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Abstract. The development of nonlinear vibration formulations for beams in 
the literature can be seen to have gone through distinct phases – earlier 
continuum solutions, development of appropriate forms, extra-variational 
simplifications, debate and discussions, variationally correct formulations and 
finally applications. A review of work in each of these phases is very necessary 
in order to have a complete understanding of the process of evolution of this 
field. This paper attempts to achieve precisely this objective. 
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1. Introduction 

The study of large amplitude vibration of simply supported beams can be traced to the 
work of Kreiger (1950), wherein the governing partial differential equations were reduced 
to ordinary differential equations and the solution was obtained in terms of elliptic 
functions using a one-term approximation. Similarly, Burgreen (1951) gave the solution 
for the large amplitude vibration problems of hinged beams based on the classical 
continuum approach. Srinivasan employed the Ritz–Galerkin technique to solve the 
governing nonlinear differential equation of dynamic equilibrium for free (Srinivasan 
1965) and forced (Srinivasan 1966) vibration of simply supported beams and plates. 
Evensen (1968) extended the study for various boundary conditions using the perturbation 
method. 
 Ray & Bert (1969) carried out experimental studies to verify the analytical solutions for 
the nonlinear vibrations of simply supported beam and compared the solution schemes 
such as the Assumed Space Mode (ASM), Assumed Time Mode (ATM) and Ritz–
Galerkin methods and concluded that the latter two are better than the former. Pandalai & 
Sathyamoorthy (1973) developed modal equations for the nonlinear vibrations of beams, 
plates, rings and shells using Lagrange’s equation and highlighted the difference in the 
nature of the modal equations for beams and plates vis-á-vis rings and shells. 
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 Lou & Sikarskie (1975) employed form-function approximations to study the nonlinear 
forced vibrations of buckled beam. Rehfield (1975) used an approximate method for 
nonlinear vibration problems with material nonlinear effects for various boundary 
conditions. 
 In the context of finite element solutions, Mallett & Marcal (1968) proposed a scheme 
for writing the strain energy in a systematic way, known as ‘appropriate form’, containing 
three symmetric matrices – linear matrix K, nonlinear matrices N1 and N2, and also 
expressed equilibrium and linear incremental equations using these matrices. Rajasekaran 
& Murray (1973) in their seminal paper presented an exact procedure/expression for 
deriving these matrices (proposed by Mallett & Marcal 1968) for various elements in an 
elegant manner. Chen & Huang (1986) extended the appropriate forms to the potential 
energy due to external loads also, as the work done by the external loads depend on the 
nodal degrees of freedom in the case of large deformation problems. 
 Reddy (1979) presented a review of the formulations of the 1970s related to structural 
vibrations. Sathyamoorthy (1982) compiled the work on classical methods for the analysis 
of beams with material, geometric and other types of nonlinearities and also on finite 
element analysis of nonlinear beams under static and dynamic loads. Another survey of 
work on shear deformation theories, finite elements and buckling (Kapania & Raciti 
1989a), along with those on free, forced, linear, nonlinear vibrations and wave propagation 
etc., with reference to laminated structures (Kapania & Raciti 1989b) was reported. 
 Mei (1972, 1973) presented the finite element formulations for large amplitude 
vibrations of beams and plates. In all his work, the axial deformation was neglected and 
the average axial force was assumed to be a constant over the element length. Rao et al 
(1976) also studied the nonlinear vibrations of beams and plates and of beams with shear 
deformation and rotatory inertia. In these formulations, the axial deformation was not 
considered and the nonlinear strain-displacement relationship was linearized. Later, Raju 
et al (1976) studied the large amplitude vibration problem of beams and plates using 
Rayleigh–Ritz method by incorporating the inplane deformation as well as inertia, which 
were absent in the earlier studies, and also by retaining the equivalent linearization 
function.  
 Prathap (1977) contested the linearization procedure, inadequate interpretation of ω and 
also the conclusion made by Raju et al (1976) that ‘the inclusion of inplane terms is 
insignificant’. Prathap & Varadan (1978) studied the nonlinear vibrations of simply 
supported beams using the actual nonlinear equilibrium equations, exact nonlinear 
expression for curvature and the nonlinearity arising out of axial force. Also, they 
proposed criteria for definition of the degree of nonlinearity. 
 Later, the effect of neglect of axial displacement of a beam and of the premise to 
consider the load-displacement relationship as a linear one while deriving the equation of 
conservation of energy (Szilard 1978) has been demonstrated by Prathap (1980) using an 
‘one-term approximation’ for a simply supported beam. The infeasibility of formulating a 
Ritz-type finite element, without incorporating longitudinal degree of freedom was then 
established by Prathap & Bhashyam (1980). 
 Sarma & Varadan (1982) brought out the errors due to procedures such as equivalent 
linearization, substitution of inplane boundary conditions at element level rather than at 
system level and the use of different connotations for ω, adopted by many earlier 
formulations (Mei 1972, 1973; Rao 1976). 



Nonlinear vibration analysis of structures – beams 245

 The debate on core issues of formulations such as the neglect of longitudinal 
displacement, equivalent linearization approximation, interpretation of radian frequency ω 
and the computation of inplane force etc. with reference to the work by Bhashyam & 
Prathap (1980) and Sarma & Varadan (1982, 1983), can be seen in the publications of Mei 
(1984) and Raju & Rao (1984).  
 Later, Mei (1986) criticized the new definition of criteria for the degree of nonlinearity 
proposed by Prathap & Varadan (1978) and also questioned the validity of frequency 
solutions presented by Bhashyam & Prathap (1980) and Sarma & Varadan (1982, 1983).  
 As a sequel to the points raised by others (Mei 1984; Raju & Rao 1984; Mei 1986), 
Sarma et al (1988) presented a Rayleigh–Ritz solution incorporating the inplane 
displacement and inertia, and captured the error made in an earlier formulation (Raju et al 
1976) due to the equivalent linearization approximation. Also, they re-examined the 
Galerkin (Bhashyam and Prathap 1980), Lagrange-type (Sarma & Varadan 1983), Ritz 
(Sarma & Varadan 1984) finite element formulations and presented two mixed finite 
element formulations to critically analyse various assumptions employed earlier for the 
simply supported beam vibration problem. 
 Dumir & Bhaskar (1988) traced the errors in the nonlinear finite element formulations 
of beam and plate vibrations to the presence of a linearizing function in the strain energy 
evaluation and ascertained the magnitude of error involved due to this function.  
 Singh et al (1990a) derived frequency ratios from the equation of motion, energy 
balance equation and perturbation method along with the Ritz–Galerkin solution obtained 
from the following four possible combinations – with/without axial displacement and 
with/without linearization approximations. They observed that a formulation without axial 
displacement but with linearization and simple harmonics assumption would yield the 
same nonlinear frequencies as those of methods (such as Ritz–Galerkin, perturbation etc.) 
with axial displacement but without linearization and harmonic oscillation assumptions.  
 Subsequently, Singh et al (1990b) reported a formulation for the nonlinear free 
vibration of beams, wherein the dynamic finite element matrix equations were reduced to a 
scalar equation (using the converged mode shape), which was then solved using direct 
numerical integration and concluded that the axial displacements cannot be neglected in 
any nonlinear vibration analysis. 
 Bhashyam & Prathap (1980) proposed a Galerkin finite element method for the large 
amplitude vibration of beams while Sarma & Varadan (1983) published a Lagrange-type 
finite element formulation for the nonlinear vibration of immovably supported beams. Ritz 
type finite element formulations for the nonlinear vibration studies of classical beam 
(Sarma & Varadan 1984) and Timoshenko beam (Sarma & Varadan 1985) have also been 
reported. 
 A hybrid approach using both the finite element and perturbation procedure has been 
proposed for the vibration studies of nonlinear structures by Padovan (1980).  
 Reddy & Singh (1981) published a total potential energy based traditional element and a 
Reissner-type variational functional based mixed finite element, with u, w and Mx as 
dependent variables for the study of nonlinear vibration of beams and shallow arches, 
considering both the transverse shear and rotatory inertia effects.  
 Heyliger & Reddy (1988) presented a higher order theory with C1 element formulation 
for the static and linear/nonlinear vibration studies of rectangular beams in which they 
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explored the effects of inplane inertia and slenderness ratio on the nonlinear frequency of 
beams with various boundary conditions.  
 Kapania & Raciti (1989c) proposed a two-noded Timoshenko beam element with 10 
degrees of freedom per node to study the nonlinear vibrations of symmetrically and 
unsymmetrically laminated composite beams by employing the perturbation method.  
 Singh et al (1991) later studied the large-amplitude vibration problem of 
unsymmetrically laminated beams based on classical, first-order and higher-order 
formulations by using the numerical integration technique introduced earlier (Singh et al 
1990b). 
 Various types of solutions to the nonlinear equation of motion such as Galerkin, 
harmonic balance method and simple harmonic oscillations based method were proposed 
and analysed by Pillai & Rao (1992) while solutions by the method of multiple scales and 
ultra-spherical polynomial approximation method have been suggested by Srirangarajan 
(1994). Shi & Mei (1996) proposed a finite element time domain modal formulation for 
the large amplitude free vibration analysis of beams and plates.  

2. Distinct phases of development 

The complete development of nonlinear vibration theory of beams is presented topic-wise 
in tables 1 and 2. While table 1 presents the earlier literature with continuum solution, the 
important phase of development of appropriate forms with first and second-degree 
nonlinear matrices is given in table 2a. Various reviews covering the 1970s and 80s are 
tabulated in table 2b. 
 Modelling the nonlinear vibration problems using finite elements, albeit with a couple 
of extra-variational simplifications (table 2c), stirred the proverbial hornet’s nest. A series 
of papers on these issues, starting from 1977 is presented in table 2d. 
 Variationally correct formulations appeared in the literature from the 1980s (table 2e) 
and the applications of this area to problems such as composites etc. are presented in table 
2f. 
 
 

 
Table 1. Earlier continuum solutions. 

Type of solution Author(s) Year 
 
Elliptic functions one-term Kreiger 1950 
 approximation  
Classical continuum approach Burgreen 1951 
Ritz–Galerkin technique Srinivasan 1965, 1966 
Perturbation method Evensen 1968 
Experimental, ASM, ATM and Ray & Bert 1969 
 Ritz–Galerkin  
Lagrange’s equation Pandalai & 
  Sathyamoorthy 1973 
Form-function approximation Lou & Sikarskie 1975 
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Table 2. Distinct phases of development. 

Details Author(s) Year 
 
(a) Development of appropriate forms 

Appropriate form Mallett & Marcal 1968 
First and second degree nonlinear matrices Rajasekaran & Murray 1973 
Appropriate forms for energy Chen & Huang 1986 
 due to external loads 

(b) Review papers 

Structural vibrations Reddy 1979 
Nonlinear analysis of beams Sathyamoorthy 1982a, 1982b 
Studies on laminated beams Kapania & Raciti 1989a, 1989b 

(c) Extra-variational simplifications (EVS) 

Neglect of inplane displacement Mei 1972, 1973a, 1973b 
Quasi-linearisation Rao et al 1976a, 1976b 
Quasi-linearisation with inplane Raju et al 1976 
 displacement  

(d) Debate and discussions on EVS 

On quasi-linearisation procedure Prathap 1977 
Effect of neglect of axial displacement Prathap 1980 
Inplane displacement for Ritz type Prathap & Bhashyam 1980 
 formulation  
Errors due to various simplifications Sarma & Varadan 1982 
Discussion on EVS Mei 1984 
 Raju & Rao 1984 
Discussion on definition criteria Mei 1986 
 for nonlinearity of  
 Prathap & Varadan (1978) 
Summary of various methods Sarma et al 1988 
 and errors due to EVS  
Errors due to quasi-linearisation Dumir & Bhaskar 1988 
Debate on EVS Singh et al 1990 

(e) Variationally correct formulations 

Galerkin finite element Bhashyam & Prathap 1980  
Lagrange-type finite element Sarma & Varadan 1983 
Ritz f.e. – classical beams Sarma & Varadan 1984 
Ritz f.e. – Timoshenko beams Sarma & Varadan 1985 

(f) Applications 

Perturbation solution with finite element Padovan 1980 
Higher-order mixed finite element Reddy & Singh 1981 
Higher-order C1 element Heyliger & Reddy 1988 
Composite beam with 10 d.o.f. per node Kapania & Raciti 1989c 
Nonlinear vibrations of composite beam Singh et al 1991 
Comparison of solutions Pillai & Rao 1992 
Polynomial approximation Srirangarajan 1994 
Time-domain model Shi & Mei 1996 
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3. Conclusions 

It can be concluded that the most significant phase has been that of the development of 
appropriate forms and of variationally correct formulations and perhaps the crucial phase 
was that of debate and discussions. This study, it is hoped, will serve the purpose of 
providing a state-of-the-art overview of the nonlinear vibration theory of beams. 
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