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Abstract

Optimization and modeling techniques are the essential part of design process of

microwave filters. Space mapping is a recognized method for speeding up elec-

tromagnetic (EM) optimization, and has been applied to microwave filter design.

In the first part of this thesis, a cognition-driven formulation of space mapping

method is proposed and applied to EM-based filter optimization to increase opti-

mization efficiency and the ability to avoid being trapped in local minima. This

new technique utilizes two sets of intermediate feature space parameters, including

feature frequency parameters and ripple height parameters. The design variables

are mapped to the feature frequency parameters, which are further mapped to the

ripple height parameters. By formulating the cognition-driven optimization directly

in the feature space, our method increases optimization efficiency and the ability to

avoid being trapped in local minima. In the second part of this thesis, a multivalued

neural network is proposed to solve the non-uniqueness (multivalued) problem in

inverse modeling. Our proposed technique can be effectively applied to parameter

extraction of microwave filters. We propose a multivalued neural network inverse

modeling technique to associate a single set of electrical parameters with multiple

sets of geometrical or physical parameters. One set of geometrical or physical param-

eters is called one value of our proposed inverse model. Our proposed multivalued

neural network is structured to accommodate multiple values for the model output.

We also propose a new training error function to focus on matching each training

sample using only one value of our proposed inverse model, while other values are
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free and can be trained to match other contradictory samples. In this way, our pro-

posed multivalued neural network can learn all the training data by automatically

redirecting contradictory information into different values of the proposed inverse

model. Therefore, our proposed technique can solve the non-uniqueness problem

in a simpler and more automated way compared to existing ANN inverse model-

ing techniques. Both proposed techniques in this thesis are illustrated by several

microwave filter examples. Our proposed techniques can be used in the design and

tuning processes of microwave filters.
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Chapter 1

Introduction

1.1 Introduction

Microwave filters have been used in many types of electronic systems such as mobile

communication systems and communication satellites. For given specifications, it

takes a complicated procedure for a designer to reach the final design of a microwave

filter. The design procedure is usually characterized in five levels: 1. mathematical

approximation; 2. L, C, R or coupling matrix; 3. distributed circuits; 4. physical

dimensions; 5. optimization [1] - [3].

The last level of optimization usually relies on precise full electromagnetic (EM)

simulations of microwave filters. Direct EM optimization can take a large amount of

time and is impractical in general. Space mapping techniques have been proven to

be very effective for microwave filter optimizations [4]-[11], [26]-[43]. Existing space

mapping approaches belong to the class of surrogate-based optimization methods.

In this thesis, a cognition-driven formulation of space mapping that does not re-
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quire explicit surrogates is proposed [11]. In the first part of this thesis, the proposed

cognition-driven formulation of space mapping method is applied to EM based filter

optimization. This new technique utilizes two sets of intermediate feature space pa-

rameters, including feature frequency parameters and ripple height parameters. The

design variables are mapped to the feature frequency parameters, which are further

mapped to the ripple height parameters. By formulating the cognition-driven opti-

mization directly in the feature space, our method increases optimization efficiency

and the ability to avoid being trapped in local minima. Several examples have been

presented to verify the proposed optimization technique.

Furthermore, parameter extraction of the coupling matrix of microwave filters

is also a main topic in the last level of optimization [12]-[16]. The accuracy of

the extracted coupling parameters of microwave filters will dominate the speed of

computer-aided tuning of microwave filters. Many techniques have been proposed

to obtain coupling parameters [1]. One of the techniques is through optimization

[2], [92], [93]. Another technique is the inverse modeling technique [1], [17], [18].

Artificial neural network (ANN) inverse modeling technique in [17] is used to extract

coupling matrix of microwave filters.

In the second part of this thesis, multivalued neural network inverse modeling

technique is proposed [18]. In inverse modeling of a microwave component, the in-

puts to the model are electrical parameters such as S-parameters, and the outputs

of the model are geometrical or physical parameters. Since the analytical formula of

the inverse input-output relationship does not exist, ANN becomes a logical choice
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because it can be trained to learn from the data in inverse modeling. The main

challenge of inverse modeling is the non-uniqueness problem. This problem in ANN

inverse modeling is that different training samples with the same or very similar

input values have quite different (contradictory) output values (multivalued solu-

tions). In this part, we propose a multivalued neural network inverse modeling

technique to associate a single set of electrical parameters with multiple sets of ge-

ometrical or physical parameters. One set of geometrical or physical parameters is

called one value of our proposed inverse model. Our proposed multivalued neural

network is structured to accommodate multiple values for the model output. We

also propose a new training error function to focus on matching each training sam-

ple using only one value of our proposed inverse model, while other values are free

and can be trained to match other contradictory samples. In this way, our pro-

posed multivalued neural network can learn all the training data by automatically

redirecting contradictory information into different values of the proposed inverse

model. Therefore, our proposed technique can solve the non-uniqueness problem

in a simpler and more automated way compared to existing ANN inverse model-

ing techniques. This technique is illustrated by inverse modeling and parameter

extraction of four microwave filter examples.

1.2 List of Contributions

The main objective of this thesis is to investigate and develop advanced optimization

and inverse modeling techniques for microwave filters. Towards this objective, we
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have made several technical contributions in this thesis.

1.2.1 Cognition-Driven Formulation of Space Mapping for
Equal-Ripple Optimization of Microwave Filters [11]

In the first part of the thesis, the following contribution were made in the develop-

ment of new formulation of EM optimization for microwave filters design:

• A cognition-driven formulation of space mapping using two sets of feature pa-

rameters was proposed for equal-ripple optimization of microwave filters. The

proposed method is applied to EM-based filter optimization. By formulating

the cognition-driven optimization directly in the feature space, our method

increased optimization efficiency and the ability to avoid being trapped in

local minima.

• We formulated a robust algorithm for updating design variables using trust

region method to guarantee the convergence of the feature parameters. Us-

ing our proposed algorithm, the cognition-driven space mapping optimization

technique can achieve equal-ripple responses of microwave filters.

1.2.2 Multivalued Neural Network Inverse Modeling and
Applications to Microwave Filters [18]

In the second part of the thesis, the following significant contributions were made

for inverse modeling of microwave filters:
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• We formulated a new ANN structure, which was the multivalued neural net-

work, for inverse modeling. Our proposed multivalued neural network can

associate a single set of electrical parameters with multiple sets of geometrical

or physical parameters, therefore allowing contradictory data.

• We proposed a new training algorithm for the multivalued neural network.

Using our proposed training error function, our proposed multivalued neural

network can learn all the training data by automatically redirecting contra-

dictory information into different values of the proposed inverse model. We

accommodated the non-uniqueness (multivalued) solutions in a simpler and

more automated way compared to existing ANN inverse modeling techniques.

• We also presented the procedure of using our proposed multivalued neural net-

work inverse model in the multicircuit ANN process to increase the uniqueness

of extracted parameters of microwave filters. The multicircuit ANN process

using our proposed multivalued neural network inverse model is more efficient

than the conventional multicircuit optimization process.

1.3 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 presents a literature review of popularly used optimization techniques

and ANN inverse modeling techniques for microwave filters. An overview of classi-

cal space mapping methods such as implicit space mapping, output space mapping,
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tuning space mapping and the recently developed coarse and fine mesh space map-

ping is reviewed. Further, an overview of LBE techniques, including SVM, GP, and

ANN, is also presented. ANN inverse modeling of microwave filters is also discussed.

Chapter 3 proposes a cognition-driven formulation of space mapping that does

not require explicit surrogates. The proposed method is applied to EM based filter

optimization. The new technique utilizes two sets of intermediate feature space

parameters, including feature frequency parameters and ripple height parameters.

The design variables are mapped to the feature frequency parameters, which are

further mapped to the ripple height parameters. By formulating the cognition-

driven optimization directly in the feature space, our method increases optimization

efficiency and the ability to avoid being trapped in local minima.

Chapter 4 presents a multivalued neural network inverse modeling technique to

associate a single set of electrical parameters with multiple sets of geometrical or

physical parameters. Our proposed multivalued neural network can learn all the

training data by automatically redirecting contradictory information into different

values of the proposed inverse model. Therefore, our proposed technique can solve

the non-uniqueness problem in a simpler and more automated way compared to

existing ANN inverse modeling techniques.

Finally, Chapter 5 presents the conclusions and discussions on possible directions

for future work.
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Chapter 2

Literature Review

Microwave filters play important roles in many applications including mobile and

satellite communications, radar, electronics warfare, and remote sensing systems

operating at microwave frequencies [1]-[2]. Design optimization of microwave fil-

ters usually relies on full electromagnetic (EM) simulations. Space mapping is a

recognized method for speeding up EM optimization, and has been applied to mi-

crowave filter design [4]-[11]. Parameter extraction of microwave filters plays an

important role in computer aided tuning [1]. Inverse modeling techniques can be

used in efficient parameter extraction of microwave filters [17]-[18].

Optimization techniques of microwave circuits have been studied over several

decades [19]-[43]. Recent advances in optimization methods made the EM based

design more feasible for microwave filters [25]-[26]. The strength of the EM anal-

ysis, which includes rigorous analysis of general microwave structures, makes the

design of microwave filters reliable. However, design optimization of EM structures

often requires a massive amount of CPU time to find the optimum design space
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parameters. Space mapping is a recognized engineering optimization methodology

in the microwave area [4]-[11], [26]-[43]. Coarse models are typically empirical func-

tions or equivalent circuits, which are computationally efficient but demonstrate low

accuracy. Fine models can be provided by an EM simulator, which are accurate but

computationally intensive. SM establishes a mathematical link between the coarse

and fine models and directs the bulk of the CPU-intensive computations to the

coarse models, while preserving the accuracy from the fine models [8].

Inverse modeling method has been studied for parameter extraction of microwave

filters [17]-[18], and microwave circuit design [44]-[51]. In inverse modeling, the

electrical parameters are defined as the inputs to the model and the geometrical

or physical parameters are defined as the outputs of the model. Once the inverse

model is obtained, it can provide the geometrical parameters immediately without

iteratively evaluating the model for given electrical parameters. The formula for

the inverse problem, i.e., compute the geometrical parameters from given electrical

parameters, is difficult to find analytically. Therefore, learning-by-examples (LBE)

methodologies, such as artificial neural network (ANN), become logical choices since

the model can be trained to learn from the data of the inverse problem [17]-[18]. The

difficulty in the development of the inverse model is the lack of uniqueness in the

input-output relationship, that is, different training samples with the same or very

similar input values have quite different (contradictory) output values (multivalued

solutions).

The optimization technique and inverse modeling technique are important and
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related in microwave filter design and tuning [1]. In order to find the geometri-

cal or physical parameters from given electrical parameters, both the optimization

techniques and inverse modeling can be used to solve this inverse problem [17], [92].

2.1 Optimization of Microwave Filters

Let R(x, ω) denote the response of microwave filters under consideration. x ∈ ℜN×1

is a vector of N design variables of microwave filters and ω represents the frequency.

The original optimization of microwave filters can be formulated as

x∗ = argmin
x∈X

U (R(x, ω)) (2.1)

where X ⊆ ℜN represents the design space and U is a given objective function. U

represents the weighted error function of microwave filter response R(x, ω) and the

desired design specifications. x∗ represents the optimal design vector satisfying the

design specifications [19] - [21].

2.2 Direct EM Optimization Methods

Direct EM optimization method refers to the existing built-in optimization method

in the EM simulators. With the dramatic increase in the computer hardware per-

formance, EM simulator solves Maxwell equations for circuits and arbitrary geo-

metrical shapes. Over the last decade, advances in the technology of workstations

and computers have enabled the EM simulators to run the classical optimization
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methods on personal computers. The commonly used optimization methods are

classified into two categories, global optimization methods and local optimization

methods. Global optimization methods such as genetic algorithms [52]-[55], particle

swarm optimization [56], simulated annealing [55], find the global solution(s) of a

constrained optimization model (generally, in the presence of multiple local optima).

Global optimization methods are usually heuristic in their approach for finding the

global solution. They are referred to as evolutionary algorithms.

Local optimization methods include gradient based optimization techniques and

derivative-free methods. The most popularly used gradient based methods are quasi-

Newton method [57]-[60], conjugate gradient method [61]- [64], and sequential non-

linear programming [65], [66]. Examples of derivative-free methods are pattern

search [67]-[68], and Nelder-Mead method [69]-[70].

2.2.1 Pattern Search Method

Pattern search [67]-[68] belongs to a class of numerical optimization techniques that

does not require the gradient of the problem to be optimized. The situation where

the pattern search is useful is when the gradient for objective function is not defined

at all points.

Pattern search has two moves: exploratory move and pattern move. The ex-

ploratory move explores the local behavior and the information of the objective

function. The exploratory move is performed until there is an improvement in the

value of objective function in each coordinate direction by increasing or decreasing
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the step size. Once, the exploratory move is performed in all directions, pattern

movement is performed. The pattern move is included to move from the base point

along the base line (formed using previous iterations) to a next base point. If the

pattern move produces improvement in the value of the objective function, then we

proceed to exploratory move for the next iteration, otherwise the step size for the

exploratory move in the current iteration is reduced and the process is repeated.

2.2.2 Conjugate Gradient Method

The conjugate gradient methods [61]- [64] are simple and easy to implement, and

generally they are superior to the steepest descent method. The conjugate gradient

method is guaranteed to locate the minimum of any quadratic function of N argu-

ments in at most N iterations. For functions which are not quadratic the process

is iterative rather than N -step, and a test for convergence is required [62].

If the number N of variables is large, then the conjugate gradient methods may

be more efficient than Newton-type methods. The reason is that the latter rely on

matrix operations, whereas conjugate gradient methods only use vectors. Ignoring

sparsity, Newtons method needs O(N3) operations per iteration step, quasi-Newton

methods need O(N2), but the conjugate gradient methods only use O(N) operations

per iteration step. Similarly for storage: Newton-type methods require an N × N

matrix to be stored, while conjugate gradient methods only need a few vectors [63].
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2.2.3 Quasi-Newton Method

Quasi-Newton method is based on Newton’s method to find the stationary point

of a objective function, where the gradient is zero. Gradient methods (conjugate

gradient) assumes that the objective function can be locally approximated as a

quadratic function near its optimal point. Newton method uses both first and

second order derivatives to find the stationary point using least number of iterations

compared to any other gradient method. Newton’s method always converges to the

minimum point (for a minimizing function). However,

a) It requires the storing of N ×N Hessian matrix (N represents the number of

the design variables).

b) It is difficult to calculate the elements of the Hessian matrix directly.

c) It requires inversion of the Hessian matrix in each iteration.

To overcome this case, quasi-Newton is developed. In the quasi-Newton method,

the inverse of Hessian matrix is approximated using another matrix that is com-

puted using only the first order derivatives of the objective function. There are sev-

eral methods to approximate the Hessian matrix such as DFP (Davidson-Fletcher-

Powell) [59] and BFGS (Broyden-Fletcher-Goldfarb-Shanno) [59] [23] rank-1 and

rank-2 updates.

In general, existing EM simulation tools use the latest optimization methods for

microwave design. A frequently used approach is the use of gradient optimization to
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drive EM simulation for microwave design. These methods are mostly sequential and

evaluate the next optimization update using single-point EM evaluation to minimize

the CPU time per iteration. One such gradient optimization method available in

EM simulation tools is the direct EM optimization approach, which involves many

iterations of optimization; therefore it has to perform that many single-point EM

evaluations. Space mapping (SM) techniques have been studied to improve the

speed of EM optimizations [4]-[11], [27]-[43].

2.3 Space Mapping Optimization

Space mapping technique [4]-[11], [26]-[43] is the most popularly used surrogate

based optimization technique. SM aims to use fewest possible fine model (EM

model) evaluations by exploiting coarse models (e.g., empirical or equivalent cir-

cuits) during optimization, thereby increasing the speed of overall optimization.

Space mapping (SM) is a recognized engineering optimization paradigm consisting

of a number of efficient optimization approaches. The iterative optimization and

updating of the surrogate model (coarse model) replace the direct EM optimization

of an accurate, but computationally expensive fine model of interest. The formula-

tion of SM optimization algorithm has been comprehensively explored in the recent

years [8] and is shown in Fig. 2.1. Space mapping combines the computational

efficiency of coarse models with the accuracy of fine models. The coarse models are

typically empirical functions or equivalent circuits, which are computationally effi-

cient but the accuracy is low. The fine models can be provided by an EM simulator,
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Figure 2.1: Space mapping concept following [43]

which are accurate, but computationally intensive. The space mapping establishes

a mathematical link between the coarse and the fine models and directs the bulk

of the CPU-intensive computations to the coarse models, while preserving the ac-

curacy from the fine models. The mapped coarse model may be re-optimized to

obtain a new design solution.

2.3.1 The Space Mapping Concept

The mathematical representation of space mapping methodology presented in [8] is

recalled as follows. The coarse and fine model design parameters are denoted by xc

and xf ∈ ℜN×1 respectively. Let Rf (xf ) ∈ ℜNf×1 represent a vector of fine model
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responses, e.g., |S11| at Nf selected frequency points ω. Rf (xf ) is given by

Rf (xf ) =




Rf (xf , ω1)

Rf (xf , ω2)

.

.

Rf (xf , ωNf
)




(2.2)

Similarly, Rc ∈ ℜNf×1 represents a vector of coarse model responses. Space

mapping aims to find a mapping function PSM that relates the fine and coarse

model parameters as

xc = PSM(xf ) (2.3)

such that

Rc(PSM(xf )) ≈ Rf (xf ) (2.4)

in a region of interest.

Space mapping avoids direct EM optimization that requires us to solve (2.1) to

find optimal design parameter x∗
f . Let x̃f be a good estimate of x∗

f and is given by

x̃f = P−1
SM(x∗

c) (2.5)

where x∗
c is the result of coarse model optimization.

Space mapping algorithms initially optimize the coarse model to obtain the
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Figure 2.2: Mathematical representation of space mapping following [8]

optimal design x∗
c . Subsequently, a mapped solution is found by minimizing the

error between the fine model response and the coarse model response defined by

PSM(xf ) = arg min
x∈Xc

‖Rc(x)−Rf (xf )‖ (2.6)

where Xc is the coarse model space. Once the mapping parameters are extracted,

Rc(PSM(xf )) is optimized to find the solution of the optimization problem defined in

(2.1). The surrogate model in this scenario is the coarse model along with mapping

parameter PSM , i.e., Rc(PSM(xf )). Thus, the optimization problem is rewritten as

x∗
f = arg min

xf∈X
U (Rc(PSM(xf ))) (2.7)

where xf may be close to x∗
f if Rc is close enough to Rf . x∗

f obtained from (2.7)

is an approximation of fine model optimum. Fig. 2.2 shows the mathematical

representation of SM methodology presented in [8].
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In the past decade, several advances in space mapping such as aggressive space

mapping [5] - [7], implicit space mapping (ISM) [27][28], output space mapping

(OSM) [29] - [31], space mapping interpolating surrogates (SMISs) [30], inverse

space mapping [32] - [33], have proven successful for difficult optimization problems

of microwave filters.

2.3.2 Input Space Mapping

Input space mapping [8], [10], [43] aims at reducing misalignment between fine and

coarse model by using an affine variable transformation based on the available fine

model data. Input space mapping is also called original space mapping wherein

Equation (2.3) is represented as

xc = PSM(xf ) = BIxf + cI (2.8)

where matricesBI ∈ ℜN×N and cI ∈ ℜN×1 are obtained using parameter extraction

procedure in (2.6).

2.3.3 Implicit Space Mapping

Implicit space mapping (ISM) [27]-[29] explores the flexibility of the preassigned

parameter such as dielectric constant, substrate height in the design optimization

process. Let xaux represent the preassigned parameters (auxiliary parameters), then

the coarse model response vector is Rc(xc,xaux). Therefore, implicit space mapping
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shown in Fig. 2.3 aims at establishing an implicit mapping QSM between the spaces

xf , xc and xaux, QSM(xf ,xc,xaux) = 0 such that Rf (xf ) ≈ Rc(xc,xaux) over a

region in a parameter space. Implicit mapping ensures to produce a good match

between the coarse model and fine model in the first iteration when the input space

mapping alone cannot replicate a good match.

2.3.4 Output Space Mapping

Output space mapping technique has been proposed [29]-[31]. Output space map-

ping enhances the surrogate model by a correction term (residual) ∆R which is

the difference between the fine model and the original space mapping response at

the current iteration so that a perfect match between these two models is ensured

(zero-order consistency condition [72]-[74]), i.e.,

∆R = Rf (xf )−Rc(PSM(xf )) (2.9)
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The surrogate model (coarse model along with mapping function) is further en-

hanced by using the Jacobian of the ∆R (to satisfy first order consistency [72]-[74]

between the surrogate model and fine model at the current design). If the misalign-

ment between the fine and coarse models is not significant, SM-based optimization

algorithms typically provide excellent results after only a few evaluations of the fine

model.

2.3.5 Tuning Space Mapping

Tuning space mapping (TSM) [34]-[37] is a special type of SM technique that caters

to tuning of EM structures. The surrogate model is replaced by a tuning model

which introduces circuit components into the fine model structure. The tuning

model is optimized within a circuit simulator. With the optimal tuning parameters,

thus obtained, they are mapped or transformed into the design variables using fast

space-mapping surrogate or analytical formulas if available. Tuning models require a

significant engineering expertise for a successful implementation of the optimization

process using TSM approach.

2.3.6 Coarse and Fine Mesh Space Mapping

In coarse and fine mesh SM method [39]-[42], the fine model uses a fine mesh for

EM simulation and the coarse model uses coarse mesh for EM simulation. The

accuracy of the fine model is achieved by the mesh convergence process. The EM

simulation and mesh refinement are performed iteratively until the simulation results
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between successive iterations converge. The fine mesh simulation is accurate yet

computationally expensive. The coarse model uses a coarse mesh EM simulation

which only needs local meshing in EM simulation without the mesh convergence

process. Also, the coarse model is computationally fast but less accurate. This

method is useful when equivalent coarse model for the EM problem is not available,

and when a conventional space mapping is not applicable.

Space mapping techniques aim to use fewest possible fine model (EM model)

evaluations by exploiting coarse models (e.g., empirical or equivalent circuits) during

optimization, thereby increasing the speed of overall optimization. Recent advances

in space mapping such as three level output space mapping [31], constrained param-

eter extraction using implicit space mapping [75], space mapping optimization using

EM-based adjoint sensitivity [76], and fast EM modeling using shape-preserving re-

sponse prediction [77].

2.4 Inverse Modeling of Microwave Filters

2.4.1 Forward Model

In the forward problem of a microwave filter, the computation is from geometrical or

physical parameters to the electrical parameters. Let p and q represent the number

of inputs and outputs of the forward model. Let xF be a p-vector containing the

inputs which includes geometrical or physical parameters of a microwave component,

and yF be a q-vector containing the outputs of the forward model which includes

electrical parameters of a microwave filter. The forward modeling problem can then
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(a)

(b)

Figure 2.4: Example illustrating forward and inverse models. (a) Forward model.
(b) Inverse model. The inputs xF 3 and xF 4 (output yF 2 and yF 3) of the forward
model are swapped to the outputs (inputs) of the inverse model, respectively.
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be expressed as

yF = fFWD(xF ) (2.10)

where xF = [xF 1 xF 2 · · · xF p]
T , yF = [yF 1 yF 2 · · · yF q]

T , and fFWD defines the

input and output relationship of the forward problem of a microwave filter [17]. An

example of a forward model and its corresponding inverse model are shown in Fig.

2.4. Note that two outputs and two inputs of the forward model are swapped to

the input and output of the inverse model, respectively. In general, some or all of

them can be swapped from input to output or vice versa.

2.4.2 Inverse Model

Let x be defined as a q-vector containing the inputs to the inverse model, which

usually includes the electrical parameters of a microwave filter. y is defined as the

outputs of the inverse model, which usually includes the geometrical or physical

parameters of a microwave filter..

y = f−1
FWD(x) (2.11)

where f−1
FWD represents the input-output relationship of the inverse problem. For

the example, in Fig. 2.4, the inverse model is formulated as

x = [x1 x2 x3 x4]
T = [xF

1 xF
2 yF2 yF3 ]

T

y = [y1 y2 y3]
T = [yF1 xF

3 xF
4 ]

T

(2.12)

The inverse model can be trained with the data. Usually data are generated by EM

solvers originally in a forward way.
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The inverse problem is necessary to be addressed for the purposes of microwave

filter tuning. The inverse problem is the situation where the information is processed

in the reverse direction in order to find the geometrical/physical parameters for given

values of electrical parameters. There are usually two types of method to solve the

inverse problem, i.e., the optimization method and inverse modeling method.

2.5 Optimization Method for Inverse Problems of

Microwave Filters

The optimization method for inverse problems is to apply the optimization method

on the forward model for design, modeling, and diagnosis of microwave filters [91],

[92], [93]. This method is to find the solution of geometrical parameters or coupling

parameters of microwave filters for given S-parameters (measurement data) as the

target. It is to compare the target S-parameters (measurement data) to the S-

parameters from a model at many frequency samples. A cost function can be defined

as the difference between the target S-parameters and the S-parameters from the

model at those frequency samples. Then an optimization method is applied to

change geometrical or coupling parameters iteratively to reduce this cost function,

i.e., to match the target S-parameters using the S-parameters from the model [1].

One of the difficulty of the optimization method for inverse problems is the non-

uniqueness of the solution (geometrical parameters or coupling parameters). To

improve the uniqueness, the multcircuit optimization methods are proposed [92],

[93].
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An enhanced multicircuit optimization approach for identification of microwave

filter parameters has been presented in [93]. The approach is based on l1 norm

optimization [92]. It strives to force the modeled response to approximate measured

response and at the same time minimize the difference of parameter values between

different circuits. The proposed method can not only achieve an excellent match

between the measured and the modeled responses, but also enhance the uniqueness

of the identified parameters. In this technique, the microwave filter which we solve

the inverse problem for is taken as the 1st circuit, and then one of the physical

parameters is adjusted to obtain the 2nd circuit. Similarly, we adjust a physical

parameter of the jth circuit to obtain the (j+1)th one, j = 1, 2, · · · , Nc−1. So that

we can get Nc circuits. Let x
j
F be defined as the physical parameters of jth circuit.

Let XF represent a matrix which contains all xj
F , i.e., XF = [x1

F x2
F · · · xNc

F ]T .

Let fm(x
j
F ) represent the measured/simulated response of the jth circuit and

fFWD(x
j
F ) represent the jth response calculated from the approximate model.

The multi-circuit optimization method for parameter extraction can be formu-

lated as

minimize
XF

(
Nc∑

j=1

|fFWD(x
j
F )− fm(x

j
F )|+

Nc−1∑

j=1

|αj(xj+1
F − x

j
F )|

)
(2.13)

where αj represents the appropriate weighting factors for the parameters of both

jth circuit and the (j + 1)th circuit. XF represents a matrix which contains all

x
j
F , i.e., XF = [x1

F x2
F · · · xF

Nc ]T . The optimization for parameter extraction

in (2.13) is to find an set of physical parameters x
j
F , j = 1 , 2, · · ·, Nc, such
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that the modeled responses fFWD(x
j
F ) approximate measured responses fm(x

j
F )

and at the same time the difference of parameter values between different circuits

are minimized.

The first part of the objective function aims at matching the calculated responses

of all circuit models with their corresponding measured/simulated responses. The

second part is added to penalize any differences between x
j
F and x

j+1
F so that after

optimization most physical parameters of xj
F and x

j+1
F are almost the same except

for those affected by the adjustment. In this way, the uniqueness of the optimal

solution can be improved. This optimization approach can improve the uniqueness

of the filter parameters in parameter identification process of microwave filters.

2.6 Learning-By-Examples (LBE) Methodologies

Techniques

In inverse modeling of microwave filters, the electrical parameters are defined as

the inputs to the model and the geometrical or physical parameters are defined as

the outputs of the model. Once the inverse model is obtained, it can provide the

geometrical parameters immediately without iteratively evaluating the model for

given electrical parameters.

Several works have been done in inverse modeling. In the direct ANN inverse

modeling technique [44], an ANN model is trained using data obtained by swapping

the input and output data from the forward problem. In [45] - [47], inverse surrogate

modeling is used for expedited geometry scaling of compact microwave passives.
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Figure 2.5: Illustration of LBE-based techniques

In [48] and [49], inverse modeling is used for rapid EM-driven antenna dimension

scaling. In [50], ANN inverse modeling is applied in a microwave sensor which

is used to determine the proportion of fluids in a pipeline. In [51], ANN inverse

modeling is used in transmitarray antenna design.

The inverse modeling method is much faster than the conventional iterative

optimization process, and can afford to be used in repetitive designs or parameter

extraction process. However, the analytical function or formula of the inverse model

is difficult to obtain. Therefore, learning-by-examples (LBE) techniques have been

used in learning the relationship between inputs and outputs in the inverse problem.

There is a large number of problems in microwave engineering that require a

fast response or in which the input-output relationship is not a-priori known or

cannot be defined due to the complexity of the scenario at hand. These issues

have induced researchers toward the development and application of Learning-by-

Examples (LBE) techniques thanks to their extremely high computational efficiency
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and to their capability to emulate the behavior of complex systems on the basis of

a set of collected examples [94]. The principal LBE techniques applied to EM

engineering problems are the artificial neural network (ANN), the support vector

machine (SVM), and the gaussian processes (GP).

The training of a LBE-based inverse modeling technique, aimed at building the

inverse model f−1
FWD(x) mapping the input to the output space and at emulating the

behavior of a real system, is conducted offline and before using the LBE algorithm

for solving (online) the problem of interest during the testing phase. Fig. 2.5 shows

a illustration of the LBE-based modeling techniques. For given training samples and

selected LBE technique, LBE-based modeling technique is to define the estimation

function f−1
FWD(x), which represents the inverse behavior of the real system (training

samples) in order to determine the response for a specific input x during test.

2.6.1 Support Vector Machine (SVM)

The SVM-based procedures allow to find a trade-off between the capability of learn-

ing from the training samples and the complexity of the surrogate model [95]. As

a matter of fact, SVM are built on a solid theoretical framework, the statistical

learning theory, in which the definition of the control parameters is formulated as

a quadratic optimization problem ensuring a global optimum [96]. Moreover, the

resulting model turns out being sparse, since only training samples associated to

non-vanishing coefficients (i.e. the so-called ’support vectors’) are exploited to make

predictions, thus controlling the model complexity and avoiding overfitting [94].
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Figure 2.6: Illustration of the SVM technique.

In the SVM technique, the estimation function is given by

f−1
FWD(x) = a · φ(x) + b (2.14)

which represents a hyperplane, a represents the unknown normal vector and b

represents unknown bias coefficients. φ(x) is a nonlinear function mapping original

input x to a higher dimensional space. Fig. 2.6 shows an illustration of the SVM

technique.

2.6.2 Gaussian Processes (GP)

A Gaussian process is a generalization of the Gaussian probability distribution.

Whereas a probability distribution describes random variables which are scalars or

vectors (for multivariate distributions), a stochastic process governs the properties

of functions [97]. The GP techniques can build surrogate models which provide the
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approximation error (i.e. a value of uncertainty/confidentiality) of the predictions

over the whole input space without the need of testing samples [94][97].

2.6.3 Artificial Neural Network (ANN)

In recent years, neural network or artificial neural network (ANN) techniques have

been recognized as useful alternatives to conventional approaches in microwave op-

timization and modeling [78]-[90]. ANNs can be used to develop new models or

to enhance the accuracy of existing models. They learn device data through an

automated training process, and the trained neural networks are then used as fast

and accurate models for efficient high-level circuit and system design. These models

have the ability to capture multidimensional arbitrary nonlinear relationships. The

theoretical basis of neural networks is based on the universal approximation theory

[98], which states that a neural network with at least one hidden layer can approx-

imate any nonlinear continuous multidimensional function to any desired accuracy.

This makes neural networks a useful choice for device modeling where a mathemati-

cal model is not available. The evaluation from input to output of a neural network

model is also very fast. Fig. 2.7 shows a three-layer ANN structure for inverse

modeling.

2.7 ANN Inverse Modeling of Microwave Filters

An artificial neural network trained to model microwave filter problems can be called

the forward model where the model inputs are physical or geometrical parameters
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Figure 2.7: Illustration of a three-layer ANN structure.

and outputs are electrical parameters. For design purposes, the information is

often processed in the reverse direction in order to find the geometrical/physical

parameters for given values of electrical parameters, which is called the inverse

problem.

2.7.1 Direct ANN Inverse Modeling

The formula for the inverse problem, i.e., compute the geometrical parameters from

given electrical parameters, is difficult to find analytically. Therefore, the artificial

neural network becomes a logical choice since it can be trained to learn from the

data of the inverse problem. We define the input neurons of a neural network to be

the electrical parameters of the modeling problem and the output neurons as the
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geometrical parameters. Training data for the neural network inverse model can be

obtained simply by swapping the input and output data used to train the forward

model. This method is called the direct inverse modeling and an example of this

approach is [44]. Once training is completed, the direct inverse model can provide

inverse solutions immediately unlike the optimization method where repetitive for-

ward model evaluations are required. Therefore, the direct inverse model is faster

than the optimization method using either the EM or the neural network forward

model.

Even though the inverse modeling technique is much faster in the design process

or parameter extraction process, the model is not easy to be trained well in many

practical situations. It is because of the non-uniqueness problem of the inverse input-

output relationship. The non-uniqueness problem means that different training

samples with the same input values have contradictory output values (multivalued

solutions). An even more challenging case is that different samples with similar but

not identical input values have much different output values. This will cause the

ambiguity whether these samples are contradictory or not. Since it is not possible

to train an ANN model to match contradictory output values simultaneously for the

same input values, the training error will stay large and the model accuracy will be

low. The multivalued problem in hysteresis modeling has been studied in [99] from

ANN point of view. The one-input multivalued data with hysteresis phenomena

was represented by introducing a new parameter to the inputs of the model so

that the one-input multivalued data becomes two-input single valued data. The

non-uniqueness (multivalued) problem was addressed in [17] in microwave area.
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2.7.2 Neural Network Inverse Modeling Technique in [17]

In the neural network inverse modeling technique [17], the data containing contra-

dictory samples are divided into groups according to derivative information using

a neural network forward model such that individual groups do not have the prob-

lem of contradictory data. Multiple inverse models are built based on divided data

groups, and are then combined to form a complete model. This technique can be

summarized as follows:

Step 1: Define the inputs and outputs of the model. Generate data using simu-

lator or measurement. Swap the input and output data to obtain data for training

inverse model. Train and test the inverse model. If the model accuracy is satisfied,

then stop. Results obtained here is the direct ANN inverse model.

Step 2: Segment the training data into smaller sections. If there have been

several consecutive iterations between Step 2 and Step 5, then go to Step 6.

Step 3: Train and test models individually with segmented data.

Step 4: If the accuracy of all the segmented models in Step 3 is satisfied, stop.

Else for the segments that have not reached accuracy requirements, proceed to the

next steps.

Step 5: Check for multivalued solutions in models training data. If none are

found, then perform further segmentation by going to Step 2.

Step 6: Train a neural network forward model.
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Step 7: Using the adjoint neural network of the forward model, divide the train-

ing data according to derivative criteria.

Step 8: With the divided data, train necessary sub-models, for example, two

inverse sub-models. Optionally obtain two competitively trained inverse sub-models

and two forward sub-models.

Step 9: Combine all the sub-models that have been trained in Step 8. Test the

combined inverse sub-models. If the test accuracy is achieved, then stop. Else go to

Step 7 for further division of data according to derivative information in different

dimensions, or if all the dimensions are exhausted, go to Step 2.

2.8 Summary

In this chapter, a literature review of popularly used optimization techniques and

ANN inverse modeling techniques for microwave filters has been presented. An

overview of classical space mapping methods such as implicit space mapping, output

space mapping, tuning space mapping and the recently developed coarse and fine

mesh space mapping is reviewed. Further, an overview of LBE techniques, including

SVM, GP, and ANN, is also presented. ANN inverse modeling of microwave filters

is also discussed.
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Chapter 3

Cognition-Driven Formulation of
Space Mapping for Equal-Ripple
Optimization of Microwave Filters

Space mapping is a recognized method for speeding up electromagnetic (EM) op-

timization. Existing space mapping approaches belong to the class of surrogate-

based optimization methods. This chapter proposes a cognition-driven formulation

of space mapping that does not require explicit surrogates. The proposed method

is applied to EM based filter optimization. The new technique utilizes two sets of

intermediate feature space parameters, including feature frequency parameters and

ripple height parameters. The design variables are mapped to the feature frequency

parameters, which are further mapped to the ripple height parameters. By formu-

lating the cognition-driven optimization directly in the feature space, our method

increases optimization efficiency and the ability to avoid being trapped in local

minima. This technique is illustrated by two microwave filter examples.
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3.1 Introduction

Space mapping is a recognized engineering optimization methodology in the mi-

crowave area [4]-[11], [26]-[43]. The space mapping concept combines the computa-

tional efficiency of coarse models with the accuracy of fine models [4]. Coarse models

are typically empirical functions or equivalent circuits, which are computationally

efficient but the accuracy is low. Fine models can be provided by an EM simula-

tor, which is accurate, but computationally intensive. Space mapping establishes a

mathematical link between the coarse and fine models and directs the bulk of the

CPU-intensive computations to the coarse models, while preserving the accuracy

from the fine models [43]. Recent progress has focused on several areas, such as

a recent review points towards a cognition interpretation of space mapping [100],

implicit space mapping [27], [28], output space mapping [29], [31], neural space

mapping [87]-[90], generalized space mapping [102], tuning space mapping [36]-[37],

portable space mapping for efficient modeling [103], inverse space mapping [32] -

[33], shape-preserving response prediction [104], parallel space mapping [10] and

zero-pole space mapping [105]. A software implementation of space mapping such

as the SMF framework with applications such as antenna design have also been

described in the literature [106].

In practical cases, equivalent circuit coarse models are not always available [40].

Some effort has been focused on this situation. In [107], to build a coarse model for

waveguide filters, a small number of accessible modes in the method of moments

are considered to obtain a faster simulation at the expense of solution accuracy.
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In the work of [39]-[42], coarse and fine mesh EM simulations are used to enable

space mapping EM optimization. Sensitivity information from EM simulations has

been used to increase the effectiveness of space mapping [41], [108]-[109]. The

convergence speed in this case is affected by the difference between fine and coarse

mesh EM simulations, and the continuity of the coarse mesh EM response w.r.t

design variables.

The technique in this chapter is a significant advance over the work of [39], in

an effort to address the challenge of space mapping when explicit equivalent circuit

coarse models are not available. We exploit the concept of feature parameters to

assist the space mapping, as opposed to use of coarse-mesh EM in [39]. Several

recent works have investigated possible feature parameters in model responses. In

[2], using the differences between return loss and transmission loss at maxima in the

passband and minima in the stopband as the objective function, the coefficients of

the characteristic polynomial for a filter are optimized to reach equiripple passband

and stopband responses. Theories for the synthesis of multiple coupled resonator

filters go back many years [110]-[111], and zeros and poles of filter transfer functions

are used as feature parameters for optimization in [105] and [112]. In [113]-[116],

feature parameters of filter responses are used for SIW filter tuning and statistical

analysis of microwave structures. In [117], the response features are utilized to

develop variable-fidelity feature-based modeling.

This chapter aims to explore the use of intermediate feature space parameters in

SM. We propose a cognition-driven formulation of space mapping for equal-ripple
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optimization of microwave filters. It is suitable for EM-based design of Chebyshev-

and elliptic-type responses. The proposed SM can proceed with neither explicit

coarse models nor explicit surrogate models. In our method, the intermediate fea-

ture space parameters, including the feature frequency parameters and ripple height

parameters, are used to set up two new kinds of space mapping. The design vari-

ables are mapped to feature frequency parameters, which are further mapped to the

ripple height parameters, thus the concept of SM in our optimization. By formulat-

ing the cognition-driven optimization directly in the feature space, our method can

increase optimization efficiency and ability to avoid being trapped in local minima.

This technique is illustrated by two microwave bandpass filter examples.

We think of our technique as “cognitive” [100] in the sense that a meaningful

coarse or surrogate model is implied by the engineers intuition and experience.

3.2 Original Optimization Problem

Let R(x, ω) denote the response corresponding to a vector of design variables x and

frequency ω. The original optimization problem is formulated as follows

x∗= argmin
x

U(R(x, ω)) (3.1)

where U is a suitable objective function, typically minimax objective function [19],

which represents the error function of R(x, ω) with respect to the design specifica-

tions; x∗ is the optimal design to be found.

The convergence of optimization is efficient when the objective functions are
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Figure 3.1: The optimization of the four-pole waveguide filter: (a), (c), and (e)
depicts responses during quasi-Newton optimization iterations , where only 3 poles
are forced to contribute passband response: (a) Initial, (c) Iteration 50, (e) Iteration
300; Subfigures (b), (d), and (f) depicts proposed cognition-driven space mapping
iterations. (d) proposed method adjusts the frequency locations of reflection zeros to
the passband in the first stage, (f) then adjusts the frequency locations of reflection
zeros according to the ripple height parameters. One iteration of our proposed
method includes multiple EM simulations in parallel. The total computation time
for one iteration in our proposed method is only incrementally more than that of a
single EM simulation in one quasi-Newton optimization iteration.
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relatively smooth and/or the initial values are of good quality. However, when

the objective functions contain traps of local minima and the initial values are not

within the neighborhood of a good solution, gradient-based optimization may easily

be trapped into local solutions. An example is the filter design shown in Fig. 3.1(a),

3.1(c), 3.1(e). As shown in the figures, because the reflection zeros of the 4-pole

filters are not all within the specification range, the optimization process will force

only 3 poles to contribute to the filter passband response, while the remaining 1 pole

is excluded from helping the passband response. Suitable optimization techniques,

such as non-gradient based methods, may help alleviate some of the above mentioned

problems, usually at the cost of longer CPU time. In this chapter, we explore an

efficient approach to solve the problem using feature parameters and formulations

inspired by human design intuition. The direct optimization problem is changed

into a different optimization problem in feature space. Because of this change, our

method takes only 2 iteration to achieve a optimization result in feature space shown

in Fig. 3.1(f). Compared to the result obtained using 300 quasi-Newton iterations

in direct optimization method shown in Fig. 3.1(e), our method can achieve the

same purpose of filter design.
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3.3 Proposed Space Mapping Technique for Mi-

crowave Optimization

3.3.1 Feature Space Parameters

Our cognition-driven approach is motivated by the intuitive (cognitive) design pro-

cess of the experienced filter designer. The designer would firstly adjust the fre-

quency locations of reflection zeros relative to the passband, rather than trying

to push the S-parameter values in the initial design stage. In sub-sequent design

stages, the designer would adjust the ripple height using the fact that making two

frequency locations of reflection zeros closer (further apart) will reduce (increase)

the height of the passband ripple in the frequency response curve. This process

is illustrated in Fig. 3.1(b), 3.1(d), and 3.1(f). By adopting such a concept, we

reformulate the design optimization by introducing new feature parameters for the

design, i.e., we define a new feature parameter space, called the feature frequency

space as follows.

For an equal-ripple bandpass filter, the filter response curve (e.g., S11 versus fre-

quency) has several minima which are referred to as feature frequencies, and several

maximums which are referred to as ripples. The feature frequencies correspond to

the reflection zeros at which the filter has maximum transmission. We propose to

use feature frequencies as feature space parameters for space mapping. For example,

Fig. 3.2(a) shows a four-pole waveguide filter, and Fig. 3.2 (b) shows S11 in dB of

this filter, where the feature frequencies f = [f1 f2 f3 f4]
T are important features

of the S11 response curve and are used by our technique as intermediate feature
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space for a new formulation of space mapping. We perform space mapping between

physical/geometrical design variables x (i.e., the original optimization variables)

and the feature frequency parameters f .

The maximum values of S11 in dB between these feature frequency points are

also important features of the S11 response curve and are represented by a new set

of feature parameters called ripple height parameters t = [t1 t2 t3]
T similar to that

used in [113][116].

In our proposed formulation of space mapping, we obtain the feature frequency

parameters f = [f1 f2 f3 fM ]T and the ripple parameters t = [t1 t2 tM−1]
T from

the results of an EM simulation, where Mf represents the number of poles of the

filter.

At the beginning of our proposed method, we generate multiple sample points

with star distribution around the current solution point x(k) in the kth iteration

of space mapping. We perturb x(k) twice along each dimension, once towards the

positive direction, and once towards the negative direction. In this way, we find 2N

points of response, where N is the number of design variables. Let x1,x2, ...,x2N+1

represent the 2N + 1 points of the star distribution with x1 as the center, i.e.,

x1 = x(k), and the remaining 2N points in the neighborhood of the center. When the

optimization process moves to the next iteration, the center of the star distribution

moves from x(k) to x(k+1). We perform EM simulations at all the 2N+1 data points

to obtain the responses R(xi, ω) at xi, using 2N +1 processors in parallel [10], and

subsequently obtain fi and ti, for i = 1, 2, · · · , 2N + 1. In this way, the basic data
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available in the kth iteration includes the feature frequency parameters f (k) and

the ripple height parameters t(k) , which equal f1 and t1, respectively. Because

our algorithm uses parallel computation to perform the 2N + 1 EM simulations

simultaneously, the total computation time for the 2N+1 EM simulations is similar

to (or only incrementally more than) that of a single EM simulation.

3.3.2 Mapping from f Space to x Space

With this basic data, we can build the mapping F from the design variables x =

[x1 x2 · · · xN ]
T to the feature frequency parameters f as follows

f = F (x) (3.2a)

A = ∂F (x)/∂x (3.2b)

A is the Jacobian matrix of F . We evaluate the A matrix using the EM solutions

over the 2N + 1 star distribution points as

[A]m,n = [Fm(x+∆xn)− Fm(x−∆xn)]/2∆xn,

m = 1, 2, · · · ,Mf ; n = 1, 2, · · · , N
(3.3)

where Fm is the mth element of F , and ∆xn is the perturbation of xn in the star

distribution. ∆xn is defined as a vector containing zero everywhere except the nth

element, which is ∆xn, i.e.,

∆xn = [ 0 · · ·
(n)

∆xn · · · 0 ]T , n = 1, 2, · · · , N (3.4)

42



(a)

10.7 10.8 10.9 11 11.1 11.2 11.3−80

−60

−40

−20

0

Frequency (GHz)

|S
11

| i
n 

dB

f1 f2 f3 f4

t1 t2
t3

(b)

Figure 3.2: The four-pole waveguide filter. (a) the simulation structure, (b) the
proposed feature parameters t and f in the filter response.
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Compared to the relationship between the objective function and x space in the

direct optimization problem, the mapping from f space to x space is more linear

and valid in a larger range. If the mapping from f space to x space is not linear in

a given range, our proposed trust region method will shrink the trust radius such

that the linear mapping is still valid.

We incorporate the trust region mechanism [118] into our formulation of opti-

mization. When this mapping F is built, we can solve for the step s(k) in the kth

iteration by

s(k) = arg min
‖s‖≤δ(k)

∥∥∥f (k)
d − f (k) −A(k)s

∥∥∥ (3.5)

where δ(k) is the trust radius, f
(k)
d represents the desired frequency vector and A(k)

is the Jacobian matrix of F in the kth iteration.

3.3.3 Stage 1: Adjustment of Locations of Feature Frequen-
cies

In the 1st stage, the passband specified for the filter is divided into (Mf − 1) equal

parts. The desired feature frequency parameters f 1
d in the first stage are designated

as

f 1
d = [ fL fL + fH−fL

Mf−1
· · · fL + fH−fL

Mf−1
(Mf − 2) fH ]T (3.6)

where fL and fH mean the lower and higher frequency edge of the filter passband,

respectively. Both fL and fH are constants determined a priori according to the

desired filter passband. Now we can calculate s(k) by solving Equ. 3.5 using f
(k)
d =

f 1
d for the first stage. Once s(k) is determined, we generate 2N + 1 sample points
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with star distribution in parallel around the new center (x(k) + s(k)), and perform

these 2N+1 EM simulations in parallel. The feature frequency parameters f
(k)
s and

the ripple height parameters t
(k)
s are determined at (x(k) + s(k)). Then we calculate

the adjustment index r for the trust radius as part of the trust region procedure. If

the dimensions of feature space parameters change, r is set to be −1. Otherwise, r

can be obtained by

r =
U1(f

(k))− U1(f
(k)
s )

U1(f (k))− U1(f (k) +A(k)s(k))
(3.7)

where U1 is the objective function for the first stage defined as

U1(f) =
∥∥f 1

d − f
∥∥ (3.8)

The stopping criterion for the first stage is shown as follows

∣∣∣f (k)
1 − fL

∣∣∣+
∣∣∣f (k)

Mf
− fH

∣∣∣ ≤ ε1 (3.9)

where ε1 is a user-defined threshold for the first stage. By doing this, all the feature

frequency points will move to the passband and f will have approximately equal

distance between each two adjacent feature frequency points. Therefore, the first

stage helps to avoid being trapped in a local minimum.
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3.3.4 Stage 2: Mapping from t Space to f Space and Ad-
justment of Ripple Height

In the second stage, we perform the second kind of mapping, i.e., from the feature

frequency parameters to the ripple height parameters as follows

B(k)(f
(k)
d − f (k)) + c(k) = ta − t(k) (3.10)

where ta represents the desired ripple height parameters; and B(k) and c(k) are

mapping coefficients between the f and t spaces. To find the optimal filter solution,

the ripples should be equal, which means every element of t(k+1) should be the same.

Let t be defined as the average value of t(k), i.e.,

t =
1

Mf − 1

Mf−1∑

i=1

ti (3.11)

To make every element of ta equal, we set

ta = [ t t · · · t ]T . (3.12)

By doing this, we translate optimization problem (3.1) into the t space with a

new criterion, which is that the variance V ar(t(k)) of t(k) is minimized to be smaller

than a user-defined threshold ε2

V ar(t(k)) =
1

Mf − 1

Mf−1∑

t=1

(ti − t̄)2 ≤ ε2 (3.13)

When this new criterion is reached, the optimization process stops. If not, we

determine the mapping between the t space and the f space. To do this, we firstly
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determine the matrix B(k) and vector c(k) by the following training process

(B(k), c(k)) = arg min
(B,c)

εt(B, c) (3.14)

where the training error function is defined as

εt (B, c) =
2N+1∑

i=2

‖B(fi − f1) + c− (ti − t1)‖ (3.15)

After B(k) and c(k) are found from (3.14) and (3.15), the mapping between the

t and f spaces is determined. We will use the mapped f to deduce the desired

value of the f vector, for the feature parameters in the f space. We introduce a

new vector ∆f = [ ∆f1 ∆f2 · · · ∆fMf
]T , which satisfies

f
(k)
d = f (k) +∆f (3.16)

where f
(k)
d represents the desired frequency vector and f (k) represents the current

actual frequency parameters. In order to find f
(k)
d in the second stage, we need to

solve for ∆f . After the first stage, we assume that (3.6) is satisfied. Therefore, any

changes on ∆f1 and ∆fMf
will influence the passband. We need to refine the values

of ∆f1 and ∆fMf
according to R(x(k), ω). Firstly we find two frequency points fl

and fh in the EM responses which can satisfy

fl = min{ωj|R(x(k), ωj) ≤ t < R(x(k), ωj−1)} (3.17a)

fh = max{ωj|R(x(k), ωj) ≤ t < R(x(k), ωj+1)} (3.17b)

with j = 1, 2, · · · , Nf , and Nf is the number of frequency points per EM simulation.
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These two frequencies, fl and fh, approximately representing the lower and upper

frequencies of the current frequency band are compared with the desired lower and

upper frequencies fL and fH . Then ∆f1 and ∆fMf
are obtained by solving

∆f1 = fL − fl (3.18a)

∆fMf
= fH − fh (3.18b)

The equations (3.17) and (3.18) try to refine the passband location. Then we regard

∆f1 and ∆fMf
as constant value and obtain ∆f by solving

∆f = arg min
∆f2,··· ,∆fMf−1

∥∥∥∥ta − t(k) −B(k)[ ∆f1 ∆f2 · · · ∆fMf−1 ∆fMf
]T − c(k)

∥∥∥∥
(3.19)

Using (3.16), f
(k)
d can be obtained from ∆f .

Next, we perform space mapping from the f space to the x space by solving

(3.5). Once s(k) is determined, we perform 2N + 1 EM simulations using the star

distribution in parallel around the new center (x(k)+s(k)), and subsequently we can

get the feature frequency parameters f
(k)
s and the ripple height parameters t

(k)
s at

(x(k) + s(k)).

We calculate the adjustment index r for the trust radius. If the dimensions of

feature space parameters change, r is set to be −1. Otherwise, r can be obtained

by

r =
U2(t

(k))− U2(t
(k)
s )

U2(t(k))− U2(t(k) +B(k)A(k)s(k) + c)
(3.20)
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where U2 is defined as

U2(t) = V ar(t) (3.21)

Notice that the computation for trust region parameters in Stage 2 (described by

(3.20) and (3.21)) are different from that in Stage 1 (described by (3.7) and (3.8)).

3.3.5 Update of Trust Region

After we get s(k) for both stages we should update the radius of the trust region

using the following equation [118][119]

δ(k+1) =





0.618
∥∥s(k)

∥∥ , ifr < 0.1,

min
{
1.214δ(k),∆∗

}
, ifr > 0.8,

∥∥s(k)
∥∥ , otherwise,

(3.22)

where ∆∗ is the maximum value of the trust radius, and decide whether or not to

accept this step s(k).

If the dimension of f
(k)
s remains the same as f (k), and the following condition

U1(f
(k)
s ) ≤ U1(f

(k)) (3.23)

is satisfied in the first stage, or the condition

V ar(t(k)s ) ≤ V ar(t(k)) (3.24)

is satisfied in the second stage, we accept the step s(k) and update the design
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variables as

x(k+1) = x(k) + s(k) (3.25)

At the same time, we set f (k+1) = f
(k)
s , and t(k+1) = t

(k)
s .

In this way, both the original design variables and the trust radius are updated,

thereby completing one iteration of the proposed space mapping.

Otherwise (i.e., if the dimensions of feature space parameters change, or neither

(3.23) nor (3.24) is satisfied), x(k) will be kept unchanged, and a new s(k) is cal-

culated by solving (3.5) with the updated trust radius δ(k) = δ(k+1). To make our

proposed method more robust, we terminate the algorithm if one of the following

conditions is satisfied:
∥∥x(k+1) − x(k)

∥∥ < 10−2 or δ(k+1) < 10−3 [120].

3.3.6 Summary

The flowchart of the proposed space mapping technique is shown in Fig. 3.3. The

proposed algorithm can be summarized as follows.

Step 1: Initialize x(k) and δ(k) at k = 0.

Step 2: Set x1 to be equal to x(k). Create multiple points x1,x2, ...,x2N+1 using

a star distribution sampling strategy with the center x1. Evaluate multi-point fine

responses R(xi, ω) by performing EM simulation using parallel computation for

i = 1, 2, · · · , 2N + 1.

Step 3: Determine the feature frequency parameters f (k) and the ripple height

parameters t(k).
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Step 4: If the stopping criterion of the first stage (3.9) is not satisfied, go to Step

5, else go to Step 9.

Step 5: Obtain the first mapping matrix A(k) by solving (3.3)-(3.4), and get f 1
d

by (3.6).

Step 6: Obtain the prospective step s(k) by solving (3.5).

Step 7: Perform parallel EM simulations at 2N + 1 star distribution points

around the new center (x(k) + s(k)). Obtain the feature parameters f
(k)
s and t

(k)
s

at (x(k) + s(k)), and find r using (3.7)-(3.8). Update trust radius δ(k+1) by solving

(3.22) according to the value of r.

Step 8: If the dimension of f
(k)
s remains the same as f (k), and U1(f

(k)
s ) ≤

U1(f
(k)), then we update the design variable x(k+1) = x(k) + s(k), set f (k+1) = f

(k)
s ,

and set t(k+1) = t
(k)
s . Update iteration counter k = k + 1, and go to Step 4.

Otherwise, keep x(k) unchanged, set δ(k) = δ(k+1), and go to Step 6.

Step 9: If the stopping criterion of the second stage (3.13) is satisfied, STOP,

otherwise, go to Step 10.

Step 10: Obtain A(k) by solving (3.3)-(3.4) and get the second set of mapping

matrices B(k), c(k) by solving (3.14)-(3.15), then find f
(k)
d by solving (3.10)-(3.12)

and (3.16)-(3.19).

Step 11: Obtain the prospective step s(k) by solving (3.5).

Step 12: Perform parallel EM simulations at 2N + 1 star distribution points

around the new center (x(k) + s(k)). Get the feature parameters f
(k)
s and t

(k)
s at
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(x(k) + s(k)), and find r using (3.20)-(3.21). Update trust radius δ(k+1) by solving

(3.22) according to the value of r.

Step 13: If the dimension of f
(k)
s remains the same as f (k), and V ar(t

(k)
s ) ≤

V ar(t(k)), then we update the design variables x(k+1) = x(k)+s(k), set f (k+1) = f
(k)
s ,

and set t(k+1) = t
(k)
s . Update iteration counter k = k + 1, and go to Step 9.

Otherwise, keep x(k) unchanged, set δ(k) = δ(k+1), and go to Step 11.

3.3.7 Discussion

There are two kinds of challenges for EM optimization of filter design, the first be-

ing the challenge of a computationally bad starting point, but one with the correct

number of feature frequencies, and the second the ability to correct the number of

feature frequencies if the initial point has the wrong number of feature frequencies.

In this chapter, we focus on the solution to the first challenge. The second chal-

lenge, which is equally important and a heavy task, is a possible direction of future

research. In our present work, we have used an empirical approach to preprocess

the starting point using derivative information of the response shape to guide the

correction of the number of the feature frequencies iteratively. Once the correct

number of feature frequencies is reached, the proposed trust region method in the

two different optimization stages will maintain the number of feature frequencies

throughout the proposed optimization process.

Our proposed cognition driven formulation of space mapping translates the direct

optimization problem into a relatively easier optimization problem in feature space.
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The mapping from feature space to design variable space is more linear and valid in a

larger range, compared to the original problem in the direct optimization. Therefore,

our method can improve the efficiency and ability to avoid being trapped into local

minima. Using the trust region method, our method is guaranteed to converge.

The final optimization result is still a local solution, which is much better than that

obtained in the direct optimization method.

In this subsection, we also discuss the limitation of our proposed method. Firstly,

our technique is well-suited to the EM based design of Chebyshev- and elliptic-type

filters, which are characterized by equal-ripple responses. For other types of filters

and others applications of microwave components, our proposed method requires

features to be identified, which may or may not be an easy task. This could be

a possible direction of future research. Secondly, our proposed technique in this

chapter can proceed with the starting point with the correct number of feature

parameters. Another possible direction is to develop a method which can deal with

the starting point with incorrect number of feature parameters.

3.4 Application Examples

3.4.1 Optimization of A Four-Pole Waveguide Filter

The first example under consideration is a four-pole wave-guide filter [107]. The

tuning elements are penetrating posts of square cross section placed at the center

of each cavity and each coupling window, shown in Fig. 3.2 (a). The input and

output waveguides, as well as the resonant cavities, are standard WR-75 waveguides
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( a = 19.050mm, b = 9.525mm). The thickness of all the coupling windows is set

to 2mm. h1, h2 and h3 are the heights of posts in the coupling windows, and hc1,

hc2 are the height of the posts in the resonant cavities. The design variables are

x = [ h1 h2 h3 hc1 hc2 ]T .

EM evaluation is performed by HFSS [121] EM simulator using fast simula-

tion feature. With this simulation feature, we can get the response of the entire

frequency band without a discrete frequency sweep. The desired filter responses

have been chosen to be standard four-pole Chebyshev curves of 300-MHz band-

width, 0.02-dB ripple, and centered at 11 GHz. The starting point is x(0) =

[3.3 4.389 3.991 3.28 2.914]T (all values in mm). From the second iteration, the

t parameters are found to be t(2) = [−15.473 − 29.709 − 32.851]T (all values in

dB).

Using the proposed technique, the optimal solution x(7) = [3.562 4.291 3.790

3.237 2.955]T (all values in mm) is obtained after 7 iterations, and the final ripple

vector t(7) = [−27.088 − 27.512 − 27.783]T (all values in dB). The responses from

the initial point, the first and the last iterations are shown in Fig. 3.4(a), 3.4(b)

and 3.4(c), respectively. Fig. 3.4(b) shows that all the feature frequencies move to

the passband after the first iteration. Fig. 3.4(c) shows that our proposed method

can avoid being trapped in a local minimum and that a good equal-ripple filter

response is obtained after 7 iterations. The values of objective function for all the

iterations are shown in Fig. 3.5. From the figure, we observe that using our proposed

space mapping method the filter response can satisfy the design specifications in 2
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Figure 3.4: A comparison of the results for 3 different optimization methods: (a) the
starting point for all three methods, (b) using our proposed space mapping method,
all the feature frequencies move to the passband after the first stage, (c) a good
equal-ripple response is obtained after 7 iterations, and our method can avoid being
trapped in a local minimum; (d) using coarse and fine mesh space mapping, the
optimization process falls into a local minimum; (e) using direct EM optimization,
the optimization process falls into a local minimum.
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Figure 3.5: The objective function values of the four-pole waveguide filter response
using: the proposed SMmethod (o) and coarse and fine mesh space mapping method
(×). The objective function in the coarse and fine mesh space mapping optimization
cannot be reduced further because it falls into a local minimum. Our proposed
method can avoid being trapped in a local minimum and finds a good filter response
in 7 iterations.

iterations and it can even exceed the specifications in subsequent iterations. U1 in

the first stage and the variances of t in the second stage of our proposed method are

shown in Fig. 3.6. We set the threshold ε2 = 0.2. Smaller (or larger) values for ε2

tend to make the ripple heights more (or less) uniform using more (or less) overall

computation time. In this example, both U1 and the variance of t converge fast.

For comparison purposes, we use the baseline coarse and fine mesh space map-
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ping optimization method [39] to optimize this filter. The coarse mesh EM opti-

mizations for the surrogate training and for surrogate optimization are both carried

out using HFSS ’s internal quasi-Newton optimizer. The value of objective func-

tion for each iteration is shown in Fig. 3.5, from which we found that the coarse

and fine mesh space mapping optimization process falls into a local minimum. The

space mapping iterations stopped at this point because the updates by surrogate

optimization cannot lead to any improvement in the fine model responses. The

comparison of the results for different methods, including direct EM optimization

(using HFSS Optimetrics quasi-Newton optimization), coarse and fine mesh space

mapping method and our proposed method is shown in Fig. 3.4 and Table 3.1. In

the coarse and fine mesh space mapping method, the training time and the design

optimization time are very long because of coarse mesh EM simulation. In our

method, the training process, which means solving mapping matrices A, B and c,

and the design optimization process, which is to solve Equ. (3.5), only do algebraic

calculations, so our feature space mapping method saves much time. The fine EM

evaluation time (6 min) of our proposed method is the time for generating 11 (i.e.,

2N + 1) star distribution points in parallel. Therefore the total computation time

(6 min) for the 11 EM simulations is only incrementally more than that of a single

EM simulation (4 min). As observed in Table 3.1, our method can increase the

optimization efficiency and find a better result within less time compared to coarse

and fine mesh EM space mapping and direct EM optimization.

As a further experiment about robustness of the proposed optimization for this

filter example, we use a much worse starting point x(0) = [3.020 4.680 4.314
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Figure 3.6: The first stage goes in the first iteration, and the second stage runs from
the 2nd iteration to the 7th iteration. Both U1 and V ar(t) converge fast.

3.480 3.028]T (all values in mm) to rerun our proposed method. Using the pro-

posed technique, the optimal solution x(8) = [3.424 4.116 3.608 3.291 2.977]T (all

values in mm) is obtained after 8 iterations, and the final ripple vector t(8) =

[−24.316 − 24.062 − 24.793]T (all values in dB). The responses from the initial

point, the last iteration of the first stage and the last iteration of proposed method

are shown in Fig. 3.7(a), 3.7(b) and 3.7(c), respectively. A preprocessing step was

used to create a usable starting point, which is shown in Fig. 3.7(a), with the cor-

rect number of feature frequencies, i.e., 4. During the optimization process, if EM

simulations occasionally produce the wrong number of (e.g., 3) feature frequencies,

our trust region mechanism will shrink the step size until the number of feature

frequencies returns to 4, at which point the optimization update then takes place.
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Table 3.1: Comparison of Three Methods for The Waveguide Filter

Optimization Direct EM Coarse and Proposed

Method optimization fine mesh SM Space

optimization Mapping

No. of Iterations 300 4 7

Fine model

Evaluation 300×4 min 5×4 min 8×6 min

Time

Training Time - 3×1h 7×1 min

Design

Optimization - 4×1h 7×1 min

Time

Total time 20 h 7h 20min 1h 2min

Final Value of 69.14* 108. 90*

Objective (being trapped in (being trapped in -0.1251

Function local minimum) local minimum)

* - Design specifications are not satisfied.

Fig. 3.7(b) shows that all the feature frequencies move to the passband after the

first stage. Fig. 3.7(c) shows that our proposed method can avoid being trapped

in local minima and that a good equal-ripple filter response is obtained after 8 it-

erations. The values of objective function for all the iterations are shown in Fig.

3.8. From the figure, we observe that using our proposed space mapping method

the filter response can satisfy the design specifications in 8 iterations. U1 in the first

stage and the variances of t in the second stage of our proposed method are shown

in Fig. 3.9.
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Figure 3.7: A comparison of the results for 3 different optimization methods: (a) the
starting point for all three methods, (b) using our proposed space mapping method,
all the feature frequencies move to the passband after the first stage, (c) good
equal-ripple response is obtained after 8 iterations, and our method can avoid being
trapped in a local minimum; (d) using coarse and fine mesh space mapping, the
optimization process falls into a local minimum; (e) using direct EM optimization,
the optimization process falls into a local minimum.
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Figure 3.8: Objective function values of the four-pole waveguide filter response with
bad starting point using: the proposed space mapping method (o) and coarse and
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and finds a good filter response in 8 iterations.
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Table 3.2: Comparison of Three Methods for The Waveguide Filter with Bad Start-
ing Point

Optimization Direct EM Coarse and Proposed

Method optimization fine mesh SM Space

optimization Mapping

No. of Iterations 660 4 8

Fine model

Evaluation 660×4 min 5×4 min (9∗ + 6)×6 min

Time

Training Time - 3×1h 8×1 min

Design

Optimization - 4×1h 8×1 min

Time

Total time 44 h 7h 20min 1h 46min

Final Value of 25.42 98.21

Objective (being trapped in (being trapped in -0.06

Function local minimum) local minimum)

* - The number of EM simulations, which are not accepted during trust region
adjustment.

For comparison purposes, we also use the baseline coarse and fine mesh space

mapping optimization method [39] to optimize this filter. The value of objective

function for each iteration is shown in Fig. 8, from which we found that the coarse

and fine mesh space mapping optimization process falls into a local minimum with

filter responses still violating design specifications. We also performed direct EM

optimization of this filter example for a further comparison. With the same starting

point and same design specifications, the direct EM optimization also falls into a
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Figure 3.10: The structure of the waveguide cavity filter.

local minimum with filter responses violating design specifications. The comparison

of the results for different methods, including direct EM optimization, coarse and

fine mesh space mapping method and our proposed method is shown in Fig. 3.7 and

Table 3.2, demonstrating that the proposed method has the shortest optimization

time and best quality of solutions among the different methods compared.

3.4.2 Optimization of An Iris Coupled Microwave Cavity
Filter

Consider an iris coupled cavity microwave bandpass filter shown in Fig. 3.10 [122].

The filter has seven geometrical design parameters described as follows. The heights

of the big cylindersHc1, Hc2, andHc3 positioned at the cavity centers are responsible

for tuning the frequencies in the cavity. The required coupling bandwidths are

accomplished via the iris widths W1, W2, W3, and W4 for a pre-tuning. The design

variables are x = [W1 W2 W3 W4 Hc1 Hc2 Hc3]
T .
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EM evaluation is performed by the HFSS EM simulator using the fast sim-

ulation feature. We provide the design specifications |S11| ≤ −20 dB at fre-

quency range of 703 MHz to 713 MHz, and |S21| ≤ −10 dB at frequency range

of 690 MHz to 701 MHz and 715 MHz to 720MHz. The starting point is x(0) =

[115.289 51.276 46.897 51.084 42.816 50.287 50.402]T (all values in mm). From the

second iteration, the t parameters are found to be t(2) = [−16.787 − 14.932 −

32.553 − 22.344 − 17.701]T (all values in dB).

Using the proposed technique, the optimal solution x(4) = [115.557 50.061 44.226

47.605 42.734 50.331 50.461]T (all values in mm) is obtained after 5 iterations, and

the final ripple vector t(4) = [−20.16 −20.48 −20.32 −20.28 −20.60]T (all values in

dB). The responses from the initial point, the first and the last iterations are shown

in Fig. 3.11, from which we observe that our method can avoid being trapped in a

local minimum and achieve a good equal-ripple filter response in 4 iterations. The

values of objective function are shown in Fig. 3.12, which further shows our method

avoids being trapped in a local minimum. We set the threshold ε2 = 0.3. U1 in the

first stage and the variances of t in the second stage of our proposed method are

shown in Fig. 3.13, and both U1 and V ar(t) converge fast. From the final filter

response in Fig. 3.11(c), we find that the best equal-ripple filter solution has already

been found.

For comparison purposes, we use the coarse and fine mesh space mapping method

[39] to optimize this filter, and the value of objective function for each iteration is

shown in Fig. 3.12, from which we observe that the coarse and fine mesh space
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Figure 3.11: A comparison of the results for 3 different optimization methods: (a)
the starting point for all three methods, (b) using our proposed space mapping
method, all the feature frequencies move to the passband after the first stage, (c)
good equal-ripple response is obtained after 4 iterations, and our method can avoid
being trapped in a local minimum; (d) using coarse and fine mesh space mapping,
the optimization process falls into a local minimum; (e) using direct EM optimiza-
tion, the optimization process falls into a local minimum.
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Table 3.3: Comparison of Three Methods for The Cavity Filter

Optimization Direct EM Coarse and Proposed

Method optimization fine mesh SM Space

optimization Mapping

No. of Iterations 240 3 4

Fine model

Evaluation 240×30 min 4×30 min 5×40 min

Time

Training Time - 2×5h 4×1 min

Design

Optimization - 3×4h 4×1 min

Time

Total time 120 h 24h 3h 28min

Final Value of 82.36 63.24

Objective (being trapped in (being trapped in 0.36

Function local minimum) local minimum)

mapping optimization process falls into a local minimum. The comparison of the

results for different methods, including direct EM optimization, coarse and fine mesh

space mapping method and our proposed method is shown in Fig. 3.11 and Table

3.3. The fine EM evaluation time (40 min) of our proposed method is the time

for generating 15 (i.e., 2N + 1) star distribution points in parallel. Therefore the

total computation time (40 min) for the 15 EM simulations is only incrementally

more than that of a single EM simulation (30 min). Our space mapping method

can increase the optimization efficiency and find a better result within less time

compared to coarse and fine mesh EM space mapping and direct EM optimization.
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Figure 3.12: The objective function values of the cavity filter response using: the
proposed space mapping method (o) and coarse and fine mesh space mapping
method (×). The objective function in the coarse and fine mesh space mapping
optimization cannot be reduced further because it falls into a local minimum. Our
proposed method can avoid being trapped in a local minimum and finds a good
filter response in 4 iterations.
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Figure 3.13: Feature space objective functions U1 and U2 (i.e., V ar(t)) for the cavity
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2nd iteration to the 4th iteration. Both U1 and V ar(t) converge fast.

70



As a further experiment on the robustness of the proposed optimization for this

filter example, we use a much worse starting point x(0) = [111.910 56.822 53.916

57.906 43.145 49.385 49.626]T (all values in mm) to rerun our proposed method.

Using the proposed technique, the optimal solution x(12) = [119.331 51.953 45.099

48.278 41.881 50.186 50.385]T (all values in mm) is obtained after 7 iterations, and

the final ripple vector t(12) = [−24.258 − 24.487 − 23.979 − 23.949 − 25.188]T (all

values in dB). The responses from initial point, the last iteration of the first stage

and the last iterations are shown in Fig. 3.14(a), 3.14(b) and 3.14(c), respectively.

A preprocessing step was used to create a usable starting point, which is shown

in Fig. 3.14(a), with correct number of feature frequencies. Fig.3.14(b) shows

that all the feature frequencies move to the passband after the first stage. Fig.

3.14(c) shows that our proposed method can avoid being trapped in a local minimum

and that a good equal-ripple filter response is obtained after 12 iterations. The

values of objective function for all the iterations are shown in Fig. 3.15. From the

figure, we observe that using our proposed space mapping method the filter response

can satisfy the design specifications in 11 iterations. U1 in the first stage and the

variances of t in the second stage of our proposed method are shown in Fig. 3.16.

Both U1 and V ar(t) converge fast.

For comparison purposes, we also use the baseline coarse and fine mesh space

mapping optimization method [39], and the value of objective function for each

iteration is shown in Fig. 3.15, from which we observe that the coarse and fine

mesh space mapping optimization process falls into a local minimum. With the

same starting point and same design specifications, the direct EM optimization is
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Figure 3.14: Comparison of the results for three different optimization methods for
the cavity filter example with bad starting point: (a) a very bad starting point for
all three methods, (b) using our proposed space mapping method, all the feature
frequencies move to the passband after the first stage, (c) good equal-ripple response
is obtained after 12 iterations, and our method can avoid being trapped in a local
minimum; (d) using coarse and fine mesh space mapping, the optimization process
falls into a local minimum; (e) using direct EM optimization, the optimization
process falls into a local minimum. 72
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Table 3.4: Comparison of Three Methods for The Cavity Filter with Bad Starting
Point

Optimization Direct EM Coarse and Proposed

Method optimization fine mesh SM Space

optimization Mapping

No. of Iterations 300 3 12

Fine model

Evaluation 300×30 min 4×30 min (13 + 3∗)×40 min

Time

Training Time - 2×5h 12×1 min

Design

Optimization - 3×4h 12×1 min

Time

Total time 150 h 24h 11h

Final Value of 239.77 232.61

Objective (being trapped in (being trapped in -0.17

Function local minimum) local minimum)

*The number of EM simulations, which are not accepted during trust region
adjustment.

also performed for additional comparison. The direct EM optimization also falls

into a local minimum with filter responses violating the design specifications. The

comparison of the results for different methods, including direct EM optimization,

coarse and fine mesh space mapping method and our proposed method is shown in

Fig. 3.14 and Table 3.4. Our space mapping method can increase the optimization

efficiency and find a better result within less time compared to coarse and fine mesh

EM space mapping and direct EM optimization.
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3.5 Conclusions and Summary

In this chapter, a cognition-driven formulation of space mapping optimization of

microwave filters has been proposed. In our method, two sets of intermediate feature

space parameters, including the feature frequency and ripple height parameters, are

used to build two kinds of mapping. A trust region approach has been incorporated

to control the optimization updates, thus ensuring convergence of the proposed

cognition-drive optimization. By using the proposed cognition-driven formulation

of optimization directly in the feature space, our method can increase optimization

efficiency and the ability to avoid being trapped in a local minimum over our baseline

approaches of coarse and fine mesh EM space mapping and direct EM optimization.

This technique is well-suited to the EM based design of Chebyshev- and elliptic-type

filters, which are characterized by equal-ripple responses. We believe that further

exploration of the cognition-driven formulation and the use of feature parameters for

design optimization is highly promising. One possible future direction is to develop

a systematic method for preprocessing the optimization starting point to correct

the number of feature frequencies. Another possible direction is to incorporate

more specific filter design knowledge into the cognition-driven formulation to further

enhance optimization. The third possible direction is to expand the cognition-driven

concept with more general feature parameters to advance EM based design beyond

Chebyshev- and elliptic-type filters to more generic filters and other microwave

circuits.
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Chapter 4

Multivalued Neural Network
Inverse Modeling and
Applications to Microwave Filters

This chapter presents a new technique for artificial neural network (ANN) inverse

modeling and applications to microwave filters. In inverse modeling of a microwave

component, the inputs to the model are electrical parameters such as S-parameters,

and the outputs of the model are geometrical or physical parameters. Since the

analytical formula of the inverse input-output relationship does not exist, ANN be-

comes a logical choice because it can be trained to learn from the data in inverse

modeling. The main challenge of inverse modeling is the non-uniqueness problem.

This problem in ANN inverse modeling is that different training samples with the

same or very similar input values have quite different (contradictory) output values

(multivalued solutions). In this chapter, we propose a multivalued neural network

inverse modeling technique to associate a single set of electrical parameters with
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multiple sets of geometrical or physical parameters. One set of geometrical or phys-

ical parameters is called one value of our proposed inverse model. Our proposed

multivalued neural network is structured to accommodate multiple values for the

model output. We also propose a new training error function to focus on match-

ing each training sample using only one value of our proposed inverse model, while

other values are free and can be trained to match other contradictory samples.

In this way, our proposed multivalued neural network can learn all the training

data by automatically redirecting contradictory information into different values

of the proposed inverse model. Therefore, our proposed technique can solve the

non-uniqueness problem in a simpler and more automated way compared to ex-

isting ANN inverse modeling techniques. This technique is illustrated by inverse

modeling and parameter extraction of four microwave filter examples.

4.1 Introduction

Artificial neural networks (ANNs) have been recognized as a powerful tool in mi-

crowave modeling and design [80],[124]. This technique has been applied to para-

metric modeling of microwave components [125], [126], optimization of microwave

circuits [81], [127], [128], modeling of nonlinear microwave devices [129], [130], mod-

eling of RF power amplifiers [131], and design of microwave filters [17], [132], etc.

ANN can learn the nonlinear relationships between the behaviors of microwave

devices and the geometrical/physical parameters. ANN trained to model the origi-

nal microwave device problems can be called forward model where the inputs to the
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model are the geometrical or physical parameters and outputs of the model are the

electrical parameters. For design purposes or the parameter extraction of microwave

filters, the information is often processed in the reverse direction in order to find

the geometrical or physical parameters from given electrical parameters, which is

called the inverse problem. There are usually two ways to solve the inverse prob-

lem, i.e., the optimization method and inverse modeling method. The optimization

method is the most conventional way [22], [93]. For a given electrical target, the

forward models will be evaluated iteratively to find the optimal geometrical pa-

rameters such that the circuit response matches the electrical target. Furthermore,

for different electrical targets, this optimization process to find the geometrical or

physical parameters will be repeated again and again, which is time consuming.

The other way to solve the inverse problem is the inverse modeling method [17].

In inverse modeling, the electrical parameters are defined as the inputs to the model

and the geometrical or physical parameters are defined as the outputs of the model.

Once the inverse model is obtained, it can provide the geometrical parameters im-

mediately without iteratively evaluating the model for given electrical parameters.

This method is much faster than the conventional iterative optimization process,

and can afford to be used in repetitive designs or parameter extraction process.

However, the analytical function or formula of the inverse model is difficult to ob-

tain. Therefore, ANN has been used in learning the relationship between inputs

and outputs in the inverse problem. Several works have been done in inverse mod-

eling. In the direct inverse modeling technique [44], an ANN model is trained using

data obtained by swapping the input and output data from the forward problem.
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In [45] - [47], inverse surrogate modeling is used for expedited geometry scaling of

compact microwave passives. In [48] and [49], inverse modeling is used for rapid

EM-driven antenna dimension scaling. In [50], ANN inverse modeling is applied in

a microwave sensor which is used to determine the proportion of fluids in a pipeline.

In [51], ANN inverse modeling is used in transmitarray antenna design.

Even though the inverse modeling technique is much faster in the design process

or parameter extraction process, the model is not easy to be trained well in many

practical situations. It is because of the non-uniqueness problem of the inverse input-

output relationship. The non-uniqueness problem means that different training

samples with the same input values have contradictory output values (multivalued

solutions). An even more challenging case is that different samples with similar but

not identical input values have much different output values. This will cause the

ambiguity whether these samples are contradictory or not. Since it is not possible

to train an ANN model to match contradictory output values simultaneously for the

same input values, the training error will stay large and the model accuracy will be

low. The multivalued problem in hysteresis modeling has been studied in [99] from

ANN point of view. The one-input multivalued data with hysteresis phenomena

was represented by introducing a new parameter to the inputs of the model so

that the one-input multivalued data becomes two-input single valued data. The

non-uniqueness (multivalued) problem was addressed in [17] in microwave area.

The data containing contradictory samples are divided into groups according to

derivative information using a neural network forward model such that individual

groups do not have the problem of contradictory data. Multiple inverse models
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are built based on divided data groups, and are then combined to form a complete

model.

In this chapter, we aim to further simplify the inverse modeling process and solve

the non-uniqueness problem in a simpler and more automated way. In low dimen-

sion, the non-uniqueness problem can be solved by manual data segmentation and

training multiple sub-models. While in high dimensional spaces, the non-uniqueness

problem will become even more complex, as the numbers of the inputs and outputs

increase. In this case, manual data segmentation or division can not solve the non-

uniqueness problem easily. Furthermore, at some difficult situations, the number of

conflicting data within a small range is more than that the derivative information

can distinguish. Some contradictory data can have the same derivative signs. In

this case, even after the derivative information is exhaustively used, the information

of signs of derivatives is still not enough to distinguish multiple conflicts. Therefore,

we need a more systematic method to solve the non-uniqueness problem.

In this chapter, we propose a multivalued neural network inverse modeling tech-

nique to associate a single set of electrical parameters with multiple sets of geomet-

rical or physical parameters. One set of geometrical or physical parameters is called

one value of our proposed inverse model. Our proposed multivalued neural network

is structured to accommodate multiple values for the model output. We also pro-

pose a new training error function to focus on matching each training sample using

only one value of our proposed inverse model, while other values are free and can be

trained to match other contradictory samples. In this way, our proposed multivalued
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neural network can learn all the training data by automatically redirecting contra-

dictory information into different values of the proposed inverse model. Therefore,

our proposed technique can solve the non-uniqueness problem in a simpler and more

automated way compared to existing neural network inverse modeling techniques.

This technique is illustrated by inverse modeling and parameter extraction of four

microwave filter examples.

This chapter is organized as follows. In Section 4.2, the new structure of our

proposed multivalued neural network inverse model is described, and a new error

function to train our proposed inverse model is presented. A valid value selection

process for our proposed inverse model is also proposed in Section 4.2. In Section

4.3, we demonstrate our proposed method using four microwave filter examples.

4.2 The Proposed Multivalued Neural Network

Approach to Inverse Modeling

The forward problem of a microwave component is from geometrical or physical

parameters to the electrical parameters. Let p and q represent the number of inputs

and outputs of the forward problem. Let y be defined as a p-vector containing

the inputs of the forward problem, which are usually the physical or geometrical

parameters. Let z be defined as a q-vector containing the outputs, which are usually

the electrical parameters. The forward problem can be expressed as

z = fFWD(y) (4.1)
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where fFWD represents the input-output relationship of the forward problem.

For design purposes or the parameter extraction of microwave filters, the infor-

mation is often processed in the reverse direction in order to find the geometrical

or physical parameters from given electrical parameters. This is called the inverse

problem, where the inputs and outputs are the reverse of those in the forward

problem.

4.2.1 The Direct Inverse Modeling Problem

The inverse modeling technique is one of the methods to solve the inverse problem.

The inputs to the inverse model are electrical parameters, and the outputs of the

inverse model are geometrical or physical parameters. Since the analytical formula

of the inverse input-output relationship does not exist, ANN becomes a logical choice

because it can be trained to learn from the data in inverse modeling. In the direct

inverse modeling technique [44], an ANN model is trained using data obtained by

swapping the input and output data from the forward problem. Here q and p also

represent the number of inputs and outputs of the inverse model of a microwave

component. Let x be defined as a q-vector containing the inputs to the inverse

model, which are usually the electrical parameters. y is also used as the outputs of

the inverse model, which are usually the physical or geometrical parameters. The

direct neural network inverse model can be expressed as

y(x,w) = f−1
FWD(x) (4.2)
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where f−1
FWD represents the input-output relationship of the inverse problem, y(x,w)

represents the neural network with x as inputs and y as outputs, and w is defined

as a vector containing neural network weights. The elements in the w vector in-

clude bias values for all the neurons in each layer and the weight parameters linking

neurons in different layers. Fig. 4.1(a) shows a standard ANN structure for the

direct inverse modeling.

The direct inverse model can be obtained by a training process. The ksth training

sample pair is defined as (xks ,dks), ks ∈ Tr, where the subscript ks is the sample

index and Tr represents the index set of all the training samples. xks is defined as

the ksth sample of x. dks is defined as the ksth sample of y corresponding to the

input xks . The conventional training error function of this direct inverse modeling

problem is defined as

E(w) =
∑

k∈Tr

1

2
||y(xks ,w)− dks ||

2 (4.3)

where y(xks ,w) is the neural network output for the input xks [80].

When the inverse problem is relatively easy, e.g., the input-output relationship

is unique, the training is easy and the model accuracy is high. In many situations,

there will be the non-uniqueness problem of the inverse input-output relationship

in the training data. The model can not be trained well, and training error will be

large.

Here we illustrate the non-uniqueness problem through a microstrip rectangular

inductor inverse modeling problem [17]. The effective quality factor Qeff of the
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(a)

(b)

Figure 4.1: (a). A standard ANN structure for direct inverse modeling of a mi-
crowave component: x is a q-vector containing the inputs, which are usually the
electrical parameters. y is a p-vector containing the outputs, which are usually the
physical or geometrical parameters. (b). Our proposed multivalued neural network
inverse modeling technique can associate a single set of electrical parameters with
multiple sets of geometrical or physical parameters. x contains the inputs, which
are usually the electrical parameters. yi is the ith value of proposed inverse model.
Each value yi is a p-vector containing all the physical or geometrical parameters de-
fined in the direct inverse modeling technique, i = 1, 2, · · · , Nv. The total number
of output neurons in our proposed structure in (b) is Nv·m.
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Figure 4.2: An illustration example: the microstrip rectangular inductor. (a) The
forward problem is from the conductor width W to the effective quality factor Qeff ,
and the input-output relationship is unique. (b) In the inverse problem, the effective
quality factorQeff is used as the input of the inverse model, and the conductor width
W as the output. The inverse input-output relationship is non-unique. (c) Some
training samples of the inverse model.
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inductor is used as the input to the inverse model, and the conductor width W

as the output. The forward problem is shown in Fig. 4.2(a). The output of this

forward problem is a single value (unique solution) for every input value. The inverse

problem is shown in Fig. 4.2(b). It can be seen that in the inverse problem the

output for some input values will have non-unique values (multivalued solutions)

even though output value for every input is unique in the forward problem. This

is why inverse modeling is usually more difficult than forward modeling. The table

in Fig. 4.2(c) shows some training samples of inverse modeling of this microstrip

inductor. From the table in Fig. 4.2(c), we can find that different training samples

with the same input value have contradictory output values (multivalued solutions).

For example, for Sample 1 and Sample 7, when Qeff = 99.78, W can be 250 µm or

400 µm. In inverse modeling, for the input value 99.78, there will be 2 values (i.e.,

250 and 400) for the output. In this case, Sample 1 and Sample 7 are contradictory

data. This will create conflicts between learning Sample 1 and learning Sample 7

while training ANN to learn all the samples. An even more challenging case is that

different samples with similar but not identical input values have much different

output values, such as Sample 2: Qeff = 101.57, W = 270 µm, and Sample 6:

Qeff = 101.56, W = 380 µm. This will cause the ambiguity whether these samples

are contradictory or not. Since it is not possible to train an ANN model to match

several contradictory output values simultaneously for the same input values, the

training errors in (4.3) will remain large. After training, the inverse model will

not be accurate even in the training range, and the test error will also be large.

In high dimension, the non-uniqueness problem in inverse modeling is even more
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complex because the contradictory data in multi-dimension can not be visualized

graphically. Manual data segmentation or division can not solve the non-uniqueness

problem easily. Therefore, a systematic algorithm for solving the non-uniqueness

problem is very important.

4.2.2 The Proposed Multivalued Neural Network Inverse
Model

In order to solve the non-uniqueness problem in inverse modeling in a simple and au-

tomated way, we propose a multivalued neural network inverse modeling technique

to associate a single set of electrical parameters with multiple sets of geometrical

or physical parameters. One set of geometrical or physical parameters is called one

value of our proposed inverse model. Our proposed multivalued neural network

inverse model is structured to accommodate multiple values for the model output.

Instead of manually detecting the contradictory data in the training set, we want to

use ANN learning ability to automatically redirect contradictory information into

different values of the proposed inverse model. Here we define Nv as the number

of values of the proposed inverse model. We propose a multivalued neural network

inverse model by repeating the outputs of the direct inverse model in (4.2) Nv times

as follows

[yT
1 yT

2 · · · yT
Nv
]T = g

ANN
(x,w) (4.4)

where g
ANN

is a multilayer perceptron (MLP) representing our proposed multivalued

neural network inverse model. For the hidden layer, the activation function is the

sigmoid function. For the output layer, the activation function is the linear function.
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yi is the ith value of the proposed inverse model for input x, i = 1, 2, · · · , Nv. Each

value yi of our proposed multivalued neural network is a p-vector containing all the

physical or geometrical parameters defined in the direct inverse modeling technique.

Fig. 4.1(b) shows an example of our proposed multivalued neural network.

For the convenience of representing each value yi using our proposed g
ANN

,

we define an p× (Nv · p) matrix Ui containing zeros everywhere except for the

(h, (i− 1) · p+ h)th location, where the value is 1, for h = 1, 2, · · · , p. Then yi can

be calculated by

yi = Ui · gANN
(x,w);

i = 1, 2, · · · , Nv.
(4.5)

Since we have increased the total number of outputs of g
ANN

to Nv·m, the

training error function in (4.3) is not suitable for our proposed multivalued neural

network. The brute force method to solve the training problem of this proposed

neural network is to reformat all the training data, such that each training sam-

ple contains all the contradictory outputs for the same inputs. However, for those

conflicts, where the input values are not exactly the same but very similar while

the output values are quite different, the contradictory data can not be reformatted

together. Even if all the contradictory outputs for every input could be found, the

consistency of sequences of contradictory outputs for different inputs could not be

ensured. Thus the data reformatting method fails in training our proposed inverse

model. Therefore, we propose a new error function for training our proposed mul-

tivalued neural network g
ANN

, such that our proposed multivalued neural network
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can redirect contradictory information into different values of the proposed inverse

model, and learn all the training data bypassing the difficulty of having to detect

and sort out all the multivalued solutions.

4.2.3 The Proposed Training and Test Error Functions of
the Proposed Multivalued Neural Network Inverse
Modeling

To make sure our proposed multivalued neural network can automatically learn con-

tradictory data in the training set, such that different values yi, for i = 1, 2, · · · , Nv,

can match different conflicts for the same or very similar input x, we propose a new

training error as

Ẽ(w) =
∑

ks∈Tr

Eks(w) (4.6)

where Tr represents the index set of all the training samples and Eks(w) is the

training error for the ksth training sample which is defined as

Eks(w) =

(
Nv∑

i=1

1

ei,ks(w)

)−1

(4.7)

where ei,ks(w) is defined as the error between yi and dks as follows

ei,ks(w) = 1
2
||yi − dks ||

2

= 1
2
||Ui · gANN

(xks ,w)− dks ||
2,

i = 1, 2, · · · , Nv

(4.8)
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where yi is the ith value of our proposed inverse model g
ANN

(xks ,w) for the input

xks .

When one value yi of the proposed inverse model fits the training sample dks

perfectly, it means the error ei,ks(w) for this value is very small. The small error

ei,ks(w) of one value will result in a small value in the proposed overall error function

Eks(w) in (4.7) for the ksth sample. Meanwhile the error ei,ks(w) for other values

can be large, which means the other values are free and can be different from

the current training sample dks . Therefore, the proposed error function Eks(w) in

(4.7) focuses on matching the training sample with one of the values of multivalued

neural network inverse model which is the closest to the current training sample

while ignoring other values. If there is another contradictory sample in the training

data, our proposed error function will automatically match it using another value

of our multivalued neural network inverse model. This feature gives our proposed

multivalued neural network the ability to learn the contradictory data in the same

training. During training, the multiple values of our proposed model output can

automatically fit multiple contradictory samples, thus solving the non-uniqueness

problem.

At the beginning of the training process, the ANN weights w are initialized

as small random numbers [133]. An optimization method, such as quasi-Newton

method or conjugate gradient method, is applied to minimize the training error in

(4.6) with w as the optimization variables. ANN weights w will be updated by

optimization during the training process.
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After training is finished, we perform the test of the inverse model using test

data. Because our multivalued neural network inverse model is structured to have

multiple values for the model output, the conventional formula for test error, which

is usually defined similarly to the training error in (4.3), is not suitable for our

proposed model. Therefore we define a new test error function of our proposed

multivalued neural network inverse model as

T (w) =
∑

ks∈Tv

min
i

{
1
2
||yi − dks ||

2}

=
∑

ks∈Tv

min
i

{
1
2
||Ui · gANN

(xks ,w)− dks ||
2} ;

i = 1, 2, · · · , Nv

(4.9)

where Tv represents the index set of all the test samples. In our proposed test

error function (4.9), we calculate the error for every value of our multivalued neural

network inverse model, and the value which is closest to the test data is selected

towards the calculation of the total test error. The error function proposed in

(4.9) will produce a measure of the test error compatible to that calculated for

conventional neural network using the error function (4.3).

4.2.4 The Proposed Method of Selecting the Valid Values
of the Proposed Inverse Model

To get an accurate inverse model, the number of values Nv of our proposed multi-

valued neural network should be equal to the maximum number of the conflicts in

the training data for all possible inputs. However, after the training of our proposed

multivalued neural network using error functions (4.6) - (4.8), the number of the
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conflicts may not always be equal to Nv for a particular given input. For some

inputs, the numbers of the conflicts are equal to Nv. In this case, all values of the

proposed multivalued neural network inverse model are valid. For some inputs, the

numbers of conflicts can be fewer than Nv. In this case, out of Nv values provided

by our proposed inverse model, some values are valid and some values are dummy.

Since our proposed inverse model will always provide Nv values for the model output

for any given input, we need to propose a method to distinguish the valid value(s)

from dummy values out of all the values yi, for i = 1, 2, · · · , Nv.

Motivated by the sub-model combining technique in [17], we propose to use the

forward model to help decide which values are the valid values. Each yi obtained

in our proposed inverse model is fed into the forward model in (4.1) as inputs,

i = 1, 2, · · · , Nv. After forward model evaluation, we get Nv sets of output. zi

represents the output of the forward model for yi, i = 1, 2, · · · , N . Apparently, the

output z of the forward model and the input x of the inverse model contain the

same electrical parameters. The errors Eo between zi and x for different yi can

help us to decide which value(s) is (are) the valid value(s). We define Eo(yi) as

Eo(yi) = ‖zi − x‖ (4.10)

where

zi = fFWD(yi); i = 1, 2, · · · , Nv (4.11)

and fFWD(·) is the forward model defined in (4.1) with yi as the input and zi as
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the output. If the condition

Eo(yi) = ‖fFWD(yi)− x‖ ≤ ε (4.12)

is satisfied, yi is called a valid value. Here ε is a predefined constant. If

Eo(yi) = ‖fFWD(yi)− x‖ > ε (4.13)

yi is called an invalid (dummy) value.

Let V be defined as the index set of valid values, i.e.,

V = {i|Eo(yi) ≤ ε; i = 1, 2, · · · , Nv} . (4.14)

The valid values of our proposed inverse model can be expressed as

y ∈ {yi|i ∈ V } (4.15)

Fig. 4.3 shows the diagram for the method of selecting the valid values of the

proposed multivalued neural network inverse model.

4.2.5 Application of the Proposed Multivalued Neural Net-
work Inverse Model to Parameter Extraction

After training in Section II-C and selecting valid values in Section II-D, our proposed

inverse model can provide one or more sets of valid values for a given set of inputs.

It means the proposed inverse model will provide one or more sets of geometrical or

physical parameters for a given set of electrical parameters, such as S-parameters.
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Figure 4.3: The diagram for the proposed method of selecting the valid values of
the proposed multivalued neural network inverse model.
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For given S-parameters, there could be multiple solutions of geometrical or physical

parameters (multivalued solutions). However, one such solution of geometrical or

physical parameters is true for a particular circuit. This single solution of geomet-

rical or physical parameters is called the desired parameters in this chapter. In this

subsection, we further use our proposed multivalued neural network inverse model

to convert multiple valid solutions to a single solution.

Motivated by the multi-circuit optimization concept in [22], we use our proposed

multivalued neural network inverse model in the multi-circuit process to extract the

desired parameters among the valid values of our proposed inverse model. The cir-

cuit under consideration, of which the parameters are to be extracted, is taken as

the 1st circuit. Then one of the circuit parameters is changed to obtain the 2nd

circuit. The electrical parameters of both circuits are fed into our proposed inverse

model. After the valid value selection process in Section II-D, we can get multiple

valid sets of geometrical or physical parameters for both circuits. Then we compare

each valid set for the 1st circuit with each valid set for the 2nd circuit. If the differ-

ence between one set for the 1st circuit and one set for the 2nd circuit matches the

change of the circuit parameters, that valid set of geometrical or physical parame-

ters for the 1st circuit are the extracted parameters. This is called a 2-circuit ANN

process for parameter extraction using our proposed inverse model.

An extension to 2-circuit ANN process for parameter extraction is the multi-

circuit ANN process. If the process with 2 circuits still leads to multiple solutions

(i.e., the differences of multiple pairs of valid values match the adjustment of the
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physical parameter), more circuits can be added in a similar way to increase the

uniqueness of the extracted parameters.

The multi-circuit ANN process for parameter extraction using our proposed in-

verse model only needs several evaluations of the inverse model and the forward

model for one extraction process. ANN evaluation is very fast and can be done in-

stantaneously. This is in contrast with the conventional multi-circuit optimization

process in [93] which needs repetitive evaluation of forward model in an iterative

optimization process. Our proposed process is much faster than the multi-circuit

optimization process. Furthermore, for parameter extractions with different electri-

cal parameters, our proposed process can extract the desired parameters instantly.

For the same situation, the conventional multi-circuit optimization process will need

to repeat all the iterative optimization process again. Therefore, the multi-circuit

ANN process using our proposed multivalued neural network inverse model is more

efficient.

4.2.6 Discussion

In this subsection, we firstly discuss the differences between the techniques in this

chapter and that in the existing publications [17] and [99]. Direct inverse modeling

with a single set of outputs cannot match multivalued solutions in training data. In

order to separate the non-unique or multivalued solutions, additional information

is needed. Existing techniques to solve the multivalued problem, e.g., [17] and [99],

are to add additional input information (derivative information [17] or neighborhood

97



information [99]). This is because the new input information, such as derivatives

inputs [17], is different for the different values at the output. In the present chapter,

we propose an alternative method by using multiple sets of outputs to allow the

contradictory information to be learned by the multivalued outputs of the model.

Our proposed multivalued neural network can solve the non-uniqueness problem

by repeating the outputs of the direct inverse model in (4.2) Nv times which is

shown in (4.4). Compared to the existing technique [17], one of the drawbacks of

our proposed technique is the long training time because we may need to train the

inverse model several times with different values of Nv. The final value of Nv is the

one with the lowest training error. However, the benefit of our technique over [17] is

the elimination of human-intensive processing of signs of derivatives which becomes

complex when the model inputs have many dimensions.

The number of the training samples is usually affected by the nonlinearity of

the input-output relationship, and the input dimension (number of model inputs).

For a particular inverse modeling problem within a fixed range, repeating outputs

Nv times does not increase the nonlinearity over original inverse model with single

outputs. Usually adding more inputs will increase the number of training data. In

our proposed formulation, the input dimension remains the same as that of conven-

tional inverse model. Therefore, the repetition of the outputs will not necessarily

require more training samples.

Secondly, we discuss the potential of competitive learning [134] for microwave

inverse modeling. In the competitive learning technique, the mechanism permits
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the multiple outputs of an ANN to compete for the right to respond to a given

set of inputs, such that only one output is active at a time. This method has

been used in classification and cognition science, e.g., [135]. Possible applications of

competitive learning in microwave inverse modeling could be to help decide which

value among all the contradictory values will win for a given input. In fact, in order

to permit competitive learning for microwave inverse modeling, it may be necessary

to use our proposed multivalued output so that competition between different values

is possible. Therefore, our proposed method to repeat the output multiple times

opens the door to permit competitive learning, which is otherwise not possible in

existing single-value formulation of inverse modeling. How to perform competitive

learning for microwave inverse modeling would be a potential future topic.

Thirdly, we discuss the possibility of different learning-by-examples (LBEs) method-

ologies for inverse modeling. For typical LBEs methods, such as ANN techniques,

support vector machine (SVM) regression [96], and Gaussian process (GP) approach

[97], the LBEs models work well when the training data is not contradictory. For the

standard LBEs methods, each output of the model will only provide a single value

for a given input. Therefore, these LBEs methods face the same problem when they

are used to learn contradictory data, i.e., multivalued solutions in inverse modeling.

To solve the problem of multivalued solutions, we need new formulations of the

inverse model regardless whether ANN, SVM or GP are used. The choice between

different LBEs methods (such as ANN, SVM and GP) may affect the accuracy of

modeling (under the same formulation of model inputs and outputs), e.g., [136] and

[137]. SVM and GP have good generalization capability when training data is lim-
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ited. ANN is well suited to the case when the amount of training data is large. In

our examples, the challenge is contradictory data in a large data base. Therefore,

ANN has been used in this chapter. However, it is also possible to apply the pro-

posed multivalued output formulation to enable SVM and GP to solve multivalued

solution problems. This can be a possible future direction of research.

4.3 Examples

4.3.1 Illustrative Example: the Inverse Modeling of a Mi-
crostrip Bandpass Filter

In this example, we illustrate our proposed technique through a simple inverse mod-

eling problem of a microstrip bandpass filter, shown in Fig. 4.4(a). For simplicity of

illustration, here we assume that the length of the parallel coupled-lined section L3

is the input of the forward model, and assume that the magnitude of S21 at 4 GHz

is the output of the forward model. The forward problem is shown in Fig. 4.5(a).

In inverse modeling of this microstrip bandpass filter, we assume the magnitude

of S21 at 4 GHz as the input, and L3 as the output, i.e., x = mag(S21)|4GHz, and

y = L3. The inverse problem is shown in Fig. 4.5(b). From the figure, we can see

that the input-output relationship of inverse problem is non-unique even though the

input-output relationship of forward problem is unique. In Fig. 4.5(b), in the range

x ∈ [0.55, 0.8), the output y has unique solution. In the range x ∈ [0.8, 1], the out-

put y has multivalued solutions for the same input value, e.g., if x = 0.9, y can have

three different values: 3.96, 3.99, and 4.05. In other words, for mag(S21)|4GHz = 0.9,
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(a)

(b) (c)

(d) (e)

Figure 4.4: (a) The inverse modeling of a microstrip bandpass filter example: x =
mag(S21)|4GHz, and y = L3. (b) The direct inverse model has one input which is
mag(S21)|4GHz, and one output L3. (c) The proposed multivalued neural network
inverse model with 3 values: y1, y2, and y3 represent Value 1, Value 2 and Value 3 of
the length L3, respectively. (d) The existing inverse modeling technique [17] using
2 sub-models. (e) The existing inverse modeling technique [17] using 4 sub-models.
The symbols (∇, ∆, o, ×, and +) are used to label the different model outputs.
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there are three different solutions of length L3, i.e., 3.96mm, 3.99mm, and 4.05mm.

From the ANN perspective, the multivalued solutions of y for the same input x

mean contradictory data or conflicting information for ANN training. For example,

the training data of (x = 0.9, y = 3.96) is contradictory with the training data of

(x = 0.9, y = 4.05). In other words, the two sets of training data, i.e., (x = 0.9,

y = 3.96) and (x = 0.9, y = 4.05), provide conflicting information for ANN training.

We firstly illustrate the inverse modeling problem using the conventional direct

ANN inverse modeling technique. The structure of the direct inverse model is shown

in Fig. 4.4(b). The direct inverse model has one input which is mag(S21)|4GHz, and

one output L3. The training result is shown in Fig. 4.5(b). In the range where there

is no conflict, i.e., in the range x ∈ [0.55, 0.8), the direct inverse model behaves

well. However, in the range where there are contradictory data, i.e., in the range

x ∈ [0.8, 1], the single output in direct inverse modeling technique cannot match

all the contradictory data at the same time. The result is a compromise, where

the output is approximately the average of the contradictory values (multivalued

solutions). The training error in this range is always large, and can never be reduced

even if more training iterations are used.

Then we use our proposed multivalued neural network inverse model with 3

values to solve this example. Our proposed multivalued neural network is structured

to have multiple values for the model output, which is shown in Fig. 4.4(c). y1, y2,

and y3 represent Value 1, Value 2 and Value 3 of the length L3, respectively. Fig.

4.5(c) shows the modeling results using our proposed multivalued neural network
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(g) (h)

Figure 4.5: Illustration of different inverse modeling techniques for the microstrip
bandpass filter example. (a) The input-output relationship of forward problem is
unique. (b) The inverse problem and the direct ANN inverse modeling technique.
(c) Our proposed inverse modeling technique with 3 values (∇ for y1, ∆ for y2,
and ◦ for y3) before valid value selection process. (d) After valid value selection,
our proposed inverse modeling technique with 3 values (∇ for y1, ∆ for y2, and ◦
for y3) can learn all the training data automatically, matching all the contradictory
data at the same time, and achieving good accuracy. (e) The existing technique in
[17] with 2 sub-models. Inside the first sub-model, there is still contradictory data,
therefore the sub-model #1 (×) is not accurate. The sub-model #2 (+) is good. (f)
The existing technique in [17] with 4 sub-models can achieve good model accuracy.
(g) SVM inverse model behaves well at the range where there is no contradictory
data. Where there are three different solutions for the same input (i.e., multivalued
output for the same input), the SVM model cannot learn all the three contradictory
values. (h) GP inverse model tries to approach the average of the contradictory
data.
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without valid value selection. From Fig. 4.5(c), we can find that two different

values (such as y1 and y3, or y2 and y3 in Fig. 5(c)) of our proposed multivalued

neural network inverse model approach the same point, where the derivative of the

input-output relationship changes signs. At such points, the errors ei,ks in (4.8) for

two different i will be both minimized, which results in a small training error in

(4.7). In other words, the values for both sets of outputs of our proposed model at

such points will approach the same training data. After using the selection method

proposed in Section II-D, the valid values are shown in Fig. 4.5(d). As we can see

from the figure, in the range where there are three different solutions for the same

input, the values y1, y2, and y3 match three different solutions, respectively, thus

solving the non-uniqueness problem. So in this range, y1, y2, and y3 are all valid

values. In the range where there is no conflict, only y2 fits the training data. So y2

will be the valid value, and both y1 and y3 are invalid (dummy) values. From Fig.

4.5(c) we can find that our proposed inverse modeling technique not only fits the

training data very well, but also distinguishes valid values from invalid ones.

For comparison purposes, we also use the existing inverse modeling technique in

[17] to solve this problem. In the data range from L3 = 3.93mm to L3 = 4.07mm,

we separate the training data into two groups according to the signs of derivative

information ∂|S21|
∂L3

: Group #1. according to the positive derivative, the data range

from L3 = 3.93mm to L3 = 3.97mm and the data range from L3 = 4.02mm

to L3 = 4.07mm belong to the first group; Group #2. according to the negative

derivative, the data range from L3 = 3.97mm to L3 = 4.02mm belongs to the second

group. Since the signs of derivative information in this case can only distinguish
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between two groups, the existing inverse modeling technique can not solve this three-

value non-uniqueness problem in this data range. As we can see from Fig. 4.5(d),

the sub-model #1 (represented by “×” in Fig. 4.5(d)) is not accurate. The sub-

model #2 (represented by “+” in Fig. 4.5(d)) is good. From the comparison, our

proposed inverse modeling technique can achieve better model accuracy without

having to separate the training data and then train sub-models. The proposed

inverse modeling technique solves the non-uniqueness problem in a much simpler

and more automated way. Furthermore, our proposed technique can increase the

reliability of the solution over that of [17].

To further improve the model accuracy using the existing inverse modeling tech-

nique in [17], we further segment this small data range from L3 = 3.93mm to

L3 = 4.07mm into two parts. Without prior knowledge of this data range in this

example, we usually segment the data into several equal parts along the geomet-

rical parameter L3 to solve the inverse modeling problem. The data segmentation

will become even more difficult in high dimension especially when the contradictory

data can not be graphically visualized. Thus the training data is segmented into two

equal parts: Segment 1 includes the data range from L3 = 3.93mm to L3 = 4.00mm,

and Segment 2 includes data range from L3 = 4.00mm to L3 = 4.07mm. Within

each segment, the derivative information will be used to separate the contradictory

data into different groups. Thus, we will have four groups: Group #1. accord-

ing to the positive derivative in Segment 1, the data range from L3 = 3.93mm

to L3 = 3.97mm belongs to the first group; Group #2. according to the negative

derivative in Segment 1, the data range from L3 = 3.97mm to L3 = 4.00mm belongs
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to the second group; Group #3. according to the negative derivative in Segment

2, the data range from L3 = 4.00mm to L3 = 4.02mm belongs to the third group;

Group #4. according to the positive derivative in Segment 2, the data range from

L3 = 4.02mm to L3 = 4.07mm belongs to the fourth group. The model structure

is shown in Fig. 4.4(e). After training four sub-models using four different groups

of data, the result is shown in Fig. 4.5(e). The existing technique in [17] using four

sub-models can achieve good model accuracy. Compared to this existing technique,

our proposed inverse modeling technique can solve this inverse problem using only

one proposed ANN structure with three values after one overall training, and our

proposed technique does not need to separate training data nor train sub-models.

Therefore, our proposed technique can achieve good accuracy in a much simpler

and more automated way.

We also provide a comparison with standard SVM and GP approaches. The

inverse modeling results using SVM with a single output (one value) and GP with

a single output (one value) are shown in Fig. 4.5(g) and 4.5(h), respectively. The

SVM inverse model with a single output behaves well at the range where there is

no contradictory data. Where there are three different solutions, the SVM model

with a single output cannot learn all the three contradictory values. GP inverse

model with a single output tries to approach the average of the contradictory data.

The output fails to match any valid training data. Therefore, the standard SVM

and GP methods with a single set of output (one value) cannot solve the problem

of multivalued solutions in inverse modeling. In Fig. 4.5(d), it shows that by

formulating the inverse model with multiple outputs, i.e., repeating the outputs
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Table 4.1: Definition of the Training and Test Data Range for the Fourth-Order
Dielectric Resonator Filter Example

Min Nominal Max

M12 0.1106 0.9106 1.7106

M23 -0.1001 0.6999 1.4999

M34 0.1106 0.9106 1.7106

of the direct ANN inverse model Nv times, our proposed method can solve the

multivalued problem of the ANN inverse modeling.

4.3.2 The Inverse Modeling of A Fourth-Order Dielectric
Resonator Filter

In this example, we illustrate the proposed technique through the inverse modeling

of a fourth-order dielectric resonator filter [2]. This filter is supposed to have the

following specifications: the filter order is 4; the center frequency is 1930 MHz; the

bandwidth is 15 MHz; the return loss is 20 dB; the ideal coupling parameters are

M =




0 0.9106 0 0

0.9106 0 0.6999 0

0 0.6999 0 0.9106

0 0 0.9106 0




(4.16)

The diagonal elements M11 = M22 = M33 = M44 = 0, and Mij = Mji, i 6= j. As a

result, the non-zero coupling parameters are M12, M23 and M34.
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For this example, we try to build an inverse model between the coupling pa-

rameters and the S-parameter. Here we choose both S11 and S21 (in dB) at 11

frequency samples as the inputs x, and 3 coupling parameters as the outputs, i.e.,

y = [M12 M23 M34]
T . Therefore, n = 22, m = 3. To generate the training and test

data, we choose a tolerance of ±0.8 for every coupling parameter, which is shown

in Table 4.1. Then we use uniformly distributed random values in this range to get

100000 sets of input-output data as the training data, and 50000 sets as the test

data.

We firstly illustrate the inverse modeling problem using the conventional direct

inverse modeling technique. We train a 3-layer MLP with 22 input neurons, 60

hidden neurons, and 3 output neurons, i.e., MLP: 22-60-3, to learn all the training

data. The training error and test error are shown in Table 4.2. From the table, we

can find that even though we try to reduce the training error to a relatively small

value with enough hidden neurons and training iterations, the test error still stays

large because of the non-uniqueness problem. The large test error of the direct

inverse modeling technique in Table 4.2 means that, for given S-parameter inputs,

the coupling parameters provided by the direct inverse model can not match the

desired coupling parameters in the test data.

Then we apply our proposed multivalued neural network inverse model with 2

values to this example. The same number of hidden neurons are used in our proposed

multivalued neural network with 2 values. There are 22 input neurons and 6 output

neurons (2 values of 3 coupling parameters) in our proposed multivalued neural
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Table 4.2: The Comparison of Modeling Results Using Different Inverse Modeling
Methods for the Fourth-Order Dielectric Resonator Filter Example

Inverse modeling methods Training error∗ Test error

Direct inverse modeling technique 5.09% 10.43%

Proposed technique with 2 values 1.63% 1.84%
∗To be compatible with the errors in the direct inverse modeling technique, both
the training error and test error in the proposed modeling technique are calculated
by (4.9).

network, i.e., MLP: 22-60-6. The comparison of the modeling results is shown in

Table 4.2. Our proposed multivalued neural network inverse model is obtained

using our proposed training error functions (4.6) - (4.8) in one overall training.

Both the training error and test error of our proposed inverse model are very small.

The small training and test errors of the proposed inverse modeling technique in

Table 4.2 mean that, for given S-parameter inputs, one of the two values provided

by the proposed inverse model for the coupling parameters can match the desired

coupling parameters in the training and test data very well. Therefore, our proposed

technique can solve the non-uniqueness problem in a simple and automated way.

After being trained, our inverse model (with 2 values) will always provide two

sets of coupling parameters for any set of S-parameter input. With valid value

selection process, our proposed inverse model can always provide reliable solutions

of coupling parameters. Here we use two test samples to illustrate how our valid

value selection process works.

For Sample #1, the desired S-parameters (both S11 and S21) of this filter sample
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(a) (b)

(c) (d)

Figure 4.6: Two test samples for the fourth-order filter example. Sample #1: (a)
The S-parameters calculated from the 1st value y1 provided by our proposed inverse
model , (b) The S-parameters calculated from the 2nd value y2 provided by our
proposed inverse model. Sample #2: (c) The S-parameters calculated from the 1st
value y1 provided by our proposed inverse model, (d) The S-parameters calculated
from the 2nd y2 provided by our proposed inverse model. For Sample #1, S-
parameters calculated from both values match the desired S-parameters very well.
Both values are valid. For Sample #2, only the S-parameter calculated from the
1st value matches the desired S-parameters very well. Therefore, the 1st value is
valid, and the 2nd value is dummy. Our proposed valid value selection process
can distinguish valid values from the dummy ones. Our proposed inverse model
with valid value selection process can always provide accurate solutions of coupling
parameters for a given set of S-parameter input.
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are shown in Fig. 4.6(a). After the S-parameters are fed into our proposed inverse

model, two values of coupling parameters provided by our inverse model are

y1 = [0.8888 0.6587 0.9502]T (4.17a)

y2 = [0.9497 0.6575 0.8878]T (4.17b)

The S-parameters calculated from y1 and y2 are shown in Fig. 4.6(a) and

Fig. 4.6(b), respectively. The S-parameters calculated from both values match the

desired S-parameters very well. The errors Eo for both values are

Eo(y1) = 0.58 (4.18a)

Eo(y2) = 0.53 (4.18b)

For given ε = 2, both y1 and y2 are selected as the valid values. In this situation,

it proves that for a given set of S-parameter, there would be multivalued solutions

of coupling parameters. Our proposed multivalued neural network can associate a

single set of S-parameter to multiple sets of coupling parameters. By combining

our proposed inverse model with valid value selection process, we can always obtain

reliable solutions of the coupling parameters for a given set of S-parameters.

For Sample #2, the desired S-parameters (both S11 and S21) of this filter sample

are shown in Fig. 4.6(c). After the S-parameters are fed into our proposed inverse
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model, two values of coupling parameters provided by our inverse model are

y1 = [0.1571 1.2021 0.2176]T (4.19a)

y2 = [0.2218 1.1934 0.1088]T (4.19b)

The S-parameters calculated from y1 and y2 are shown in Fig. 4.6(c) and Fig.

4.6(d), respectively. Only the S-parameter calculated from y1 matches the desired

S-parameters very well. The errors Eo for both values are

Eo(y1) = 1.8 (4.20a)

Eo(y2) = 4.2 (4.20b)

For given ε = 2, y1 is selected as the valid value, and y2 is dummy. Therefore,

our proposed valid value selection process can distinguish the valid value(s) from

the dummy value(s). By combining our proposed inverse model with valid value

selection process, we can always obtain reliable solutions of the coupling parameters

for a given set of S-parameter.

Next we further demonstrate the use of our proposed multivalued neural inverse

model to extract the coupling parameters for these two filter samples.

For Sample #1, this filter sample is slightly detuned from the nominal filter

shown in (4.16). Two valid values provided by our proposed multivalued neural

network inverse model are in (4.17). From (4.18), we have already known that

both values provided by our inverse model are valid. To further distinguish the true

solution between these two values to get a unique set of desired coupling parameters,
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the 2-circuit ANN process described in Section II-E using our proposed multivalued

neural network inverse model is applied.

This slightly detuned filter is used as the 1st circuit in the 2-circuit ANN ex-

traction process using our proposed multivalued neural network inverse model. The

desired coupling parameters of the 1st circuit are

M1
Desired

=




0 0.8850 0 0

0.8850 0 0.6595 0

0 0.6595 0 0.9493

0 0 0.9493 0




(4.21)

Then we change one filter parameter, which mainly affects the first coupling

parameter, i.e., M12, to obtain the 2nd circuit. The desired coupling matrix of the

2nd circuit is

M2
Desired

=




0 0.5634 0 0

0.5634 0 0.6612 0

0 0.6612 0 0.9131

0 0 0.9131 0




(4.22)

We can obtain the S-parameters (both S11 and S21) of the 2nd circuit. After the S-

parameters are fed into our proposed inverse model, the model produces two values
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of coupling parameters for the 2nd circuit as follows

y1 = [0.5601 0.6632 0.9127]T (4.23a)

y2 = [0.9118 0.6638 0.5591]T (4.23b)

We calculate Eo (the errors between the S-parameters calculated from these values

and the desired S-parameters) for both values. According to Eo, both values for

the 2nd circuit are selected as valid values. Then we need to compare each value in

(4.19) with each value in (4.23). According to the adjustment of the filter parameter,

the change of the first coupling parameter should be large, and others small. We

can find the correct combination as follows

1st circuit: y1 = [0.8888 0.6587 0.9502]T (4.24a)

2st circuit: y1 = [0.5601 0.6632 0.9127]T (4.24b)

which satisfies the pattern of parameter change between the two circuits. Therefore,

the extracted coupling parameters for this slightly detuned filter sample are

M
Extracted

=




0 0.8888 0 0

0.8888 0 0.6587 0

0 0.6587 0 0.9502

0 0 0.9502 0




(4.25)

Comparing the extracted coupling parameters in (4.25) with the desired coupling

parameters in (4.21), we can find that our proposed multivalued neural network

inverse model can be used to extract the coupling parameter accurately. The total
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computation effort in this process includes two evaluations of the proposed inverse

model, four evaluations of the forward model, and comparisons between the solutions

of 2 circuits. Since the evaluation of ANN is very fast and the comparison time

between vectors is very short, the multi-circuit ANN process using our proposed

multivalued neural network is very efficient and can be done instantaneously.

For Sample #2, this filter sample is highly detuned from the nominal filter shown

in (4.16). The desired coupling parameters of this highly detuned filter sample are

M
Desired

=




0 0.1512 0 0

0.1512 0 1.1856 0

0 1.1856 0 0.2099

0 0 0.2099 0




(4.26)

From (4.20), we have known that the only valid value is y1 = [0.1571 1.2021 0.2176]T .

In this situation, the extracted coupling matrix is

M
Extracted

=




0 0.1571 0 0

0.1571 0 1.2021 0

0 1.2021 0 0.2176

0 0 0.2176 0




(4.27)

Comparing the extracted coupling parameters in (4.27) and the desired coupling

parameters in (4.26), our proposed inverse model can provide a reliable extraction

result.
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For comparison purposes, we also use the existing 2-circuit optimization ap-

proach in [93] to extract the coupling parameters in both cases mentioned above.

The starting points of the 2-circuit optimization approach in both cases are the

nominal coupling parameters in (4.16). For the slightly detuned filter in Sample

#1, the extraction result obtained by the existing 2-circuit optimization method is

also very accurate. However, the conventional 2-circuit optimization method takes

about 90 gradient based optimization iterations to find the solution. For the highly

detuned filter in Sample #2, the optimization converges to a wrong solution, since

the starting point of the optimization is far from the desired coupling parameters.

The optimization solution is found to be wrong, because the optimized values of

coupling parameters are outside the practical range even though the corresponding

S-parameters have approximated the desired data. The multi-circuit ANN pro-

cess using our proposed multivalued neural network inverse model does not suffer

from the problem of a bad starting point, because our process does not need itera-

tive model evaluation. Therefore, our proposed multivalued neural network inverse

model is more efficient for filter parameter extraction over the conventional multi-

circuit optimization approach.

4.3.3 The Inverse Modeling of A Sixth-Order Multicoupled
Cavity Filter

In this example, we deal with a sixth-order multicoupled cavity filter used in mi-

crowave communication system [92]. This filter is centered at 4 GHz with 40 MHz
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bandwidth. The coupling matrix is shown as follows

M =




0 M12 0 0 0 M16

M21 0 M23 0 M25 0

0 M32 0 M34 0 0

0 0 M43 0 M45 0

0 M52 0 M54 0 M56

M61 0 0 0 M65 0




(4.28)

where Mij = Mji, i 6= j. There are 7 non-zero coupling parameters, i.e., M12, M23,

M34, M45, M56, M16 and M25. The nominal coupling parameters are shown in Table

4.3.

For this example, we try to build an inverse model between the coupling param-

eters and the S-parameter. Here we choose S11 (in dB) at 33 frequency samples

as the inputs x, and 7 coupling parameters as the outputs , i.e., y = [M12 M23

M34 M45 M56 M16 M25]
T . Therefore, n = 33,m = 7. To generate the training

and test data, we choose a tolerance of ±0.2 for every coupling parameter, which is

shown in Table 4.3. Then we use uniformly distributed random values in this range

to get 100000 sets of input-output data as the training data, and 50000 sets as test

data.

We firstly illustrate the inverse modeling problem using the conventional direct

inverse modeling technique. We train a 4-layer MLP with 60 neurons in each hidden

layer, 33 input neurons, and 7 output neurons, i.e., MLP: 33-60-60-7, to learn all
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the training data. After training with enough iterations, the training error and test

error are shown in Table 4.4. From the table, we can see that even though we

try to train the conventional direct inverse model with enough hidden neurons and

training iterations, the training error and test error are always large because of the

non-uniqueness problem.

Then we use our proposed multivalued neural network inverse modeling tech-

nique with 2, 3 and 4 values to solve this example. We will also use 4-layer MLPs

in our proposed technique. The number of input neurons remains 33. The same

number of neurons (i.e., 60) in each hidden layer are used. The total numbers of

output neurons of the proposed multivalued neural network inverse models with 2,

3, and 4 values are 14 (2·m), 21 (3·m), and 28 (4·m), respectively. The comparison

results are shown in Table 4.4. With the increase of the number of the values, both

the training error and test error are reduced using our proposed inverse modeling

technique. The proposed multivalued neural network inverse model with 4 values is

the most accurate one for this sixth-order filter example.

Next, we use the proposed multivalued neural network inverse model (with 4

values) to extract the coupling parameters for two filter cases, i.e., slightly (Case 1)

and highly (Case 2) detuned from the nominal filter.

In the first case, our proposed multivalued neural network inverse model is used

to extract coupling parameters for a slightly detuned filter sample. The 2-circuit

ANN process is applied in this case. This filter is used as the 1st circuit in the

extraction process. The desired coupling parameters of the 1st circuit are
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Table 4.3: Definition of the Training and Test Data Range for the Sixth-Order
Cavity Filter Example

Min Nominal Max

M12 0.659956 0.859956 1.059956

M23 0.326602 0.526602 0.726602

M34 0.591894 0.791894 0.991894

M45 0.326602 0.526602 0.726602

M56 0.659956 0.859956 1.059956

M16 -0.112707 0.087293 0.287293

M25 -0.593686 -0.393686 -0.193686

Table 4.4: The Comparison of Modeling Results Using Different Inverse Modeling
Methods for the Sixth-Order Cavity Filter

Inverse modeling methods ∗Training error Test error

Direct inverse modeling technique 5.64% 5.91%

Proposed technique with 2 values 2.67% 3.05%

Proposed technique with 3 values 2.10% 2.66%

Proposed technique with 4 values 1.86% 1.94%
∗To be compatible with the errors in the direct inverse modeling technique, both
the training error and test error in the proposed modeling technique are calculated
by (4.9).

M
1
Desired

=




0 .9351 0 0 0 .0734

.9351 0 .5631 0 −.4037 0

0 .5631 0 .8032 0 0

0 0 .8032 0 .5309 0

0 −.4037 0 .5309 0 .8503

.0734 0 0 0 .8503 0




(4.29)
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The desired S-parameter is shown in Fig. 4.7(a). After the desired S-parameter is

fed into our proposed inverse model, four values provided by our inverse model are

y1 = [.9105 .5721 .7984 .5036 .8584 .0755 − .4112]T (4.30a)

y2 = [.8329 .5038 .8024 .5581 .9373 .0714 − .4127]T (4.30b)

y3 = [.8688 .5003 .8025 .5588 .8964 .0738 − .4173]T (4.30c)

y4 = [.9425 .5631 .8011 .4995 .8308 .0756 − .4174]T (4.30d)

The S-parameters calculated from these values y1, y2, y3, and y4 are shown in Fig.

4.7(a), Fig. 4.7(b), Fig. 4.7(c), and Fig. 4.7(d), respectively. The S-parameters

calculated from y2 and y4 match the desired S-parameter very well. The errors Eo

for all these four values are

Eo(y1) = 7.1 (4.31a)

Eo(y2) = 1.5 (4.31b)

Eo(y3) = 8.7 (4.31c)

Eo(y4) = 1.9 (4.31d)

For given ε = 2, both y2 and y4 are selected as the valid values.

To further distinguish between these two valid solutions to get a unique set of

desired coupling parameters, the 2-circuit ANN process described in Section II-E

using our proposed multivalued neural network inverse model is applied. We change

one filter parameter, which mainly affects the second coupling parameter in y, i.e.,

M23, to obtain the 2nd circuit. The desired coupling matrix of the 2nd circuit is
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(a) (b)

(c) (d)

Figure 4.7: The slightly detuned filter case for the sixth-order cavity filter example.
Our proposed inverse model can provide 4 values for the coupling parameters: (a)
S11 calculated from the 1st value y1 (-); (b) S11 calculated from the 2nd value y2 (-);
(c) S11 calculated from the 3rd value y3 (-). (d) S11 calculated from the 4th value
y4 (-). The desired S-parameter is shown in circles (o). S-parameters calculated
from y2 and y4 match the desired S-parameter very well. They are selected as
valid values. The other two are dummy. Our proposed valid value selection process
can distinguish valid values from the dummy ones. Our proposed inverse model
with valid value selection process can always provide accurate solutions of coupling
parameters for a given set of S-parameter.
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M
2
Desired

=




0 .9367 0 0 0 .0739

.9367 0 .3622 0 −.4053 0

0 .3622 0 .8012 0 0

0 0 .8012 0 .5311 0

0 −.4053 0 .5311 0 .8507

.0739 0 0 0 .8507 0




(4.32)

We can get the S-parameter for the 2nd circuit. After the S-parameter of the 2nd

circuit is fed into our proposed inverse model, the model produces four values of

coupling parameters for the 2nd circuit as follows

y1 = [.8449 .5257 .7994 .3581 .9209 .0625 − .4039]T (4.33a)

y2 = [.8309 .4826 .7878 .4016 .9556 .0647 − .4056]T (4.33b)

y3 = [.9279 .3562 .8044 .5211 .8390 .0600 − .4097]T (4.33c)

y4 = [.9568 .3994 .7893 .4829 .8315 .0681 − .4095]T (4.33d)

We calculate Eo (the errors between the S-parameters calculated from these values

and the desired S-parameter) for all these four values. According to Eo, y1 and

y3 are selected as the valid values. Then we compare y2, y4 of the 1st circuit in

(4.30) with y1, y3 of the 2nd circuit in (4.33). From the comparison, we find that

the difference between y4 of the 1st circuit and y3 of the 2nd circuit matches the

pattern of parameter change between the two circuits. According to the change

pattern of the circuit parameter, the change of second coupling parameter should

be large, while the changes of other coupling parameters are small, as demonstrated

below
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1st circuit: y4 = [.9425 .5631 .8011 .4995 .8308 .0756 − .4174]T (4.34a)

2nd circuit: y3 = [.9279 .3562 .8044 .5211 .8390 .0600 − .4097]T (4.34b)

Therefore, the extracted coupling parameters of this slightly detund filter are

M
Extracted

=




0 .9425 0 0 0 .0756

.9425 0 .5631 0 −.4174 0

0 .5631 0 .8011 0 0

0 0 .8011 0 .4995 0

0 −.4174 0 .4995 0 .8308

.0756 0 0 0 .8308 0




(4.35)

Comparing the extracted coupling parameters in (4.35) with the desired coupling

parameters in (4.29), we can find that the 2-circuit ANN process using our proposed

multivalued neural network inverse model is reliable. The total computation effort in

this process includes two evaluations of the proposed inverse model, eight evaluations

of the forward model, and comparisons between the solutions of 2 circuits. The

multi-circuit ANN process using our proposed multivalued neural network is very

efficient and can be done instantaneously.

In the second case, our proposed multivalued neural network inverse model is

used to extract coupling parameters for a highly detuned filter sample. The similar

procedure as that in the first case is done. Both the desired and extracted coupling

parameters for this filter sample are shown bellow
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Figure 4.8: The slightly and highly detuned filter cases for the sixth-order cavity
filter example. (a) The slightly detuned filter case. (b) The highly detuned filter
case. The circles (o) represent the desired S-parameters. The lines (-) represent the
S-parameters calculated by the extracted coupling parameters, which are obtained
using our proposed multivalued neural network inverse model. The S-parameters
calculated from the extracted coupling parameters in both cases can match the
desired S-parameters very well.
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M
Desired

=




0 1.057 0 0 0 .0501

1.057 0 .3873 0 −.2171 0

0 .3873 0 .6005 0 0

0 0 .6005 0 .6209 0

0 −.2171 0 .6209 0 1.057

.0501 0 0 0 1.057 0




(4.36a)

M
Extracted

=




0 1.046 0 0 0 .0643

1.046 0 .4018 0 −.2453 0

0 .4018 0 .6124 0 0

0 0 .6124 0 .5848 0

0 −.2453 0 .5848 0 1.009

.0643 0 0 0 1.009 0




(4.36b)

As we can see, the coupling parameters extracted by the multi-circuit ANN process

using our proposed multivalued neural network inverse model match the desired

coupling parameters very well. The S-parameters calculated from the extracted

coupling parameters in both cases can also match the desired S-parameters very

well, which is shown in Fig. 4.8.

For comparison purposes, we also use the existing 2-circuit optimization ap-

proach in [93] to extract the coupling parameters for both cases mentioned above.

In the first case, the result obtained by the existing 2-circuit optimization approach

is also very accurate. However, the conventional 2-circuit optimization method takes

about 250 gradient based optimization iterations to find the solution. In the second

case, the optimization converges to a wrong solution, since the starting point is far

from the desired coupling parameters. The multi-circuit ANN process using our

proposed multivalued neural network inverse model does not suffer from the prob-

lem of a bad starting point. Therefore, our proposed multivalued neural network
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inverse model is more efficient for filter parameter extraction over the conventional

multi-circuit optimization approach.

4.3.4 The Inverse Modeling of An Eighth-Order Dual-Band
Filter

In this example, we deal with an eighth-order dual-band filter [2]. Two passbands

for this filter are from 3.901 GHz to 3.960 GHz and from 4.040 GHz to 4.101 GHz.

The coupling matrix is shown as follows

M =




0 M12 0 0 0 0 0 0

M21 0 M23 0 0 0 M27 0

0 M32 0 M34 0 M36 0 0

0 0 M43 0 M45 0 0 0

0 0 0 M54 0 M56 0 0

0 0 M63 0 M65 0 M67 0

0 M72 0 0 0 M76 0 M78

0 0 0 0 0 0 M87 0




(4.37)

where Mij = Mji, i 6= j. There are 9 non-zero coupling parameters, i.e., M12, M23,

M34, M45, M56, M67, M78, M27 and M36. The nominal coupling parameters are

shown in Table 4.5.

For this example, we try to build an inverse model between the coupling param-

eters and the S-parameter. Here we choose S11 (in dB) at 51 frequency samples as
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the inputs x, and 9 coupling parameters as the outputs , i.e., y = [M12 M23 M34

M45 M56 M67 M78 M27 M36]
T . Therefore, n = 51,m = 9. To generate the training

and test data, we choose a tolerance of ±0.15 for every coupling parameter, which

is shown in Table 4.5. Then we use uniformly distributed random values in this

range to get 200000 sets of input-output data as the training data, and 100000 sets

as test data.

First of all, we illustrate the inverse modeling problem using the conventional

direct inverse modeling technique. We train a 4-layer MLP with 51 input neurons,

75 neurons in each hidden layer, and 9 output neurons, i.e., MLP: 51-75-75-9, to

learn all the training data. The training error and test error are shown in Table

4.6. From the table, we can see the accuracy of the conventional inverse model

is low. The training error and the test error can not be reduced because of the

non-uniqueness problem.

Then we use our proposed multivalued neural network inverse modeling tech-

nique with 2, 3, 4, 5 and 6 values to solve this example. The same numbers of

hidden layers (i.e., 2) and hidden neurons (75 in each layer) as that used in direct

inverse modeling technique are used in our proposed multivalued neural network.

The numbers of total output neurons of the proposed multivalued neural networks

with 2, 3, 4, 5 and 6 values are 18 (2·m), 27 (3·m), 36 (4·m), 45 (5·m) and 54 (6·m),

respectively. The comparison results are shown in Table 4.6. For the modeling

results in Table 4.6, we have tried with MLP structures with different number of

hidden neurons and different initial weights to achieve the results. During train-
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Table 4.5: Definition of the Training and Test Data Range for the Eighth-Order
Dual-Band Filter Example

Min Nominal Max

M12 0.6967 0.8467 0.9967

M23 0.2642 0.4142 0.5642

M34 0.1254 0.2754 0.4254

M45 0.1332 0.2832 0.4332

M56 0.1254 0.2754 0.4254

M67 0.2642 0.4142 0.5642

M78 0.6967 0.8467 0.9967

M27 -0.4400 -0.2900 -0.1400

M36 -0.5670 -0.4170 -0.2670

ing, as soon as the model reaches the specified accuracy threshold, the training

will stop. The training result is not necessarily required to be a global optimum.

With the increase of the number of the values, both the training error and test

error are reduced using our proposed inverse modeling technique. From Table 4.6,

we can find that the proposed multivalued neural network inverse model with 6

values is the most accurate one for this eighth-order dual-band filter example. Our

proposed technique can automatically learn all the training data by redirecting the

contradictory information into multiple values of our proposed multivalued neural

network.

Next, we use our proposed multivalued neural network inverse model to extract

the coupling parameters for two filter cases, i.e., slightly (Case 1) and highly (Case 2)
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Table 4.6: The Comparison of Modeling Results Using Different Inverse Modeling
Methods for the Eighth-Order Dual-Band Filter

Inverse modeling methods ∗Training error Test error

Direct inverse modeling technique 5.09% 5.20%

Proposed technique with 2 values 3.28% 3.89%

Proposed technique with 3 values 2.89% 3.11%

Proposed technique with 4 values 2.54% 2.67%

Proposed technique with 5 values 2.27% 2.31%

Proposed technique with 6 values 1.94% 2.00%
∗To be compatible with the errors in the direct inverse modeling technique, both
the training error and test error in the proposed modeling technique are calculated
by (4.9).

detuned from the nominal filter shown in Table 4.5. The multi-circuit ANN process

is applied in both cases. The extracted coupling parameters are shown in Table 4.7.

From the table, we can see that the extracted coupling parameters using proposed

multivalued neural network inverse model match the desired coupling parameters

very well. The S-parameters calculated from the extracted coupling parameters in

the first and second cases are shown in Fig. 4.9 (a) and (b), respectively. From

the figures, we can find that S-parameters calculated from the extracted coupling

parameters match the desired S-parameters very well.

For comparison purposes, we apply the existing multi-circuit optimization ap-

proach in [93] to both cases mentioned above. In the first case, the conventional

multi-circuit optimization process can also get an accurate result. However, it takes

26 quasi-Newton iterations, which includes about 150 forward model evaluations. In
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Figure 4.9: Two cases for the eighth-order dual-band filter example: (a) The slightly
detuned filter case. (b) The highly detuned filter case. The circles (o) represent
the desired S-parameters. The lines (-) represent the S-parameters calculated by
the extracted coupling parameters, which are obtained by the multi-circuit ANN
process using our proposed multivalued neural network inverse model.
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Table 4.7: Comparison Between the Desired and Extracted Coupling Parameters
for the Eighth-Order Dual-Band Filter Example

Case Slightly detuned Highly detuned

Desired Extracted Desired Extracted

M12 0.9347 0.9382 0.6998 0.6878

M23 0.4029 0.4049 0.2734 0.2578

M34 0.3026 0.3085 0.1491 0.1533

M45 0.3100 0.3083 0.4246 0.4021

M56 0.2962 0.3026 0.3023 0.2913

M67 0.5090 0.5096 0.3039 0.3048

M78 0.8985 0.8959 0.9852 1.0038

M27 -0.3369 -0.3349 -0.2455 -0.2431

M36 -0.5639 -0.5606 -0.2874 -0.2978

the second case, the optimization converges to a wrong solution, since the starting

point is far from the desired coupling parameters. The multi-circuit ANN process

using our proposed multivalued neural network inverse model does not suffer from

the problem of a bad starting point. Therefore, our proposed multivalued neu-

ral network inverse model is more efficient for filter parameter extraction over the

conventional multi-circuit optimization approach.
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4.4 Conclusion

This chapter has presented a multivalued neural network inverse modeling technique

to address a major challenge in inverse modeling, which is the non-uniqueness prob-

lem. The proposed technique can associate a single set of electrical parameters with

multiple sets of geometrical or physical parameters. Our proposed inverse model

is structured to accommodate multiple values for the model output. Our proposed

multivalued neural network can learn all the training data by automatically redirect-

ing contradictory information into different values of the proposed inverse model.

As illustrated in the examples, our proposed technique can solve the non-uniqueness

problem in a simpler and more automated way, compared to the existing ANN in-

verse modeling techniques. Furthermore, our proposed multivalued neural network

inverse models have been used to enhance the efficiency and the reliability of the

filter parameter extraction process over the conventional multi-circuit optimization

approach.
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Chapter 5

Conclusions and Future Research

5.1 Conclusions

In this thesis, we have investigated advanced computer-aided-design (CAD) tech-

niques for optimization and inverse modeling of microwave filters. Aimed at speed-

ing up design optimization and improving the accuracy of inverse modeling of mi-

crowave filters, we have proposed a cognition-driven formulation of space mapping

optimization of microwave filters and a multivalued neural network inverse modeling

technique.

In our proposed cognition-driven formulation of space mapping optimization, two

sets of intermediate feature space parameters, including the feature frequency and

ripple height parameters, have been used to build two kinds of mapping. To control

the optimization updates and ensure convergence of the proposed cognition-drive

optimization, a trust region approach has been incorporated into our technique.

By using the proposed cognition-driven formulation of optimization directly in the
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feature space, our method can increase optimization efficiency and the ability to

avoid being trapped in a local minimum over our baseline approaches of coarse and

fine mesh EM space mapping and direct EM optimization.

In our proposed multivalued neural network inverse modeling technique, the

proposed inverse model can associate a single set of electrical parameters with mul-

tiple sets of geometrical or physical parameters. Our proposed inverse model has

been structured to accommodate multiple values for the model output. Our pro-

posed multivalued neural network can learn all the training data by automatically

redirecting contradictory information into different values of the proposed inverse

model. As illustrated in the examples, our proposed technique can solve the non-

uniqueness (multivalued) problem in a simpler and more automated way, compared

to the existing ANN inverse modeling techniques. Furthermore, our proposed mul-

tivalued neural network inverse models have been applied to enhance the efficiency

and the reliability of the filter parameter extraction process over the conventional

multi-circuit optimization approach.

Both proposed techniques in this thesis have been illustrated by several mi-

crowave filter examples. Our proposed techniques have been used to improve the

efficiency and accuracy of the design and parameter extraction processes of mi-

crowave filters.
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5.2 Future Research

Initiated in this thesis towards addressing optimization and inverse modeling chal-

lenges of microwave filers, some interesting future directions are stated as follows

• The cognition-driven formulation of space mapping has been studied for equal

ripple optimization of microwave filters in this thesis. Optimization of many

other microwave structures, such as antennas, currently still involves high cost

EM simulations. One future direction is to expand the cognition-driven con-

cept to advance EM based design not only for filters, but also for more general

microwave circuits, such as antennas. The radiation pattern of antennas can

be used as feature parameters. More formulation need to be studied to re-

alize an accurate mapping from radiation pattern to design variables. Thus

the radiation pattern can be optimized by changing design variables using the

newly formulated mapping.

• Yield optimization is an important topic for the fabrication process of mi-

crowave filters. Manufactured outcomes are spread over a region around the

nominal design. In order to improve the yield, the statistical design variables

should be taken into consideration. We can further expand the cognition-

driven formulation of space mapping to the yield driven optimization or the

statistical analysis of microwave filters. Using our proposed cognition-driven

space mapping, we can find the statistic behavior of the feature parameters.

By optimizing the statistical design variables, we can improve the margin of
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the feature parameters. Therefore, the yield can be improved.

• The proposed multivalued neural network has been applied to parameter ex-

traction of filters. It is possible to further apply our technique to design

optimization. We need to investigate how to build an accurate inverse model

between S-parameters and design variables. New formulations need to be

studied to obtain the desired S-parameters from given design specifications.

The optimal design variables can be obtained at the inverse model output

with the desired S-parameters as the inverse model inputs.

• Another possible future direction is to combine both cognition-driven con-

cept and multivalued neural network inverse modeling technique for design

optimization. It is possible to build a mapping from feature parameters to

design variables using an inverse model. The feature parameters can be used

as the inputs of the inverse model, and the design variables can be used as the

outputs of the inverse model. The multivalued neural network inverse mod-

eling technique can solve the multivalued problem when the inverse model

between feature parameters and design variables is trained. New formulations

need to be studied to get the desired feature parameters from given design

specifications. It is possible to obtain the optimal design variables instantly

at the inverse model output with the desired feature parameters as inputs.

Therefore, we can probably further improve the optimization efficiency.
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