MRI was shown to be potentially

Table.

Magnetic resonance imaging (MRI) neuroimaging techniques.

Technique What It Measures Applications

BOLD fMRI Indirect measure of blood flow, BOLD signal changes 

originate in venules. BOLD fMRI takes advantage of 

susceptibility differences between oxygenated and 

deoxygenated blood.

Evaluate regional brain activity related to particular 

cognitive tasks or sensory/motor stimulation. Evaluate 

brain networks related to cognitive states. Evaluate 

brain “resting state” or “default” networks.

PW-MRI Direct measure of blood flow, allows quantification of 

blood perfusion.

Assess brain perfusion or resting cerebral blood flow. 

Evaluate brain function in manner similar to fMRI.

DTI Indirectly measures diffusion of water molecules. 

Mean diffusion, diffusion direction, and anisotropy 

white matter tracts.

Use diffusion anisotropy measures as marker of 

disease. Improved visualization of edema. Evaluate 

structural “connectivity” between brain regions.

MRS Proton (1H) MRI spectra typically contain signals 

from the metabolites N-acetylaspartate, creatine, 

choline, glutamate/glutamine, and myo-inositol.

Evaluate changes in brain metabolites related to 

myelination, neuronal density, edema, etc.

SWI MRI sequences that are especially sensitive to changes 

in magnetic susceptibility, in particular blood.

Improved detection of hemorrhages. Improved imaging 

of blood vessels.

BOLD = blood oxygen level dependent, DTI = diffusion tensor imaging, fMRI = functional MRI, MRS = magnetic resonance spectroscopy, PW-MRI = perfusion

weighted MRI, SWI = susceptibility-weighted imaging.
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useful in the clinic, demonstrative clinical studies started

only later, when better MRI scanners equipped with

echo-planar imaging (EPI) became available. Exploiting

gradient hardware EPI makes it possible to collect a

whole-brain image in a single “shot” lasting a few tens of

milliseconds and images of the whole brain in less than a

second, virtually freezing macroscopic motion.

Diffusion Tensor Magnetic Resonance Imaging

Diffusion is truly a three-dimensional process; there-

fore, water molecular mobility in tissues is not necessarily

the same in all directions. This diffusion anisotropy may

result from obstacles that limit molecular movement in

some directions. It was not until the advent of D-MRI that

anisotropy was detected for the first time in vivo, at the

end of the 1980s, in spinal cord and brain white matter

[145–146]. Diffusion anisotropy in white matter grossly

originates from its specific organization in bundles of more

or less myelinated axonal fibers running in parallel: diffu-

sion in the direction of the fibers (whatever the species or

the fiber type) is about three to six times faster than in the

perpendicular direction. However, the relative contribu-

tions of the intra-axonal and extracellular spaces, as well as

the presence of the myelin sheath, to the ADC and the

exact mechanism for the anisotropy are still not completely

understood and remain the object of active research (see,

for instance, Beaulieu [147] for a review). It quickly

became apparent, however, that this anisotropy effect

could be exploited to map out the orientation in space of

the white matter tracts in the brain, assuming that the

direction of the fastest diffusion would indicate the overall

orientation of the fibers [148]. The work on diffusion

anisotropy really took off with the introduction into the

field of D-MRI of the more rigorous formalism of the dif-

fusion tensor by Basser et al. [149–150]. With DTI, diffu-

sion is no longer described by a single diffusion coefficient

but by an array of nine coefficients that fully characterize

how diffusion in space varies according to direction (see,

for instance, Le Bihan and Van Zijl [151] for a review on

DTI). Hence, diffusion anisotropy effects can be fully

extracted and exploited, providing even more exquisite

details on tissue microstructure.

DTI data are often summarized in three ways to provide

information on tissue microstructure and architecture for

each voxel [141,152]: (1) the mean diffusivity or ADC char-

acterizes the overall mean-squared displacement of mole-

cules and the overall presence of obstacles to diffusion,

(2) the degree of anisotropy describes how much molecu-

lar displacements vary in space and is related to the pres-

ence and coherence of oriented structures, and (3) the

main direction of diffusivities is linked to the orientation

in space of the structures. For instance, in stroke, the

average diffusion and the diffusion anisotropy in white

matter had different time courses, potentially enhancing

the use of D-MRI for the accurate diagnosis and progno-

sis of stroke [153]. The diffusion along the main direction

of diffusion is often termed axial diffusion, whereas

radial diffusion is the diffusion along directions perpen-

dicular to the main direction. Early studies with mice

have indicated that changes in radial diffusion may be

more specific to myelination than are changes in axial

diffusion or other measures of anisotropy [154].

Diffusion Anisotropy in White Matter: Toward Brain 

Connectivity

Studies of neuronal connectivity are important in order
to interpret fMRI data and establish the networks underly-
ing cognitive processes. Basic DTI provides a means to
determine the overall orientation of white matter bundles in
each voxel, assuming that only one direction is present or

Figure 1.

Diffusion-weighting. In practice, different degrees of diffusion-

weighted images can be obtained by varying the weighting factor,

which is carried out by varying time and strength of gradient pulses

(represented by orange triangle). (a) The larger the weighting factor,

the more the signal intensity (SI) becomes attenuated in image. This

attenuation, though, is modulated by the diffusion coefficient: signal

in structures with fast diffusion (e.g., water-filled ventricular cavities)

decays very fast with the weighting factor, while signal in tissues with

low diffusion (e.g., gray and white matter) decreases more slowly. By

fitting signal decay as a function of weighting factor, one obtains the

Apparent Diffusion Coefficient (ADC) for each elementary volume

(voxel) of image. (b) Calculated diffusion images (ADC maps),

depending solely on diffusion coefficient, can then be generated and

displayed using gray (or color) scale: high diffusion, as in ventricular

cavities, appears bright, while low diffusion appears dark.
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predominant in each voxel and that diffusivity is the high-
est along this direction. Three-dimensional vector field
maps representing fiber orientation in each voxel can then
be obtained back from the image data through the diago-
nalization (a mathematical operation that provides orthogo-
nal directions coinciding with the main diffusion
directions) of the diffusion tensor determined in each
voxel. A second step after this “inverse problem” is solved
consists in “connecting” subsequent voxels on the basis of
their respective fiber orientation to infer some continuity in
the fibers (Figure 2). Several algorithms have been pro-
posed (see Mori [155] and van Zijl and Jones [156] for
reviews). Line propagation algorithms reconstruct tracts
from voxel to voxel from a seed point [157–158]. Another
approach is based on regional energy minimization (mini-
mal bending) to select the most likely trajectory among
several possible [159]. Finally, a promising approach is
probabilistic tracking using Bayesian [160] or bootstrap-
ping [161] methodologies. In any case, one has to keep in
mind that at this stage only white matter bundles made of

somewhat large numbers of axons are visible (and not
intracortical connections). The application of tractography
to PTSD and TBI studies is an area for future research.
While tractography yields very nice pictures, how this
technology will be best applied to research is still unclear.
A possibility would be the use of probabilistic tractography
to determine whether a reduction or break occurs in the
anatomical connectivity between two regions, or nodes, of
a functional network. These nodes are normally chosen
either a priori or empirically from fMRI results. This is an
area in which the combination of DTI and fMRI could be
particularly useful in both PTSD and TBI [162–163].

Clinical Applications

In white matter, any change in tissue orientation pat-
terns inside the MRI voxel would probably result in a
change in the degree of anisotropy. A growing literature
body supports this assumption: many clinical studies of
patients with white matter diseases have shown the exquis-
ite sensitivity of DTI to detect abnormalities at an early

Figure 2.

Imaging the hippocampal subfields. (a) High-resolution magnetic resolution imaging. (b) Histological section. (c) Manual marking. CA = cornu

ammonis, Sub = subiculum.
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stage or to characterize them in terms of white matter fiber
integrity (e.g., multiple sclerosis [164]). Further DTI analy-
sis using other indexes, such as the trace of the diffusion
tensor, which reflects overall water content, and anisotropy
indexes, which point toward myelin fiber integrity, can be
useful. Clinical examples include multiple sclerosis [165–
168], leukoencephalopathies [169–170], Wallerian degener-
ation, HIV-1 (Human immunodeficiency virus 1) infection
[171], Alzheimer disease (AD) [172–173], or CADASIL
(cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy) [174] (see Horsfield and
Jones [175] for a review).

However, D-MRI could also unravel more subtle
functional disorders that do not necessarily translate into
macroanatomical anomalies. For instance, anisotropy
measurements may highlight subtle anomalies in the
microorganization of white matter tracts otherwise not
visible with plain anatomical MRI. The potential is enor-
mous for patients with functional symptoms linked to
disconnectivity, for instance, in patients with psychiatric
disorders (see Lim and Helpern [176] for a review), TBI,
or potentially PTSD.

Hence, water diffusion patterns within and between

white matter tissue are highly sensitive to microstructural

abnormalities/pathologies. However, it is important to

emphasize that DTI abnormalities are not specific and

may reflect a host of conditions, including demyelination,

axonal pathology/loss, gliosis, inflammation, or edema.

Diffusion Tensor Imaging in Mild Traumatic Brain 

Injury. Several studies have investigated DTI abnormali-

ties in patients with mild TBI [5,20–22,31,33,177–178].

Arfanakis et al. studied five patients within 24 hours of

injury, and two of these patients were also studied 1 month

later [5]. Five white matter regions of interest (ROIs) were

analyzed bilaterally in patients, and comparisons between

hemispheres as well as with a control group were per-

formed. Some patients’ ROIs had reduced FA values at the

anterior corpus callosum and anterior internal capsule

(with normal conventional MRI) compared with controls.

Further, two subjects had “normalized” FA values in some

ROIs 1 month later. However, no clinical correlative data

were reported.

Bazarian et al. studied six patients with mild TBI and

six orthopedic controls within 72 hours of injury by using

both a whole-brain and an ROI approach [177]. In the

whole-brain analysis, the first percentile (histogram)

showed significantly lower trace values (or ADC) in mild

TBI patients. Further, these trace values correlated with

symptoms consistent with postconcussion syndrome

(PCS) in patients with mild TBI, although the symptoms

were not significantly greater than those in the control

group. Except for impulse control, psychometric tests

(verbal and visual memory, visual motor speed, reaction

time) did not significantly differ between the mild TBI

group and the controls. However, ROIs showed mild TBI

subjects to have significantly lower mean trace in the left

anterior internal capsule and higher maximum ROI-

specific median FA values in the posterior corpus callo-

sum. These FA values correlated with the 72-hour PCS

score and two neurobehavioral tests (visual motor speed

and impulse control). The authors speculated that the data

represented axonal swelling.

Wilde et al. studied 10 adolescents with mild TBI

within 1 week of MRI scanning [178]. They calculated

average FA, ADC, and radial diffusivity within the corpus

callosum. When compared with that of 10 healthy, age-

matched control subjects, the FA for the mild TBI sub-

jects was significantly increased while the ADC and

radial diffusivity were significantly decreased. In addi-

tion, the FA values correlated with postconcussion symp-

toms and emotional distress. The authors argued, similar

to Bazarian et al., that the increased FA and decreased

ADC were likely due to edema that occurs during the

acute stage of TBI.

Miles et al. also studied adult patients with mild TBI

in the acute stage [33]. These authors compared DTI data

from nondisabled control subjects with that of 17 mild

TBI patients who were on average 4 days postinjury.

They calculated FA and ADC summary values by aver-

aging FA and ADC for voxels over multiple ROIs: cen-

trum semiovale, the genu and splenium of the corpus

callosum, and the posterior limb of the internal capsule.

This group found significantly higher ADC and lower FA

values for the mild TBI group.

More studies are necessary to reconcile the findings

of Miles et al. and Arfanakis et al. to those of Wilde et al.

and Bazarian et al. Time since injury, age (adolescent vs

adult patient), ROI selection, and other factors may influ-

ence these discrepancies in the FA/ADC changes in acute

mild TBI.

While the previous studies mentioned here studied

patients with mild TBI in the acute stage, Rutgers et al.

divided 24 mild TBI subjects into two groups: 12 subjects

less than 3 months postinjury and 12 subjects more than

3 months postinjury [22]. The authors calculated the aver-

age FA and ADC within three regions of the corpus callo-

sum: genu, body, and splenium. When compared with
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10 control subjects, mild TBI subjects who were less than

3 months from injury showed significantly increased ADC

and decreased FA within the genu ROI. However, the mild

TBI subjects imaged more than 3 months after their injury

did not show any significant differences in FA or ADC

compared with the control group.

In studies focused more on chronic subjects, Kraus et al.

studied 55 patients with chronic TBI (more than 6 months

postinjury), 20 of whom had mild TBI (average 92 months

postinjury) [31]. The authors acquired DTI data and evalu-

ated 3 estimates of anisotropy (FA, axial and radial diffusiv-

ity) from 13 ROIs and also estimated total white matter load

(total number of regions with decreased FA). A battery of

more than 20 neuropsychological tests was also adminis-

tered. For the mild TBI group, performance was impaired

compared with controls in only the Conner’s continuous

performance test and did not differ from the controls in

the domains of attention, memory, or overall executive

function. Decreased FA was found in the corticospinal

tract, sagittal stratum, and superior longitudinal fascicu-

lus for the mild TBI group (with no clinical correlate).

Lipton et al. studied DTI data from 17 mild TBI

patients with cognitive impairment who were at least

8 months postinjury [20]. The authors used voxelwise mor-

phometry analyses and whole-brain histograms to compare

FA and ADC between the mild TBI subjects and 10 healthy

control subjects. The histograms showed an overall down-

ward shift in FA for the mild TBI patients, and the voxel-

wise analyses revealed significantly reduced FA for the

mild TBI patients in the corpus callosum and internal cap-

sule (bilaterally). The areas showing decreased FA also

showed significantly increased ADC.

Chappell and colleagues reported widespread FA

reductions and ADC increases in professional boxers,

mainly in white matter, despite negative conventional MRI

scans [179]. Abnormalities were seen in the internal cap-

sule, medial temporal lobes, inferior fronto-occipital fas-

ciculus, inferior longitudinal fasciculus, and midbrain and

are interpreted to represent injury from chronic blows to

the head. No neuropsychometric testing or report of

“major trauma to the head” (undefined) was described.

A recent combined imaging-neuropsychometric study

of patients with chronic mild TBI performed jointly

between Weill Cornell Medical College and the University

of California, San Francisco (UCSF) examined the spatial

extent of microstructural white matter injury and its rela-

tionship with global cognitive processing speed [9]. All

subjects had a Modified Glasgow Coma Scale score of 13

to 15 at the time of original assessment postinjury, a his-

tory of loss of consciousness shorter than 30 minutes, and

posttraumatic amnesia. All had at least one postconcussion

symptom persisting at least 1 month (range 1–65 months)

at the time of imaging and cognitive assessment for the

study. Subjects were excluded if they had a history of prior

TBI, drug/alcohol abuse, or other preexisting neurological

or psychiatric conditions. A white matter tract in a TBI

patient was considered “damaged” if DTI demonstrated an

FA value more than 2.5 standard deviations below the

mean FA of that tract in a group of normal volunteers. The

measure of cognitive processing speed was reaction time

(RT) in the Attention Network Task (ANT) [180], which

involves pressing a button to indicate the direction of an

arrow flashed on a computer monitor. A robust and statisti-

cally significant correlation was found between increasing

number of white matter tracts with microstructural injury

and poorer RT (r = 0.49, p = 0.012). In contradistinction,

the number of traumatic microhemorrhages detected by

T2*-weighted gradient echo imaging at 3 T did not corre-

late with RT (r = –0.08; p = 0.701). These results demon-

strate that, in chronic mild TBI, increasing spatial extent of

regional white matter injury on DTI is associated with

slower cognitive processing speed, whereas the number

of focal hemorrhagic shearing lesions on conventional 3 T

MRI is not.

The two most frequently damaged white matter tracts

in this cohort of mild TBI patient were the anterior

corona radiata (ACR) and the uncinate fasciculus (UF).

This finding was not surprising, since the two most com-

mon cognitive symptoms in PCS, in addition to slowed

overall processing speed, are impairments in attention

and memory [181]. The ACR contains fibers that connect

the anterior cingulate with the prefrontal cortex and

therefore plays a critical role in attentional processes. The

UF connects temporal lobe structures with prefrontal cor-

tex and is vital to working memory.

The relationship of these two tracts to attention and

memory was examined for 43 chronic mild TBI patients in

a follow-up 3 T DTI study performed jointly at Cornell

and UCSF [34]. Attentional performance was gauged with

the conflict measure of the ANT [180], which measures

the difference in RT between congruent and incongruent

trials requiring the subject to determine the direction of an

arrow flashed on a computer monitor in the presence of

flanking arrows. Verbal memory was assessed with the

long-delay free recall (LDFR) subtest of the California

Verbal Learning Test, 2nd Edition, which requires the
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subject to recall a list of 16 words after a delay of 20 min-

utes after presentation. FA of the UF in both hemispheres

correlated significantly with memory performance on the

LDFR in mild TBI subjects. The bilateral average ACR FA

correlated significantly with attentional control, as meas-

ured by the conflict score on the ANT. A closer examina-

tion of the contributions of each hemisphere showed that

the left ACR FA was the primary contributor to this rela-

tionship. These results show that in mild TBI, lower FA of

the UF is related to poorer verbal memory performance

and lower FA of the ACR is related to poorer attentional

control. These findings form a double dissociation,

because FA of the UF did not correlate with attentional

control, nor did FA of the ACR correlate with verbal mem-

ory. These results show that DTI is sensitive to microstruc-

tural white matter injury in chronic mild TBI that

correlates with functional disability. The spatial extent of

axonal injury is associated with impairments in global cog-

nitive processing, whereas damage to specific white matter

tracts can account for deficits in specific cognitive

domains, such as memory and attention.

Larger-scale longitudinal investigations are needed to

determine whether DTI in the acute phase of TBI can pre-

dict long-term functional outcomes, which would repre-

sent a first step toward validation of this methodology as

a biomarker for TBI for use in applications such as

assessment of neuroplasticity during recovery and moni-

toring of the efficacy of therapeutic interventions and

rehabilitation.

Early studies support the notion that DTI combined

with behavioral assessments may indeed provide useful

prognostic information. Sidaros et al. reported in a longi-

tudinal study of 30 patients with severe TBI studied

acutely and after 1 year (n = 23) that FA in the cerebral

peduncle correlated with Glasgow Outcome Scale scores

at 1 year (r = 0.60, p < 0.001). Moreover, favorable

dichotomized outcomes at 1 year were accurately pre-

dicted when FA was used in combination with clinical

evaluation at the time of the first scan [27] (but see Bend-

lin et al. [19]).

Hence, it is important to underscore that the underly-
ing processes mediating DTI disturbances may vary in
the acute and chronic states, and prognostic information
might be gleaned from these data.

Diffusion Tensor Imaging in Posttraumatic Stress 

Disorder. In recent years, DTI has shown promise in
PTSD applications. Two studies used morphometry to
compare FA values between PTSD and healthy control

subjects on a voxelwise basis [182–183]. Abe et al. com-
pared 25 subjects who were victims of the Tokyo subway
sarin attack, 9 of whom were diagnosed with PTSD [182].
These authors found increased FA in the left anterior cin-
gulum with the morphometry analysis and followed this
analysis with a post hoc ROI analysis of the FA values in
the anterior cingulum. The ROI analysis confirmed the sig-
nificant increase in FA, providing support that the increase
in FA was not an artifact created by misalignment or
excessive smoothing in the morphometry procedures. Kim
et al. compared 20 survivors of a subway fire who devel-
oped PTSD with 20 healthy control subjects [183]. These
authors reported a decrease in FA in the left anterior cingu-
late of the PTSD subjects. Further, a correlation analysis
within the PTSD subjects revealed that both lifetime and
current-experience scores of the Clinician-Administered
PTSD Scale (CAPS) were negatively correlated with FA
values in the anterior cingulate white matter.

Jackowski et al. used DTI to investigate possible
changes in myelination or white matter coherence in the
corpus callosum in maltreated children with PTSD as
compared with healthy children [184]. These authors
used an ROI analysis and divided the corpus callosum
into seven regions: rostrum, genu, rostral body, anterior
midbody, posterior midbody, isthmus, and splenium. The
ROI analysis revealed significant reductions in FA within
the anterior and posterior midbody regions of the mal-
treated PTSD group. However, since the control group
was comprised of healthy children as opposed to mal-
treated children without a PTSD diagnosis, the differ-
ences could be attributed to either PTSD or maltreatment.
These early DTI studies show promise for the further
characterization of PTSD-related brain abnormalities.

BRAIN VOLUMETRICS

By differentiating tissues on their MRI signal intensi-
ties, compartment segmentation algorithms in combination
with either voxel-based measures or ROI analyses can
indirectly measure local volume loss.

Detection and quantification of loss of both white and
gray matter have been demonstrated in TBI through MRI
volumetric analyses [19,185–191]. Both whole-brain vol-
ume and regional volume decreases have been demon-
strated and appear to correlate with clinical injury severity
(e.g., Levine et al. [185]). However, longitudinal changes
may not necessarily correlate with behavioral/cognitive
measures [19]. Advances in volumetric methodology in
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combination with other modalities will, nonetheless, likely
provide new insights into structural-functional relations in
both TBI and PTSD (see below).

Many studies have investigated volumetric differ-
ences between PTSD and control subjects in whole-brain
[192–193], amygdala [194], corpus callosum [192,195],
insula [115], anterior cingulate [113–118], and hippoc-
ampal [87,92,118,133,194] analyses.

Volumetric Analyses of Hippocampus

The fact that the hippocampus is involved in learning
and memory—processes requiring a high degree of neu-
ronal plasticity—and is capable of life-long neurogenesis,
renders it particularly vulnerable to all types of insults. As
a consequence, hippocampal atrophy is found in different
diseases such as AD, epilepsy, schizophrenia, and
hypothyroidism, as well as in PTSD and chronic TBI, even
in cases in which the primary impact site was remote from
the hippocampus. The hippocampus, however, is not a
homogeneous structure but consists of several histologi-
cally and functionally distinct but tightly interconnected
subfields: the subiculum with the subdivisions presubicu-
lum, parasubiculum, and subiculum proper; the four cornu
ammonis sectors (CA1–4); and the dentate gyrus (DG)
[196]. Animal studies have shown that different disease
processes affect these subfields differently; e.g., AD is
associated with a prominent neuronal cell loss in CA1,
whereas temporal lobe epilepsy is typically characterized
by cell loss in the DG. Evidence also exists that TBI and
PTSD affect certain subfields more than others. Acute
stress is associated with activation of the sympathetic-
adrenomedullary system and the hypothalamo-pituitary-
adrenal axis, resulting in increased levels of catechola-
mines and adrenal steroids that are restored to baseline
levels by a negative feedback mechanism once the stressor
has been removed. Evidence exists that this feedback is
pathologically enhanced in PTSD, which results in chroni-
cally lowered basal cortisol levels but increased sensitivity
of glucocorticoid receptors in target tissues [197]; one of
those is the hippocampus. Adrenal steroids play a crucial
role in the hippocampus, where they modulate short-term
functions (excitability, long-term potentiation, and depres-
sion) as well as long-term, delayed effects (neuronal plas-
ticity, neurogenesis) [198–199].

Animal models of chronic stress have shown that
adrenal steroids can adversely influence basal synaptic
excitability and neuronal plasticity in CA1, cause revers-
ible dendritic atrophy in CA3, and impair neurogenesis in
DG. Interestingly, TBI can lead to a similar pattern of

neuronal dysfunction/damage in the hippocampus as
PTSD. Animal studies have shown that TBI is associated
with hippocampal damage in CA3, DG, and, to a lesser
degree, CA1 [200] and that although the mechanisms
leading to hippocampal damage in TBI are complex, it is
partially mediated by posttraumatically increased adrenal
steroids and altered adrenocorticosteroid receptor proper-
ties in those subfields [201–202]. A review of the broader
distribution of injuries in a well-studied animal model of
TBI may be found in Thompson et al. [203].

In accordance with the findings in animal studies, MR
studies in chronic TBI have reported smaller total hippoc-
ampal volumes that were inversely associated with mem-
ory problems [204–206], although one study found that
the memory problems were related more to diffuse brain
injury than to hippocampal injury [207]. Similar findings
have been reported in PTSD, although not consistently so
[208]. Several reasons exist for this inconsistency in
PTSD, e.g., presence of comorbidity affecting hippoc-
ampal volume, different severity of PTSD, and time
since traumatic event. However, measurements of total
hippocampal volume may also not be sensitive enough to
detect subtle atrophic changes restricted to a relatively cir-
cumscribed region of the hippocampus (CA3 and DG)
and leaving the majority of the structure otherwise intact.
The same might be true for very mild cases of TBI. There-
fore, volumetric measurements of hippocampal subfields
might provide a better measure of the hippocampal
pathology in PTSD and mild TBI than volumetric measure-
ments of the whole hippocampus.

Measurement of Hippocampal Subfields with High 

Resolution Imaging at High Field

Measurements of hippocampal subfields require that
details of the internal structure of the hippocampal forma-
tion can be depicted in vivo. Recent advancements with
high field MRI (3–4 T), achieving increased gray/white
matter contrast because of the increased signal sensitivity
at high fields, additional magnetization transfer effects,
and T1 weighting, have resulted in excellent in vivo ana-
tomical images at submillimeter resolution that can be
acquired within a few minutes [209]. The manual marking
scheme depends on anatomical landmarks, particularly on
a hypointense line representing the leptomeningeal tissue in
the vestigial hippocampal sulcus, which can be reliably
visualized on these high-resolution images (cf. Figure 2).
For a detailed discussion on a marking procedure measur-
ing hippocampal subfields that provides good to excellent
inter- and intrarater reliability, refer to Mueller et. al [210].
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FUNCTIONAL MAGNETIC RESONANCE 

IMAGING

Advances in MRI methods make extension from imag-

ing of structure toward inferences about function possible.

fMRI studies typically measure signal changes due to

changes in blood flow or oxygenation while a person is per-

forming a task, making use of the link between blood oxy-

genation and neural activity to determine task-related

neural activity [211–212]. The signal changes in fMRI

related to blood oxygenation is referred to as blood oxygen

dependent level (BOLD) contrast. Experimental paradigms

for fMRI generally involve comparison of a baseline condi-

tion with two or more experimental conditions consisting of

specific cognitive tasks or sensory stimulation. These con-

ditions can occur during extended periods of time (e.g., 10–

60 s) in “blocked” design experiments or during very brief

periods of time (e.g., 1–2 s) in “event-related” design

experiments. Blocked-design experimental paradigms

allow for the BOLD signal to add up over time because

local neuronal firing constantly elevates during the experi-

mental block. The increase in BOLD signal yields a larger

effect size and higher detection rates than in event-related

designs, allowing for adequate detection rates for shorter

scan durations. This is important clinically because limiting

scan duration is often necessary for clinical populations.

Other methods that emphasize perfusion as opposed to

BOLD contrast are also being tested, e.g., Kim et al. [213].

fMRI techniques have been used extensively for inves-

tigating mechanisms of brain function in health and may be

useful for examining changes in brain function after injury

as well as changes that occur over recovery or as a result of

treatment interventions. However, the application of fMRI

to various clinical populations, such as TBI and PTSD, is

more complicated than fMRI experiments using healthy

populations, and many variables need to be considered,

such as hemodynamic changes due to injury, medications,

and increased movement artifacts with patients, when fMRI

studies are being designed and analyzed (see Hillary et al.,

D’Esposito et al., and Bartsch et al. [214–216]).

Thus far, most applications of fMRI to TBI and PTSD

patients have emphasized techniques for “mapping” brain

activations. These techniques have the advantage of allow-

ing exploratory analyses, such as comparing differences

between a patient group and a control group on a voxelwise

basis, asking the open-ended question of which regions

differ in activity. This inquiry may provide hypothesis-

generating information about sources of dysfunction with

TBI. Standard statistical parametric mapping approaches

are suited to this type of question. However, potential

confounders, such as changes in vasculature postinjury in

TBI, may affect across-group comparisons.

Longitudinal Studies

fMRI is noninvasive and does not require injection of

a radioisotope into the bloodstream; therefore, it is suitable

for repeated studies and potentially useful for investigating

the nature of longitudinal changes during recovery or with

treatment interventions, such as pharmacotherapy [217].

Within-subjects comparisons also make across-group con-

founders less of an issue.

Functional Magnetic Resonance Imaging Studies of 

Mild Traumatic Brain Injury

A handful of studies have utilized functional MRI

methods to examine functional activation patterns in

patients with TBI [57–58,61–62,218–219]. Because cogni-

tive dysfunction is of paramount concern with TBI, these

studies have primarily used tasks that challenge working

memory with conventional blocked-design fMRI tasks.

Results have been mixed. Chrisodoulou et al. found that

patients with severe TBI showed more widespread activa-

tion as a group on the Paced Auditory Serial Addition Task

[57]. McAllister and colleagues found that patients had

somewhat greater extent of activation with easier n-back

tasks but, unlike healthy controls, seemed not to activate

larger areas of cortex with increasing task load; this find-

ing was corroborated by Perlstein et al. [58,61–62]. The

specific interpretation of these studies is controversial but

overall may suggest that patients with even mild TBI

require larger areas of cortex to perform a given task, and

those with moderate-severe TBI may have difficulty

recruiting additional cortical resources when needed for

more difficult tasks.

An active area of fMRI research with mild TBI

comes from studies of athletes and sports-related concus-

sions (see review by Ptito et al. [219]). Lovell et al. stud-

ied 28 athletes with concussions who were evaluated

within approximately 1 week of injury and again after

clinical recovery [67]. They used an n-back (0-, 1-, and 2-

back) fMRI task along with a computer-based battery of

neurocognitive tests and subjective symptom scales. The

authors found that athletes who demonstrated hyperacti-

vation on fMRI scans at the time of their first fMRI scan

demonstrated a more prolonged clinical recovery than

athletes who did not demonstrate hyperactivation.
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Chen et al. used a working memory task (externally

ordered task) to study a group of 16 athletes with concus-

sions (15 symptomatic, 1 asymptomatic) and 8 matched

healthy control subjects [72]. The authors reported that

the activation pattern of the asymptomatic athlete was

similar to that of the healthy controls while the activation

patterns for the symptomatic athletes were abnormal in

one manner or another (differences were not consistent).

The authors also longitudinally followed one subject who

had multiple concussions and found that as the subject’s

symptoms improved, the subject’s ability to do the task

improved and fMRI activation in the dorsolateral pre-

frontal region increased (i.e., activation pattern became

normalized or similar to that of healthy control subjects).

Chen et al. later studied a group of 28 male athletes,

18 with concussion and 10 without [73]. The concussion

group was further divided into two subgroups, those with

mild concussions (PCS score 6–21) and those with mod-

erate concussions (PCS score >21). The moderate PCS

group showed significantly slower response times than

the control group on matching and 1-back behavioral

tasks, while the mild group did not show any significant

behavioral differences. However, both groups showed

reduced fMRI task-related activation within the dorsolat-

eral prefrontal regions. Also, the activation patterns for

both concussion groups were more dispersed compared

with the control group. The authors also reported a nega-

tive relationship between the PCS scores for the concus-

sion group and BOLD signal changes within prefrontal

regions. Further, the same authors have shown that the

differential activation within the dorsolateral prefrontal

regions can be affected by depression [220], which

underscores the complexity of fMRI research in TBI and

PTSD populations, because depression symptoms are

often associated with both groups.

Functional Magnetic Resonance Imaging Studies of 

Posttraumatic Stress Disorder

The majority of fMRI studies of PTSD use traumatic

stimuli or emotional pictures. The most common methods

for traumatic stimuli involve traumatic scripts [221–222] or

traumatic pictures [220–226]. Tasks involving emotional

stimuli normally use either fearful or emotional faces

[131,221–230]. However, more recently, researchers have

been using more cognitive tasks without an emotional com-

ponent, such as an auditor oddball task [231], visual work-

ing memory task [232], Stroop task [233], and Go No-Go

task [234–235]. Most of these studies showed differential

activation in at least one of the areas most often implicated

in PTSD: amygdala, anterior cingulate, and medial tempo-

ral lobe.

Functional Magnetic Resonance Imaging Studies of 

Mild Traumatic Brain Injury Recovery and 

Rehabilitation

Discovery of the dynamic brain mechanisms of recov-

ery and rehabilitation through neuroimaging is anticipated

to advance both the rationale and methods of brain injury

treatment in particular and learning and memory in general.

Many studies, some of which performed repeated imaging

during spontaneous recovery, have described fMRI patterns

of activation in patients with mild TBI [67,72,218]. MRI

studies of moderate-severe TBI have also been performed

[236–239]. However, we are aware of only a few groups

that have conducted fMRI neuroimaging investigations

during rehabilitation in TBI [71,240–250].

Strangman et al. studied 54 patients with chronic TBI

(>1 year postinjury, mean 11 years), 14 of whom had

mild TBI, and found that after 12 sessions of rehabilita-

tion focusing on internal strategies of improving memory,

severe versus mild baseline injury (p = 0.049) or extreme

abnormal activation (under- or overactivation) in the left

ventral lateral prefrontal cortex at baseline (p = 0.007)

predicted poorer responses to ~6 weeks of rehabilitative

training [241]. No posttraining fMRI acquisitions were

obtained to correlate with performance changes.

Kim et al. studied 17 subjects with moderate TBI (Glas-

gow Coma Scale 9–12) of variable duration (3–57 months,

mean 16 months), 10 of whom underwent cognitive training

for 4 weeks as well as pre- and post-fMRI imaging [71].

Improved performances in attentional tasks were accompa-

nied by attentional network changes, i.e., decreased frontal

lobe activity and increased activity in the anterior cingulate

and precuneus areas. Given the heterogeneity in duration

since injury (some less than 6 months postinjury), some

changes in activation patterns may have reflected spontane-

ous recovery.

Before and after 4 to 8 months of individualized cog-

nitive therapy, Laatsch et al. studied a case series of five

patients with mild TBI and suggested that changes in

activation for visual saccade and reading comprehension

tasks might be related to, or due to, training [239]. The

study suffered from many design and methodological

concerns, including that the subjects were dissimilar in

age, histories, duration and frequencies of brain injury

events, and MRI findings (e.g., frontal lobe atrophy in a
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20-year-old male). Further, this study lacked standard-

ized training, duration, and control subjects. Laatsch and

colleagues also used this testing paradigm in a case study

of severe TBI [239] and in a study of three other patients

with severe TBI [240] and reported “diffuse and variable

activation patterns” compared with qualitative imaging

stability between sessions for controls.

Functional Magnetic Resonance Imaging Studies of 

Posttraumatic Stress Disorder Rehabilitation

A few functional imaging studies have investigated

the effects of cognitive-behavior therapy (CBT) on

PTSD. Felmingham et al. studied eight patients with

PTSD before and after eight once-weekly sessions of

CBT with an fMRI paradigm consisting of neutral and

fearful faces [242]. The authors reported an increase in

fMRI activation in the rostral anterior cingulate cortex

(bilaterally) after therapy. A significant positive correla-

tion was also found between the changes in CAPS scores

and the right anterior cingulate activation as well as a

negative correlation between the CAPS scores and the

amygdala activation. However, although a significant

correlation existed between the CAPS scores and BOLD

response within the amygdala, there were no significant

activations compared with the fMRI baseline control

condition within the amygdala during the individual ses-

sions (before or after treatment).

The same authors performed a similar study in which

they compared fMRI activation before and after eight

once-weekly sessions of CBT in 14 subjects with PTSD

(8 with comorbid depression) [243]. In this study, the

authors altered the fMRI paradigm to increase the

amygdala activation. In their previous study, each stimu-

lus (blocks of fearful or neutral faces) was presented for

500 ms with an interstimulus interval of 768 ms [242]. In

the latter study, the stimuli were presented for 16.7 ms

with an interstimulus interval of 163.3 ms [243]. This

rapid presentation of stimuli had been shown previously

to activate the amygdala in PTSD patients [131,228]. The

short duration of the stimulus was just long enough for

unconscious processing of the stimulus but precluded

conscious awareness. With this paradigm, not only was

activation detected within the amygdala region, but the

amygdala activation was also much greater than that for a

group of healthy, nontrauma-exposed control subjects. In

addition, PTSD subjects who did not significantly

improve with therapy had significantly greater activation

in the bilateral amygdala and right ventral anterior cingu-

late regions before therapy than did those subjects who

did significantly improve with therapy (defined as at least

a 50% reduction in pretreatment scores). Also, a signifi-

cant positive correlation was found between posttreat-

ment CAPS scores and both amygdala (bilateral) and

ventral anterior cingulate activation. This study shows

the potential for using fMRI to help predict the efficacy

of certain therapies.

Functional Connectivity

Although most fMRI studies have focused on detec-

tion of regional brain activations, many cognitive func-

tions affected by TBI are understood to require interactions

across brain regions via the very white matter tracts that

are vulnerable to injury. Multivariate statistical methods

[244–246] or independent component analyses [247–249]

may be used to assess injury-related changes in the func-

tional connections across brain regions. Better characteriza-

tion and understanding of the effects of TBI (and/or PTSD)

on the coherence of these functional networks in both task

and resting states may also provide insights into recovery

and rehabilitation (see reviews by He et al. and Fox and

Raichle [250–251]).

MAGNETIC RESONANCE SPECTROSCOPIC 

IMAGING

MRSI methods represent a fusion of MRI and MRS.

While changes in contrast on clinical MRI images may

indicate a structural abnormality, signal alterations in the

MRS spectrum can give additional information about its

nature. In certain cases, such alterations can even appear in

regions that look normal on MRI images. Furthermore, as

a combination of MRI and MRS, MRSI holds great poten-

tial for providing such additional information for a larger

volume than is possible with MRS alone [252–253]. Most

MRSI applications employ a two-dimensional approach,

providing spectra from within one or multiple sections

through the structure of interest. Three-dimensional MRSI

methods allow coverage of larger volumes or an entire

organ [254–256]. Typically, spectra are obtained from a

regular array of subvolumes, which allows generation of

images from individual peaks. Besides TBI and PTSD

applications, other clinical applications of MRSI include

the study of tumors [257–259], neurodegenerative disor-

ders [260–262], neuropsychiatric diseases [263–265], epi-

lepsy [266–268], and substance use disorders [269–271].
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Magnetic Resonance Spectroscopy in Traumatic 

Brain Injury

Several metabolites are of interest as markers of
injury. NAA is believed to reflect neuronal and axonal
integrity [272]. Cho peaks reflect Cho-containing phos-
pholipid constituents of cell membranes, including myelin.
A heightened Cho peak may represent increased levels of
free Cho, which can be expected in membrane disruption
or turnover, as in inflammation, demyelination, and remy-
elination [273]. Pig models of TBI indicate that NAA/cre-
atine (Cr) is diminished by at least 20 percent in regions of
histologically confirmed axonal pathology in the face of
negative findings from conventional MRI [274–275].
These findings suggest that MRS may be highly sensitive
to microscopic pathology following diffuse brain injury.

Although MRS findings in moderate to severe TBI
suggest a correlation with neuropsychological and func-
tional outcomes (e.g., Brooks et al. [50]), such correlations
have not been reported for mild TBI. Garnett et al. found
that, compared with controls, Cho/Cr ratios of patients with
mild TBI (n = 6 or 8, depending on classification) were ele-
vated in frontal lobe white matter free of T1 or T2 lesions
but NAA levels were not significantly different from nor-
mal [276]. All patients were scanned within 18 days of
injury and no neuropsychometric testing was reported.
Three of these patients had a repeat study about 4 months
later [40], but no individual behavioral data or Cho/Cr data
points were specified. Son et al. reported that NAA levels
were reduced and lactate/Cr ratios were elevated at pericon-
tusional white matter about 1 month after injury (no report
of clinical correlate) and that these values improved after 2
months [277]. Cecil et al. reported decreased NAA in a sin-
gle-voxel analysis in 35 patients with TBI (26 with mild
TBI) in the splenium of the corpus callosum and lobar
white matter, but clinical correlation was not established
[48]. The subjects were scanned 9 days to 4.5 years (mean 1
year) postinjury, and the authors did not separate the mild
TBI patients from the more severe TBI patients and do a
separate analysis. Studies using MRS to account for cogni-
tive deficits in mild TBI are sparse. In a group of 14
patients within 1 month of sustaining a mild TBI (many of
whom had positive CT findings), NAA levels were lower
in the parietal white matter bilaterally and Cho/Cr ratios
were higher within two separate regions of the occipital
gray matter [39]. No significant correlation was found in
this small sample for Glasgow Outcome Scale at discharge
or at 6 months after injury. In summary, MRS abnormalities
have been described in mild TBI, but structural, functional,
and clinical relevance need to be established.

Magnetic Resonance Spectroscopy in Posttraumatic 

Stress Disorder

Researchers have focused primarily on the medial tem-
poral lobe/hippocampus and the anterior cingulate cortex
(ACC) for MRS studies in PTSD. Many of these studies
used single-voxel techniques and were thus limited to
examining one large region at a time. For example, Ham et
al. acquired spectroscopic data of a 15 × 15 × 15 mm3 vol-
ume in the ACC and bilaterally in the medial temporal lobe
(each volume acquired separately) [278]. The authors
found significant NAA decreases within all three volumes
when comparing the metabolite levels of 26 survivors of a
subway train fire who were diagnosed with PTSD with
those of 25 healthy control subjects. Moreover, the NAA
levels for the PTSD subjects were correlated with symptom
severity. While the authors looked at NAA, Cho, and Cr
levels, they only found significant differences in NAA lev-
els. Other studies have found similar results in the ACC
[97,279–280] and medial temporal lobe [91,97,280]. How-
ever, not all studies have found these differences. Seedat et
al. compared NAA/Cr, Cho/Cr, and myo-inositol (mI)/Cr
ratios from the ACC in female domestic violence victims
(seven with PTSD, nine control subjects) [279]. In this
small study, the authors did not find significant differences
in NAA/Cr, but they did find a significant increase in Ch/Cr
and mI/Cr ratios for the women with PTSD. Also, Freeman
et al. examined 20 prisoners of war (10 with PTSD) and 6
controls and did not find any significant group differences
in NAA/Cr or Cho/Cr ratios [281].

The most comprehensive spectroscopy study to date
used spectroscopic and volumetric data to compare the
association of PTSD and alcohol abuse with metabolite
ratios and hippocampal volumes [280]. The authors used
MRI, MRS (hippocampus), and MRSI (frontal/parietal
region) to acquire data from 55 patients with PTSD (28
tested positive for alcohol abuse) and 49 control subjects
(23 tested positive for alcohol abuse). The authors found
that PTSD was associated with reduced NAA/Cr within
both the hippocampus and ACC. Despite finding NAA
reductions, the authors did not find any significant volume
reductions. Also, the decrease in NAA/Cr associated with
the PTSD patients could not be attributed to alcohol abuse.

ARTERIAL SPIN LABELING

Perfusion refers to the delivery of blood to a tissue or
organ. Brain perfusion is also termed cerebral blood flow
(CBF) and is expressed in units of milliliters/gram/minute,
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reflecting the volume of flow per gram of brain tissue per
unit time. Primary alterations in CBF occur in a number of
central nervous system (CNS) disorders, most notably cere-
brovascular disease, but because CBF changes are also cou-
pled to neural activity, regional CBF measurements can be
used to indirectly monitor neural activity both at rest and
during task or pharmacological manipulations.

For MRI, the two most common methods for imag-
ing perfusion are the dynamic susceptibility contrast
approach, which detects the first passage of an intravas-
cular contrast agent such as Gd-DTPA, and arterial spin
labeling (ASL), which utilizes magnetically labeled arte-
rial blood water as a diffusible flow tracer. Absolute
quantification of tissue perfusion requires a tracer that
can diffuse from the vasculature into tissue.

ASL techniques are completely noninvasive (and thus
avoid the use of exogenous contrast agents) and can pro-
vide quantitative CBF images in standard physiological
units of milliliters/gram/minute. ASL perfusion MRI
should be particularly useful for multisite or longitudinal
studies of brain function in which absolute quantification is
critical. Absolute quantification also allows the resting state
to be characterized, in contrast to BOLD fMRI, which pri-
marily detects differences between two or more experimen-
tally manipulated conditions. Thus, resting ASL perfusion
MRI is useful for characterizing behavioral [213,282] or
pharmacological [283] “states” and genetic “traits” [284]
and complements BOLD fMRI studies of stimulus-evoked
activity. For studies of task activation, ASL also provides
sensitivity at extremely low task frequencies where BOLD
fMRI becomes insensitive using standard parametric statis-
tics because of low frequency noise [285]. Continual tech-
nical advances have dramatically improved the sensitivity
of ASL perfusion MRI [282,286–291], and its use is likely
to increase in the coming years.

In ASL techniques, arterial blood water is magneti-
cally “labeled” using radio-frequency pulses. It is highly
analogous to PET CBF measurements, which use water
labeled with radioactive 15O, except that the magnetically
labeled arterial water “decays” with T1 relaxation rather
than a radioactive decay. Depending on field strength, the
T1 relaxation rate for water in blood or tissue is 1 to 2 sec-
onds, which is much more rapid than the ~2 minute decay
rate for 15O. As a result, only small amounts of arterial
spin-labeled water accumulate in the brain, though the
temporal resolution is much faster than with H2

15O-PET.
A postlabeling delay allows labeled arterial spins to
exchange with brain microvasculature and tissue [292].
The effects of ASL on brain image intensity are measured

by comparison with a control image in which arterial

blood is not labeled. Quantification of CBF requires a

model that accounts for a variety of parameters, including

T1 rates for blood and tissue, arterial transit times, and

labeling efficiency [292–294]. Good correlations between

ASL and 15O-PET have been demonstrated both for rest-

ing CBF [295] and CBF during task activation [296].

ASL perfusion MRI has been used to study rat models

of TBI [297–302], and more recently, it has begun to be

applied to studies of TBI in humans. A wide variety of

potential applications of ASL to TBI exist, including char-

acterization of regional brain function in severe TBI for

which task-evoked responses may be difficult to obtain,

correlations of changes in regional CBF with attentional

and other cognitive deficits to try to identify potential tar-

gets for pharmacological or transcranial magnetic stimu-

lation therapy, and use as a biomarker of regional brain

function for pharmaceutical trials (Figure 3).

High-speed helical CT scanners have facilitated the

advent of CT perfusion studies to provide data such as

CBF, blood volume, and mean transit times after intrave-

nous administration of iodinated contrast material, which

is an approach that is analogous to perfusion MRI based

on dynamic susceptibility tracking. Although the need for

exogenous contrast and exposure to ionizing radiation

Figure 3.

Arterial spin labeling perfusion. Magnetic resonance imaging perfusion-

based group activation maps obtained during letter 2-back working-

memory task from control subjects (left) and patients with traumatic brain

injury studied following either placebo (middle) or methylphenidate

(MPH) (right). Frontal activation in patients is reduced on placebo when

compared with activation in controls, but normal-appearing activation is

restored after MPH administration. Source: Unpublished data courtesy of

Junghoon Kim and John Whyte, Moss Rehabilitation Institute.
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limits the number of measurements that can be made, CT
perfusion imaging is emerging as a powerful and cost-
effective tool that avoids logistical problems posed by
monitoring equipment or surgical hardware required for
MR studies [303].

SUSCEPTIBILITY-WEIGHTED IMAGING

The last of the MRI techniques that we will discuss in

this review is SWI and its ability to recognize damage to the

brain caused by bleeding, shearing, and loss of oxygen satu-

ration [304–306]. SWI is an imaging technique that is

exquisitely sensitive to microhemorrhaging and the pres-

ence of hemosiderin and deoxyhemoglobin. Data are usu-

ally collected with a resolution of 1.0 mm3 at 1.5 T and

0.5 mm3 at 3 T. The entire brain can be covered in less than

5 minutes with the use of parallel imaging with an excellent

signal-to-noise ratio (SNR). Special processing incorporates

the phase information into the magnitude information to

enhance the contrast. Studies have shown that SWI is more

sensitive to hemorrhagic lesions than are traditional MRI

scans [41,51]. Figure 4 shows an example of a conventional

T2 scan, followed by three different images emanating from

the SWI scan. In this case, multiple small lesions can be

seen in the frontal lobe and another smaller microhemor-

rhage in the right side of the brain. SWI has been shown to

have three to six times more sensitivity to microhemor-

rhages than conventional gradient echo imaging or any other

imaging in MRI. To date, it has been used predominantly to

study patients with severe head trauma, including coma

patients [306]. It has also been used to image children

[36,52,307].

MULTISITE STUDIES USING MAGNETIC 

RESONANCE IMAGING

Medical imaging for patient care invokes consider-

ations at the levels of the individual patient and the individ-

ual imaging site. However, medical imaging in clinical

research studies is often performed at multiple sites. This is

true for large observational studies and is particularly true

for therapeutic trials, which are nearly always conducted at

multiple sites. The reasons for the this are fairly obvious. If

one wishes to capture the relevant variation present across

an entire population for a natural history study, then sub-

jects must be recruited from multiple sites. The same con-

siderations hold for therapeutic trials in which therapeutic

efficacy across a representative range of the population

must be demonstrated. In addition, recruiting the number of

Figure 4.

Susceptibility-weighted image (SWI) example. Comparison of (a) T2-weighted, (b) SWI filtered phase, (c) processed magnitude, and (d) maximum

intensity projection images on patient with traumatic brain injury, acquired on 3 T TRIO Siemens system. SWI has the following acquisition

parameters: echo time/repetition time (TR/TE): 29/20 ms, flip angle: 15°, bandwidth: 120 Hz/pixel, 8-channel phased array coil with a parallel

imaging factor of two, field of view (FOV): 256 × 256 mm2, slice thickness: 2 mm, acquisition matrix: 512 × 416 × 64, spatial resolution: 0.5 × 0.5 ×

2 mm3. T2-weighted image acquired with T2 fast spin echo with TR/TE: 5000/113 ms, FOV: 256 × 256 mm2, slice thickness: 2 mm, acquisition

matrix: 320 × 320. Red arrows label multiple possible microhemorrhages invisible on both T1- and T2-weighted images (some not labeled). In this

case, SWI data clearly demonstrate multiple possible microhemorrhages in brain.
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subjects needed to power a study is often impossible at a

single site.

Like other imaging modalities, MRI captures mor-

phometric or functional data that provide useful informa-

tion about pathological processes of relevance. That is,

imaging measures serve as in vivo surrogates of relevant

pathologies. Because of its flexible nature, MRI can pro-

vide information about a variety of anatomical and physi-

ological brain processes. These processes include brain

morphology, changes in relaxation properties, perfusion,

diffusion, and metabolite concentration.

Variability in imaging data collected across different

subjects or across individual subjects over time can be

considered in three categories. First is the data variability

due to the effect of the pathology one seeks to measure.

For example, variability in brain volume may be due to

presence and severity of AD or due to TBI. Second is data

variability due to biology that is irrelevant to the pathol-

ogy of interest. For example, brain volume may vary with

hydration or nutritional status. Third is data variability

due to technical or engineering-related factors. In any

study, whether single site or multisite, the objective is to

maximize the impact of biologically relevant data vari-

ability and minimize the impact of other sources of vari-

ability. The reason for this objective is self-evident; the

more variability in a data set that is directly due to the

pathology of interest, the more useful the imaging will be

in probing the biologically relevant relationships. Con-

versely, irrelevant biological variability and engineering-

related variability will only obscure the relationships

between imaging and the pathology of interest. In design-

ing multisite trials, unwanted data variability due to the

irrelevant biology can be minimized to some extent by

rigorous inclusion and exclusion criteria. But the source

of undesirable data variability that is under greatest con-

trol is that due to technical or engineering-related factors.

A variety of specific items should be considered in the

design of multisite trials. However, an overarching principle

is that unwanted data variability due to technical factors can

be minimized by standardization. And the principle of stan-

dardization applies in two dimensions: (1) across sites/scan-

ners and (2) across time. MRI has been employed in

numerous different multisite observational and therapeutic

CNS studies, including studies on AD [308–311], mild cog-

nitive impairment [312], cerebral vascular disease [308–

314], and schizophrenia [315]. The remainder of this sec-

tion will focus on specific features of the design of multisite

CNS studies that were gleaned from the experience of the

Alzheimer’s Disease Neuroimaging Initiative (ADNI)

[316]. In multisite studies, enrollment sites are selected on

the basis of their ability to recruit and retain subjects meet-

ing specific clinical criteria. Sites are typically not selected

on the basis of access to advanced MRI equipment or

expertise. Consequently, multisite studies must be per-

formed across a broad array of hardware/software platforms

and across sites with variable levels of expertise. State-of-

the-art applications may not be available on all systems.

Some basic principles in the design and conduct of mul-

tisite CNS MRI studies follow. The main confound to

address when different scanners at different sites are used is

ensuring that equivalent sequences are being run with equiv-

alent parameters on each scanner to ensure the same con-

trasts, artifacts, noise, etc. Further, each scanner used in the

study should be qualified at baseline before subject enroll-

ment and requalified after any hardware or software

upgrades. “Qualified” means using a specific quality assur-

ance (QA) protocol [317] with a specific phantom to ensure

that the scanner is performing adequately. Each site should

use the same type of phantom and QA protocol. Ideally, a

single scanner should be used at each site for the entire study.

Tesla strength of MRI scanners at different sites may

vary. If so, the sequences and specific parameters will need

to be adjusted to maintain equivalent T1 and T2 weighting

for all scanners across sites. Also, in the case of functional

imaging, differences in SNR fluctuations between scan-

ners need to be accounted for in postprocessing before

activation across scanners/sites is compared [318].

Before start-up of the study, it might be highly useful

to conduct a small pilot study of the proposed acquisition

protocol on a representative group of systems. Such a

pilot study will avoid the unfortunate situation in which

incompatibilities between the study protocol and certain

platforms are discovered after enrollment has begun.

Electronically distributing system-specific protocols to

each scanner used in the study is also helpful. Electronic

distribution avoids the situation in which protocols are

built manually from paper protocols on individual scan-

ners, which dramatically increases the likelihood of pro-

tocol errors at individual sites. Imaging sequences in the

protocol should be easy to prescribe and use by MRI

technologists with a wide range of experience.

Ideally, the study protocol should avoid nonproduct

imaging sequences to minimize administrative and regula-

tory overhead. A central quality control center is recom-

mended. All protocol scans should be checked for protocol

compliance, image quality, and medically significant
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abnormalities. Identification of medically significant abnor-

malities by the MRI center should be used for subject

inclusion and exclusion purposes. However, clinical

interpretations of study scans should be the responsibility

of the local enrollment site—i.e., medicolegal responsi-

bility should reside locally, not with the research study.

Some means of monitoring scanner performance for

site qualification purposes and throughout the study is

useful. In the ADNI, a phantom scan is acquired along

with each patient study. Measurements from these phan-

tom scans allow identification of scanning errors that

elude detection because the relevant information is not

recorded electronically with the imaging data. Measure-

ments from phantom scans can be applied retrospectively

to correct drifts or discontinuities in the coupled human

images, provided certain assumptions are met. Finally,

despite detailed attention to standardization of acquisi-

tion and quality control, correcting residual abnormalities

in the image data after the fact remains important. The

types of corrections that may be useful are corrections for

gradient nonlinearity, intensity nonuniformity, and drift or

discontinuities in scanner calibration.

The preceding comments are largely recommendations

derived from the experience of the ADNI. However, these

considerations are relevant for any multisite study. To the

extent that technical variation is reduced in a data set, the

data set becomes a more useful and powerful tool for

achieving the ultimate objective, which is the use of imaging

as an in vivo surrogate of specific pathologies of interest.

The large patient-population capabilities of multisite studies

could be invaluable to combat-related TBI and PTSD

research. For more information regarding multisite studies,

see the ADNI (www.loni.ucla.edu/ADNI) or the Biomedical

Informatics Research Network (www.nbirn.net) Web sites.

POSITRON EMISSION TOMOGRAPHY

PET imaging with the tracer [18F] fluorodeoxyglucose

(FDG) has been used for 3 decades to provide information

about glucose metabolism in the human brain. Beginning

with early studies that carefully validated tracer kinetic

models [319] and extending through applications that

involved studies of both normal cognition [320] and many

disease states, the technique has become a robust approach

to human clinical neuroscience. While studies of brain

activation and cognition have largely been supplanted by

fMRI, which has wider availability, higher spatial and tem-

poral resolution, and no ionizing radiation, FDG-PET has

continued to be applied to the study of human disease. This

application is largely based on findings that show reduc-

tions in metabolism that are often regionally specific in

numerous diseases. In addition, a host of basic studies

strongly suggest that FDG-PET is a measure that parallels

synaptic function [321], providing a good basis for inter-

pretation of image findings.

One example is AD, in which reductions in posterior

parietal, temporal, and posterior cingulate/precuneus cortex

predominate [322–323]. These metabolic reductions are

related to the neuropathological accumulation of amyloid

plaques and neurofibrillary tangles, as has been revealed by

several studies correlating the pattern of glucose hypome-

tabolism with postmortem pathological evaluation [324–

326]. While the recent introduction of techniques to image

the accumulation of beta-amyloid offer the promise of a far

more specific molecular approach to diagnosis of dementia

[327–329], FDG-PET remains a popular technique for

brain imaging because of its wide availability and large

accumulated experience. Applications to a variety of dis-

eases, including Huntington’s [330], epilepsy [331], and

brain tumors [332], have been published on extensively

over decades.

A limited number of studies have been performed

with FDG-PET to investigate TBI. Metabolic rates in the

striatum and thalamus are lower in patients soon after epi-

sodes of TBI, and in subjects in coma, the thalamus,

brainstem, and cerebellum are particularly affected and

related to level of consciousness [333]. Dynamic PET

studies suggest that these metabolic reductions are related

to alterations in hexokinase activity and not to changes in

glucose transport [334]. In chronic TBI patients with dif-

fuse axonal injury, metabolic decreases are pronounced in

the frontal cortex, temporal cortex, thalamus, and cerebel-

lum and the severity of frontal lobe hypometabolism is

related to cognitive function [335]. In particular, abnor-

malities of glucose metabolism in the cingulate gyrus may

be related to neuropsychological function after TBI [336].

FDG-PET studies of patients with mild TBI have not

revealed a consistent pattern of disturbances (see review

in Belanger et al. [236]). However, with the advent of

novel radioligands, new imaging techniques have emerged

that may provide new insights into TBI and PTSD. For

example, preliminary data suggest that amyloid-β (Aβ)

plaques may be useful biomarkers of TBI.

http://www.loni.ucla.edu/ADN
http://www.nbirn.net
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IMAGING AMYLOID IN TRAUMATIC BRAIN 

INJURY

Head trauma has been identified as a potent risk fac-

tor for subsequent development of AD [337], and the

connection between TBI and AD neuropathology has

been reviewed recently [338]. In particular, cortical Aβ
deposits have been observed in about one-third of biop-

sied temporal cortexes in patients with severe TBI as

soon as 2 hours after injury, while tau-positive neu-

rofibrillary tangles have been observed less frequently

[339]. Recent advances in the development of imaging

agents capable of quantifying regional Aβ plaque densi-

ties in living human brain by using PET or SPECT have

made Aβ imaging studies in TBI subjects feasible.

The Aβ plaque deposition in TBI subjects and its

relationship to long-term cognitive sequelae remain to be

fully elucidated. Noninvasive longitudinal imaging stud-

ies capable of assessing Aβ plaque changes in TBI could

play an important role in this regard.

The most utilized human Aβ imaging agents to date

are the PET radioligands [18F] FDDNP (fluoroethyl

(methyl)amino]-2-naphthyl} ethylidene) malononitrile) and

[11C] PIB [326,338–342]. This area of research is active,

and several other radioligands have been reported in human

studies, including 123I-labeled and other 18F-labeled agents.

Example of PET images from a study using [11C] PIB to

assess Aβ plaque pathology in AD is shown in Figure 5

[342].

Future prospective investigations of long-term cogni-

tive declines or AD development in subjects with TBI

may be done in parallel with studies of amyloid (Aβ)

deposition to see whether the latter can account for the

former. Similar longitudinal studies are underway to

determine whether amyloid-burden (Aβ) increases over

time correlate with cognitive consequences in elderly

patients at risk of AD. An example of a 2-year follow-up

study using [11C] PIB to assess Aβ plaque pathology in

an elderly control subject is shown in Figure 6 (Univer-

sity of Pittsburgh, unpublished data).

CONCLUSIONS

Detection and objective characterization of subtle but

clinically significant abnormalities in mild TBI and PTSD

are important objectives of modern neuroimaging. Several

MRI methods have excellent potential to help visualize

metabolic (via MRSI), microstructural (via DTI or, more

specifically, FA), and functional network changes related to

resting and cognitive states (fMRI, MR perfusion). In addi-

tion, new MRI methods (SWI) allow for better detection of

Figure 5.

Positron emission tomography (PET) example. PET images obtained with the amyloid-imaging agent Pittsburgh Compound B ([11C] PIB) in

normal control (far left), three different patients with mild cognitive impairment (MCI) (three center images), and patient with mild Alzheimer

disease (AD) (far right). Some MCI patients have control-like levels of amyloid, some have AD-like levels, and some have intermediate levels.

DVR = distribution volume ratio.
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microhemorrhaging and could be particularly useful in the

screening of servicemembers and veterans for lesions

related to head trauma. The development of high-resolution

imaging of hippocampal subfields may contribute to

improved understanding of memory mechanisms in cere-

bral trauma or PTSD. PET methods may also provide

insights into the metabolic and/or degenerative changes that

may accompany these disorders.

Multimodal techniques may emerge as helpful

orthogonal approaches to enhance the yield of detection

and characterization of abnormalities. These methods may

provide complementary information about the neural,

glial, vascular, and network conditions that subserve cog-

nitive and behavioral states. The development of multi-

variable models combining structural, neurochemical,

physiological, and psychophysical or neurobehavioral

findings can be anticipated to be an active area of future

research. Future imaging studies of prospective, con-

trolled clinical trials with parallel neuropsychological test-

ing and rehabilitation also hold promise for elucidating

mechanisms of learning or relearning. Potential informa-

tion about predilection, distinguishing neural signatures,

objective assays for monitoring recovery and response to

treatment, and prognosis for patients may all come to frui-

tion as a result of the continued advances in neuroimag-

ing. Thus, neuroimaging may provide information that

contributes substantially to the development of improved,

rational approaches to the management of patients with

TBI and PTSD.
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