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Abstract

The last few years have seen significant progress in constructing the atomic models 
required for non-local thermodynamic equilibrium (NLTE) simulations.  Along with this 
has come an increased understanding of the requirements for accurately modeling the 
ionization balance, energy content and radiative properties of different elements for a 
wide range of densities and temperatures.  Much of this progress is the result of a series 
of workshops dedicated to comparing the results from different codes and computational 
approaches applied to a series of test problems.  The results of these workshops 
emphasized the importance of atomic model completeness, especially in doubly excited 
states and autoionization transitions, to calculating ionization balance, and the importance 
of accurate, detailed atomic data to producing reliable spectra.

We describe a simple screened-hydrogenic model that calculates NLTE ionization 
balance with surprising accuracy, at a low enough computational cost for routine use in 
radiation-hydrodynamics codes.  The model incorporates term splitting, n=0 transitions, 
and approximate UTA widths for spectral calculations, with results comparable to those 
of much more detailed codes.  Simulations done with this model have been increasingly 
successful at matching experimental data for laser-driven systems and hohlraums.

Accurate and efficient atomic models are just one requirement for integrated NLTE 
simulations.  Coupling the atomic kinetics to hydrodynamics and radiation transport 
constrains both discretizations and algorithms to retain energy conservation, accuracy and 
stability.  In particular, the strong coupling between radiation and populations can require 
either very short timesteps or significantly modified radiation transport algorithms to 
account for NLTE material response.  Considerations such as these continue to provide 
challenges for NLTE simulations.
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1. Introduction

The capability to accurately model the properties of matter under non-local 
thermodynamic equilibrium (NLTE) conditions is critical to the ability to understand a 
wide variety of laboratory and astrophysical plasmas.  NLTE simulations are routinely 
used for calculating the evolution of plasmas produced in inertial confinement fusion 
(ICF), magnetic fusion and other laboratory experiments, as well as to simulate spectra 
for diagnosing the state of these systems.  Consequently, much effort has gone into 
developing the capability to perform these simulations and the state of the art has 
improved considerably over the last several years.  We report here on a further 
advancement in this field that builds upon this body of work.

Simulating a NLTE system is a non-trivial task. The basis for most NLTE simulations 
is the collisional-radiative (CR) model [1], which describes each atomic system in terms 
of a number of atomic levels.  The distribution of atomic populations among the levels is 
calculated by solving a set of coupled rate equations whose generation requires 
calculating all transition rates among the atomic levels.  Most commonly, the transitions 
included are those mediated by collisions with electrons and photons.  Material properties 
- opacities, emissivities, specific energies and other equation of state information - then 
follow from the population distributions.

For simple systems containing only a few electrons, it is feasible to enumerate each 
atomic level individually in terms of its configuration, fine structure state, or even as
magnetic sublevels.  However, the number of such levels increases exponentially with the 
complexity of the atomic system, even considering states with only a single electron 
excited out of a single shell.  Figure 1 shows the total statistical weight of only these 
states (up to a maximum principal quantum number of 10), plus the statistical weight of a 
more reasonable set of states for calculating ionization balance, as a function of the 
number of electrons.  In practice, we need to include multiple excitations from multiple 
shells, and a complete enumeration - even at the level of configurations - quickly 
becomes infeasible.

Matching the states with atomic data (energy levels, oscillator strengths, collision 
strengths, etc.) is another formidable task, particularly for a large complex atomic system.  
Fortunately, the development of codes like HULLAC [2] and FAC [3] has provided an 
avenue for obtaining accurate data for both atomic structure and transitions.  It is now 
feasible to calculate data for systems comprised of up to ~106 levels.  However, even this 
size pales in comparison to the number of detailed states required to model a modest 
atomic system.

Given the unfriendly combinatorics, the questions of which (or how many) states and 
transitions to include in an atomic model, and what degree of averaging to use, are 
critical.  The answers, even given the constraints of a particular application, are not 
obvious and a minimal set will vary with the specific conditions.  However, a very 
encouraging amount of progress has been made over the last decade, due partly to a series 
of NLTE workshops [4-8].  Participants in these workshops compared results of 



calculations for a series of test cases, with the goal of understanding the most important 
aspects for modeling atomic systems.

As an example of the progress (and challenges) in this area, we focus on Au, which is 
of particular importance in ICF.  At temperatures relevant to ICF, Au remains a complex 
M- and N-shell system which has proved challenging to model. Figure 2 shows the 
average ionization state <Z> of Au as a function of temperature at electron densities of 1-
3 x 1020 cm-3, as calculated by codes at the 1st and 4th NLTE workshops [4,7].  Analyzing 
the very large spread of results produced at the 1st workshop led to an understanding of 
the critical role of autoionization in high-Z systems.  Incorporating sufficient doubly 
excited states also improved the agreement between different codes.  By the 4th

workshop, the most detailed codes were in quite reasonable agreement with each other.  
In addition, when experimental data became available [9,10], those codes were in 
agreement with the data.  We take this result as an indication that the approach being 
used is sound, the atomic data is calculable, and the overall problem is tractable, although 
computationally very expensive.

The question of affordability is often critical, because for many applications the 
NLTE equations must be solved together with the equations of hydrodynamics and 
radiation transport.  Given the computational cost of a detailed CR model, it is not 
surprising that integrated simulations, i.e. radiation-hydrodynamic simulations which 
calculate NLTE material properties in-line, tend to use much simpler models.  The XSN 
package [11], based on an average-atom approach, has been heavily used in the ICF 
program at LLNL.  XSN models the entire atomic system with a handful of levels (and a 
correspondingly small number of transitions) and is fast enough for in-line use.  
However, its accuracy is severely limited.

Incorporating the insights provided by the NLTE workshops, we have successfully 
developed a method for constructing atomic models that are compact and inexpensive 
enough for routine use in integrated simulations while providing accuracy comparable to 
far more detailed models, i.e. within the uncertainty defined by the range of detailed 
models.  This includes both gross material properties such as ionization balance and 
energy density and spectral properties such as opacity and emissivity.  While the truth of 
this statement is somewhat application dependent, the comparisons we have done support 
the view that the accuracy of the NLTE calculations is no longer the limiting factor in the 
accuracy of the integrated simulations.

The following section describes the basic method of constructing an atomic model 
and includes observations on the importance of various features of the model.  Details of 
the construction and formulas used are relegated to the Appendix.  The basic model 
presented in this section is sufficient for calculating gross material properties, but is 
insufficient to provide realistic spectral properties and is therefore not suitable for 
radiation transport simulations.  Section 3 describes extensions to the model that improve 
the treatment of bound-bound transitions and substantially alleviate this shortcoming.



Providing an accurate, yet affordable, atomic model is a necessary but not sufficient 
requirement for integrated simulations.  Algorithms that can handle far-from-LTE 
situations in radiation-hydrodynamics codes are another requirement.  Simulating NLTE 
physics imposes additional requirements on algorithms, ranging from managing the large 
amount of data used to describe the state of the material to stably handling the effects of
very fast atomic timescales.  We discuss the impact of the latter on radiation transport 
calculations in section 4, and demonstrate that with current algorithms, these timescales 
can restrict simulation timesteps to unacceptably low values.  We give one example of an 
algorithm, suitable for hot dense plasmas, which can ameliorate this effect.

Multiple computer codes were used for the research described in this paper.  Much of 
the work was done with Cretin [12], a NLTE atomic kinetics / radiation transport code.  
In particular, the approach to generating atomic models was developed in Cretin, with 
significant assistance from participation in and participants from the NLTE workshops.  
The approach was then incorporated into the (pre-existing) DCA package in LASNEX, 
which was used for the radiation-hydrodynamics simulations.  The two codes produce 
comparable atomic data, and results presented from either code will be labeled “DCA”.  
For comparisons with a more detailed code (beyond those done as part of the NLTE 
workshops) we use SCRAM [13,14], with atomic data generated by FAC [3].

2. Atomic Model Construction

The two components of atomic data required for an atomic model are the atomic 
structure and the transition rates.  Aspects of each of these have proven to be critical to 
adequately capturing the essential physics of non-LTE atomic kinetics.  However, a high 
degree of accuracy in either the structure or the rates is not a critical requirement for 
calculating ionization balance and energetics.  We describe here how we generate the 
atomic data and comment on the importance of various aspects of the data.

Underlying the approach we use to generate the atomic data is the screened-
hydrogenic model.  In this model, screening coefficients are used to calculate effective 
charges experienced by each bound electron.  The screened charges are then used in 
hydrogenic formulas to construct energy levels and transition rates.  This approach dates 
back to the work of Mayer [15] and has been applied and expanded by numerous others.  
Several sets of screening coefficients are available in the literature [16-19].  Faussurier 
[19] provides a good discussion of the theoretical basis of a screened-hydrogenic model.  
In practice, the sets that we have tried all give very similar results when used as described 
here.

We construct atomic levels as superconfigurations or Layzer complexes by 
populating shells described by principal quantum numbers.  The energies obtained from 
the screening coefficients are scaled within a given isoelectronic sequence to match 
tabulated ionization potentials between sequences [20].  The scaling factors, which vary 
between 0.9 and 1.1 for most sequences but become smaller near closed shells and for 
near-neutral sequences, correct for some of the systematic inaccuracies of the scaled-



hydrogenic energies and significantly improve the resulting energy levels.  Even with 
these corrections, the method does not produce highly accurate transition energies.  
However, it has proven to be sufficiently accurate for many non-spectroscopic 
applications.  In addition, it allows for rapid generation of levels - possibly with multiple 
excitations from a combination of shells - and has allowed us to investigate the 
importance of different types of levels.  In practice, we have found that 10-20 levels per 
sequence, including single and double excitations from the valence shell and excitations 
from lower-lying shells, is usually sufficient to match results obtained by much more 
detailed codes.

In most cases, the total population is distributed over only a handful of isosequences, 
and the range of isosequences will change slowly over the course of a simulation.  We 
can then restrict the number of levels used in an atomic kinetics calculation at any point 
in time to ~100-200 levels.  The computational expense is roughly an order of magnitude 
greater than XSN.

The model can be extended to incorporate angular momentum quantum numbers by 
using the screening coefficients of Faussurier [19].  However, this additional degree of 
description results in very much larger numbers of levels than those obtained with 
principal quantum numbers only.  There are possible advantages to be gained here in 
calculating spectral properties, but at a greatly increased cost.

The most critical aspect for the atomic structure is completeness, defined here as 
including sufficient numbers and types of levels to incorporate all important channels for 
population fluxes.  For systems with just a few bound electrons, a handful of singly 
excited states in each sequence will likely be sufficient to calculate the ionization 
balance.  As the number of occupied shells increase, the energy differences between 
singly excited and doubly excited states decrease.  The large statistical weights of doubly 
excited states make these increasingly important as the number of bound electrons 
increases, particularly since many of these states are autoionizing.  For example, the 
important case of Au under ICF conditions can have multiple electrons in the N-shell.  In 
this case, singly excited states overlap in energy with doubly excited states, and also with 
excitations from the M-shell.  Fluxes through each of these types of states can influence 
the ionization balance.

Incorporating a given transition is only possible if both the initial and final states are 
present in the model.  This rather obvious statement can lead to a significant expansion of 
the number of levels included in an atomic model, as it implies connections between iso-
sequences.  Any excited state must participate in ionizing transitions to the neighboring 
sequence or it will erroneously accumulate population, resulting in a skewed ionization 
distribution.  This is particularly important at closed shells, where the valence shell of one 
sequence corresponds to an inner shell of the neighboring sequence and some transitions 
are prohibited due to the filled shell.  Ensuring a continuous population flow between 
sequences requires avoiding these bottlenecks, while including enough states to capture 
the important population fluxes will then converge the population distribution.



Other states may be important for a given application, even if they do not directly 
affect the ionization balance - particularly when radiative properties are considered.  For 
instance, calculating absorption of high-energy photons requires K-shell transitions for all 
sequences in a model.  Including all these states, plus connected states, can greatly 
increase the size and expense of an atomic model.  Fortunately, states that do not 
accumulate population but are required for important transitions need not engender a 
large number of connected states.  They can even be eliminated from the atomic structure 
by defining compound transitions that incorporate the channel through the now-virtual 
states.  An alternative description is that these states are algebraically eliminated from the 
rate matrix under the assumption that their population is always negligible.

Given the atomic structure, we then obtain transition rates from simple formulas 
using the appropriate screened charges.  In most cases, for radiative excitations we use 
only hydrogenic oscillator strengths (corrected for screening) for allowed dipole 
transitions.  The simple semi-classical formula by More [21] based on screened charges 
produces oscillator strengths that match quantum mechanical calculations quite well.  The 
difference between screened and unscreened oscillator strengths usually does not 
significantly affect ionization balance.  Collision cross-sections (or rate coefficients) are 
obtained from fits to the data of Sampson and Golden [22].  Alternatively, the 
expressions for collisional excitations and ionizations of Van Regemorter [23] or Mewe 
[24] and Lotz [25], respectively, can be used - again with little effect on ionization 
balance.

In many cases, particularly for mid- to high-Z elements, the most critical rates are 
those for autoionization. Bauche et al [26] review autoionization and resonant capture, 
and discuss approximations for calculating these rates.  Here, following the lead of 
Chung et al [27], we use the formulation developed by Sobel’man et al [28].  As shown 
in [27], this simple formula reproduces the results of detailed calculations very well. This 
result, combined with the ability to generate an atomic structure that includes 
autoionizing states, is perhaps the key piece in inexpensively calculating ionization 
balance for complex atoms.  It is also the most problematic part of an average-atom 
treatment such as XSN [29].

An example of the results obtained with this approach is given in Figure 3, which 
shows the average ionization state <Z> of Au as a function of temperature at an electron 
density of 1021 cm-3.  This extends Figure 2 to include results for higher temperatures as 
calculated by codes at the 5th NLTE workshop [8].  The solid colored curves show results 
from our model (labeled DCA) and from XSN both with and without a treatment of 
autoionization.  The solid black curves show results from the most mature detailed codes 
at the NLTE workshops.  At low temperatures, population fluxes through the interleaved 
M- and N-shells are important.  At high temperatures, excitation-autoionization is the 
dominant ionization channel.  These features are modeled with comparable accuracy by 
the detailed codes and by our treatment, but are modeled poorly by XSN, resulting in 
dramatically different ionization states.



The ionization state of Au for these conditions is of more than academic interest, as it 
can impact the performance of targets for the National Ignition Facility (NIF).  Ablation 
from Au hohlraum walls produces material in this density regime with temperatures of 
order 1-2 keV.  The radiative properties and energetics of this material play an important 
role in the power balance within the hohlraum. Using a modified version of XSN whose 
rates were adjusted to produce approximately the same ionization balance and radiative 
emission as SCRAM and Cretin in the hohlraum, 1-D simulations showed a reduction of 
about 20% in the laser power required to achieve a desired capsule drive.  The differences 
are attributable to the higher emissivity of the more accurate models, which leads to a 
lower ionization state and smaller energy density in the ablated material [30].

3. Extensions to Atomic Models for Radiation Transport

The atomic model described so far calculates ionization balance and energetics very 
well for optically thin material, but falls short when used to drive radiation transport for 
optically thick material.  This is because the amount of radiation absorbed and emitted in 
optically thin material is independent of line profiles and insensitive to line positions, 
while optically thick radiation transport depends critically on these quantities.  The highly 
averaged transitions in an atomic model described solely by principal quantum numbers 
do not carry sufficient information to provide reasonable opacity and emissivity spectra.  
However, extending the atomic model with a relatively small amount of information 
accounts for the most important missing details and improves the spectra considerably.

There are two extensions to the treatment of radiative excitations in the model that 
improve the spectra.  The first is to split each photoexcitation transition between principal 
quantum numbers into multiple term-to-term transitions with individual energies and 
oscillator strengths.  For example, an n=2  n=3 transition becomes the following set of 
transitions: 2s+  3p-, 2s+  3p+, 2p-  3s+, 2p-  3d-, 2p+  3d-, and 2p+  3d+.  
We use tabulated energy levels and oscillator strengths which have been calculated with 
the LIMBO code [31] for singly excited states up to n=7 for each element and 
isosequence.  This provides more accurate transition energies and oscillator strengths 
than can be achieved with the screened-hydrogenic model alone, and more importantly, 
provides a realistic spread of transition energies.  In practice, we have found that splitting 
photoexcitations for transitions involving shells up to a couple above the valence shell 
(not necessarily up to n=7) is sufficient to achieve good results with only a modest 
increase in computational expense.

An additional benefit of the term splitting is the improved treatment of n=0 
transitions, which become increasingly important to the radiative properties of M- and N-
shell systems.  For models based on principal quantum numbers, these transitions have 
previously been handled with averaged transition energies and oscillator strengths, 
calculated under coronal conditions [32].  This data represents these transitions poorly 
under more general conditions and cannot easily be extended.  The current treatment 
improves this situation considerably, providing very good opacity spectra from these 
transitions.  The corresponding emission spectra are somewhat dependent on the precise 



implementation, which requires a method for estimating the relative term populations 
within a shell, but are vastly improved over the previous treatment.

This term-splitting procedure improves the transition energies and general shape of n 
 n’ transition complexes for singly excited states, but does not distinguish between 
transition complexes from singly and doubly excited levels.  That distinction can be 
recovered by applying an energy shift (obtained from the hydrogenic transition energies) 
to the LIMBO term-to-term transition energies, giving rise to satellite complexes that 
yield even better agreement with detailed codes.  In the interest of computational 
efficiency, this satellite extension is not used in the DCA results presented here, but is 
used for supplemental transitions in the hybrid-model SCRAM calculations described 
below.

The second extension assigns an additional width to each transition, representing 
additional unresolved fine structure multiplets, modeling each transition as an unresolved 
transition array (UTA).  The formulation we use combines a simple empirical formula to 
approximate UTA widths and a multiplier intended to decrease the broadening when the 
density drops low enough so that the multiplet levels are no longer collisionally coupled.  
Specifically, for a transition energy dE in an ion of charge Q = Z – (# of bound electrons), 
the additional broadening E is given by

E = f  ,   min (dE/3, Q) (1)
where the multiplier f is given by

f  min (1. , 1.3x1013 nee
 /T

T1/ 23  ) (2)

Alternatively, f can be defined in terms of the statistical weight g0 of the ground-level 
valence shell n (or ground-state term nlj) and the occupancy N of that shell (or term) for 
the transition’s lower level:  f = min(N,g0-N)/g0.  Instead of changing to reflect collisional 
coupling, this definition gives broader features for open-shell ions under any plasma 
conditions and broadens in response to density through the increasing population of 
multiply excited states.  It is especially useful in increasing the fidelity of calculated 
spectra when using the energy shift for multiply excited satellite lines mentioned above.

Figure 4 demonstrates the effects of these extensions on the opacity of optically thin 
Fe, at a temperature of 800 eV and electron density of 1022 cm-3.  In the extended 
treatment, additional L-shell transitions appear between 1 and 2 keV, and the multiple 
nn+1 transitions below 1 keV are no longer resolved.  Most importantly for radiation 
transport, the peak opacities of the strong transitions decrease due to the splitting and 
broadening.

A comparison of results from this model to that of a much more detailed code is given 
in Figure 5, which shows emission spectra for optically thin Xe at a temperature of 4 keV 
and an electron density of 3.6x1020 cm-3.   The detailed spectrum was calculated with 
SCRAM, using hybrid atomic data [14] constructed from a combination of fine structure 
and UTA data from FAC, supplemented with the extended screened-hydrogenic model 
(including satellite shifts).  The agreement is excellent, both in mean ionization <Z> and 



in the emission spectrum.

In our experience, this extended model provides surprisingly accurate opacity and 
emissivity spectra over a range of materials and conditions - as measured by comparisons 
with detailed calculations.  However, the cases for which detailed calculations are 
available are quite limited.  Experimental verification is difficult, as integrated 
experiments tend to have uncertainties due to multiple physical processes.  However, we 
describe two experiments where the results of LASNEX simulations using the current 
atomic models with DCA match measured data significantly better than simulations 
performed with XSN.

The first case comes from a series of joint LLNL/CEA experiments performed on the 
Omega laser in which Au-plated spheres were illuminated with various laser pulses [33].  
Figure 6 shows the first few ns of the emitted X-ray flux in the 2-3 keV band resulting 
from a 10 kJ, 3 ns, 1014 W/cm2 pulse.  The figure also shows the results of LASNEX 
simulations using XSN and DCA.  The DCA results show a qualitative improvement in 
the increased early time emission.  Quantitative agreement is still less than satisfactory.  
However, the results depend heavily on other physical processes (laser absorption, 
hydrodynamics, radiation transport, electron transport).  The origin of the remaining 
disagreement is as yet unknown.

The situation is clearer for the second experiment.  Ge-doped aerogel foam targets 
were irradiated with the Omega laser, and X-ray yields were measured for a variety of 
targets and laser pulses [34].  The spectral band from 0-3 keV includes Ge L-shell
emission while the band from 9-11 keV includes Ge K-shell emission.  A simulation
using DCA gives a total energy emitted in the lower band of 4.7 kJ, compared to ~4.2-4.4 
kJ measured. In the upper band, the simulation gives a total energy emitted of 135 J, 
compared to ~113-126 J measured. For this simulation, the critical computational model 
for matching the measurements is the treatment of non-local thermal conduction [35].  
Simulations with XSN give a K-shell emission no more than half of what is measured, 
independent of the thermal conduction model.

4. Algorithms for NLTE Radiation Transport

The extended screened-hydrogenic model described in the previous two sections 
provides accurate equation of state and radiative properties for NLTE plasmas, but that is 
only one requirement for successful integrated NLTE simulations.  Algorithms that can 
handle far-from-LTE situations are another requirement.  Radiation transport algorithms, 
in particular, require modification to remain stable and accurate.  When radiation 
transports significant energy, the numerical formulation is desired to be implicit in time 
for both intensity and temperature, as the difference between absorption and emission 
determines the change in material temperature.  For LTE, Kirchoff’s law states that the 
emission divided by absorption (i.e. the source function) is a Planckian at the material 
temperature, and that relationship is used to produce an implicit treatment of material 
properties.  Under NLTE conditions, the relationship between the temperature, intensity 



and emission spectrum is not known apriori.  In addition, the operative timescales are 
even shorter, as the emission (and absorption) can change on very fast atomic timescales 
due to changes in radiation intensity as well as temperature.  The result is that a standard 
transport algorithm applied to a NLTE situation can easily become unstable, or just 
produce inaccurate results.

As an example, we consider a 0-D Au plasma at a density of 0.2 g/cm3 and a 
temperature of 0.3 keV, initially in equilibrium with zero radiation field.  We introduce a 
Planckian radiation field with radiation temperature TR = 2 keV and calculate the
response of the plasma.  The plasma will heat due to absorption of radiation until 
emission balances absorption, leaving the material at a temperature of 2 keV.  Figure 7 
shows the evolution of the material temperature, calculated implicitly with a standard 
Newton-Raphson algorithm (utilizing the temperature derivatives of the material energy 
density, emissivity and opacity) for initial timesteps ranging from 10-16 to 10-10 sec.  All 
timesteps result in the material equilibrating at the correct temperature, but the evolution 
is grossly inaccurate (and physically unreasonable) for timesteps much larger than 10-15

sec.  The algorithm fails because it is not actually implicit in intensity, having neglected 
the strong dependence of the material properties - primarily the emission - on the 
intensity.

Although this example uses a high-Z material and a large radiation field (both 
appropriate to ICF), the underlying issue is more general and can be demonstrated for a 
wide range of materials and conditions.  If the radiation intensity significantly affects the 
material properties, then the transport algorithm must either be implicit or resolve the 
timescale on which the material responds.  The difference from the LTE case is that the 
material properties depend explicitly on the radiation intensity (and time) and can change 
even if the temperature remains constant.  In addition, the strong coupling between line 
radiation and populations can produce changes on very fast atomic timescales.

A better algorithm attempts to be implicit in intensities and temperatures by re-
evaluating the material properties using updated temperatures and intensities.  A single 
iteration improves the results for this 0-D example dramatically.  Figure 8 compares the 
temperature evolution for initial timesteps of 10-14, 10-12 and 10-10 sec. for both the 
standard algorithm and an algorithm that re-evaluates material properties before each 
temperature update.  The iterative algorithm – with a single iteration – produces evolution 
tracks that are essentially independent of timestep, achieving the desired implicit 
behavior.  However, this approach does not account for changes in intensity due to non-
local effects, and becomes unstable for optically thick systems.  A generalized transport 
algorithm designed to be implicit in both temperatures and intensities [36] can remain 
stable and accurate, but is not yet computationally feasible.

The fundamental problem here is the absence of an NLTE analogue to Kirchoff’s law 
to relate the emission, absorption, temperature and intensity.  To bypass this problem, we 
propose an ansatz for the source function S of the following form:



S 
r

0  ex 0  1 r
0 ex

1 ex 0 
B (3)

where B is the Planckian, the superscript “0” denotes the values at the beginning of the 
timestep, and

r
0 

S
0

B
0  , x  h

kT
(4)

This ansatz is based on the expectation that at low frequencies (small values of x), the 
emission will be Planckian.  The functional form assumes an exponential approach to 
Planckian emission, quantified by the free parameter .  For material dense enough for 
energy levels within a few kT to be collisionally coupled,  is expected to be of order 
~1/few.

We apply this ansatz to an optically thick version of the 0-D example, i.e. a gold slab 
20 cm. thick illuminated by a 2 keV radiation field.  Figure 9 displays the temperature 
evolution at different positions within the slab for a standard radiation transport algorithm 
using temperature derivatives as calculated by the atomic kinetics (dashed lines) and for 
the same algorithm modified to use the ansatz.  The unmodified algorithm suffers from 
severe stability problems and never produces a reasonable spatial profile for the material 
temperature, while the modified algorithm evolves smoothly and produces the same 
temperature profile as a simulation using extremely small timesteps.  Further work in this 
area will attempt to assess the impact and accuracy of this type of approach to NLTE 
radiation transport.

5. Summary

The capability to model NLTE atomic systems has improved greatly over the last 
decade, and has reached the stage where quite complex ions can be addressed with some 
measure of success.  This progress is very encouraging, but the computational expense of 
the best treatments and most detailed codes is formidable.

Building upon the insights and results of the detailed codes, we have produced a 
method for constructing highly-averaged atomic models that, in many cases, provide 
results of comparable accuracy to detailed models at a computational cost low enough for 
inclusion in radiation-hydrodynamic codes.  The basic method, distinguishing atomic 
states solely on the basis of principal quantum numbers, provides surprisingly accurate 
calculations of ionization balance.  Adding term splitting and simple approximate UTA 
widths for photoexcitations produces emission and absorption spectra suitable for driving 
radiation transport calculations.  It is now likely that, in many cases, the accuracy of 
NLTE calculations is no longer limiting the overall fidelity of the integrated simulations.

There remain serious issues with numerical treatments of radiation transport in highly 
NLTE situations.  Current methods may not remain stable and accurate under these 



conditions, and we have presented one candidate algorithm suitable for hot dense 
plasmas.  Much work remains to be done on this topic in the future.

Acknowledgments

The authors are grateful to Brian Wilson for providing data from the LIMBO code, to 
Mordy Rosen, Larry Suter, and Jeff Colvin for sharing the results of their hydrodynamic 
simulations, and to the participants in the NLTE code comparison workshops for valuable 
discussions and insight.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344.  SH was partially supported by Sandia, a 
multiprogram laboratory operated  by  Sandia  Corporation,  a  Lockheed  Martin Company,  for  the  U.S.  
Department  of  Energy  under Contract  No.  DE-AC04-94AL85000.

Appendix: Formulas for Atomic Models

The formulas presented here form the basis for the atomic models discussed in section 2.

Energy levels:

The screened-hydrogenic energy for level i is evaluated as

E i  Pn
Qn

2

n2
n
 1 2 Qn

2

n2

2n
n 1


3
4







 4

6
Qn

4

n4









 (A1)

where Pn is the occupation number for the shell of principal quantum number n and  is 
the fine structure constant.  Here,  is the Rydberg constant,

 
2 2me4

h2 13.6 eV (A2)

with e the electron charge, m the electron mass (or the appropriate reduced mass), and h
the Planck constant.  The factors proportional to powers of  are the first two relativistic 
corrections, which become significant for large nuclear charge Z.  The screened charges 
Qn are obtained from

Qn  Z   nmPm  1
2

mn
  nn Pn 1  (A3)

where nm are the screening constants.  This formulation is based on principal quantum 
numbers only, and for the screening constants given in [16,17], only inner electrons 
(m≤n) screen the nucleus.  For the screening constants given in [18,19], which also 
depend on the orbital angular momentum quantum number l, outer electrons (m>n) also 
contribute to the screening.  In this case, the factor in square brackets changes to 
[2n/(l+1) - ¾].

The energies derived in this manner are quite accurate for highly-charged atomic systems 
with only a few electrons and moderately accurate for many atomic systems, but lose 
accuracy for closed-shell and near-neutral systems.  We correct for some of the 



systematic inaccuracies by applying scaling factors that force ground state ionization 
energies to match those obtained from detailed calculations [20].  Specifically, the scaling 
factor s(I) for isosequence I is defined as

s(I)  E tab (I)  E tab (I 1)
Eg (I)  Eg (I 1)

(A4)

where Etab is the tabulated result and Eg is the screened-hydrogenic energy for the ground 
state of the isosequence.  For excited states i within isosequence I, the corrected energy 
˜ E i is then

˜ E i  E tab (I)  s(J) E i  E g (I)  . (A5)
For excitations out of shells with n=3 or above, we apply the scaling factor for the current 
isosequence (I=J).  For excitations out of the two innermost shells, we apply the scaling 
factor for the isosequence J appropriate to those shells.

Transition data:

The data necessary for calculating transition rates is obtained from the formulas given 
below.  Because each shell n contains Pn identical electrons, the appropriate data for a 
transition nm contains both an availability factor Pn and a blocking factor (1-Pm/2m2).

For oscillator strengths fnm for dipole transitions, we use hydrogenic values with a 
screening correction consistent with the semiclassical formula of More [21].  Kramers’ 
approximation for hydrogenic values [37],

fnm
hyd 

32
3 3

nm3

(m2  n2)3 (A6)

is quite accurate for large values of n, and we supplement this with tabulated values for 
small n.  By comparison with the semiclassical formula,

fnm
sc 

32
3 3

Qn
4Qm

2

n5m3


Em  En











3

(A7)

we adopt the formula

fnm  fnm
hyd Qn
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where the factor in square brackets is the screening correction.  Note that the screening 
correction must be calculated with unscaled energies, while all other formulas in this 
section use scaled energies.

Photoionization cross sections are obtained from Kramers’ formula [37], using screened 
charges in place of the nuclear charge.  For the ionization of an electron of principal 
quantum number n by a photon of energy h, the cross section is given by

 
32

3 3
e2

mc










Qn
4

n5


h








3

gbf Pn (A8)

where gbf is the bound-free Gaunt factor of Karzas and Latter [38].  Although this 



formula was derived for a hydrogenic ionization threshold of (Q/n)2 , we use the 
threshold energy obtained from the scaled energies when calculating rates.

Data for collisional rates can come from different sources.  We first discuss collisional 
excitation for the transition nm.  The expression for the cross-section is often written in 
terms of the oscillator strength in a form based upon the Bethe approximation

 nm 
8

3
a0

2 
E nm











2
g(x)

x
fnm (A9)

where Enm=Em-En, x=/Enm,  is the electron energy, and g(x) is the Gaunt factor.  The 
rate coefficient is then obtained by integrating over the electron distribution Fe,

Cnm  v() nmEnm

 ()Fe ()d (A10)

where v() is the electron velocity.  Various authors have proposed expressions for Gaunt 
factors, the simplest of which is the constant value g(x) = 0.2 suggested by Van 
Regemorter [23] for near-threshold electron energies, which can be integrated 
analytically for a Maxwellian electron distribution.  The form suggested by Mewe [24], 
g(x) = A + B/x + C/x2 + D ln(x), also leads to an analytic expression for the rate 
coefficient.  For allowed transitions, he recommends using A=0.15, B=0, C=0, D=0.28, 
matching Bethe’s form for the Born approximation.

Collisional ionization rates can be approached in a similar manner.  A simple expression 
comes from the work of Lotz [25], who used a cross-section for ionization out of state n
that can be put in the form

 n 
8

3
a0

2 
En











2
g(x)

x
(A11)

where En is the ionization energy and x=/En.  He adopted a semi-empirical Gaunt factor 
with leading term g(x) = A ln(x), with values for A in the range of 0.13 - 0.17 for 
ionization out of most shells.

Sampson and Golden [22] adopted a different approach to the Gaunt factor.  Their semi-
empirical choice, which also depends on ionization threshold and nuclear charge, was 
designed to provide continuity between excitation and ionization cross-sections, with 
coefficients determined by matching experimental results and Coulomb-Born 
calculations.  They provide moderately complex expressions for Gaunt factors for both 
excitation and ionization, and for the resulting Maxwellian rate coefficients.  For 
computational efficiency, we adopt fits to their Gaunt factors obtained by Zimmerman 
[39], which allow straightforward evaluation of cross-sections or Maxwellian rate 
coefficients.

For autoionization rates, we use the method of Chung et al [27].  These rates involve 
three states – the autoionizing state n, plus the lower and upper states i,j from the next 
ionized isosequence that provide a stabilizing transition.  The autoionization rate A is 
given by



A 
64

3
Qi

2

n 3

gi

gn

2

hE ij

f ijg(E ij )Pj (1
Pi

2i2 )(1 Pn

2n2 ) (A12)

where gi is the statistical weight of state i and g(E) is the Gaunt factor.  The Gaunt factor 
used here is a constant, g = 0.12, and the oscillator strength fij includes screening but no 
availability or blocking factors, as these are displayed explicitly.
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Figure Captions

Fig. 1 Total statistical weight for ground state and excited states including principal 
quantum numbers up to n=10 as a function of isosequence.   The solid line 
includes singly excited states from the valence shell only.  The dashed line also 
includes a moderate number of doubly excited states plus states with inner-shell 
excitations.  The trend is exponential growth with dips around closed shells.

Fig. 2 Average ionization state <Z> as a function of temperature for Au with no 
radiation field as calculated by codes at the 1st NLTE workshop (dashed lines) 
and 4th NLTE workshop (solid lines).  The electron density was 1020 cm-3 for 
the 1st workshop and 3 x 1020 cm-3 for the 4th workshop.  The experimental data 
points (markers) are from [6] and [7], with estimated electron densities of 6-14 
x 1020 cm-3.

Fig. 3 Average ionization state <Z> as a function of temperature for Au with no 
radiation field as calculated by codes at the 4th NLTE workshop (dashed lines 
for T≤5 keV) and 5th NLTE workshop (dashed lines for T≥6 keV) ).  The 
electron density was 3 x 1020 cm-3 for the 4th workshop and 1021 cm-3 for the 5th

workshop.  The thin solid curves show results from the detailed codes at the 
workshops. The experimental data points (markers) are the same as in Fig. 2.  
The other solid curves gives results from DCA (middle curve) and XSN, both 
with autoionization / dielectronic recombination (bottom curve) and without 
autoionization / dielectronic recombination (top curve).

Fig. 4 Opacity as a function of photon energy for Fe at a temperature of 800 eV with 
an electron density of 1022 cm-3.  The light curve shows the opacity as calculated 
by the basic screened-hydrogenic model described in the text, with nn’ 
transitions.  The dark curve shows the opacity as calculated by the extended 
model, with term-to-term transitions.

Fig. 5 Emissivity as a function of photon energy for Xe at a temperature of 4 keV with 
an electron density of 3.6 x 1020 cm-3.  The light curve shows the emissivity as 
calculated by SCRAM.  The dark curve shows the emissivity as calculated by 
DCA.  Calculated ionization states are given in the legend.

Fig. 6 Total radiative flux from photons with energies between 2-3 keV as a function 
of time from an Au-coated sphere illuminated with a 10 kJ, 3ns, 1014 W/cm2

pulse from the Omega laser.  The top curve gives the experimental results.  The 
dashed (dotted) curves give simulation results obtained using DCA (XSN).  
Only the first couple ns of the emission are shown.

Fig. 7 Temperature as a function of time for a 0-D Au plasma of initial temperature 0.3 
keV and density 0.2 g/cm3 illuminated by a 2 keV blackbody.  The curves 
correspond to different initial timesteps, ranging from 10-16 sec to 10-10 sec.



Fig. 8 Temperature as a function of time for the same case as Fig. 7 for initial 
timesteps of 10-14, 10-12 and 10-10 sec.  The curves marked with small crosses are 
the same as in Fig. 7 (including an initial timestep of 10-16 sec).  The curves 
marked with circles show the results obtained with the iterative algorithm 
described in the text.  They are difficult to distinguish because they coincide for 
most time points.

Fig. 9 Temperature as a function of time for different positions within a 20 cm Au slab 
of initial temperature 0.3 keV and density 0.2 g/cm3 illuminated by a 2 keV 
blackbody.  The dotted lines show simulation results using a standard radiation 
transport algorithm.  The solid lines show simulation results using the ansatz 
described in the text.
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