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1. INTRODUCTION 

Receding horizon control (RHC) or model 
predictive control (MPC) is a scheme that, at each 
instant of time, implements the first element of an 
optimal control minimizing a performance criterion. 
The terminology “RHC” is used throughout this paper. 
Since the RHC has several advantages, it has emerged 
as a successful control strategy in both academic and 
industrial fields and has been employed in diverse 
applications. Advantages of the RHC can be 
summarized as follows.  

First, it requires simpler computation algorithms 
than the widely known optimal control on the infinite 
horizon. Second, when finite future command is 
available, it presents good tracking performance, 
which is an important issue in industrial applications. 
Third, the RHC presents a proper control strategy for 
time-varying systems. While the optimal control on 
the infinite horizon requires all future systems 
parameters, which are unavailable in actual problems, 
the RHC needs only finite future system parameters. 
Fourth, the RHC can handle input and state (I/S) 
constraints, which derive from the physical limitations 
and safety requirements of real plants.  

RHCs for linear systems have similar properties to 

the conventional optimal controls. However, RHCs 
for nonlinear systems have different characteristics 
from the conventional optimal controls as will be 
explained later. There are several literatures for survey 
on the linear and nonlinear receding horizon controls. 
The five papers in the first part of the book [1] provide 
a review on the existing results. In [2], a very wide 
ranging list of references is provided. The three survey 
papers [3-5] were presented at the Chemical Process 
Control conference in 1996. Recently, the review 
articles on MPC have appeared in [6, 7]. In [7], the 
stability and the optimality for the constrained RHC 
are focused on.  

While the RHC for linear systems has been popular 
since the 1970s, the 90s have witnessed the fact that 
nonlinear receding horizon control (NRHC) has 
received much interest in the academic community. 
Practical interest in the industry is also driven by the 
fact that the NRHC is more suitable than conventional 
controls for today’s processes possessing 
nonlinearities and constraints. Additionally, this 
interest is due to the availability of computers with 
high performance.  

This paper focuses on stability and optimality for 
NRHC. It excludes the results for linear receding 
horizon controls and concentrates solely on the 
analytical results of NRHCs, not including 
applications of NRHCs. Stability and optimality are 
focused on rather than robustness.  

The major approaches are as follows. The basic and 
old approach is to stabilize the systems with a terminal 
state equality constraint. Since the solution for the 
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terminal state equality constraint may not be feasible 
in many cases, a terminal cost approach is used as an 
alternative to forcing the state to zero. In order to 
design stabilizing controls easily, a terminal constraint 
set approach is chosen for two kinds of controls. For 
the disturbance and the model uncertainties, minimax 
criteria have been adopted instead of minimization. 
By using an auxiliary function or a cost function in 
place of terminal condition, stability can be obtained 
without optimality. We introduce some other variants 
besides major approaches such as output feedback 
control, neural network and genetic algorithm.  

This paper is organized as follows. In Section 2, the 
basic underlying concept and the problem setting for 
the receding horizon control for nonlinear systems are 
described. In Section 3, the existing main results on 
the NRHC with terminal conditions are presented. In 
Section 4, the NRHC with a control Lyapunov 
function (CLF) and a cost monotonicity condition 
(CMC) are introduced. In Section 5, other approaches 
excluded in the previous section are shown. Finally, 
we present our conclusion.  

 
2. FORMULATION OF NONLINEAR  
RECEDING HORIZON CONTROL 

We consider the following continuous and discrete 
time nonlinear systems:  

 ( ) ( ( ) ( ))x t f x t u t= , ,              (1) 

 1 ( )k k kx f x u+ = , ,            (2) 

subject to input and state constraints as  

( ) ( or ) 0 0 1ku t u U t k∈ , ≥ , = , , ,  (3) 

( ) ( or ) 0 0 1kx t x X t k∈ , ≥ , = , , ,  (4) 

where ( ) mu t U∈ ⊂ℜ  is the vector of inputs and 

( ) nx t X∈ ⊂ℜ  is the vector of states. The NRHC is 
obtained by repeatedly solving the following online 
finite horizon open-loop optimal control problem:  

( )
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subject to the predictive system  

(τ) ( (τ) (τ)) ( ) ( )
or ( )i i i k k

x f x u x t x t
f xx x u x

= , , =
= , , =

    (7) 

(τ)( or )ku Uu ∈ ,            (8) 

(τ)( or )kx Xx ∈ ,             (9) 

( )( or )k Nx t T Sx ++ ∈ ,          (10) 

where τ [ ] ,t t T∈ , + 0 1 , 1k N= , , − , and functions 
( )m ⋅,⋅,⋅  and ( )F ⋅  are weighting functions for the 

control and the state trajectories on the horizon, and 
the terminal state, respectively. T  or N  is the 
horizon size and S X⊂  is the terminal constraint set. 

( )x ⋅  or x ⋅  is the solution of (7) driven by the input 
[ ] or 0 1 1u t t T k N U: , + = , , , −  with the initial 

condition ( )x t  or kx .  
In order to distinguish the real trajectories of the 

state and the input from the predicted trajectories of 
them, we use different notations such as x  and x . 
The optimal control is recalculated over a moving 
finite horizon [ ]t t T+  or 0 1 1k N= , , , −  at 
every sampling instance. The system model used to 
predict the future in the calculation of the NRHC is 
initialized by the actual system state ( )x t  or kx . 
Then, we obtain an optimal solution ( ( ) )x t Tu ∗ ⋅; , :  
[ ] or ( ) 0 1 1kt t T U x N k N Uu∗, + → ⋅; , : = , , , − →

 by solving the finite horizon optimal control problem 
(5) repeatedly at the sampling instances. The NRHC is 
defined in the form of a state feedback control by the 
following optimal solution at the sampling instants:  

( ) ( ( ) ) or ( )o o
k ku t t x t T u k x Nu u∗ ∗; , , ; , .    (11) 

The cost function from the optimal trajectory will 
be represented in terms of the current state and the 
horizon size as ( ( ) )J x t T∗ ;  or ( )kJ x N∗ ; . The 
optimal cost function plays an important role in the 
proof of the stability of various nonlinear receding 
horizon control schemes, as it serves as a Lyapunov 
function candidate.  

How to obtain an optimal control for nonlinear 
systems is surveyed in [8]. In [9], the relation between 
the computation burden and the guaranteed stability is 
discussed. 

 
3. CONTROL DESIGN WITH TERMINAL 

CONDITION 

3.1. Optimal control with terminal equality constraint 
As in the RHC for linear systems, the simplest 

condition guaranteeing the closed-loop stability is 
based on the terminal state equality constraint [10-12]. 
The basic idea in this approach is to solve the finite 
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horizon optimal control problem (5) with terminal cost 
( ( )) 0F x t T+ =  subject to (7), (8), and (9). In [11], a 

strong assumption is necessary to guarantee that the 
optimal value function is continuously differentiable, 
which is relaxed in [12] only for local Lipschitz 
continuity of the optimal value. This strategy allows 
stability to be checked easily and provides a relatively 
simple conceptual procedure for determining the 
feedback control of nonlinear systems.  

In [13], a comparatively easy implementable 
formulation is proposed and the existence of the 
solution is discussed. It is also shown in [13] that the 
discontinuous MPC with a terminal equality constraint 
can stabilize a system that cannot be stabilized by 
continuous feedback controls.  

It is assumed in this approach that one can find the 
finite horizon optimal control ( ( ) )x t Tu ∗ ⋅; ,  driving 
the current state to the origin at time t T+ , i.e., 

( ) 0x t T+ =  and satisfying the input and state 
constraints. The main idea behind proving the stability 
in this approach is to show the monotonicity property 
of the receding horizon cost function. This is referred 
to as the cost monotonicity condition (CMC).  

One disadvantage of the terminal state equality 
constraint is that the current state must be brought to 
the origin in finite time. This leads in general to 
feasibility problems for short horizon length. In other 
words, it is possible to have a very small feasible 
region. The long horizon length can increase the size 
of the feasible region, but increasing T  causes a 
computational burden. From a computational point of 
view, a terminal state equality constraint does demand 
an accurate solution through an infinite number of 
iterations in the nonlinear programming problem. 
Even a very tight approximation may lead to the loss 
of stability.  

It was shown in [14] that this approach enjoys 
robustness properties that are analogous to those of 
the infinite horizon LQ control. In particular, 
robustness margins with respect to gain and 
perturbations are obtained.  

 
3.2. Optimal control with terminal cost 

In the terminal cost based approach [15, 16], a 
terminal penalty term ( )F ⋅  in (5) is used to 
guarantee the stability. Here, the stability depends on 
how to select the terminal penalty term. ( )F ⋅  is 
determined off-line such that the following CMC is 
satisfied:  

1

( ( )) ( ( ) ( ))

( ) ( ) ( )k N k N k N k N

dF x t T m t T u t T x t T
dt

F F m k Nx x u x+ + + + +

+
≤ − + , + , + ,

− ≤ − + , , .
(12) 

The function ( )F ⋅  turns out to be the control 

Lyapunov function, which will be explained in (4.1).  
( )F ⋅ satisfying the above inequality gives an upper 

bound of the infinite horizon cost functional as 
follows:  

( ( )) (τ (τ) (τ)) τ
t T

F x t T m u x d
∞

+
+ ≥ , , .∫      (13) 

( ) ( )k N i i
i k N

F m ix u x
∞

+
= +

≥ , , .∑         (14) 

Using the CMC, we can show that the optimal cost 
function decreases as horizon size T  increases.  

( ( ) ) ( ( ))

( ( ) ( ))
0

J x t T dF x t T
T dt

m t T u t T x t T

∗∂ ; +
≤
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+ + , + , +
≤
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By using (15), the stability is guaranteed as follows:  
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from which it is guaranteed that ( )x t  approaches to 
zero. Note that the CMC for the discrete time system 
is derived in a similar way. (13) and (14) would imply 
that the optimal cost function on the finite horizon is 
larger than the cost function on the infinite horizon.  

 
3.3. Optimal control with terminal constraint set 

As seen in the previous subsection, the terminal 
equality constraint may be unsatisfactory for both 
performance and implementation issues. Hence, the 
idea of replacing the equality constraint with an 
inequality one, which is much easier to handle 
computationally, is proposed in [17-19]. The purpose 
of this approach is to force the state into the terminal 
constraint set in finite time. Inside the terminal 
constraint set, a local stabilizing control is employed. 
This approach is sometimes called a dual-mode MPC.  

For this RHC scheme, it is assumed that the pair 
( )A B,  defined as  

0 0x u x u

f fA B
x u= = = =

∂ ∂
= , =
∂ ∂

      (16) 

can be stabilized. Let’s consider the LQ controller 
( ) ( )LQu t K x t=  and the associated feasibility region 
( )LQX K . Let α ( )LQW X K⊂  denote a (smaller) 

feasibility region for the LQ controller where α  is a 
scalar parameter such that   α α

W W′′ ′>  if  α α′′ ′> , 
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and α 0 αlim 0W→ = . The dual-mode controller is 
based on the finite-horizon optimal control problem 
(5) subject to (7), (8), (9) and (10) with αS W= .  

In nominal conditions, the dual-mode control 
scheme works as follows. If ( )x t  is not in αW , one 
solves the finite-horizon problem. Then the optimal 
control sequence ( ( ) )x t Tu ∗ ⋅; ,  on [ ]t t T+  is 
obtained so that α( )x t T W+ ∈ . The control is applied 
during a sampling time. In the next step, the control is 
computed in a way that the performance criterion 
decreases. It is known that there exists a finite time t  
such that α( )x t W∈ . If the state enters αW , the 
controller switches to the linear state feedback 

( ) ( )LQu t K x t= . [17] also includes receding horizon 
implementation to cope with model uncertainties and 
disturbances. In particular, a variable horizon T  is 
used in the receding horizon implementation. Closed-
loop stability of the dual-mode controller is 
straightforward because αW  is a feasibility region 
for the LQ controller. There is a trade-off between 
feasibility and performance. To improve feasibility, 
α  should be as large as possible but this implies the 
suboptimal LQ control law in a wide region. The main 
disadvantage of this scheme is that the switching from 
nonlinear control law to linear state feedback control 
is somewhat artificial and introduces a certain 
discontinuity. The procedure for deciding the terminal 
region αW , which is done off-line, is found in [20].  

The terminal constraint set can be combined with 
the terminal cost explicitly or implicitly. By using the 
cost function corresponding to the terminal state as a 
Lyapunov function, the stability is guaranteed if a 
locally stabilizing linear control law is applied after 
the time t T+ . The linear control law ensures local 
exponential stability of the equilibrium 0x = , and it 
is assumed that the region of attraction of the linear 
controller is large enough to be reachable from the 
initial state within the horizon time T . The set αW  
satisfying the inequality (12) is computed in some 
neighborhood of the origin, on which the linear 
feedback control is designed for the linearized system 
around the origin. In [21], the nonlinear receding 
horizon closed-loop system is shown to be infinite-
horizon optimal with the new definition of terminal 
cost, provided that the terminal cost exactly captures 
the infinite-horizon optimal value in a neighborhood 
of the origin. If we consider the quadratic cost in the 
receding horizon cost functional as  

[ (τ) (τ) (τ) (τ)] τ

( ) ( )

t T T T
t

T
f

x Qx u Ru d

x t T Q x t T

+
+

+ + + ,

∫  

there exist fQ  and the set S  that guarantee close-
loop stability of the associated RHC scheme [22, 23]. 

fQ  is chosen in such a way that 
T

fx Q x  is a 
Lyapunov function for the nonlinear systems, subject 
to the linear control law ( ) ( )LQu t K x t= . More 
precisely, S  is a feasible region for the LQ 
controller and is such that  

( ) ( )

[ ]

T T
LQ f LQ f

T T
LQ LQ

f x L x Q f x L x x Q x

x Q K RK x x S

, , −

< − + , ∀ ∈ .
      (17) 

Moreover, if we take  

{ α}T
fS x x Q x= | ≤ ,            (18) 

subject to (17), S  acts as an invariant ellipsoid for 

nonlinear systems. Procedures for finding fQ  and 
S  are developed in [23, 23]. There are two main 
disadvantages in this approach. Firstly, it might be 
difficult to locate finite horizon T  such that the 
chosen neighborhood of the origin S  is reachable 
from any possible initial state. Secondly, if the 
linearization of the system around the origin cannot be 
stabilized, then this approach cannot be used.  

This approach is addressed for nonlinear 
unconstrained systems in [16, 23-25]. In [25], 
selection of the terminal cost and the terminal 
constraint sets were proposed to guarantee some 
desired properties such as infinite horizon optimality 
around the origin. In particular, in [23, 24], a terminal 
constraint set is automatically satisfied by choosing 
proper parameters such as the horizon T  and the 
final weighting matrix or functional. This approach is 
proposed in [22, 26-29] for nonlinear constrained 
systems.  

 
3.4. Optimal controls with minimax criteria  

Minimax performance criteria are preferable when 
uncertainties or disturbances are considered. In [30, 
31], a minimax criterion on a finite horizon is adopted 
for robust stability. In [30], both a terminal cost and a 
terminal constraint set are used while discontinuous 
feedback strategies are allowed. In [31], the additional 
Lyapunov function such as the CLF is included for 
closed-loop stability. [32] proposed the minimax RHC 
with a terminal cost and a terminal constraint set for 
the constrained piecewise affine systems that include a 
large class of nonlinear systems. [33-36] consider a 
nonlinear receding horizon H∞  control. In [36], a 
terminal cost is chosen so that the receding horizon 
H∞  control problem is solvable. In [34, 35], both a 
terminal cost and a terminal constraint are used to 
guarantee the H∞  performance criterion.  
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4. CONTROL DESIGN WITHOUT TERMI-
NAL CONDITION 

4.1. Control design with control Lyapunov function 
Recently, a control Lyapunov function (CLF) was 

used in conjunction with a receding horizon strategy 
to consider the stability and the performance 
simultaneously. In [37], the NRHC was proposed by 
using the stability constraint of the CLF as  

 [ ( )] σ( )V f x u x
x

∂
, ≤ − ,

∂
          (19) 

where V  is the CLF and σ( )x  is positive definite. 
This approach provides both the stability properties of 
the CLF and the performance advantages of receding 
horizon techniques. While in Section 3.2 a terminal 
cost was used to satisfy a control Lyapunov function 
(CLF) for stability, in this approach, a terminal cost is 
not used and only the CLF is utilized.  

The stability comes from the CLF, not from the 
performance criterion. In order to apply this scheme, 
we have to know the global CLF for the systems a 
priori. The main drawback of this method is that it 
further increases the amount of online computations 
required by imposing state inequality constraints (19). 
Another application of CLF to the NRHC is to use the 
CLF as the terminal cost [24, 38, 39], which is dealt 
with similarly in Section 3.2.  

In order to ensure the closed-loop stability in this 
scheme, we can choose the terminal cost as  

( ( )) (τ κ( (τ)) (τ)) τ ,
t T

F x t T m x x d
∞

+
+ = , ,∫     (20) 

where κ( )⋅  is the CLF based controller obtained a 
priori. By appropriate choice of scaling parameter µ , 
it is possible to find the terminal cost satisfying (19) 
and  

 ( ( )) µ ( ( ))F x t T V x t T+ = + ,        (21) 

where ( )V ⋅  is a CLF and µ  is a positive constant. 
In [39, 40], a sub-optimal scheme is used to design the 
NRHC with the help of the CLF.  

The main disadvantage of this technique is that we 
have to know the CLF a priori. All the results on the 
NRHC with the CLF have not considered the 
constraints on input and state.  

 
4.2. Control design with cost monotonicity  

Basically, determining the NRHC includes the non-
convex optimization problem. A radical way of 
avoiding it is to shift the emphasis away from 
obtaining the optimal solution and focus on keeping 
some properties such as stability. The approach is 
different from the one in Section 3.2 in that the 
optimal control is not considered. The idea for this 

problem is addressed in [17, 41] where the dual-mode 
approach can ensure stability by using a feasible 
solution rather than an optimal solution to the open-
loop control problem. In [18], this idea is extended to 
a fixed horizon receding horizon control problem. A 
more general analysis for the sub-optimal receding 
horizon control scheme is presented in [19]. The 
NRHC law can be chosen not by minimizing (6), but 
by finding a predicted control providing a sufficient 
reduction of the cost  

 1

1 1 1

( ) ( )
µ ( ) ,

k k

k k k k

J x J x
m x u

−

| − − | −

≤

− ,
       (22) 

where 0 µ 1< ≤ , while (8) and (9) are satisfied. This 
sub-optimal scheme gives an asymptotical closed-loop 
stability result and the region of attraction under mild 
conditions [19]. It is noted that it removes the need for 
finding the global minimum solution for a non-convex 
optimization problem. All we have to do is to 
determine the control sequence, which gives a 
sufficient reduction of the cost function at each step. 
This method is useful for solving the computational 
difficulties of the dual-mode control scheme due to 
the discontinuous stage cost. The result regarding the 
consideration of the hard input constraint for sub-
optimal NRHC is presented in [42].  

 
5. OTHER APPROACHES 

Aside from major approaches, there are some 
variant ones for NRHCs. [43] proposed a NRHC that 
is different from the conventional RHC in that the 
horizon size is a variable to be minimized and the 
control on the horizon is implemented. In this work, 
inequality contraction constraints are required in order 
to ensure that the state is contracted by a specified 
factor before optimization starts again. The critical 
drawback of this approach is to require a strong 
assumption. It is shown in [44] that the existence of 
the NRHC corresponding to this approach cannot be 
guaranteed.  

The NRHC is computationally demanding so that 
there are many results on how to solve the 
optimization problem [45-49].  

In order to obtain a large feasible set, a large 
terminal constraint set is necessary. Thus, polytopic 
invariant sets were considered in [50, 51] like linear 
systems.  

In [52, 53], the stabilizing state feedback NRHC is 
combined with observers to achieve output feedback 
stabilization. Specifically, [52] uses the state feedback 
NRHC with a terminal cost and a terminal constraint 
set by using the high gain observer.  

A fuzzy logic, a neural network, and a genetic 
algorithm are adopted for the NRHC. In [54-56], a 
fuzzy logic is used for tuning parameters or obtaining 



International Journal of Control, Automation, and Systems Vol. 2, No. 1, March 2004 20 

a NRHC. In [55], a terminal cost is used. [57, 58] 
proposed the NRHC based on a neural network model. 
[59] uses a generic algorithm in order to generate an 
empirical dynamic model for a process. [60] adopts 
neural networks in order to reduce the high 
computation effort involved in NRHC.  

 
6. CONCLUSION 

This paper has surveyed some recent advances in 
stability and optimality for the nonlinear receding 
horizon control (NRHC) or the nonlinear model 
predictive control (NMPC). This paper excludes the 
results for linear receding horizon controls and 
concentrates only on analytical results of NRHCs, not 
including applications of NRHCs.  

The approaches with terminal conditions are 
surveyed in terms of a terminal state equality 
constraint, a terminal cost, and a terminal constraint 
set. Other approaches without terminal conditions are 
surveyed in terms of the control Lyapunov function 
and cost monotonicity. Additional approaches such as 
output feedback, fuzzy, and neural network are 
introduced.  

Some advantages and disadvantages for each 
approach were discussed. The terminal constraint 
condition is a basic approach and is easy to understand. 
Since it has some drawbacks in the feasibility of the 
optimal solution, other approaches have been 
exploited in order to obtain larger feasible regions.  

Since the NRHC is especially useful for many 
nonlinear processes that require a tight performance 
specification, this survey paper can help the 
researchers of NRHCs to perceive the current research 
trend and determine the appropriate direction for 
future researches. 
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