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Quantum cryptography is arguably the fastest growing area in quantum information science.
Novel theoretical protocols are designed on a regular basis, security proofs are constantly improv-
ing, and experiments are gradually moving from proof-of-principle lab demonstrations to in-field
implementations and technological prototypes. In this review, we provide both a general introduc-
tion and a state of the art description of the recent advances in the field, both theoretically and
experimentally. We start by reviewing protocols of quantum key distribution based on discrete
variable systems. Next we consider aspects of device independence, satellite challenges, and high
rate protocols based on continuous variable systems. We will then discuss the ultimate limits of
point-to-point private communications and how quantum repeaters and networks may overcome
these restrictions. Finally, we will discuss some aspects of quantum cryptography beyond standard
quantum key distribution, including quantum data locking and quantum digital signatures.
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I. INTRODUCTION

Quantum information [1–11] is the core science be-
hind the so-called second quantum revolution [12, 13],
or quantum 2.0. This is the rapid development of new
disrupting technologies that are based on the most pow-
erful features and resources of quantum mechanics, such
as quantum entanglement [14], teleportation [15–18], and
the no-cloning theorem [19, 20]. In this context, quantum
computing [1] has recently gained a lot of momentum,
also thanks to the involvement of multinational corpora-
tions in competition to develop the first large quantum
computer. In particular, superconducting chips based on
Josephson junctions [21] are rapidly scaling up their num-
ber of qubits and soon may start to factorize non-trivial

integers by using Shor’s algorithm [22, 23]. The threat
for the Rivest-Shamir-Adleman (RSA) protocol [24] and
the other public key cryptosystems not only comes from
quantum computing but also from potential advances
in number theory, where an efficient factorization al-
gorithm might be found for classical Turing machines
(e.g., already in 2004 the test of primality has become
polynomial, thanks to the Agrawal-Kayal-Saxena algo-
rithm [25]).

An important point to understand is that the fragility
of current classical cryptosystems not only is a poten-
tial threat for the present, but a more serious and re-
alistic threat for the future. Today, eavesdroppers may
intercept cryptograms that they are not able to decrypt.
However, they may store these encrypted communica-
tions and wait for their decryption once a sufficiently
large quantum computer is technologically available (or
a new classical algorithm is discovered). This means that
the confidentiality of messages may have a very limited
lifespan. Following Michele Mosca [26], we may write
a simple inequality. Let us call x the security shelf-life
which is the length of time (in years) we need the classi-
cal cryptographic keys to be secure. Then, let us call y
the migration time which is the time (in years) needed to
adapt the current classical infrastructure with quantum-
secure encryption. Finally, let us call z the collapse time
which is the time (in years) for a large quantum computer
to be built. If x+ y > z then “worry” [26].

It is therefore clear that suitably countermeasures are
necessary. One approach is known as post-quantum cryp-
tography. This is the development of novel classical cryp-
tosystems which are robust to factorization and other
quantum algorithms. This is certainly one option but
it does not completely solve the problem. The point is
that there may be undiscovered quantum algorithms (or
undiscovered classical ones) that might easily break the
security of the new cryptosystems. In other words, post-
quantum cryptography is likely to offer only a partial and
temporary solution to the problem. By contrast, quan-
tum key distribution (QKD) offers the ultimate solution:
restoring security and confidentiality by resorting to un-
breakable principles of nature, such as the uncertainty
principle or the monogamy of entanglement [27–30].

Even though QKD offers the ultimate solution to the
security problem, its ideal implementation is hard to im-
plement in practice and there are a number of open prob-
lems to be addressed. One the one side, fully-device inde-
pendent QKD protocols [31, 32] (discussed in Section IV)
provide the highest level of quantum security but they are
quite demanding to realize and are characterized by ex-
tremely low secret key rates. On the other hand, more
practical QKD protocols assume some level of trust in
their devices, an assumption that allows them to achieve
reasonable rates, but this also opens the possibility of
dangerous side-channel attacks.

Besides a trade-off between security and rate, there is
also another important one which is between rate and
distance. Today, we know that there is a fundamental
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limit which restricts any point to point implementation
of QKD. Given a lossy link with transmissivity η, two
parties cannot distribute more than the secret key ca-
pacity of the channel, which is −log2(1 − η) [33], i.e., a
scaling of 1.44η secret bits per channel use at long dis-
tance. Ideal implementations of QKD protocols based on
continuous-variable systems [7, 9] and Gaussian states [6]
may approach this capacity [34], while those based on
discrete variables falls below by additional factors. In
order to overcome this limit and enable long-distance
high-rate implementations of QKD, we need the develop
quantum repeaters [35–37] and quantum networks [38].
In this way, we may achieve better long-distance scalings
and further boost the rates by resorting to more com-
plex routing strategies. The study of quantum repeaters
and secure QKD networks is one of the hottest topics
today [39–48].
The present review aims at providing an overview of

the most important and most recent advances in the
field of quantum cryptography, both theoretically and
experimentally. After a brief introduction of the gen-
eral notions, we will review the main QKD protocols
based on discrete- and continuous-variable systems. We
will consider standard QKD, device-independent and
measurement-device independent QKD. We will discuss
the various levels of security for the main communica-
tion channel, from asymptotic security proofs to ana-
lyzes accounting for finite-size effects and composability
aspects. We will also briefly review quantum hacking
and side-channel attacks. Then, we will present the most
recent progress in the exploration of the ultimate lim-
its of QKD. In particular, we will discuss the secret key
capacities associated with the most important models of
quantum channels over which we may implement point-
to-point QKD protocols, and their extension to quantum
repeaters and networks. Practical aspects of quantum
repeaters will then be thoroughly discussed. Finally, we
will treat topics beyond QKD, including quantum data
locking, quantum random number generators, and quan-
tum digital signatures.

II. BASIC NOTIONS IN QUANTUM KEY
DISTRIBUTION

A. Generic aspects of a QKD protocol

In our review we consider both discrete-variable sys-
tems, such as qubits or other quantum systems with
finite-dimensional Hilbert space, and continuous-variable
systems, such as bosonic modes of the electromag-
netic field which are described by an infinite-dimensional
Hilbert space. There a number of reviews and books on
these two general areas (e.g., see Refs. [1, 6]). Some of
the concepts are repeated in this review but we gener-
ally assume basic knowledge of these systems. Here we
mention some general aspects that apply to both types
of systems.

A generic “prepare and measure” QKD protocol can
be divided in two main steps: quantum communication
followed by classical postprocessing. During quantum
communication the sender (Alice) encodes instances of a
random classical variable α into non-orthogonal quantum
states. These states are sent over a quantum channel (op-
tical fiber, free-space link) controlled by the eavesdropper
(Eve), who tries to steal the encoded information. The
linearity of quantum mechanics forbids to perform per-
fect cloning [19, 20], so that Eve can only get partial
information while disturbing the quantum signals. At
the output of the communication channel, the receiver
(Bob) measures the incoming signals and obtains a ran-
dom classical variable β. After a number of uses of the
channel, Alice and Bob share raw data described by two
correlated variables α and β.

The remote parties use part of the raw data to estimate
the parameters of the channel, such as its transmissivity
and noise. This stage of parameter estimation is impor-
tant in order to evaluate the amount of post-processing
to extract a private shared key from the remaining data.
Depending on this information, they in fact perform a
stage of error correction, which allows them to detect and
eliminate errors, followed by a stage of privacy amplifica-
tion that allows them to reduce Eve’s stolen information
to a negligible amount. The final result is the secret key.

Depending on which variable is guessed, we have di-
rect or reverse reconciliation. In direct reconciliation, it
is Bob that post-process its outcomes in order to infer
Alice’s encodings. This procedure is usually assisted by
means of forward CC from Alice to Bob. By contrast,
in reverse reconciliation, it is Alice who post-process her
encoding variable in order to infer Bob’s outcomes. This
procedure is usually assisted by a final round of backward
CC from Bob to Alice. Of course, one may more gener-
ally consider two-way procedures where the extraction of
the key is helped by forward and feedback CCs, which
may be even interleaved with the various communication
rounds of the protocol.

Let us remark that there may also be an additional
post-processing routine, called sifting, where the remote
parties communicate in order to agree instances while
discard others, depending on the measurement bases they
have independently chosen. For instance this happens
in typical DV protocols, where the Z-basis is randomly
switched with the X-basis, or in CV protocols where the
homodyne detection is switched between the q and the p
quadrature.

Sometimes QKD protocols are formulated in
entanglement-based representation. This means
that Alice’ preparation of the input ensemble of states
is replaced by an entangled state ΨAB part of which is
measured by Alice. The measurement on part A has
the effect to conditionally prepare a state on part B.
The outcome of the measurement is one-to-one with
the classical variable encoded in the prepared states.
This representation is particularly useful for the study
of QKD protocols, so that their prepare and measure
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formulation is replaced by an entanglement-based
formulation for assessing the security and deriving the
secret key rate.

B. Asymptotic security and eavesdropping
strategies

The asymptotic security analysis is based on the as-
sumption that the parties exchange a number n≫ 1 (ide-
ally infinite) of signals. The attacks can then be divided
in three classes of increasing power: Individual, collec-
tive, and general-coherent. If the attack is individual,
Eve uses a fresh ancilla to interact with each transmitted
signal and she performs individual measurements on each
output ancillary systems. The individual measurements
can be done run-by-run or delayed at the end of the pro-
tocol, so that Eve may optimize over Alice and Bob’s CC
(also known as delayed-choice strategy). In the presence
of an individual attacks, we have three classical variables
for Alice, Bob and Eve, say α, β and γ. The asymptotic
key rate is then given by the difference of the mutual
information [49] I among the various parties according
to Csiszar and Korner’s classical theorem [50]. In direct
reconciliation (DR), we have the key rate

RDR := I(α : β)− I(α : γ), (1)

where I(α : β) := H(α) − H(α|β) with H being the
Shannon entropy and H(|) its conditional version. In
reverse reconciliation (RR), we have instead

RRR := I(α : β)− I(β : γ), (2)

If the attack is collective then Eve still uses a fresh
ancilla for each signal sent but now her output ancil-
lary systems are all stored in a quantum memory which
is collectively measured at the end of the protocol af-
ter Alice and Bob’s CCs. In this case, we may compute
a lower bound to the key rate by replacing Eve’s mu-
tual information with Eve’s Holevo information on the
relevant variable. In direct reconciliation, one considers
Eve’s ensemble of output states conditioned to Alice’s
variable α, i.e., {ρE|α, P (α)} where P (α) is the probabil-
ity of the encoding α. Consider then Eve’s average state
ρE :=

∫

dαP (α)ρE|α. Eve’s Holevo information on α is
equal to

I(α : E) := S(ρE)−
∫

dαP (α)S(ρE|α), (3)

where S(ρ) := −Tr(ρlog2ρ) is the von Neumann entropy.
In reverse reconciliation, Eve’s Holevo information on β
is given by

I(β : E) := S(ρE)−
∫

dβP (β)S(ρE|β), (4)

where ρE|β is Eve’s output state conditioned to the out-
come β with probability P (β). Thus, we may write the

two key rates [51]

RDR := I(α : β)− I(α : E), (5)

RRR := I(α : β) − I(β : E). (6)

In a general-coherent attack, Eve’s ancillae and the
signal systems are collectively subject to a joint unitary
interaction. The ancillary output is then stored in Eve’s
quantum memory for later detection after the parties’
CCs. In the asymptotic scenario, it has been proved [52]
that this attack can be reduced to a collective one by run-
ning a random symmetrization routine which exploits the
quantum de Finetti theorem [52–54]. By means of ran-
dom permutations, one can in fact transform a general
quantum state of n systems into a tensor product ρ⊗n,
which is the structure coming from the identical and in-
dependent interactions of a collective attack.

C. Finite-size effects

Finite-size effects come into place when the number of
signal exchanged n is not so large to be considered to
be infinite (see IX for more details). If we assume that
the parties can only exchange a finite number of signals,
them the key rate must be suitably modified and takes
the form

Kc := ξI(α : β) − IE −∆(n, ǫ). (7)

Here ξ accounts for non-ideal reconciliation efficiency of
classical protocols of error correction and privacy ampli-
fication, while ∆(n, ǫ) represents the penalty to pay for
using the Holevo quantity IE = I(α : E) or I(β : E)
in the non-asymptotic context. An important point is
the computation of ∆(n, ǫ) which is function of the num-
ber of signals exchanged n, and of composite ǫ-parameter
that contains contributions from the probability that the
protocol aborts, the probability of success of the error
correction, parameter estimation etc. This is related to
the concept of composability that we briefly explain in
the next section. Composable security proofs are today
known for both discrete- and continuous-variable QKD
protocols [55–62].

D. Composable security of QKD

Cryptographic tasks often form parts of larger proto-
cols. Indeed the main reason for our interest in QKD
is that secure communication can be built by combining
key distribution with the one-time pad protocol. If two
protocols are proven secure according to a composable
security definition, then the security of their combina-
tion can be argued based on their individual function-
alities and without the need to give a separate security
proof for the combined protocol. Since individual crypto-
graphic tasks are often used in a variety of applications,
composability is highly desirable. Furthermore, the early
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security proofs for QKD [63, 64] did not use a composable
definition and were consequently shown to be inadequate
(even when combined with the one-time pad) [65].
The concept of composability was first introduced in

classical cryptography [66–69] before being generalized to
the quantum setting [70–72]. A new security definition
was developed [73, 74] that is composable in the required
sense and is the basis of the accepted definition, which
we discuss here. The main idea behind a composable se-
curity definition is to define an ideal protocol, which is
secure by construction, and then show that the real im-
plementation is virtually indistinguishable from the ideal
in any situation. Therefore, in effect it takes into account
the worst possible combined protocol for the task in ques-
tion. To think about this concretely, it is often phrased
in terms of a game played by a distinguisher whose task
it is to guess whether Alice and Bob are implementing
the real protocol or the ideal. The distinguisher is per-
mitted to do anything that an eavesdropper could in a
real implementation of the protocol. They are also given
access to the outputs of the protocol, but not to any data
private to Alice and Bob during the protocol (e.g., parts
of any raw strings that are not publicly announced).
Coming up with a reasonable ideal for a general cryp-

tographic task is not usually straightforward because the
ideal and real protocols have to be virtually indistinguish-
able even after accounting for all possible attacks of an
adversary. However, in the case of key distribution it is
relatively straightforward. The ideal can be phrased in
terms of a hypothetical device that outputs string SA to
Alice and SB to Bob (each having n possible values) such
that

ρISASBE =
1

n

n−1
∑

x=0

|x〉〈x| ⊗ |x〉〈x| ⊗ ρE . (8)

This captures that Alice’s and Bob’s strings are identi-
cal and uncorrelated with E (which represents all of the
systems held by Eve). These conditions are often spelled
out separately:

1. P (SA 6= SB)ρI = 0 (correctness, i.e., Alice and Bob
have identical outputs).

2. ρISAE = n−111n ⊗ ρE (the output string is secret).

The ideal protocol then says perform the real proto-
col and if it does not abort, replace the output with one
from this hypothetical device with the same length. It
may seem strange that the ideal involves running the real.
However, if the ideal protocol just said use the hypothet-
ical device, a distinguisher could readily distinguish it
from the real protocol by blocking the quantum channel
between Alice and Bob. This would force the real proto-
col to abort, while the ideal would not. By defining the
ideal using the real protocol, both protocols abort with
the same probability for any action of the distinguisher.
From the point of view of the distinguisher, the aim is

to distinguish two quantum states: those that the pro-
tocol outputs in the real and ideal case. The complete

output of the real protocol (taking into account the pos-
sibility of abort) can be written

σR
SASBE = p(⊥)|⊥〉〈⊥| ⊗ |⊥〉〈⊥| ⊗ ρ⊥E + p(⊥̄)ρRSASBE ,

where

ρRSASBE =
∑

xy

PXY (x, y)|x〉〈x| ⊗ |y〉〈y| ⊗ ρx,yE

is the state conditioned on the real protocol not abort-
ing, |⊥〉 as a special symbol representing abort (this is
orthogonal to all the |x〉 or |y〉 terms in the sum), p(⊥)
and p(⊥̄) = 1 − p(⊥) are the probabilities of abort and
not abort respectively. (Note that any information sent
over the authenticated public channel that Eve could lis-
ten in on during the implementation is included in E.)
The output of the ideal is instead

σI
SASBE = p(⊥)|⊥〉〈⊥| ⊗ |⊥〉〈⊥| ⊗ ρ⊥E + p(⊥̄)ρISASBE ,

with ρISASBE defined in Eq. (8).

The measure of distinguishability for these is the trace
distance D [1]. This has the operational meaning that,
given either σR

SASBE or σI
SASBE with 50% chance of each,

the optimal probability of guessing which is

pguess =
1

2
[1 +D(σR

SASBE , σ
I
SASBE)], (9)

which accounts for any possible quantum strategy to dis-
tinguish them. If the distance is close to zero, then the
real protocol is virtually indistinguishable from the real.
Quantitatively, ifD(σR

SASBE , σ
I
SASBE) ≤ ε for all possible

strategies an eavesdropper could use, then the protocol
is said to be ε-secure. The analogue of this definition
for probability distributions was used in [75] to prove se-
curity of a QKD protocol against an adversary limited
only by the no-signalling principle. However, it is more
common to express security in another way as described
below.

By using properties of the trace distance it can be
shown that the probability of successfully distinguishing
can be bounded by the sum of contributions from the
two conditions stated previously [76]. These are usually
called the correctness error

εcorr = p(⊥̄)P (SA 6= SB)ρR ,

and the secrecy error,

εsecr = p(⊥̄)D(ρRSAE , n
−111n ⊗ ρE) .

The correctness error is the probability that the protocol
outputs different keys to Alice and Bob. The secrecy er-
ror is the probability that the key output to Alice can be
distinguished from uniform given the system E. In secu-
rity proofs it is often εcorr and εsecr that are computed.
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III. OVERVIEW OF DV-QKD

DV protocols can be seen as the earliest (and possibly
the simplest) form of QKD. Despite the development of
the famous BB84 protocol with its name accorded based
on a 1984 paper [77], the first ideas for the use of quantum
physics in the service of security can be traced as far back
as the early 70s (A detailed history on the beginnings of
quantum cryptography can be found in Ref. [78]). Wies-
ner was then toying with the idea of making bank notes
that would resist counterfeit [78]. The first paper pub-
lished on quantum cryptography, on the other hand was
in 1982 [79]. In this section we give a brief description
of DV protocols for QKD. It is instructive to introduce
some preliminary notation which will be useful in the
subsequent sections. The reader expert in quantum in-
formation may skip most of the following notions.

A. Preliminary notions

Recall that a qubit is represented as a vector in a bidi-
mensional Hilbert space, which is drawn by the following
basis vectors:

|0〉 ≡
(

1

0

)

, |1〉 ≡
(

0

1

)

. (10)

Any pure qubit state can thus be expressed as a linear
superposition of these basis states,

|ψ〉 = α|0〉+ β|1〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉, (11)

with θ ∈ (0, π), φ ∈ (0, 2π) and i the imaginary unit.
This state can be pictorially represented as a vector in
the so-called “Bloch sphere”. When θ = 0 or θ = π, we
recover the basis states |0〉 and |1〉, respectively, which
are placed at the poles of the sphere. When θ = π/2,
the qubit pure state is a vector lying on the equator of
the sphere. Here we can identify the four vectors aligned
along the x̂ and ŷ axes, which are obtained in correspon-
dence of four specific values of φ, i.e., we have:

φ = 0 : |+〉 = 1√
2

(

1

1

)

, (12)

φ = π : |−〉 = 1√
2

(

1

−1

)

, (13)

φ = π/2 : |+ i〉 = 1√
2

(

1

i

)

, (14)

φ = 3π/2 : | − i〉 = 1√
2

(

1

−i

)

. (15)

These four states are particularly important in QKD as
they are associated with the popular BB84 protocol [77].
The basis vectors in Eq. (10) are eigenstates of the

Pauli matrix

σz =

(

1 0
0 −1

)

, (16)

which we shall simply refer to as the “Z basis”, as it is
customary in QKD. Similarly, the states in Eqs. (12) and
(13) are eigenstates of the Pauli matrix

σx =

(

0 1
1 0

)

, (17)

known as the X basis, and the states in Eqs. (14) and
(15) are eigenstates of

σy =

(

0 −i
i 0

)

, (18)

known as the Y basis. It is worth noting that each of
these pairs of eigenstates forms a basis which are mu-
tually unbiased to one another, referred to as mutually
unbiased bases (MUB). Formally, two orthogonal basis
of a d-dimensional Hilbert space, say {|ψ1, ..., ψd} and
{|ψ1, ..., ψd}, are mutually unbiased if |〈ψi|φj〉|2 = 1/d
for any i and j. Measuring a state from one MUB in
another would thus produce either one of the eigenstates
with equal probability.
Using the three Pauli matrices and the bidimensional

identity matrix

I =

(

1 0
0 1

)

, (19)

it is possible to write the most generic state of a qubit in
the form of a density operator,

ρ =
1

2
I + n · σ, (20)

with n the Bloch vector and σ = {σx, σy, σz}. This no-
tation comes handy when the qubit states are mixed,
which can be described with a vector n whose modulo is
less than 1, as opposed to pure states, for which |n| = 1.
To give a physical meaning to the representation of a

qubit, we can interpret the qubit state in Eq. (11) as the
polarization state of a photon. In this case, the Bloch
sphere is conventionally called the Poincaré sphere, but
its meaning is unchanged. The basis vectors on the poles
of the Poincaré sphere are usually associated with the
linear polarization states |H〉 = |0〉 and |V 〉 = |1〉, where
H and V refer to the horizontal or vertical direction of
oscillation of the electromagnetic field, respectively, with
respect to a given reference system. The X basis states
are also associated with linear polarization but along di-
agonal (|D〉 = |+〉) and anti-diagonal (|A〉 = |−〉) di-
rections. Finally, the Y basis states are associated with
right-circular (|R〉 = |+ i〉) and left-circular (|L〉 = |− i〉)
polarization states. Any other state is an elliptical polar-
ization state and can be represented by suitably choosing
the parameters θ and φ.
It is worth noting that polarization can be cast in one-

to-one correspondence with another degree of freedom of
the photon which is particularly relevant from an exper-
imental point of view. This is illustrated in Fig. 1. The
light source emits a photon that is split into two arms
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by the first beam-splitter (BS). The transmission of this
BS represents the angle θ of the Bloch sphere. More pre-
cisely, if r and t are the reflection and transmission coeffi-
cients of the BS, respectively, such that |r|2+ |t|2 = 1, we
can write r = cos(θ/2) and t = eiφ sin(θ/2) so to recover
Eq. (11). If the BS is 50:50, then θ = π/2 and the state
after the BS becomes

|ψ〉 = 1√
2

(

|0〉+ eiφ|1〉
)

. (21)

The phase φ now has a clear physical meaning, i.e., it
represents the relative electromagnetic phase between the
upper and lower arms of the interferometer in Fig. 1. This
phase can be modified by acting on the phase shifters in
Fig. 1 and this is one of the most prominent methods to
encode and decode information in QKD. In fact, it is fair
to say that the vast majority of QKD experiments were
performed using either the polarization or the relative
phase to encode information.

PSA

PSB

Source

BS

BS

Detectors

FIG. 1. Fundamental phase-based interferometer. BS: beam-
splitter; PSA: phase shift Alice; PSB: phase shift Bob.

As we well know, from a historical perspective, the
first QKD protocols were introduced using DVs, espe-
cially polarization. This remains even today the simplest
way to describe an otherwise complex subject. The sem-
inal BB84 protocol [77] was described using polarization.
In 1991 Ekert suggested a scheme, the “E91” [80], that
for the first time exploits entanglement for cryptographic
purposes. The conceptual equivalence of this scheme
with the BB84 protocol was demonstrated in 1992 by
Bennett, Brassard and Mermin [81], who also proposed a
simplified version of the E91 later called “BBM92” or
more simply “EPR scheme”. However, this supposed
equivalence cannot be taken strictly as it can be shown
that the entangled based protocol of E91 can provide
device independent security, which is impossible for the
BB84 using separable states even in a noise free sce-
nario [82]. A few years later, Lo and Chau first [83]
and Shor and Preskill later [84], will exploit this equiv-
alence between the prepare-and-measure BB84 and the
entanglement-based BBM92 to demonstrate the uncondi-
tional security of the BB84 protocol. Another important
protocol, the “B92” [85], was proposed in 1992 by Ben-
nett, showing that QKD can be performed with even only
two non-orthogonal states. In the next sections, we will
describe these protocols and the advances over them in
more detail.

B. Prepare and measure protocols

In this section, we outline the most intuitive DV-QKD
protocols, generally denoted “prepare-and-measure”.
Here, the transmitting user, Alice, prepares the optical
signals by encoding on them a discrete random variable,
e.g., a bit. The optical signals are then sent to the
receiving user, Bob, who measures them in order to
retrieve the information sent by Alice. In describing
the protocols in this category, we will often use a
single-photon description highlighting the protocol’s ‘in
principle’ workings, even if in practice true single-photon
sources are not yet widely available.

1. BB84 protocol

In the BB84 protocol, Alice (the transmitter) prepares
a random sequence of four states in two complementary
bases. These are usually chosen as |0〉, |1〉 (Z basis),
|+〉, |−〉 (X basis). However, other choices are possible,
including the four states in Eqs. (12)-(15). The users as-
sociate a binary 0 (a binary 1) with the non-orthogonal
states |0〉 and |+〉 (|1〉 and |−〉). The non-orthogonality
condition guarantees that an eavesdropper cannot clone
or measure the prepared states with perfect fidelity. This
is true because the no cloning theorem assures that she
cannot replicate a particle of unknown state [19, 20]. This
implies that she cannot perfectly retrieve the information
encoded by Alice and that her action causes a disturbance
on the quantum states that can be detected by the legiti-
mate users. The states prepared by Alice are sent to Bob
(the receiver), who measures them in one of the two bases
Z or X, selected at random. If, for a particular photon,
Bob chooses the same basis as Alice, then in principle,
Bob should measure the same bit value as Alice and thus
he can correctly infer the bit that Alice intended to send.
If he chose the wrong basis, his result, and thus the bit
he reads, will be random.
When the quantum communication is over, Bob no-

tifies Alice over a public channel what basis he used to
measure each photon, for each of the photons he detected.
Alice reports back her bases and they discard all the
events corresponding to different bases used. Provided
no errors occurred or no one manipulated the photons,
the users should now both have an identical string of bits
which is called “sifted key”.
At this point, Alice and Bob test their key by agreeing

upon a random subset of the bits to compare their results.
If the bits agree, they are discarded and the remaining
bits form the shared secret key. In the absence of noise
or any other measurement error, a disagreement in any
of the bits compared would indicate the presence of an
eavesdropper on the quantum channel.
For the sake of clarity, we shall describe how an eaves-

dropper can gain any information while inducing noise.
This is really simple quantum mechanics. Let us as-
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sume, for simplicity, that Eve makes a measurement
to project the state of the photon onto one given by
|θ〉 = cos(θ/2)|0〉 + eiφ sin(θ/2)|1〉 and a state orthog-
onal to it, |θ⊥〉. She can infer Alice’s state |a〉, after
Alice’s disclosure on the public channel of the basis used
by Bayes theorem,

Pr(|a〉||θ〉) = Pr(|θ〉||a〉)Pr(|a〉)
Pr(|θ〉||a〉)Pr(|a〉) + Pr(|θ〉||a⊥〉)Pr(|a⊥〉)

(22)

As Pr(|a〉) = 1/2 and Alice’s disclosure limits the possible
states to only |a〉 and |a⊥〉 for a run, the above simplifies
to Pr(|a〉||θ〉) = Pr(|θ〉||a〉). In order to have an idea of
Eve’s information gain, let us consider a specific exam-
ple [27]; assuming |a〉 = |0〉. It can be easily shown that
Pr(|0〉||θ〉) = |〈0|θ〉|2 = cos2 (θ/2). Her uncertainty, HZ

E ,
on Alice’s encoding is given by Shannon’s binary entropic
function as

HZ

E = − cos2 (θ/2) log2
[

cos2 (θ/2)
]

− sin2 (θ/2) log2
[

sin2 (θ/2)
]

. (23)

If Alice had used the X basis, a similar calcula-
tion would have given Pr(|+〉||θ〉) = |〈+|θ〉|2 = (1 +
sin θ cosφ)/2 and Eve’s corresponding uncertainty, HX

E

is

HX

E = −1 + sin θ cosφ

2
log2

(

1 + sin θ cosφ

2

)

−1− sin θ cosφ

2
log2

(

1− sin θ cosφ

2

)

. (24)

The first thing to note is that, to have zero uncertainty
for HZ

E is to set θ = 0 corresponding to a measurement
in the Z basis (mathematically, it is certainly possible to
set θ = π, however this simply means that |θ〉 ≡ |1〉 and
the measurement basis is still Z). However, this forces a
maximal uncertainty for HX

E i.e. when Alice uses the X

basis. On the other hand, minimizing the uncertainty of
HX

E (e.g. by setting θ = π/2 and φ = 0) would maximize
HZ

E . This is certainly in line with the use of MUBs where
maximizing the information gain when measuring in one
basis maximizes the uncertainty for the complimentary
basis. The only way out, i.e. to minimize both uncer-
tainty is to use two different measurement bases corre-
sponding to Alice’s choices of bases; this can be chosen
randomly and the events where the choices do not match
would be discarded. This is precisely Bob’s situation!
Hence we can see how Alice and Bob can actually share
maximal information in principle as they discard the runs
where their bases do not match. Eve on the other hand
does not have that luxury, as she would only have her
bases match Alice’s half the time and her information
gain is 0.5. This is the most basic intercept-resend at-
tack strategy.
Now, let us consider what happens after Eve makes

a measurement. Quantum mechanics tells us that her

measurement would project Alice’s state into an eigen-
state of her measurement basis, and she would thus for-
ward to Bob the state |θ〉. Bob on the other hand, when
measuring in the same basis as Alice (when she sends
|a〉) would thus register an error (|a⊥〉) with probabil-
ity |〈a⊥|θ〉|2 = sin2 (θ/2) in those instances. Hence, if
Eve uses the Z basis for measurement while Alice and
Bob’s are X the error rate in these instances becomes
1/2. However, as she would be able to guess correctly
half the time, the error rate is halved and on average,
the users will detect an error with a probability of 25%.

Obviously this choice of θ need not be limited to 0 or
φ/2. A well known example is when θ = π/4, a measure-
ment in the so called Breidbart basis. This would make
HZ

E = HX

E . The calculation for the error that Bob would
note is straightforward. Let us take the case when Alice
and Bob uses the Z basis. When Eve projects her the
qubit into the state |θ〉, this happens with probability
cos2 (π/8). Bob gets an erroneous result with probabil-
ity sin2 (π/8). In the instance Eve projects onto |θ⊥〉
which happens with probability sin2 (π/8), Bob registers
an error with probability cos2 (π/8). The error rate thus
becomes 2 cos2 (π/8) sin2 (π/8) = 0.25. A similar calcu-
lation can be done for the case when Alice uses the X

basis to also yield an error rate of 25%.

In a noiseless scenario, the presence of an error would
reveal with certainty the presence of an eavesdropper. In
this case the users can abort the whole communication,
discard their key and start a new communication. How-
ever, in realistic situation, noise is always present given
imperfection of physical implementations. It is tempting
to imagine that one can characterize the errors on the
physical channel and then any ‘extra’ error can be as-
sumed due to Eve. However, assuming Eve can actually
substitute the channel with a perfect noiseless one, Alice
and Bob would not be able to distinguish between errors
that are genuine (i.e. not due to Eve) or errors due to
her meddling. A pessimistic stand is to assume all errors
due to Eve. Aborting the protocol every time an error is
detected would translate into Alice and Bob never able
to establish a secure key. Thus the trick is not so much
in detecting an eavesdropper, rather, given the presence
of an eavesdropper, how can one still distill a secret key.

When noise is present, the users can detect an error
even if Eve is not on the line. In this case they run
an error correction algorithm followed by a compression
algorithm called privacy amplification (PA). The amount
of PA necessary is estimated by the users starting from
the percentage of errors measured in their experiment,
the so-called “quantum bit error rate” (QBER). Hence
the search for an ultimate security proof is simply the
search for the best strategy Eve can employ to achieve
the highest information gain given the amount of QBER
detected.

A general attack strategy an eavesdropper can consider
is to attach an ancilla, |E〉, (a quantum system possibly
higher dimension than a qubit) to Alice’s qubit and let
them interact in the hope of gleaning some information.
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This interaction (with Alice’s state in the computational
basis) can be written as

U |0〉|E〉 =
√

F0|0〉|E00〉+
√

D0|1〉|E01〉, (25)

U |1〉|E〉 =
√

F1|1〉|E11〉+
√

D1|0〉|E10〉, (26)

with |Eij〉 being Eve’s possible ancillary states after the
interaction. These equations literally mean that when
Alice sends a |0〉 (|1〉) state, Bob has a probability F0

(F1) of getting the right result when measuring in the Z

basis and D0 (D1) otherwise.
There are two points worth noting here; firstly, the

Stinespring dilation theorem allows us to limit our con-
sideration of Eve’s ancillae to a four dimensional quan-
tum system or two qubits. Secondly, given linearity, the
interaction with Eve’s ancillae can also be written di-
rectly for Alice’s X basis, thus defining the QBER in
that basis. In order to ensure that the QBER in both
bases Z and X are equal, the overlap between Eve’s an-
cillary states must be defined accordingly. We begin by
rewriting the above equations more concisely as

U |a〉|E〉 =
√

Fa|a〉|Eaa〉+
√

Da|a⊥〉|Eaa⊥〉, (27)

where |a〉 ∈ {|0〉, |1〉, |+〉, |−〉} and 〈a|a⊥〉 = 0. Unitarity
of U ensures

〈Eaa|Eaa〉 = Fa, (28)

〈Eaa⊥ |Eaa⊥〉 = Da, (29)

〈Eaa|Eaa⊥〉 = 0, (30)

and Fa + Da = 1. Imposing the symmetry of errors in
both bases leads to

〈Eaa|Ea⊥a⊥〉 = Fa cosx, (31)

〈Eaa|Ea⊥a〉 = 0, (32)

〈Eaa⊥ |Ea⊥a〉 = Da cos (y), (33)

implying the QBER

Da =
1− cosx

2− cosx+ cos y
. (34)

This is the essence of a symmetric attack [86] which can
be seen as a contraction of the Bloch sphere by Fa −Da.
Assume that Eve keeps her ancillary system in a quan-

tum memory and waits for Alice and Bob to end all the
classical communication related with the reconciliation
of the bases (sifting). In this way she can distinguish
between her ancillary states given by |Eaa〉 and |Ea⊥a⊥〉.
Then assume that she can also perform a joint measure-
ment on her entire quantum memory, a scenario known
as ‘collective attack’. In such a case, Eve’s amount of
information is upper bounded by the Holevo information

χ = S(ρE)−
S[ρE(a)] + S[ρE(a

⊥)]

2
, (35)

where S(·) is the von Neumann entropy, and ρE(a)
(ρE(a

⊥)) is Eve’s state for Alice’s |a〉 (|a⊥〉). In the pres-
ence of this symmetric collective attack, it can be shown
that the secret key rate is then given by [86]

RBB84 = 1− S(ρE) = 1− 2H2(Da), (36)

where the binary Shannon entropy H2 is computed over
the QBER Da. As a result, a key can be extracted for a
QBER with a value no greater than approximately 11%.
This security threshold value of 11% is exactly the

same as the one that is found by assuming the most gen-
eral ‘coherent attack’ against the protocol, where all the
signal states undergo a joint unitary interaction together
with Eve’s ancillae, and the latter are jointly measured
at the end of protocol. In this general case the security
proof was provided by Shor and Preskill [84].
The main idea to show the unconditional security

of the BB84 protocol is based on the reduction of a
QKD protocol into an entanglement distillation protocol
(EDP). Given a set of non-maximally entangled pairs,
the EDP is a procedure to distill a smaller number of
entangled pairs with a higher degree of entanglement us-
ing only local operations and classical communication
(LOCC). In some ways, employing this for a security
proof for QKD actually makes perfect sense as it involves
the two parties ending with a number of maximally en-
tangled pairs. Given the monogamous nature of entan-
glement, no third party can be privy to any results of
subsequent measurements the two make.
In particular, Shor and Preskill [84] showed that

EDP can be done using quantum error correction codes,
namely the Calderbank-Shor-Steane (CSS) code [1]
which has the interesting property which decouples phase
errors from bit errors. This allows for corrections to be
made independently. In this way, one can show that the
key generation rate becomes

RBB84 = 1−H2(eb)−H2(ep) (37)

where eb and ep are bit and phase error rates with eb =
ep. This results in the same formula of Eq. (36). It is
simple to see that R = 0 for eb ≈ 11%.

2. Six-state protocol

The BB84 protocol has also been extended to use six
states in three bases to enhance the key generation rate
and the tolerance to noise [87]. 6-state BB84 is identical
to BB84 except, as its name implies, rather than using
two or four states, it uses six states on three bases X,
Y and Z. This creates an obstacle to the eavesdropper
who has to guess the right basis from among three pos-
sibilities rather than just two of the BB84. This extra
choice causes the eavesdropper to produce a higher rate
of error, for example, 1/3 when attacking all qubits with
a simple IR strategy; thus becoming easier to detect.
One can extend the analysis of Eve’s symmetric col-

lective attack to the 6-state BB84 by considering a third
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basis for Eq. (34) which immediately sets a further con-
straint on Eve’s ancillary state; i.e. cos y = 0 (Eve’s
states |Eaa⊥〉 and |Ea⊥a〉 are orthogonal). The new QBER
D′

a is then given by

D′
a =

1− cosx

2− cosx
, (38)

as also noted in [88] (but reported in terms of the fidelity
rather than the QBER). Assuming a symmetric collective
attack [86], a similar calculation to the one for BB84 gives
the following secret key rate for the 6-state protocol as

R6−state = 1 +
3D′

a

2
log2

D′
a

2
(39)

+

(

1− 3D′
a

2

)

log2

(

1− 3D′
a

2

)

. (40)

This rate exactly coincides with the unconditional key
rate, proven against coherent attacks, and gives a security
threshold value of about 12.6% slightly improving that of
the BB84 protocol.
Before moving on, it is worth noting that the symmet-

ric attacks described in both the BB84 protocol as well as
the 6-state protocol are equivalent to the action of quan-
tum cloning machines (QCMs) [89]. Notwithstanding the
no-cloning theorem, QCMs imperfectly clone a quantum
state, producing a number of copies, not necessarily of
equal fidelity. QCMs which result in copies that have
the same fidelity are referred to as symmetric. In the
case of the BB84, the states of interest come from only 2
MUBs, hence the relevant QCM would be the phase co-
variant QCM which clones all the states of the equator
defined by two MUBs (the term ‘phase covariant’ comes
from the original formulation of the QCM cloning states
of the form (|0〉+eiφ|1〉)/

√
2 independently of φ [90]; this

QCM thus copies equally well the states from the X and
Y bases). As for the 6-state protocol, the relevant QCM
is universal, meaning that it imperfectly clones all states
from 3 MUBs with the same fidelity.

3. B92 protocol

In 1992, Charles Bennett proposed what is arguably
the simplest protocol of QKD, the “B92” [85]. It uses
only two states to distribute a secret key between the
remote parties. This is the bare minimum required to
transmit one bit of a cryptographic key. More precisely,
in the B92 protocol, Alice prepares a qubit in one of two
quantum states, |ψ0〉 and |ψ1〉, to which she associates
the bit values 0 and 1, respectively. The state is sent
to Bob, who measures it in a suitable basis, to retrieve
Alice’s bit. If the states |ψ0〉, |ψ1〉 were orthogonal, it is
always possible for Bob to deterministically recover the
bit. For instance, if |ψ0〉 = |0〉 and |ψ1〉 = |1〉, Bob can
measure the incoming states in the Z basis and recover
the information with 100% probability.
However, Bob’s ability to retrieve the information

without any ambiguity also implies that Eve can do it

too. She will measure the states midway between Al-
ice and Bob, deterministically retrieve the information,
prepare new states identical to the measured ones, and
forward them to Bob, who will never notice any differ-
ence from the states sent by Alice. Orthogonal states are
much alike classical ones, that can be deterministically
measured, copied and cloned. Technically, the orthog-
onal states are eigenstates of some common observable,
thus measurements made using that observable would not
be subjected to any uncertainty. The no-cloning theo-
rem [19, 20] does not apply to this case.
By contrast, measurements will be bounded by inher-

ent uncertainties if Alice encodes the information in two
non-orthogonal states, for example the following ones:

|ψ0〉 = |0〉, |ψ1〉 = |+〉 , 〈ψ0|ψ1〉 = s 6= 0. (41)

As Bennett showed in his seminal paper [85], any two
non-orthogonal states, even mixed, spanning disjoint
subspaces of the Hilbert space can be used. In the actual
case, the scalar product s is optimized to give the best
performance of the protocol. For the states in Eq. (41),

this parameter is fixed and amounts to 1/
√
2; i.e. the

states are derived from bases which are mutually unbi-
ased one to the other. Given the complementary na-
ture of the observables involved in distinguishing between
these states, neither Bob nor Eve can measure or copy
the states sent by Alice with a 100% success probabil-
ity. However, while Alice and Bob can easily overcome
this problem (as described in the following) and distil
a common bit from the data, Eve is left with an unsur-
mountable obstacle, upon which the whole security of the
B92 protocol is based.
In B92, Bob’s decoding is peculiar and worth describ-

ing. It is a simple example of “unambiguous state dis-
crimination” (USD) [91, 92]. To explain it, it is useful to
remember that the state |0〉 (|+〉) is an eigenstate of Z

(X) and that |±〉 = (|0〉 ± |1〉)/
√
2, as it is easy to verify

from Eqs. (10), (12) and (13). Suppose first that Alice
prepares the state |ψ0〉. When Bob measures it with Z,
he will obtain |0〉 with probability 100% whereas when he
measures it with X, he will obtain either |+〉 or |−〉 with
probability 50%. In particular, there is one state that
Bob will never obtain, which is |1〉. Now suppose that
Alice prepares the other state of B92, |ψ1〉. Bob will still
measure in the same bases as before but in this case, if
we repeat the previous argument, we conclude that Bob
can never obtain the state |−〉 as a result. See the table
below for a schematic representation of Bob’s outcomes
and their probabilities (Pr) depending on Alice’s encod-
ing state and Bob’s chosen basis for measurement.

bit Alice Bob (Z) Bob (X)

0 |0〉 |0〉 , Pr = 1

|1〉 , Pr = 0

|+〉 , Pr = 1/2

|−〉 , Pr = 1/2

1 |+〉 |0〉 , Pr = 1/2

|1〉 , Pr = 1/2

|+〉 , Pr = 1

|−〉 , Pr = 0

(42)
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From the table it is clear that, for the conditional proba-
bility p(A|B) of guessing Alice’s encoding A given Bob’s
outcome B, we may write

Pr(|+〉||1〉) = Pr(|0〉||−〉) = 1. (43)

In other words, Bob can logically infer that when he de-
tects |1〉, Alice must have prepared the state |+〉, so he
decodes the bit as ‘1’, whereas when he detects |−〉, Alice
must have prepared the state |0〉 so he decodes the bit
as ‘0’. Whenever he detects any other state, Bob is un-
sure of Alice’s preparation and the users decide to simply
discard these “inconclusive” events from their records.
This way, using this sort of “reversed decoding”, which

is typical of USD, and his collaboration with Alice, Bob
manages to decode the information encoded by Alice.
Despite the fact that USD can also be used by Eve, the
unconditional security of the B92 protocol was rigorously
proven in [93] for a lossless scenario and then extended to
a lossy, more realistic, case in [94], under the assumption
of single photons prepared by Alice. This assumption is
not necessary in the B92 version with a strong reference
pulse, which has been proven secure in [95]. Remarkably,
this particular scheme has been shown to scale linearly
with the channel transmission at long distance, a desir-
able feature in QKD. Two interesting variants of this
scheme appeared in [96] and [97], which allow for a much
simpler implementation.
Generally speaking, the performance of the B92 proto-

col is not as good as that of BB84. The presence of only
two linearly independent states makes it possible for the
eavesdropper to execute a powerful USD measurement
on the quantum states prepared by Alice. This makes
the B92 very loss dependent and reduces its tolerance
to noise from a depolarizing channel to about 3.34% [93].
This value is much smaller than the one pertaining to the
BB84 protocol, which is 16.5% [84] (it should be stressed
here that these values refer to the depolarizing param-
eter p for a depolarizing channel acting on a state ρ as
(1− p)ρ+ p/3

∑

i σiρσi with σi as the Pauli matrices).
However, it was recently shown that the B92 can be

made loss-tolerant if Alice prepares a pair of uninfor-
mative states in addition to the usual B92 states, while
leaving Bob’s setup unchanged [98]. This is due to the
fact that the two extra states make the B92 states lin-
early dependent, thus preventing the possibility of a
USD measurement by Eve. The existence of the unin-
formative states paved the way to a device-independent
entanglement-based description of the B92 protocol [99],
which was not previously available. In this description,
Eve herself can prepare a non-maximally entangled state
and distribute it to Alice and Bob. By measuring in suit-
able bases, Alice and Bob can test the violation of the
Clauser-Horne inequality [100], a special form of Bell in-
equality, thus guaranteeing the security of the protocol
from any attack allowed by quantum mechanics, irrespec-
tive of the detailed description of the hardware. Despite
the radically different security proof used [101], the toler-
ance to the noise from a depolarizing channel was found

to be 3.36%, remarkably close to the value of the stan-
dard prepare-and-measure B92 protocol.
Before concluding, it is worth mentioning that both

the prepare-and-measure B92 [85] and the entanglement-
based B92 [99] have a clear advantage in the implementa-
tion, as experimentally shown in [102]. The asymmetry
of the B92 states allows for an automatic feedback that
can keep distant systems aligned without employing ad-
hoc resources at no extra cost for the key length.

C. Practical imperfections and countermeasures

1. PNS attacks

DV-QKD protocols are ideally defined on qubits (or
qudits) for which security analysis drawn are based on.
Moving from a theoretical protocol where single qubits
are used to carry one bit of classical information to a
practical implementation should in principle require the
most faithful adaptation possible. However in practice,
perfect single-photon sources are generally not available
and there is some probability for a source to emit multiple
photons with identical encodings in a given run of the
QKD protocol. This can be a security vulnerability to an
eavesdropper who employs the photon number splitting
(PNS) attack [103, 104]. The essential idea behind the
attack is that Eve can perform a quantum non-demolition
measurement to determine the number of photons in a
run and when it is greater than 1, she could steal one of
the excess photons while forwarding the others to Bob.
In this way Bob would not be able to detect her presence
while she lies in wait for Alice’s basis revelation to make
sharp measurements of the stolen photons and obtain
perfect information of the multi-photon runs. The case
for single photons can be attacked using the ancillary
assisted attack strategy described earlier.
A weak coherent laser source is commonly used to im-

plement DV-QKD protocols. Such a source generates a
pulse having a finite probability of multiple photons with
the number of photons n described by the Poisson distri-
bution. Thus, the probability for a pulse sent to contain
a number of photons n is given by

Pr(n) =
µ

n!
exp (−µ) (44)

where µ being the average photon number per pulse. It
is not difficult to imagine that an eavesdropper’s infor-
mation gain thus increases with µ. Intuitively, one can
imagine that as secret bits can only be derived from the
single photon pulses, the number of bits from the multi-
photon pulses needs to be subtracted from the total signal
gain for the raw key. Writing p as the fraction of signals
detected by Bob, we write the minimum fraction for sin-
gle photon pulses as P , where P = [p− Pr(n > 1)]/p.
Considering the case of Eve committing to an individ-

ual attack strategy, the QBER estimated as e, need to
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be rescaled to e′ = e/P for PA purposes with the as-
sumption that all errors stem from Eve’s attack of single
photon pulses. Let Q be the ratio of the total bits for a
raw key over the total signals detected. The effective key
rate is then given by

Rm = [P(1− rPA)−H2(e)]Q (45)

where rPA is the rate for PA and H2(e) is the rate due
to error correction procedure (note that the QBER need
not to be rescaled for error correction). For an individual
attack strategy, the PA rate is given by rPA = log2(1 +

4e′ − 4e′
2

), for e′ ≤ 0.5 and 1 otherwise.
In a realistic setup, considerations for dark counts

(Bob’s detector clicking for vacuum pulses) must also be
taken into account. It should also be noted that for a
BB84 setup, Eq. (45) would be multiplied further by a
factor of half to reflect the instances where Alice’s and
Bob’s choice of measurement bases coincide. A full fledge
treatment for the above can be referred to in [104]. While
the PNS attack decreases the secure key generation rate
drastically, the decoy state method and the SARG04 pro-
tocol are possible approaches to solve these issues.

2. Decoy States

As we have seen in the previous section, practical im-
plementations which include multi photon pulses is detri-
mental to the key rate when the legitimate parties can-
not distinguish between photons detected from single or
multi photon pulses. At best, they can try to determine
the fraction of single photon pulses received and have
privacy amplification done only on that. The case of the
individual attack strategy by an eavesdropper was stud-
ied in [104] with the key rate reflected by equation (45).
In Ref. [105], commonly referred to as ‘GLLP’, a more
general scenario was considered. In some sense, this can
be understood as a generalization to the EDP based secu-
rity proof of BB84 to include non-single photon sources.
In a nutshell, it demonstrates that it is sufficient to con-

sider the PA rate for single-photon pulses when consid-
ering a string derived from both single and multi-photon
pulses. Thus, the key rate is essentially given by equa-
tion (45) except for P and rPA terms substituted with
Q1 and H2(e1), where Q1 and e1 are the gain and the
QBER corresponding to single-photon pulses. Hence, if
one can determine accurately the gain (which could be
greater than P) as well as the amount of error relevant
to the single photon pulses (which may be less than e′),
then the PA rate may be reduced and the key rate would
definitely receive a boost. This is where the decoy state
method comes in. First introduced in Ref. [106], it was
shown to be practically useful in Ref. [107], where the
method was studied assuming three different intensities
under finite-size effects (see also Ref. [108]). It was fur-
ther developed and worked on in Refs. [109, 110]. The
decoy states technique has enabled QKD to be executed

over distances beyond a hundred kilometers despite the
imperfections in implementation.
In a practical setup, Bob’s gain is a weighted average

of all detected photons (including the empty pulses) and
can be written as

Qm =
∞
∑

i=0

Yi exp (−µ)
µi

i!
(46)

where Yi is the probability that Bob detects conclusively
an i-photon pulse sent by Alice. The QBER also has con-
tribution from multi-photon pulses, and can be written
as

Em =
1

Qm

∞
∑

i=0

Yiei exp (−µ)
µi

i!
(47)

Let us note that Alice and Bob can only determine the
values of Qm and Em in an actual implementation and
do not have any information of the values of Yi. However,
if one considers using differing values of the light inten-
sity, µ, then one can have a system of linear equations
(based on Eq. (46) for varying µ) with the solution set
{Y0, Y1, ...}. Another system of linear equations based on
Eq. (47) provides the solution set {e0, e1, ...}.
It is now a rather straightforward matter to determine

Q1: Alice could send to Bob photon pulses with varying
intensities of light. Only one intensity is preferred for key
bits while the other intensities would be used as decoy,
i.e. decoy states. As these would be done randomly, Eve
would not know which photons would be used for key
purposes and which were the decoys. Linear algebra then
should provide a standard method to derive the solution
sets and Alice and Bob would know exactly the values
for Y1 and e1. These values are the most pertinent.
All seems well except for the fact that the value of i

in equations (46) and (47) runs from 0 to infinite! This
literally means that to have a precise value for Y1 and
e1, Alice should in principle, use and infinite number of
decoy states. This was in fact the consideration done in
Ref. [109]. Using parameters of an experimental setup,
they demonstrated how the decoy state technique could
benefit the BB84 protocol by extending the distance.
Nevertheless, given the fact that the event of produc-
ing a pulse with higher number of photons is less likely
compared to one with lesser in number, a finite number
of decoy states can be quite sufficient. Ref. [110] showed
that an implementation using only two decoy states (with
the sum of the intensities lower than that of the signal
state) is sufficient and in the limit of vanishing inten-
sities of the decoys, the values estimated for Y1 and e1
asymptotically approaches the ideal infinite decoy case.
See also Sec. 4.3 of Ref. [111] for a brief review on decoy
states.

3. SARG04 protocol

While the decoy state technique mitigates the problem
of PNS attacks by introducing new elements to the BB84
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protocol, a more subtle approach was introduced in 2004
by Scarani, Acin, Ribordy, and Gisin, “SARG04” [112],
a variant of the BB84 at the classical communication
stage. The PNS attack thrives on the information re-
vealed regarding the basis used in prepare and measure
protocols like BB84. Thus, a natural way against such
an attack would be to discount such an element from
the protocol. The SARG04 protocol shares the first step
of photon transmission with BB84: Alice sends one of
four states selected randomly from 2 MUBs, Z or X, and
Bob performs a measurement with the two bases. In the
second step however, when Alice and Bob determine for
which bits their bases matched, Alice does not directly
announce her bases but a pair of non-orthogonal states,
one of which being used to encode her bit.
The decoding is similar to that of the B92 protocol; it

is a procedure of USD between states in the announced
pair. For example, assume Alice transmits |0〉 and Bob
measures it with the basis X. Alice would announce the
set {|0〉, |+〉}. If Bob’s measurement results in |+〉, then
Bob cannot infer Alice’s state conclusively as the output
|+〉 could have resulted from either |0〉 or |+〉 as input.
In such a case, the particular run would be discarded.
If the result was |−〉 instead, then it is stored for post
processing because it could have only resulted from the
measurement of the |0〉 state. Since the two states in a
set are non-orthogonal, the PNS attack cannot provide
Eve with perfect information on the encoded bit.
The SARG04 protocol has been shown to be secure

up to QBER values of 9.68% and 2.71% for single
photon and double photon pulses respectively [113]
using the EDP type proof. It is worth noting that
similar modification to the classical phase of the six
state protocol can be done to give a ‘six-state SARG04’
where key bits can be derived from even 4 photon pulse.
This is secure for QBER values of 11.2%, 5.60%, 2.37%
and 0.788% for 1, 2, 3 and 4 photon pulses respectively.
See also the recent analysis in Ref. [114].

D. Entanglement-based QKD

1. E91 protocol

In 1991, Artur Ekert developed a new approach to
QKD by introducing the E91 protocol [80]. The secu-
rity of the protocol is guaranteed by a Bell-like test to
rule out Eve. The E91 considers a scenario where there
is a single source that emits pairs of entangled particles,
each described by a Bell state, in particular the singlet
state |Ψ〉 = (|01〉−|10〉)/

√
2. The twin particles could be

polarized photons, which are then separated and sent to
Alice and Bob, each getting one half of each pair. The re-
ceived particles are measured by Alice and Bob by choos-
ing a random basis, out of three possible bases. These
bases are chosen in accordance to a Clauser, Horne, Shi-
mony and Holt (CHSH) test [115]. Explicitly, the angles

chosen by Alice are

a1 = 0, a2 = π/4, a3 = π/2, (48)

corresponding to the bases Z, (X+Z)/
√
2 and X, respec-

tively. Bob’s on the other hand chooses

b1 = π/4, b2 = π/2, b3 = 3π/4, (49)

corresponding to (X+ Z)/
√
2, X and (X− Z)/

√
2.

As in BB84, they would discuss in the clear which bases
they used for their measurements. Alice and Bob use the
instances where they chose different basis to check the
presence of Eve. By disclosing the data related to these
instances they check the violation of the CHSH quantity

E = 〈a1b1〉 − 〈a1b3〉+ 〈a3b1〉+ 〈a3b3〉 (50)

where 〈aibj〉 represents the expectation value when Al-
ice measures using ai and Bob, bj . If the inequality
−2 ≤ E ≤ 2 holds, it would indicate either that the
received photons are not truly entangled (which could be
due to an attempt to eavesdrop) or that there is some
problem with the measurement device. By contrast, if
everything works perfectly and there is no eavesdropper,
Alice and Bob expected value of E is the maximal vio-
lation −2

√
2. One way of looking at it is by writing the

state of entangled photons subjected to a depolarizing
channel, resulting into the isotropic mixed state

ρΨ = p|Ψ〉〈Ψ|+ (1 − p)I4/4, (51)

with probability p. It can be shown that the CHSH test
has maximal violation −2

√
2 provided that p = 1, i.e.,

for an unperturbed ‘Eve-less’ channel.
In the case of maximal violation of the CHSH test, Al-

ice and Bob are sure that their data is totally decoupled
from any potential eavesdropper. From the instances
where they chose the same bases, they therefore pro-
cess their perfectly anti-correlated results into a shared
private key. While QKD generally capitalizes on the no-
cloning theorem and the inability of perfectly distinguish-
ing between two non-orthogonal states, the essential fea-
ture of the E91 protocol is its use of the nonlocal feature
of entangled states in quantum physics. Eve’s interven-
tion can be seen as inducing elements of physical reality
which affects the non-locality of quantum mechanics.

2. BBM92 protocol

The BBM92 protocol [81] was, in some sense, aimed
as a critic to E91’s reliance on entanglement for secu-
rity. Building upon E91 with a source providing each
legitimate party with halves of entangled pairs, BBM92
works more efficiently by having both the legitimate par-
ties each measure in only two differing MUBs instead of
the three bases of E91. The two MUBs can be chosen
to be the same as that of BB84. By publicly declar-
ing the bases, Alice and Bob select the instances where
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they chose the same basis to obtain correlated measure-
ment results, from which a secret key can be distilled. A
sample is then disclosed publicly to check for errors and
evaluate the amount of eavesdropped information.

The idea is that Eve cannot become entangled to Al-
ice’s and Bob’s qubits while not causing any error in their
measurements. This points out to the claim that there
is no need for the legitimate parties to commit to a Bell
test. The similarity between BBM92 and BB84 is obvi-
ous. If Alice possesses the source, her measurement (in a
random basis) would prepare the state to be sent to Bob
in one of the 4 possible of the BB84 states. Hence, with-
out a Bell test, we are essentially left with BB84. There is
no way of telling whether Alice started off by measuring
part of a Bell state or by preparing a qubit state using a
random number generator. This observation is at the ba-
sis of the entanglement-based representation of prepare
and measure protocols, which is a powerful theoretical
tool in order to prove the security of QKD protocols.

Using or not entangled pairs in a QKD protocol is non-
consequential in the context of standard eavesdropping
on the main communication channel. However, it is also
important to note that a protocol with a Bell test pro-
vides a higher level of security because it allows to relax
the assumption that the legitimate parties have control
over the other degrees of freedom of the quantum sig-
nals. This makes way for the most pessimistic security
definition, i.e., device-independent security, a topic to be
delved into later. The security analysis of entanglement-
based QKD protocols is still the subject of very active
research, with recent investigations and simplified proofs
based on entanglement distillation protocols [116, 117].

E. Two-way quantum communication

Quantum cryptographic protocols making a bidirec-
tional use of quantum channels started with the intro-
duction of deterministic protocols for the purpose of se-
cure direct communication [118–120] and later evolved
into more mature schemes of two-way QKD [121, 122].
A defining feature of these protocols is that encodings
are not based on preparing a quantum state but rather
applying a unitary transformation, by one party (often
Alice) on the traveling qubit sent by another party (Bob)
in a bidirectional communication channel. The initial
idea of direct communication aimed at allowing two par-
ties to communicate a message secretly, without the need
of first establishing a secret key. However the reality of
noisy channels would render any such direct communi-
cation between parties invalid or very limited. For this
reason, two-way protocols for direct communication were
soon replaced by QKD versions, with appropriate secu-
rity proofs [123].

1. Ping pong protocol

The ping pong direct communication protocol [118] de-
rives its name from the to and from nature of the travel-
ing qubits between the communicating parties in the pro-
tocol. The ping comes from Bob submitting to Alice half
of a Bell pair he had prepared, |Ψ+〉 = (|01〉+ |10〉)/

√
2,

and the pong is Alice’s submitting of the qubit back to
Bob. With probability c, Alice would measure the re-
ceived qubit in the Z basis; otherwise, she would operate
on it with either the identity I with probability p0 or
the σz Pauli operator with probability 1− p0, re-sending
the qubit back to Bob. The former is the case where she
could check for disturbance in the channel and is referred
to as the control mode (CM), while the latter is the es-
sential encoding feature of the protocol and referred to
as the encoding mode (EM).
The operations in EM flip between two orthogonal Bell

states as I retains |Ψ+〉, while σz provides

I⊗ σz|Ψ+〉 = |Φ−〉 := (|00〉 − |11〉)/
√
2. (52)

This allows Bob to distinguish between them and infer
Alice’s encoding perfectly. The details of the CM is as
follows: Alice measures the received qubit in the Z basis
and announces her result over a public channel. Bob then
measures his half of the (now disentangled) Bell pair and
can determine if Eve had interacted with the traveling
qubit. It should be noted that, in this protocol, Alice
is not expected to resend anything to Bob in CM. See
Fig. 2 for a schematic representation.

BOBALICE

FIG. 2. A schematic of the ping pong protocol. Part of a
Bell pair Ψ+ is sent by Bob to Alice, while the other part
is kept. If Alice chooses the EM (solid lines), she performs
either I or σz on the received qubit, which is then sent back to
Bob. Finally, Bob performs a Bell detection on the received
and kept qubits. If Alice chooses the CM (dotted lines), she
measures the incoming qubit in the Z basis (A1), and informs
Bob who also measures its kept qubit in the same basis (Bcm).

By using the instances in CM, the parties may check
the presence or not of Eve. In particular, Eve’s ac-
tion goes undetected only with an exponentially decreas-
ing probability in the number of bits gained. Therefore
for long enough communication, its presence is almost
certainly discovered and the protocol aborted. If not
present, then Alice’s message is privately delivered to
Bob via the EM instances with a sufficient degree of pri-
vacy. The message that Alice transmits to Bob is not
subject to any form of further processing.
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Note that direct private communication is very fragile
and easily fails in realistic conditions where noise on the
line is inevitable and, therefore, the presence of Eve must
always be assumed as worst-case scenario. Note that a
similar severe limitation also affects schemes of quan-
tum direct communication in continuous-variable sys-
tems [124, 125]. In particular, the ping pong protocol is
also subject to a powerful denial-of-service attack [126]
which can be partially mitigated if Alice returns the qubit
to Bob in CM. Finally, note that the protocol can be eas-
ily extended [127] to include all the Pauli operators plus
the identity, therefore doubling of the communication ca-
pacity, resembling the superdense coding scenario.

2. Two-way QKD protocols

Two-way protocols for QKD do not need to use en-
tanglement as in the ping pong protocol. According to
Refs. [121, 122], Bob prepares a state |a〉 randomly se-
lected from the two MUBs X and Z to be sent to Alice.
In EM, Alice encodes a bit using either the identity (cor-
responding to bit value ‘0’) and iσy (corresponding to bit
value ‘1’), i.e.,

I|a〉 = |a〉 , iσy|a〉 = |a⊥〉 (53)

where |a⊥〉 is the state orthogonal to |a〉. The qubit
is then sent back to Bob who measures it in the same
preparation basis. With some probability, Alice chooses
the CM where the incoming qubit is instead measured,
and another qubit is prepared and sent back to Bob for
his measurement. This ‘double check’ was specifically
introduced in Ref. [122] known as the LM05 protocol.
This clearly increases the detection performance of the
protocol. For instance, given an attack scenario where
Eve measures the traveling qubits in either of the two
MUBs Z and X, the probability of detecting her is 37.5%.
Security proofs are based on the fact that Eve is forced

to attack both the forward and backward paths [128]. In
general, from the CM, Alice and Bob derive the amount
of noise in the channels, which determines how much PA
has to be performed in the post-processing. By disclos-
ing part of the data in EM, they can also estimate the
amount of error correction to be performed. Practical
implementations of the protocol were already carried out
as early as 2006 in Ref. [129] as well as Refs. [130–132].
We now discuss basic eavesdropping strategies.

3. Intercept-resend strategy

The simplest attack scheme is IR where Eve measures
the traveling qubit in both channels with a basis of her
choice (randomly selected between the same bases used
by Bob). As she would effectively prepare the traveling
qubit into her basis of choice by virtue of a projective
measurement, she plays the role of Bob and would be

able to ascertain Alice’s encoding perfectly. In LM05,
she would introduce errors 1/4 of the time in each path.
This strategy leads to a security threshold of 11.9%, in
terms of maximal error (detected in CM) before no key
is distillable.
It is worth noting that this attack results in an asym-

metry between Alice-Eve’s and Bob-Eve’s mutual infor-
mation. While Eve attempts to estimate Alice’s encod-
ing by inferring the evolution of the state of the traveling
qubit, her estimation of the result of Bob’s final mea-
surement is another matter entirely. This leads to the
idea that Alice and Bob could actually consider doing a
reverse reconciliation (RR) procedure for distilling a key,
where Alice would correct her bits to guess Bob’s string.
In RR, the security threshold is increased to 25%.

4. Non-orthogonal attack strategies

Here Eve would attach an ancilla to the traveling qubit
in the forward path and another in the backward path
with the most optimal possible interaction between them
to glean the maximal amount of information while mini-
mizing the disturbance on the channel. In this way, the
security threshold for LM05 is about 10% in DR, while
remaining 25% in RR. A specific sub-optimal version of
this attack is the DCNOT attack strategy, where Eve’s
ancilla is a qubit, used in the forward as well as the back-
ward path. The unitary transformation used by Eve in
both paths would be the same CNOT gate (hence the
name double CNOT attack or DCNOT).
Let us write Alice’s encoding as U which acts on a

qubit in the computational basis as U |i〉 → |i⊕ j〉 where
⊕ is the addition modulo 2 operation and i, j = 0, 1. The
action of the CNOT gates together with Alice’s encoding
UA can be written as follows:

CNOT(UA ⊗ I)CNOT|i〉|0〉E = |j〉|j ⊕ i〉E (54)

where qubits with subscript E refers to Eve’s ancillae.
We see that Eve’s qubit would record the evolution of
Bob’s qubit. This is not at all surprising as the CNOT
gate allows for the perfect copying of states of the Z basis.
The case where Bob uses the X basis is no hindrance

either to Eve. Despite the fact that a CNOT between a
qubit in the X basis (as control qubit) and one in Z (for
target) would entangle the qubits, a subsequent CNOT
would serve to disentangle them.

CNOT(UA ⊗ I)CNOT
|0〉 ± |1〉√

2
|0〉E

= UA

( |0〉 ± |1〉√
2

)

⊗ |j〉E (55)

The attack would leave no trace of an eavesdropper in
EM while she gains all the information. The attack is
however very noisy and easily detectable in CM with an
error rate of 25%. If Eve attacks a fraction f of the runs,
then her information gain is f with an error rate of f/4.
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5. Further considerations

A general security proof for two-way DV-QKD was re-
ported in Ref. [123] but methods employed led to an over-
pessimistic estimation of the key rate (1.7% for LM05).
On the other hand, the approach of Ref. [133] based on
entropic bounds does not directly apply to two-way QKD
protocols based on unitary encodings. A tight security
proof is therefore still very much an open problem. A
number of eavesdropping strategies and technical issues
have been also described in Refs. [134, 135], and the per-
formance against lossy channels have been thoroughly
studied in Refs. [136–138], where the key rate of the
LM05 has been compared with that of the BB84 at the
same distances.
Two-way QKD protocols were also extended to consid-

ering non-orthogonal unitaries [139–142]. For instance,

the encoding unitaries I and the (I−iσy)/
√
2 were consid-

ered by Ref. [143], while Ref. [141] exploited the notion of
mutually unbiased unitary-operator bases (MUUB) [144].
Another development has been the extension of the LM05
from two to three MUBs (similar to the extension of
BB84 to the six-state protocol). The improvement in
security provided by the protocol known as 6DP [145]
by making use of three MUBs instead of only two is ex-
pected. However the extension to include the third MUB
is non-trivial given the no-go theorem which forbids the
flipping of an arbitrary state selected from 3 MUBs (see
also Ref. [146]). This can be seen as follows: if we as-
sume the existence of a unitary transformation Uf that
flips between the orthogonal state of the Z basis, which
can be written as Uf |0〉 = −|1〉 and Uf |1〉 = |0〉. The
negative phase factor in the first equation is necessary to
ensure Uf also flips between the states in the X basis.
However, Uf would not flip between the states in the Y

basis,

Uf (|0〉+ i|1〉)/
√
2 = (−|1〉+ i|0〉)/

√
2

:= (|0〉+ i|1〉)/
√
2. (56)

IV. DEVICE-INDEPENDENT QKD

A. Introduction

A security proof for a QKD protocol is a mathemat-
ical theorem based on particular assumptions. These
assumptions might encode that the devices work in a
particular way, e.g., that Alice generates a |0〉 state and
sends it to Bob, who measures in the {|0〉, |1〉} basis. Al-
though we have rigorous security proofs for QKD proto-
cols, finding devices satisfying the assumptions of these
proofs is difficult. Any features of the real devices not
modeled in the security proof could compromise security,
and there are cases where this has happened in actual
implementations (e.g. [147–150]). Attacks that exploit
features not modeled in the security proof are known as
side-channel attacks.

Identified side-channel attacks can be patched sending
the hacker back to the drawing board. This leads to a
technological arms race between the hackers and proto-
col designers and a sequence of (hopefully) increasingly
secure protocols. Device-independent protocols provide
a way to break out of this hack-and-patch cycle with re-
spect to side-channel attacks on the devices. They are
able to do so because they make no assumptions about
how the devices used in the protocols operate in their se-
curity proofs—instead, security follows from the classical
input-output behavior, which is tested in the protocol. In
this way, a device independent protocol checks that the
devices are functioning sufficiently well during the pro-
tocol. This has a second advantage: in standard QKD
protocols with trusted devices, in principle a user should
check the functionality of their devices regularly to en-
sure their behavior is still in line with the assumptions of
the security proof. This is a technically challenging task
and not one that can be expected of an average user. By
contrast, in a device-independent protocol, no sophisti-
cated testing is needed to detect devices that are not
functioning sufficiently well (although, technical know-
how is needed to fix them).
At first it may seem intuitive that this is an impossible

task: how can we put any constraints on the workings of
a device without probing its internal behavior? In par-
ticular, is it possible to test the input-output behavior
and ensure that the outputs of a device could not have
been pre-determined by its manufacturer? In fact, the
intuition that this is impossible is correct if there is only
one device. However, with two or more devices, this can
be done, thanks to Bell’s theorem. The basic idea is that
if two devices are unable to communicate, are given ran-
dom inputs and their input-output behavior gives rise to
a distribution that violates a Bell inequality, then their
outputs could not have been pre-determined and hence
are a suitable starting point to generate a key. Because
this idea is central to device-independence we will elabo-
rate on it first before discussing DI-QKD protocols.

B. The link between Bell violation and
unpredictability

Consider two parties, Alice and Bob, each of whom
have a device. Alice and Bob are each able to make one
of two inputs to their device and obtain one of two out-
puts. Quantum mechanically, these devices may be set
up to measure halves of a pair of entangled qubits, with
the inputs corresponding to the choice of basis. Crucially,
although this may be what honest parties should do to
set up their devices, for the security argument, no details
of the setup are required. In order to describe the be-
havior of such devices we will use the following notation.
Alice’s input is modeled by a binary random variable A
and Bob’s by B and their respective outputs are binary
random variables X and Y . It is convenient to use the
following tables to represent the conditional distribution
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PXY |AB as a 4× 4 matrix:

PXY |AB B 0 1

Y 0 1 0 1

A X

0
0 P00|00 P01|00 P00|01 P01|01
1 P10|00 P11|00 P10|01 P10|01

1
0 P00|10 P01|10 P00|11 P01|11
1 P10|10 P11|10 P10|11 P11|11

Suppose now that Alice and Bob’s devices behave ac-
cording to a particular distribution PXY |AB and imag-
ine an eavesdropper holding some additional information
about the devices and for ease of this exposition, let us
assume that this information is classical and use the ran-
dom variable Z to describe it. This classical information
tells Eve additional information about what is happen-
ing. One can think of this in the following way: Eve sup-
plies devices that behave according to P z

XY |AB, but picks

z with probability pz such that from Alice and Bob’s
point of view the device behavior is the same, i.e.,

PXY |AB =
∑

z

pzP
z
XY |AB . (57)

If the devices are used in such a way that each device
cannot access the input of the other then they must act
in a local manner (P z

X|AB = P z
X|A and P z

Y |AB = P z
Y |B).

The question of interest is then whether Eve could have
supplied deterministic devices giving rise to the observed
distribution. This can be stated mathematically as the
question whether PXY |AB can be written in the form (57)
with P z

XY |AB = P z
X|AP

z
Y |B and P z

X|A=a(x), P
z
Y |B=b(y) ∈

{0, 1} for all x, y, a, b ∈ {0, 1}. In other words, is PXY |AB

a convex combination of the 16 local deterministic distri-
butions
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?

If not, then at least some of the time Eve must be sending
a distribution P z

XY |AB to which she doesn’t know either

Alice’s or Bob’s outcome after later learning their inputs.
A Bell inequality is a relation satisfied by all local cor-

relations (i.e., all PXY |AB that can be written as a convex
combination of local deterministic distributions). The
CHSH inequality can be expressed in this notation as
〈C,P 〉 ≤ 2, where P = P z

XY |AB,

C =











1 −1 1 −1

−1 1 −1 1

1 −1 −1 1

−1 1 1 −1











and 〈C,P 〉 = Tr(CTP ) is the Hilbert-Schmidt inner
product. Bell’s theorem states that there are quantum
correlations that violate this inequality. To describe these
we introduce a class of distributions parameterized in
terms of ε ∈ [0, 1/2] as follows

Pε :=











1
2 − ε ε 1

2 − ε ε

ε 1
2 − ε ε 1

2 − ε
1
2 − ε ε ε 1

2 − ε

ε 1
2 − ε 1

2 − ε ε











. (58)

Define the state |ψθ〉 := cos θ
2 |0〉 + sin θ

2 |1〉. Then as-
sume that Alice and Bob measure the two halves of the
maximally-entangled state 1√

2
(|00〉+ |11〉) in the follow-

ing bases:

{|ψ0〉, |ψπ〉} for A = 0,

{|ψπ/2〉, |ψ3π/2〉} for A = 1,

{|ψπ/4〉, |ψ5π/4〉 for B = 0,

{|ψ3π/4〉, |ψ7π/4〉} for B = 1. (59)

This gives rise to a distribution of the form Pε as in
Eq. (58) where

ε =
1

2
sin2

π

8
=

1

8
(2−

√
2) =: εQM, (60)

which leads to 〈C,PεQM
〉 = 2

√
2, i.e., the maximal viola-

tion of the CHSH inequality. Recall that the Tsirelson’s
bound [151] states that if P is quantum-correlated then

〈C,P 〉 ≤ 2
√
2.

One way to think about how random the outcomes
are is to try to decompose this distribution in such a
way as to maximize the local part. For 0 ≤ ε ≤ 1/8,
this is achieved using the following decomposition whose
optimality can be verified using a linear program

Pε :=ε
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. (61)
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If Eve used this decomposition she would be able to guess
Alice’s outcome with probability 8ε+ 1

2 (1−8ε) = 1
2 +4ε.

Thus, Alice’s outcome would have some randomness with
respect to Eve.
We note however that while the first eight terms in this

decomposition are local, the last is a maximally non-local
distribution [152, 153], often called a PR-box [154]. This
is well-known not to be realizable in quantum theory.
The stated strategy is hence not available to an eaves-
dropper limited by quantum mechanics. To analyze the
case of a quantum-limited eavesdropper, we also have to
ensure that P z

XY |AB is quantum-realizable for all z. It

is not easy to do this in general, but in the case where
A, B, X and Y are binary it can be shown that it is
sufficient to consider qubits [152]. For other cases, there
is a series of increasingly tight outer approximations to
the quantum set that can be tested for using semidefinite
programs [155].
Considering a quantum-limited eavesdropper reduces

Eve’s power and hence leads to more randomness in
the outcomes. For a distribution of the form Pε for
εQM ≤ ε ≤ 1/8, for instance, Eve can do a quantum
decomposition as follows:

Pε :=
ε− εQM

1− 8εQM
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+
1− 8ε

1− 8εQM
PεQM

, (62)

allowing her to predict the outcome correctly with prob-
ability 8

ε−εQM

1−8εQM
+ 1−8ε

2(1−8εQM) .

The argument just given is intended to give an intu-
ition to the idea of why violating a Bell inequality means
that there is some randomness in the outcomes. However,
knowing that there is some randomness is not enough; we
also need to know how much key can be extracted from
the raw data.

C. Quantitative bounds

Given a pair of uncharacterized devices we would like
to know how much secure key we can extract from their
outputs. Because the devices are uncharacterized, we
need to test their behavior. Such a test involves repeat-
edly making random inputs to the devices and checking

some function of the chosen inputs and the device out-
puts. For convenience, in this section we will mostly
consider the average CHSH value. Conditioned on this
test passing, the protocol will go on to extract key.

We would like a statement that says that for any strat-
egy of Eve the probability that both the average CHSH
value is high and the key extraction fails is very small.
For this to be the case we need to connect the CHSH
value with the amount of extractable key. Since key is
shared randomness, before considering sharing we can
ask how much randomness can Alice extract from her
outcomes for a given CHSH value. For a cq-state (i.e., a
state of the form ρAE =

∑

x PX(x)|x〉〈x| ⊗ ρxE , where X

denotes a string of many values), this can be quantified
by the (smooth) min-entropy [74] Smin(X|E) of Alice’s
string X conditioned on E.

This is a difficult quantity to evaluate, in part because
of the lack of structure. In fact, Eve’s behavior need not
be identical on every round and she need not make mea-
surements round by round, but can keep her information
quantum. However, a simpler round-by-round analysis
in which the conditional von Neumann entropy is eval-
uated can be elevated to give bounds against the most
general adversaries via the entropy accumulation theo-
rem (EAT) [156, 157]. The basic idea is that, provided
the protocol proceeds in a sequential way, then the total
min-entropy of the complete output of n rounds condi-
tioned on E is (up to correction factors of order

√
n) at

least n times the conditional von Neumann entropy of
one round evaluated over the average CHSH value.

The evaluation of the conditional von Neumann en-
tropy as a function of the CHSH value was done in [158].
There it was shown that for any density operator ρABE ,
if the observed distribution PXY |AB has CHSH value

〈C,P 〉 = β ∈ [2, 2
√
2], then the conditional von Neu-

mann entropy satisfies the bound

S(X |E) ≥ 1−H2

[

1

2

(

1 +
√

(β/2)2 − 1
)

]

, (63)

where H2(...) is the binary Shannon entropy. Combining
this with the EAT, we obtain a quantitative bound on
the amount of uniform randomness that can be extracted
from Alice’s outcomes of roughly n times this.

The bound (63) is obtained by using various techni-
cal tricks specific to the CHSH scenario. For general
non-local games/device measurements we do not know
of good ways to obtain tight bounds on the conditional
von Neumann entropy. Instead, a typical way to ob-
tain a bound is to note that S(X |E) ≥ Smin(X |E), and
that Smin(X |E) can be bounded via a hierarchy of semi-
definite programs [155, 159], as discussed in [160, 161].
However, the bounds obtained in this way are fairly loose
and it is an open problem to find good ways to improve
them.
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D. Protocols for DI-QKD

1. The setup for DI-QKD

As mentioned in Section IVA, use of device-
independence eliminate security flaws due to inadequate
modeling of devices. There are nevertheless, a number
of other assumptions we make in this scenario (note that
these assumptions are also made in the trusted-devices
case):

1. Alice and Bob have secure laboratories and control
over all channels connecting their laboratory with
the outside world. (Without this assumption, the
untrusted devices could simply broadcast their out-
puts to the adversary outside the laboratory, or Eve
could send a probe into the laboratory to inspect
any secret data.) For any devices in their labs, Al-
ice and Bob can prevent unwanted information flow
between it and any other devices.

2. Each party has a reliable way to perform classical
information processing.

3. Alice and Bob can generate perfectly random (and
private) bits within their own laboratories.

4. Alice and Bob are connected by an authenticated
classical channel on which an adversary could listen
without detection.

5. Alice and Bob are also connected by an insecure
quantum channel on which an adversary can in-
tercept and modify signals in any way allowed by
quantum mechanics.

Security is proven in a composable way (cf. Section
IID) allowing a key output by the protocol to be used in
an arbitrary application. Note that because the proto-
col is device-independent, the prolonged security of any
output relies on the devices not being reused [162] in
subsequent protocols (note that the same devices can be
used many times within a run of the protocol), although
modified protocols to mitigate this problem have been
proposed [162].

2. The spot-checking CHSH QKD protocol

A protocol acts as a filter. It is a procedure that can
be fed by a set of devices such that bad devices lead to an
“abort” with high probability, and good devices lead to
success with high probability. There are many possible
types of protocol; we will describe a specific protocol here,
based on the CHSH game with spot-checking.
The protocol has parameters α ∈ (0, 1), n ∈ N, β ∈

(2, 2
√
2], δ ∈ (0, 2(

√
2 − 1)), which are to be chosen by

the users before it commences.

1. Alice uses a preparation device to generate an en-
tangled pair. She keeps one half and sends the other
to Bob. This step and the subsequent one refer to
the generation, sending and storage of an entangled
state, but for security Alice and Bob do not rely
on this taking place correctly (if the state created
is not of high enough quality the protocol should
abort).

2. Bob stores it and reports its receipt to Alice.

3. Alice picks a random bit Ti, where Ti = 0 with
probability 1 − α and Ti = 1 with probability α.
She sends Ti to Bob over the authenticated classical
channel.

4. If Ti = 0 (corresponding to no test) then Alice and
Bob each make some fixed inputs (choices of bases)
into their devices, Ai = 0 and Bi = 2 and record
the outcomes, Xi and Yi.
If Ti = 1 (corresponding to a test) then Alice and
Bob each independently pick uniformly random in-
puts Ai ∈ {0, 1} and Bi ∈ {0, 1} to their devices
and record the outcomes, Xi and Yi.

5. Steps 1–4 are repeated n times, increasing i each
time.

6. For all the rounds with Ti = 1, Bob sends his in-
puts and outputs to Alice who computes the aver-
age CHSH value (assigning +1 or −1 in accordance
with the entries of matrix C). If this value is below
β − δ, Alice announces that the protocol aborts.

7. If the protocol does not abort, Alice and Bob use
the rounds with Ti = 0 to generate a key using error
correction and privacy amplification over the au-
thenticated classical channel. The EAT tells them
how much key can be extracted, subject to adjust-
ments for the communicated error correction infor-
mation.

To explain the structure of the protocol it is helpful
to think about an ideal implementation. In this, the
preparation device generates a maximally entangled state
1√
2
(|00〉 + |11〉) and for A,B ∈ {0, 1} the measurements

are as described in (59). Furthermore, for B = 2, the
measurement is in the {|ψ0〉, |ψπ〉} basis, i.e., the same
basis as for A = 0. If α is chosen to be small, on most
of the rounds both parties measure in the {|0〉, |1〉} basis
which should give perfectly correlated outcomes, suitable
for key. However, on some of the rounds (those with Ti =
1), a CHSH test is performed, in order to keep the devices
honest. These are the spot-checks that give the protocol
its name. The parameter β is the expected CHSH value
of the setup (β = 2

√
2 in the ideal implementation) and

δ is some tolerance to statistical fluctuations.
The probability that an ideal implementation with no

eavesdropping leads to an abort is called the complete-
ness error. Using the implementation given above, this
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occurs when statistical fluctuations cause devices with
an expected CHSH value of β to produce a value be-
low β − δ. An ideal implementation behaves in an i.i.d.
way and hence standard statistical bounds imply that the
completeness error is exponentially small in the number
of rounds.
It is worth making some remarks about the protocol.

1. It is important that the preparation device is un-
able to access information from Alice’s measure-
ment device, even though these may be in the same
lab (if access were granted, the preparation device
could send previous measurement results to Eve via
the quantum channel).

2. The choice Ti needs to be communicated after the
state is shared (otherwise Eve can choose whether
to intercept and modify the quantum state depend-
ing on whether or not a test will be performed).
This requires Alice and Bob to have a (short-lived)
quantum memory; without such a memory, Alice
and Bob could instead use some pre-shared ran-
domness to make these choices and then consider
the modified protocol to be one for key expansion.
For reasonable parameter ranges, this would still
lead to expansion, because α can be low and so a
small amount of pre-shared key is needed to jointly
choose the values of {Ti}.

3. Bob’s device can tell when it is being used to gener-
ate key (Bi = 2). Crucially though, Alice’s device
cannot (Alice’s device learns only Ai and not the
value of Ti), and it is this that forces her device
to behave honestly; not doing so will lead to her
getting caught out if the round is a test. If Bob’s
device does not behave close enough to the way it
should in the case Bi = 2, then the protocol will
abort during error correction step.

There are many other possible protocols, but they fol-
low the same basic idea of generating shared randomness
while occasionally doing tests based on some non-local
game, estimate the amount of min-entropy that any de-
vices that pass the tests with high probability must give
and then using classical protocols to eliminate errors and
remove any information Eve may have through privacy
amplification.

E. Historical remarks

Using violation of a Bell inequality as part of a key dis-
tribution protocol goes back to the Ekert protocol [80],

and many device-independent protocols can be seen as
a development of this. However, Ekert’s work didn’t en-
visage foregoing trust on the devices, and the idea be-
hind this came many years later under the name of self-
checking [31]. The first protocol with a full security proof
was that of Barrett, Hardy and Kent [32], and their pro-
tocol is even secure against eavesdroppers not limited by
quantum theory, but by some hypothetical post-quantum
theory, provided it is no-signalling. However, it has the
drawback of a negligible key rate and the impracticality
of needing as many devices as candidate entangled pairs
to ensure all of the required no-signalling conditions are
met. Following this were several works that developed
protocols with reasonable key rates, proving security
against restricted attacks [158, 163–165] with as many
devices as candidate entangled states [101, 160, 166, 167].
Later proofs avoided such restrictions [75, 168–170], but
still were not able to tolerate reasonable levels of either
noise or had poor rates (or both). Using the EAT [157]
leads to a reasonable rate and noise tolerance [156], and
better rates still can be derived from recent strengthened
versions of the EAT [171].

F. Putting DI-QKD protocols into practice

Although device-independence in principle allows for
stronger security, adopting it in practice is more chal-
lenging than ordinary QKD. This is because it is diffi-
cult to generate correlations that violate a Bell inequal-
ity at large separations. Using photons is a natural way
to quickly distribute entanglement. However, detecting
single photons is difficult. In a device-dependent QKD
protocol such as BB84, failed detection events slow down
the generation of key, but it is possible to post-select
on detection; in a device-independent protocol, below a
certain detection threshold, no key can be securely gener-
ated. This is because post-selecting on detection events
leads to the possibility that the post-selected events ap-
pear to be non-local when they are in fact not. To treat
this problem, suppose that each detector detects a pho-
ton with probability η ∈ [0, 1]. A distribution of the form
Pε from Eq. (58) will become
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Pε,η :=
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, (64)

where the third outcome corresponds to a no-detection
event. Post-selecting on both detectors clicking recov-
ers the distribution Pε, but it can be the case that Pε is
not a convex combination of local deterministic distribu-
tions, but that Pε,η is. To avoid this, the experimental
conditions need to be such that the distribution includ-
ing no-click events has no deterministic decomposition.
In the terminology of Bell experiments, this is referred
to as closing the detection loophole. For the distribu-
tion Pε,η given above, this loophole is closed provided
η > 2/(3 − 8ε). Note that for η ≤ 2/3 this cannot be
satisfied for any ε. Hence, for protocols based on CHSH,
2/3 is a lower bound on the detection efficiency required.
This is known as Eberhard’s bound [172].

Another loophole that is of interest for Bell experi-
ments is the locality loophole, which is closed by doing
measurements at space-like separation. The desire to
close this loophole comes from a concern that the devices
are able to talk to each other during the measurements,
and, in particular, that one device is able to learn the
measurement choice of the other, which makes it trivial
to violate a Bell inequality in a classical deterministic
way. It was a longstanding technical problem to simulta-
neously close the locality and detection loopholes, a feat
that was only recently achieved [173–175]. In the context
of DI-QKD, however, it is not necessary to close the lo-
cality loophole (although it does not hurt). The reason
is that for QKD it is necessary that Alice’s and Bob’s lab
are secure (Assumption 1 above). If their devices could
communicate with each other during the measurements
then this assumption is broken, and it makes little sense
to allow communication between devices without allow-
ing it from the devices to Eve.

G. Measurement device independence (MDI)

In DI-QKD one avoids the formulation of a mathe-
matical model describing the devices involved in the ex-
periment and aims at proving the security of the com-
munication protocol only from the collected data. This
is possible because only a purely quantum experiment
can provide data that violate Bell inequalities. This ap-
proach is conceptually powerful but limited in terms of
attainable key rates. Here we review the main ideas of
measurement device independent (MDI) QKD [176, 177].
This is a framework in which no assumptions is made on
the detectors involved in the QKD protocols, which can

be operated by a malicious eavesdropper. In a typical
MDI-QKD protocol, both trusted users Alice and Bob
send quantum signals to a central receiver (also called
relay). The assumptions are that Alice and Bob have
perfect control on the quantum state they prepare and
send through the quantum channels. On the other hand,
no assumption is made on the central relay, which can be
under control of Eve. In this way one does not need to
bother about the trustfulness of any detector or in gen-
eral of any measurement device. Although at first sight
it may seem impossible to extract any secrecy at all from
such a scheme, it is indeed possible to exploit this MDI
scheme to generate secret key at a nonzero rate.

In a simple (idealized) scheme of MDI-QKD, Alice and
Bob locally prepare single-photon states with either rec-
tilinear {|H〉, |V 〉} or diagonal {|D〉, |A〉} polarization.
These states are sent to a central relay that is assumed
under control of Eve. Notice that initially the states
sent to Eve are statistically independent. Any possible
physical transformation may affect the signals traveling
through the quantum channels that connect Alice and
Bob to the central relay. Also, Eve can apply any mea-
surement on the received signals, or she can store them
in a long term quantum memory. However, to explain
the working principle of MDI-QKD let us assume for a
moment that the channels from the trusted users to Eve
are noiseless, and that Eve performs a Bell detection on
the incoming signals. These assumptions will be relaxed
later. Moreover, we require that Eve publicly announces
the outcome α = 0, 1, 2, 3 of the Bell detection.

The ideal Bell detection is a measurement with four
POVM elements, Λα := σα|β〉〈β|σα, where |β〉 =
2−1/2 (|HH〉+ |V V 〉) is a maximally entangled state,
and σα are the Pauli operators (including the iden-
tity), σ0 = |H〉〈H | + |V 〉〈V |, σ1 = |H〉〈V | + |V 〉〈H |,
σ2 = i|H〉〈V | − i|V 〉〈H |, σ3 = |H〉〈H | − |V 〉〈V |. Note
that, if both Alice and Bob encode information in the
rectilinear basis, then they know that their encoded bit
values are the same if the outcome is α = 0 or α = 3,
otherwise they know that they are opposite if α = 1 or
α = 2. Therefore, Bob can obtain Alice’s bit by flipping
(or not flipping) his local bit according to the value of
α. Similar is the situation if Alice and Bob use the di-
agonal basis, as depicted in Table I. If the parties choose
different bases, they simply discard their data.

The above example shows that the Bell detection per-
formed by the relay can induce (or post-select) strong cor-
relations between the bits locally prepared by the trusted



23

{|H〉, |V 〉} {|D〉, |A〉}

α = 0 − −

α = 1 bit flip −

α = 2 bit flip bit flip

α = 3 − bit flip

TABLE I. The table shows the rules for bit-flipping according
to the result α = 0, 1, 2, 3 of Bell detection and the sifted basis
choice.

users, after they sift their data according to the choice of
local polarization basis. In other words, ideal Bell detec-
tion simulates a virtual noiseless communication channel
connecting the two honest users. Notice that the output
of the Bell detection contains information about the iden-
tity (or non-identity) of the pair of bit values encoded by
Alice and Bob (after sifting) but does not contain any
information about the actual bit values.

While a noiseless communication channel and an ideal
Bell detection do not introduce any error, noise in the
communication channels and non-ideal Bell measurement
introduce an error rate in this virtual communication
channel connecting Alice and Bob. Standard parameter
estimation procedures can then be applied to estimate
the QBER and then provide a lower bound on the secret
key rate. As a matter of fact Eve can apply any quantum
operation at the relay, however she is expected to declare
one value of α = 0, 1, 2, 3 for any pair of signals received,
otherwise the trusted users will abort the protocol.
To move from this abstract mathematical model to-

wards experimental implementations, one shall replace
single-photon states with phase-randomized attenuated
coherent states. Moreover, with a linear optics imple-
mentation one can only realize two of the four POVM
elements of Bell detection, this does not affect the work-
ing principle of MDI-QKD and has only the effect of in-
troducing a non-deterministic element that reduces the
secret key rate. In this context, a practical design for
DV MDI-QKD has been proposed in Ref. [177], where
it has been shown that it can be implemented using de-
coy states along the same methodology of the BB84 pro-
tocol. We remind that decoy states are crucial for DV
QKD to overcome photon number splitting attacks that
the eavesdropper can implement in realistic cases, where
the signals emitter does not generate truly single pho-
ton states. In DV MDI-QKD, both Alice and Bob emits
pulses randomly changing the intensity and revealing it,
publicly, only after the quantum communication has been
concluded. This avoid that Eve may adapt her attacks.
In the protocol described in Ref. [177], the parties

generate weak coherent pulses passing through two dis-
tinct polarization modulators, which operate randomly
and independently. After this step, the signals are sent
through two intensity modulators, which generate the de-
coy states. The protocol proceeds with the Bell measure-

ment realized by the relay. The signals are mixed in a
50 : 50 beam splitter, and the outputs processed by two
polarizing beam splitters (PBS), filtering the input pho-
tons into states |H〉 or |V 〉, and finally detected by two
pairs of single-photon detectors. The Bell measurement
is successful when two of the four detectors click.
Assuming that the rectilinear basis is used to generate

the key the asymptotic key rate is given by the following
expression [177]

Rdecoy−MDI = P 11
rectY

11
rect − P 11

rectY
11
rectH2(e

11
diag)

−Grect δ(Qrect), (65)

where P 11
rect = µAµB exp[−(µA + µB)] is the joint prob-

ability that both emitters generate single-photon pulses,
with µA and µB describing the intensities (or the mean
photon number) of the photon sources of Alice and Bob,
respectively. The quantity Y 11

rect gives the gain, while e
11
diag

is the QBER when Alice and Bob correctly send single-
photon pulses. The functionH2(x) is the binary Shannon
entropy. The gain Grect and the QBER Qrect account for
the cases where the parties sent more than one photon.
In particular, δ(x) = f(x) H2(x) gives the leak of infor-
mation from imperfect error correction, with f ≥ 1 being
the efficiency of classical error correction codes.
In ideal conditions of perfect transmission and perfect

single photon sources, the key rate of Eq. (65) would be
just the gain Y 11

rect. By contrast, assuming more realis-
tic conditions the key rate is re-scaled by the probabil-
ity P 11

rect and reduced subtracting a term proportional to
information lost to perform privacy amplification [sec-
ond term on the right-side of Eq. (65)], and error correc-
tion (third term). The security of decoy-state DV MDI-
QKD, including finite-size effects, has been assessed in
Ref. [178]. See also Refs. [179, 180] for practical decoy-
state analyzes of the MDI-QKD protocol.
The above example is a special case of a general ap-

proach that protect QKD from side-channel attacks on
the measurement devices. In the more general framework
introduced by Ref. [176], each honest user prepares a bi-
partite quantum state and sends one subsystem to the
relay. The state received by the relay has thus the form
ρAA′ ⊗ ρB′B, where the system A, B are those retained
by the Alice and Bob, respectively. A generic operation
applied by the relay is described by a quantum instru-
ment [181] characterized by a set of operators Λz

A′B′→E .
This includes a measurement with outcome z and storage
of information in a quantum memory E. If Eve applies
the measurement and then announces the outcome z, for
any given value of z the correlations between Alice, Bob,
and Eve, are described by the tripartite state

ρzAEB =
1

p(z)
(IA ⊗ IB ⊗ Λz

A′B′→E) (ρAA′ ⊗ ρB′B), (66)

where p(z) = Tr(Λz
A′B′→EρA′ρB′).

The conditional state ρzAB is no more factorized and ex-
hibits correlations between Alice and Bob. To extract se-
cret bits from such a state Alice and Bob must apply local
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measurements to obtain a tri-partite classical-quantum
state ρzXEY for any given value of z. The asymptotic se-
cret key rate is obtained from the expression of the mu-
tual information between Alice and Bob averaged over z,
IAB =

∑

z p(z)I(X ;Y )ρz minus the average Holevo infor-
mation between Alice and Eve, χAE =

∑

z p(z)I(X ;E)ρz

(in the case of direct reconciliation). The general ap-
proach of Ref. [176] not only provides a security proof
for DV MDI-QKD schemes but also sets the basis for an
extension to CV systems, later realized in Ref. [182].

H. Twin-field QKD

In the MDI-QKD protocol, the idea is to use a mid-
dle relay that may be untrusted, i.e., run by Eve. This
is a very first step towards the end-to-end principle of
networks which assumes a scenario with unreliable mid-
dle nodes. On the other hand, despite MDI-QKD em-
ploys a relay, it is not able to beat the PLOB bound
for point-to-point QKD [33]. This limitation has been
recently lifted by the introduction of a more efficient
protocol called “twin-field” (TF) QKD [183]. The TF-
QKD protocol has led to further theoretical investiga-
tions [184] and a number of TF-inspired variants, in-
cluding the phase-matching (PM) protocol [185] (see also
Ref. [186]), the “sending or not sending” (SNS) version
of TF-QKD [187–189], recently improved into the ac-
tive odd-parity pair (AOPP) protocol [190], and the no-
phase-postselected TF (NPPTF) protocol [191–193] (see
also Refs. [194, 195]).
In the TF-QKD protocol, Alice and Bob send two

phase-randomized optical fields (dim pulses) to the mid-
dle relay (Charlie/Eve) to produce a single-photon inter-
ference to be detected by a single-photon detector, whose
outcomes are publicly declared. The term twin derives
from the fact that the electromagnetic phases of the opti-
cal fields should be sufficiently close in order to interfere.
More precisely, Alice and Bob send to the relay pulses
whose intensity µi (for i = A or B) is randomly selected
between three possible values. Then, they respectively
choose phases ψA and ψB as ψi = (αi + βi + δi) ⊕ 2π,
where αi ∈ {0, π} encodes a bit, βi ∈ {0, π/2} determines
the basis, and the final term δi is randomly selected from
M slices of the interval [0, 2π), so that it takes one of the
values 2πk/M for k = {0, 1...,M − 1}.
To ensure only phases close enough are selected, after

disclosing on an authenticated channel, Alice and Bob
only accept the same choices of the slice, i.e., the in-
stances for δA = δB. These pulses interfere at the relay
interfere constructively (or destructively). Then, Alice
announces the basis she used βA and the intensity µA

for each instance. The key is extracted from the basis
βA = βB = 0 and for one of the intensities. In fact, a bit
αA can be shared between Alice and Bob by considering
the absolute difference between αA and αB to be equal to
0 or π (depending on the relay’s announcement). The rest
of the results can be used for other purposes, including
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FIG. 3. Key rate of the TF-QKD protocol [183] versus Alice-
Bob total distance in standard optical fiber (0.2 dB/km), as-
suming ideal (green line) and realistic (blue line) conditions.
For the realistic key rate we assume 10−8 dark count probabil-
ity per detector, 75% loss at the relay, 50% detector efficiency,
and error correction efficiency of 1.1. For the ideal key rate
we consider no dark counts and perfect detector efficiency.
For more details and other assumptions on these key rates
see Ref. [183]. We also plot the point-to-point repeaterless
PLOB bound [33] and the single-repeater bound [39, 40]. We
can see that the PLOB is violated, showing that the TF-QKD
protocol is equivalent to an active repeater. At the same time,
it cannot beat the secret-key capacity of an ideal repeater.

estimating error rates as well as decoy-state parameters.
Note that the twin pulses are in principle set by requir-

ing δA to be as close as possible to δB, and the nonzero
difference between them introduces an intrinsic QBER.
The two become identical provided that M is infinitely
large. Realistically, a finite but large value of M can be
used though this decreases the probability of matching
two phase slices. An estimation made in Ref. [183] gives
the optimal value M = 16 with a QBER of ≈ 1.28%.
In Ref. [183], the authors considered a restricted sce-

nario where the ‘global phase’ does not leak any useful
information to Eve, giving a key rate

RTF(µ, L) =
d

M
R(µ, L/2) (67)

where R(·) is the secret key rate of an efficient BB84 pro-
tocol [196] with tagging argument [197], and µ, L are the
intensity and the distance respectively. Later, Ref. [198]
considered a collective attack where Eve makes use of
identical beam splitters set along each path connecting
Alice and Bob to the relay. While this attack consid-
erably increases Eve’s gain, the key rate scaling O(

√
η)

remains unchanged. As a matter of fact, using the TF-
QKD protocol (and the PM-QKD protocol) over a com-
munication line with total Alice-Bob’s transmissivity η,
not only is the PLOB bound beaten, but the rate perfor-
mance is also not so far from the single-repeater bound
of −log2(1 −

√
η) [39, 40]. See Fig. 3.

Yet other variants of the TF-QKD protocol have been
proposed [199–201] and experimental implementations
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have been carried out [202–205]. In particular, the proof-
of-concept experiment in Ref. [202] has recently overcome
the PLOB bound for the first time, a result previously
thought to be out of the reach of present technology.

V. EXPERIMENTAL DV-QKD PROTOCOLS

The original BB84 protocol requires perfect single pho-
ton sources which emit only one photon at a time. Since
these sources are notoriously hard to build they have been
replaced by coherent state sources which are heavily at-
tenuated to a fraction of a photon per pulse. However,
these sources lead to security concerns due to the proba-
bility to have more than a photon per pulse and a photon
splitting attack has been proposed and demonstrated to
exploit the wrong assumption in the security proofs. As
described before a rigorous security [105, 206] analysis
has been proposed with the idea of estimating the ratio of
secure signals from which the secure bits are distilled by
post-processing. For practical sources the bounds found
in the security analysis are not tight leading to a degrada-
tion of system performance. To circumvent this problem
several novel protocols with different encoding schemes
have been proposed and in the following sections we ex-
plain the development of their implementations in detail.
Despite the different encoding schemes all DV QKD sys-
tem have single photon detectors in common to detect
the arriving states. To achieve high key rates high count
rates and, thus, low dead times are necessary. Extremely
long distances require however low dark count rates.

A. Detector technology

At the receiver side the arriving photon pulses are pro-
cessed by e.g. beam splitters, interferometers or a like
to decode the information encoded in various degrees of
freedoms. After optical processing the photons are de-
tected by single photon detectors which set limits on the
achievable performance.

Indium Gallium Arsenide (InGaAs) avalanche photo-
diodes detect single photons by generating a strong elec-
tron avalanche at the absorption of a photon when op-
erated with a reverse voltage above the breakdown volt-
age. However, the strong avalanche current can lead to
trapped electron charges in defects. Spontaneously re-
leased they trigger a second avalanche pulse, a so-called
afterpulse. A common approach to suppress the after-
pulse is gating. To further suppress this afterpulse and
to allow for gating frequencies beyond 1 GHz, a self-
differentiating technique was introduced to detect much
weaker avalanches [207]. Operating at −30◦C the APD
was gated at 1.25 GHz, obtaining a count rate of 100
MHz with an detection efficiency of 10.8%, an afterpulse
probability of about 6% and a dark count rate of about
3 kHz.

To achieve higher quantum efficiencies and in partic-
ular lower dark count rates, superconducting nanowire
single photon detectors (SNPDs) have been developed.
They consist of a nanometer thick and hundreds of
nanometer wide nanowire with a length of hundreds of
micrometers. Compactly patterned in a meander struc-
ture they fill a square or circular area on the chip. The
nanowire is cooled below its superconducting critical
temperature and a bias current just below the supercon-
ducting critical current is applied. An incident photon
breaks up Cooper pairs in the nanowire which lowers the
superconducting critical current below the bias current
which produces a measurable voltage pulse. A recent de-
velopment [208] shows dark count rates of 0.1 Hz, low
jitter of 26 ps and a quantum efficiency of 80% at a
temperature of 0.8 K. SNSPDs have been integrated into
photonic circuits [209, 210].

B. Decoy state BB84

As described before decoy state QKD severely in-
creases security and distance for attenuated coherent
laser pulse sources and is much more practical in compar-
ison to single photon sources. The first implementation
was performed in 2006 with one decoy state by modi-
fying a commercial two-way idQuantique system [211].
In the two-way protocol with phase encoding Bob sent
bright laser pulses to Alice who after attenuating them
to the single photon level and applying a phase shift sent
them back to Bob for measurement. The intensity of the
pulses was randomly modulated by an acousto-optical
modulator inserted into Alice’s station to either signal
state or decoy state level before sending the pulses back
to Bob. Shortly later the same group implemented a two
decoy state protocol with an additional vacuum state to
detect the background and dark count detection proba-
bility [212].
The demonstration of two-decoy states BB84 in a one-

way QKD system was reported by three groups at the
same time in 2007. In Ref. [213] phase encoding was em-
ployed and secure key generation was shown over a dis-
tance of 107km using optical fiber on a spool in the lab.
Including finite statistics in the parameter estimation, a
secret key rate of 12 bit/s was achieved. To generate the
decoy states pulses from a DFB laser diode at a repeti-
tion rate of 2.5MHz were amplitude modulated with an
amplitude modulator. For detection single-photon sensi-
tive superconducting transition-edge detectors were em-
ployed.
The second group demonstrated two-decoy state QKD

over a 144 km free-space link with 35 dB attenuation be-
tween the canary islands La Palma and Tenerife [214].
Here, the BB84 states were polarization encoded. Four
850nm laser diodes oriented at 45◦ relative to the neigh-
bouring one were used in the transmitter. At a clock rate
of 10MHz one of them emitted a 2 ns pulse. The decoy
states of high intensity were generated at random times
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by two laser diodes emitting a pulse at the same time,
while for the vacuum state no pulse was emitted. The
receiver performed polarization analysis using polarizing
beam splitters and four avalanche photo detectors. A
secure key rate of 12.8 bit/s was achieved.

The third group used polarization encoding and
demonstrated secret key generation over 102 km of
fiber [215]. The transmitter consisted of 10 laser diodes
each of which produced 1 ns pulses at the central wave-
length of 1550nm with a repetition rate of 2.5MHz. Four
laser diodes were used for signal and high intensity de-
coy state generation, respectively, using a polarization
controller to transform the output polarization of a laser
diode to the respective polarization of one of the four
BB84 states. Two additional laser diodes were used for
calibrating the two sets of polarization basis which was
performed in a time multiplexed fashion. The outputs of
the 10 laser diodes were routed to a single optical fiber
using a network of multiple beam splitters and polar-
ization beam splitters. An additional dense wavelength
division multiplexing filter ensured that the wavelengths
of the emitted photons was equal. The receiver consisted
of two single photon detectors and a switch to randomly
choose one polarization basis.

Using advances in InGaAs avalanche photon detec-
tion (APD) operating in self-differencing mode [207] GHz
clocked decoy state QKD was demonstrated in 2008 [216].
A self-differencing circuit can sense smaller avalanche
charges thereby reducing after pulse probability and thus
dead time. The demonstrated QKD system clocked at
1.036GHz was based on a phase encoded GHz system im-
plementing the BB84 protocol [217] and used two decoy
states generated by an intensity modulator. Dispersion
shifted single mode fiber was employed since for channel
lengths over 65km fiber chromatic dispersion must be
compensated for in standard SMF28 single mode fiber.

In the standard BB84 protocol Bob measures in the
wrong basis 50% of the time. Moreover, in decoy state
BB84, it is advantageous to send the states with higher
intensity more often than the others. To increase the
usable signal generation rate an efficient version with
asymmetric bases choice and highly unbalanced inten-
sities was introduced, with an implementation reported
in [218]. They prove the protocol’s composable security
for collective attacks and improved parameter estimation
with a numerical optimization technique. Based on phase
encoding the GHz system achieved a secure key rate of
1.09 MBit/s in contrast to 0.63 MBit/s for the standard
protocol over 50 km of fiber. Its experimental implemen-
tation is depicted in Fig. 4a.

Composable security against coherent attacks was only
achieved recently. Ref. [219] describes an experiment
demonstrating it with a modified two-way commercial
plug-and-play QKD system where the authors also in-
cluded imperfect state generation. Security against co-
herent attacks was furthermore demonstrated in [220]
with a one-way phase-encoding system. With the latter
system the authors achieved a distance in ultra-low loss

fiber (0.18 dB/km) of 240 km. Using APDs with a detec-
tion efficiency of 10% a dark count rate of 10 counts/s
was achieved at −60◦C reached with a thermal-electrical
cooler.
The current distance record of 421 km ultra low loss

optical fiber (0.17 dB/km) was achieved simplified BB84
scheme with a one-decoy state [221]. The distance record
was achieved by optimizing the individual components
and simplifying the protocol. The system was clocked
at 2.5 GHz and used efficient superconducting detectors
(about 50%) with a dark count rate below 0.3 Hz. The
protocol was based on a scheme with three states using
time bin encoding. Two states were generated in the Z
basis, a weak coherent pulse in the first or the second
time bin, respectively. The third state, a state in the X
basis, was a superposition of two pulses in both time bins.
While the Z basis states were used to estimate the leaked
information to the eavesdropper, the X basis state was
used to generate the raw key. The experimental setup is
shown in Fig. 4b.

C. Differential phase shift QKD

Differential phase shift QKD encodes information into
the differential phase shift of two sequential pulses. The
first QKD system employing this encoding technique was
reported in 2004 over 20km fiber [222]. A continuous-
wave laser diode from an external-cavity laser was in-
tensity modulated at 1GHz to carve 125ps long pulses.
Afterwards a phase modulator was used to modulate the
phase of each pulse randomly by 0 or π. An attenuator
attenuated the beam to 0.1 photon per pulse. At the re-
ceiver side the differential phase between two sequential
pulses was measured with an unbalanced Mach-Zehnder
interferometer. The incoming pulses were split 50:50 and
before recombination at another 50:50 splitter, one arm
was delayed by the interval of time between two pulses.
The two outputs of the unbalanced Mach-Zehnder inter-
ferometer were detected by gated avalanche single pho-
ton detectors. The Mach-Zehnder interferometer was as
waveguides and the arm length difference could be con-
trolled thermally.
Using superconducting single photon detectors and a

10GHz clock frequency keys were distributed over 200km
dispersion shifted fiber [223]. In a different experiment,
a secure bit rate in the MBit/s range was achieved over
10 km by using a 2GHz pulse train with 70 ps long
pulses [224]. At the receiver after the unbalanced Mach-
Zehnder interferometer the photons were upconverted in
a nonlinear process and detected by a Silicon avalanche
photo diode which enabled count rates of 10MHz with a
low timing jitter.
High-rates of 24 kbit/s over 100 km were achieved using

2GHz sinusoidally gated avalanche photo diodes and the
important influence of laser phase noise has been stud-
ied [225]. Using a Michelson interferometer with unequal
arm length based on a beam splitter and two Faraday
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mirrors and superconducting detectors at the receiver
the maximum transmission distance has been boosted to
260km in standard telecom fiber [226]. Its experimental
implementation is depicted in Fig. 4c.
The DPS-QKD protocol has been tested in the Tokyo

QKD network [227, 228].

D. Coherent one-way

The first proof-of-principle implementation of the
COW protocol has been reported in 2005 [229]. A
1550nm continuous-wave laser beam was intensity modu-
lated to generate the quantum or decoy states and a vari-
able attenuator attenuates the beam to the single photon
level. Bits were encoded into arrival time by two consec-
utive pulses: A vacuum state followed by a coherent state
represented bit 0, a coherent state followed by a vacuum
state represented bit 1. The decoy state was represented
by two coherent states. On the receiver side the beam
was split by a tap coupler (tapping e.g. 10%). While the
highly transmittive output was detected by a single pho-
ton detector, the tap was injected into an interferometer
with asymmetric arms which interfered the two pulses.
One output of the interferometer was measured by a sin-
gle photon detector and the measurement outcomes were
used to calculate the visibility to check channel distur-
bances. The unbalanced interferometer was implemented
as Michelson interferometer by using a 3 dB coupler and
two Faraday mirrors.
Running at a high clock speed of 625MHz a fully au-

tomated system was built and demonstrated over 150km
in deployed telecom fiber [230]. The high clock speed
was reached with a continuous-wave distributed fiber-
Bragg telecom laser diode, a 10GHz Lithium Niobate in-
tensity modulator and Peltier cooled InGaAs avalanche
photo diodes in free-running mode for short distances
and SNSPDs operating at sub-4K with lower noise for
long distances. Synchronization was achieved by wave-
length division multiplexing of a synchronization channel
and a classical communication channel through a second
optical fiber. Using ultra-low loss fibers and low-noise su-
perconducting detector operating at 2.5K a distance of
250km was reached [231]. While the previous implemen-
tations all used an asymptotic security proof finite-size
effects were taken into consideration in the implemen-
tation described in 2014 [232] which reached 21 kbit per
second over 25 km fiber with gated InGaAs detectors and
a key distillation in FPGAs. Here, the COW QKD sys-
tem was tested with one single optical fiber only using
dense-wavelength division multiplexing for quantum and
all classical channels.
The distance record of a system implementing the co-

herent one-way protocol was reported in 2015 [233] reach-
ing 307 km. Novel free-running InGaAs/InP negative
feedback avalanche detectors operated at 153K with low
background noise (few dark counts per second) and low
loss optical fibers as well as a novel composable finite-key

size security analysis enabled the result. The experimen-
tal implementation is schematically depicted in Fig. 4d.

E. DV MDI-QKD

DV MDI-QKD was first experimentally demonstrated
in 2013 by three groups. The first group implemented
MDI-QKD between three locations in Calgary with a dis-
tance of about 12 km between Alice and the untrusted
relay Charlie and about 6 km between Bob and Char-
lie [234]. Alice’s and Bob’s transmitter generated time-
bin qubits at a rate of 2 MHz using an attenuated pulsed
laser at 1552 nm and an intensity and phase modulator.
The generated states were chosen by Alice and Bob inde-
pendently from the set |ψA,B〉 ∈ [|0〉, |1〉, |+〉, |−〉] where
|±〉 = (|0〉 ± |1〉)/

√
2. By choosing between three in-

tensity levels, vacuum, a decoy state level and a signal
state level, the decoy state protocol was implemented.
Both transmitters were synchronized by a master clock
located at Charlie which was optically transmitted to the
respective stations through another deployed fiber. Af-
ter receiving the photons Charlie performed a Bell state
measurement by superimposing the pulses at a balanced
beam splitter and detecting the outputs with gated In-
GaAs single photon detectors with 10 µs dead time. If
the two detectors coincidentally clicked within 1.4 ns the
states were projected into a Bell state. Those instances
were publicly announced by Charlie.
The second group implemented the protocol over 50

km in the lab [235]. They implemented a similar qubit
time-bin encoding scheme as in the Calgary experiment,
but used four decoy intensity levels with 0, 0.1, 0.2 and
0.5 photons per pulse on average. A pulsed laser was fed
through an unbalanced Mach-Zehnder interferometer to
generate two time-bin pulses. The encoding of qubits and
decoy were implemented with three amplitude and one
phase modulator situated in a thermostatic container for
stability reasons. After traveling through 25 km of fiber
the untrusted relay Charlie performed a Bell state mea-
surement identically to described above. The employed
photo detectors used an upconversion technique where a
nonlinear process in periodically poled lithium niobate
converted the 1550 nm photons to 862 nm detected by
Silicon avalanche photo detectors with a dark count rate
of 1 kHz.
The third implementation [236] was a proof-of-

principle demonstration based on polarization qubits in-
stead and demonstratedMDI-QKD over 8.5 km long fiber
links between the two trusted parties and the relay. Us-
ing a continuous wave laser pulses were carved with an
amplitude modulator. The decoy state levels were cho-
sen by variable optical attenuators and the polarization
encoding was performed with an automatic polarization
controller. The relay was built from a balanced beam
splitter and two polarization beam splitters. Four gated
InGaAs avalanche single photon detectors with a dark
count probability of 15 ppm and 10 µs dead time de-
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FIG. 4. Exemplary experimental implementation of discrete variable QKD. a) Two-decoy state BB84 protocol with biased
basis choice reported in [218]. A laser diode emitted pulses at 1550 nm which were intensity modulated (IM) to generate the
different intensity of the states. An unbalanced Mach-Zehnder interferometer with a phase modulator (PM) in one arm was
used to generate the different BB84 states, i.e. 0 and π for the Z basis and π/2 and 3π/2 for the X basis. After attenuation to
the single photon level with a variable attenuator (VA), the states were transmitted through a fiber. At Bob’s side decoding
was performed with an identical Mach-Zehnder interferometer and a PM either set to 0 or π. A fiber stretcher (FS) matched
the two interferometers. The detection unit (DU) consisted of two InGaAs APDs. BS: Beam Splitter, PBS: Polarizing Beam
Splitter, OPM: Optical Power Meter, PC: Polarization Controller. b) Simplified one-decoy state BB84 protocol with three
states implemented over 421 km [221]. Alice uses a phase randomized laser pulse with a repetition rate of 2.5 GHz which
is tightly bandpass filtered around 1550 nm. The pulses pass through an unbalanced Michelson interferometer with 200 ps
delay made of beam splitter and two Faraday mirrors (FM) and a piezo in one of the arms to control the phase, to enable
time bin encoding. Afterwards the pulses are intensity modulated (IM) to generate the different qubit states. After dispersion
compensation (DCF) and attenuation to the single photon level (variable attenuator: VA), the pulses are transmitted through
an ultra-low-loss (ULL) fiber. To implement the different bases choices at Bob’s station the pulses are split with a beam
splitter. One of its outputs is directly detected with an SNSPD, measuring the arrival time in Z basis which is used for the raw
key. The other is used to measure the X basis by passing the pulses through an unbalanced interferometer identical to Alice’s.
This measurement is used to estimate the eavesdropper information. c) Implementation of the differential phase shift protocol
reported in [226] over 260 km with a rate of 2 GHz. A continuous wave (CW) laser at 1560 nm is chopped into pulses with an
intensity modulator (IM). A phase modulator then randomly applies a π/2 or −π/2 phase shift on the pulses before they are
attenuated to the single photon level. The pulses are then transmitted through standard telecom fiber (STF). At Bob’s side
the encoded information is decoded by a Faraday Michelson interferometer (FMI) which interferes a pulse with the one before
and after it. The two outputs of the interferometer were detected by superconducting single photon detectors (SSPD). TDC:
time to digit converter. d) Coherent one-way protocol implementation over 307 km with a repetition rate of 625 MHz reported
in [233]. Pulses were carved into a continuous wave laser beam at 1550 nm using two different intensities to encode bits using
consecutive time bins. After attenuating to the single photon level the pulses were sent through an ultra-low loss (ULL) single
mode fiber (SMF). Bob’s receiver is similar to the receiver described in b).

tected their output.

The distance of MDI-QKD was then boosted to 200
km [237] and 404 km [238] using ultra-low loss fiber with
an attenuation of 0.16 dB/km. To achieve such a large
communication length of 404 km the MDI-QKD proto-
col was optimized to improve on the effects of statistical
fluctuations on the estimation of crucial security param-
eters. The protocol consisted of four decoy states with
three levels in the X basis and only one in the Z basis.
The probabilities for each was carefully optimized to ob-
tain largest key rate. Five intensity modulators and one
phase modulator was employed to implement those. The
receiver was implemented in the same way as described
above for the first two experiments. Superconducting
single photon detectors improved the quantum efficiency

(about 65%) and dark count rate (30 Hz). Furthermore
to achieve 404 km in the order of 1014 successful trans-
missions were recorded which took with a clock rate of
75 MHz over 3 months. The achieved secret key rate was
3.2× 10−4 bits per second.

Furthermore at zero transmission distance a secret key
rate of 1.6 MBit/s was reached [239] by introducing a
pulsed laser seeding technique to achieve indistinguish-
able laser pulses at 1 GHz repetition rate. The new tech-
nique where a master laser pulse is injected into a slave
laser as a seed to trigger stimulated emission at a defined
time yielded very low timing jitter and close-to-transform
limited pulses.

To demonstrate MDI-QKD over quantum networks
in star topology extending over 100 km distance, cost-
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effective and commercially available hardware was used
to build a robust MDI-QKD system based on time-bin
encoding [240]. Similar plug and play systems with time-
bin or polarization encoding and different level of immu-
nity against environmental disturbances have been im-
plemented as well in other groups [241–245].

F. High-dimensional QKD

Most discrete variable (DV) QKD schemes encode
quantum states in qubits (d = 2), such as the polariza-
tion states used in the first QKD experiment [246]. Go-
ing back to the early 2000s, there has been considerable
interest in developing large-alphabet DV QKD schemes
that encode photons into qudits: high-dimensional basis
states with d > 2. Such schemes offer the ability to en-
code multiple (log2 d) bits of information in each photon.
This benefit is not without a drawback; the information
density per mode decreases as (log2 d)/d. Nevertheless,
high-dimensional QKD (HD QKD) can offer major ad-
vantages over their qubit counterparts.
HD QKD can increase the effective secret key genera-

tion rate when this rate is limited by the bandwidth mis-
match between the transmitter and the receiver. This
mismatch happens when either the transmitter is limited
to a flux below the available receiver bandwidth or the
single-photon detector is saturated by the high photon
flux received. While the former does not typically occur
with attenuated laser source, the latter often arises due to
detector dead time. In a superconducting nanowire single
photon detector (SNSPD), the dead time is dominated
by the time it takes to recover its supercurrent (which
flows with zero resistance)—during which the nanowire
is insensitive to any photon [247].
Fig. 5 shows a representative plot of qubit-based DV

QKD secret key rate versus distance for currently achiev-
able parameters. Three distinct regimes are apparent:
regime II denotes normal operation where the secret key
rate scales as the transmissivity in the fiber, which de-
cays exponentially with distance. At longer distances,
we enter regime III where the received photon rate is
comparable to the detectors’ background rate—masking
any correlation between the key-generating parties and
abruptly reducing the secret key rate. However, at short
distances with low photon loss (regime I with distances
up to ∼ 100 km), the secret key rate is limited due to
the detector dead time. The highest QKD key rate is
achieved in this regime and it currently amounts to 13.72
Mb/s [248]. To increase this key rate further, more de-
tectors could be added so to distribute the initial inten-
sity among them. Another strategy would be increasing
the dimensionality of the alphabet to reduce the trans-
mitted photon rate until the detectors are just below
saturation. To date, multiple degrees of freedom have
been investigated for high-dimensional QKD, including
position-momentum [249], temporal-spectral [250–255],
and orbital angular momentum (OAM) [256–258].

Regime I:
Saturation

Regime II:
Normal Operation

Regime III:
Cutoff

Dark click

PLOB Bound

FIG. 5. Representative plot of secret key generation rate
against channel distance for a traditional qubit DV QKD pro-
tocol for currently achievable device parameters. The plot as-
sumes a 1 GHz clock rate, a 93% detector efficiency, a 1000 cps
dark count rate, and a 100 ns detector dead time. We denote
three distinct regimes: I. Short metropolitan-scale distances,
where the secret key rate is limited by detector saturation;
II. Longer distances, where the secret key rate decays expo-
nentially with distance; III. Extremely long distances, where
the secret key rate is sharply limited by detector dark count
rates. The PLOB bound [33] is plotted for comparison.

Initial security analysis by Cerf et al. for discrete large-
alphabet QKD showed improved resilience against noise
and loss [259]. HD QKD with discrete quantum states is
capable of tolerating error rates than the 11% limit for
qubit-based protocols. However, the proposed scheme
with its two early proposals—one using OAM and an-
other using temporal-spectral encoding—was challenging
to demonstrate. The main difficulty lies in the measure-
ment of discrete high-dimensional states within at least
two mutually unbiased bases. Efficient implementation
of the scheme for the two proposed degrees of freedom
required single-photon detectors that scale with the di-
mensionality d—prohibiting the use of large d. There-
fore, there has been a strong desire in developing HD
QKD schemes with the ability to measure higher-order
correlations using only a few single photon detectors.

One detector-efficient temporal scheme—borrowing
techniques from continuous variable (CV) QKD and
applying them to the temporal-spectral mode—
demonstrated QKD operations with an extremely high
alphabet of d = 1278, i.e., over 10 bits per photon [255].
However, no security proof against collective or coherent
attacks was available at the time. The challenge is
that time and energy states are not inherently discrete,
but rather they form a continuous basis. Therefore,
the security proof on discrete dimensional bases do
not transfer directly to these continuous-basis schemes.
Considerable effort was made to extend the proofs for
CV QKD to HD QKD by realizing that the security
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of temporal-spectral HD QKD can be guaranteed by
measuring the covariance matrices between Alice’s and
Bob’s information.
Measuring the covariance matrices involves detection

in the frequency basis. Direct spectral detection of the
incoming light can be done using a single-photon-limited
spectrometer: a spectral grating followed by d single pho-
ton detectors. However, the required number of detectors
would again prevent reaching a large dimensionality. To
work around these limitations, new techniques were in-
troduced to convert the spectral information to time in-
formation by using group-velocity dispersion [260], Fran-
son interferometers [261], or a time-varying series of
phase shifts [253].
The development of temporal-spectral encoded HD

QKD spurred record demonstrations of secret key capac-
ity at 7.4 secret bits per detected photon [262] and secret
key generation rates of 23 Mbps [263] and 26.2 Mbps [264]
with d = 16 at 0.1 dB loss and d = 4 at 4 dB induced
loss, respectively. Furthermore, a 43-km (12.7 dB loss)
field demonstration between two different cities show a
maximum secret key generation rate of 1.2 Mbps [263].
Since HD QKD is vulnerable against photon number
splitting attacks as it relies on transmission of single
photons, these demonstrations make use of decoy state
techniques to close this security loophole [265]. More re-
cently, the security of temporal-spectral HD QKD has
been extended to include the composable security frame-
work, which takes into account statistical fluctuations in
estimating parameters through only a finite number of
measurements [266, 267].
High-dimensional QKD with OAM has also witnessed

rapid development due as it is directly compatible with
free-space QKD systems [268]. Since OAMmodes rely on
the preparation and the measurement of discrete high-
dimensional states, the security proofs extend directly
from the work by Cerf et al. Recently, the security proof
has also been successfully extended to include finite-key
analysis for composable security [269].
A photon carrying an OAM information has a helical

or twisted wave front with an azimuthal phase ϕ which
wraps around ℓ (helicity) times per wavelength. For the
popular Laguerre-Gauss mode, a photon carrying an ℓ~
OAM can be described as |Ψℓ

Z〉 = eiℓϕ. ℓ is an unbounded
integer, which allows arbitrarily high encoding dimen-
sion, but practically one limits ℓ ∈ [−L,L] to achieve a
dimensionality d = 2L+1. A mutually unbiased basis set
can be constructed using a linear combination of OAM
modes

|Ψn
X〉 = 1√

d

L
∑

ℓ=−L

exp

(

i
2πnℓ

d

)

|Ψℓ
Z〉. (68)

Both sets of quantum states can be generated using a spa-
tial light modulator (SLM) [270], a digital micro-mirror
device (DMD) [271], or a tunable liquid crystal device
known as q-plates [272, 273].
The first laboratory demonstration of high-

dimensional OAM QKD achieved a secret key gen-

eration rate of 2.05 bits per sifted photon using a
seven-dimensional alphabet (L = 3 and d = 7) [257].
More recently, a 300-m free-space field demonstration in
Ottawa with four-dimensional quantum states achieved
0.65 bits per detected photon with an error rate of
11%: well below the QKD error rate threshold for
d = 4 at 18% [256]. Although moderate turbulence
was present during the experiment, going to longer
distances will require active turbulence monitoring and
compensation [274].
The main challenge in high-dimensional OAM QKD

towards achieving a high secret key generation rate is
the relatively low switching speed of the encoding and
decoding devices when compared to the multi-gigahertz-
bandwidth electro-optic modulators used in time-bin en-
coded high-dimensional QKD. QKD demonstrations in-
volving SLM, DMD, and q-plates so far have required a
time in the order of 1 ms to reconfigure—limiting the
QKD clock rate in the kHz regime. While q-plates can
potentially be operated at GHz rates by using electro-
optic tuning, these have yet to be demonstrated [275].
One appealing new direction is the use of photonic in-
tegrated circuits (PICs), which may dramatically reduce
the configuration time. Thermo-optically tuned on-chip
ring resonators have demonstrated a switching time of
20 µs [276, 277]. More recently, precise control of OAM
mode generation has been demonstrated using a 16× 16
optical phase array which allows for generation of higher
fidelity OAM states [278]. Furthermore, large scale on-
chip MEMS-actuation has also been demonstrated with a
switching time of 2.5 µs with the potential of application
to OAM generation and control [279].
Demonstrations of HD QKD using a single set of con-

jugate photonic degrees of freedom, such as time-energy
or OAM, to increase the secret key generation rate have
been successful. Investigation in new techniques, which
include the miniaturized photonic integrated circuit plat-
form (see Sec. VG), to manipulate and detect multiple
degrees of freedom simultaneously can dramatically in-
crease the dimensionality that would improve the secret
key rate even further. Moreover, a more detailed study
into the choices of degrees of freedom and the choice of
mutually unbiased bases can shed light into which means
of encoding is most robust for the different QKD settings.
For example, it has been hinted that the Laguerre-Gauss
OAM modes show greater resilience to cross talk in tur-
bulent environments than the Hermite-Gaussian OAM
modes [280]. With the potential of high-dimensional
QKD systems generating secret keys at rates commensu-
rate to those of data communication rates, further study
into HD QKD in a measurement-device-independent con-
figuration is warranted.

G. Photonic integrated circuits

QKD devices have more demanding requirements than
those offered by standard off-the-shelf telecommunica-
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tion equipments. QKD transmitter needs single photon
sources or weak coherent sources modulated at an ex-
tremely high (≥ 20 dB) extinction ratio for low-error
QKD operations. Furthermore, quantum-limited detec-
tors such as single photon detectors or shot-noise limited
homodyne detectors are also required on the receiver side.

Photonic integrated circuits (PICs) provide a compact
and stable platform for the integration of multiple high-
speed quantum photonic operations into a single compact
monolithic circuit. PICs allow experimentalists to engi-
neer quantum devices in the different material platforms
at lithographic precision to meet the stringent require-
ments of QKD devices. The amount of complexity that
can be achieved with PICs has been shown to enable
practical implementation of wavelength multiplexing for
higher secret key rates [281, 282], multi-protocol opera-
tions for flexibility [283], and additional monitoring and
compensation capabilities against timing and polariza-
tion drifts in the channel [284]. Various material plat-
forms have been explored for building high-performance
QKD devices—each with its own strengths and weak-
nesses. (See [285] for further discussion of the different
material platforms.)

Active III–V laser materials, such as indium phosphide
(InP), is a promising platform for QKD transmitters be-
cause of the availability of gain laser medium for produc-
ing weak coherent light [286]. The InP platform also has
the advantage of building quantum well structures using
other ternary and quaternary III–V semiconductors that
are lattice-matched to InP, such as InGaAs, InGaAsP, or
InAlAsP [287]. Within these quantum wells, carriers—
electrons and holes—are confined within the resulting
one-dimensional potential wells. Applying electric field
to the well shifts the energies of the carriers, which in turn
changes its absorption spectrum and its refractive index
shift. This process, named Quantum-confined Stark ef-
fect (QCSE) [288], is the strongest electro-optic modu-
lation available in the platform—albeit with the unde-
sirable phase-dependent loss. Intensity and phase mod-
ulation with QCSE has been demonstrated to achieve
high extinction ratio beyond 50 dB at bandwidths ≥
40 GHz [289].

The SiO2-Si3N4 TriPleX technology has record low
loss passive components at ∼ 10−4 dB/cm [290] which
makes it an attractive platform for time-based or phase-
based QKD receiver components in high-speed gigahertz-
clocked QKD operations, where Bob has to interfere weak
coherent pulses spaced by ∼ 1 ns. The combination of
low propagation loss and high interference visibility and
stability can enable Bob to maintain low error-rate QKD
operations without sophisticated stabilization circuitry
typically required for fiber- based or bulk optical inter-
ferometers [283]. The TriPleX platform, however, relies
solely on thermo-optic phase modulation which is slow
(with∼MHz bandwidth) for high-speed QKD operations.

Silicon photonics recently has gained traction as the
leading platform for quantum communications with the
promise of its high density integration with the exist-

ing complementary metal-oxide-semiconductor (CMOS)
processes that have enabled monolithic integration of
both photonic and electronic components. With no nat-
ural electro-optic nonlinearity, silicon photonics rely on
the slow thermo-optic phase modulation [291] to achieve
high-visibility interference [292]. Carrier injection and
depletion within an intrinsic region between p-doped and
n-doped silicon offer high-speed modulation within sili-
con photonics, but with a phase-dependent loss that must
be mitigated [293, 294]. Recently, MEMS-based phase
shifters have shown great promise in miniaturizing the
device further, in lowering the power consumption, and in
achieving gigahertz-bandwidth phase shifts without the
undesirable phase- dependent loss [295].

While the development of a fully integrated light source
within the silicon photonics platform is still underway,
the platform has been proven to be highly amenable
to heterogeneous bonding of the active III–V materials
mentioned above [296–300]. Moreover, superconducting
nanowire single photon detectors (SNSPDs) have been
integrated into silicon photonics using a pick-and-place
method, paving the way for a possible monolithic com-
pact QKD receiver with single photon counting capabil-
ities [301]. Quantum-limited homodyne detectors have
also been demonstrated with sufficiently large noise clear-
ance between shot noise and electronic noise that can be
useful for CV QKD applications [302, 303].

A recent demonstration of QKD with PIC uses an
InP transmitter to leverage its on-chip source capability
and a TriPleX to leverage its low-loss performance. The
experiment showcased PIC’s flexibility in being able to
demonstrate multiple time-bin encoded protocols using
the same chip set at a clock rate of one GHz [283]. More
recently, recent demonstrations of time-bin and polar-
ization QKD transmitters in silicon photonics with fur-
ther miniaturized components hinted at possible perfor-
mance advantage over off-the-shelf fiber optical compo-
nents with LiNbO3-based modulators [305, 306]. Sili-
con photonics recently proved possible QKD operations
using polarization encoding over a 43-km intercity fiber
link which was commonly thought too unstable because
of fiber polarization drifts [284]. The experiment demon-
strated secret-key rate generation comparable to state-
of-the-art time-bin demonstrations but with polarization
stabilization capabilities. See Fig.6.

The PIC platform also offers new methods of generat-
ing quantum sources of light: single photons and entan-
gled photon sources. While weak coherent light is cur-
rently the most popular approach for QKD operations,
its Poissonian statistics create side-channel vulnerability
that must be closed with decoy state approaches [106–
110]. QKD with true single photons or entangled photons
can circumvent this problem without needing decoy state
protocols [28], which consume random bits. In the InP
platform, single photons can be generated from quantum
dots that are grown epitaxially to emit light in the stan-
dard telecom 1550 nm window. In silicon photonics, on-
chip entangled pair sources based on spontaneous four-



32

Polarization feedback

Bob
MIT Lincoln Laboratory

Lexington, MA

Alice
MIT

Cambridge, MA
Laser Intensity Mod.

To Bob

PBS

PBS

50:50 BS

From AliceSNSPDs

Polarization
controller

Polarization
controller

Alice

Bob

Compton Laboratories

Fairchild Building

103.6 m
deployed fiber

43 km
deployed fiber

External phase modulators

Internal phase modulators

Input

Output

1
m

m

12 µm

|t⟩

|b⟩

(2)(1)

(3)
(4)

(a)

(b)

FIG. 6. Experimental demonstrations of QKD using PICs. (1) (a) Schematic and (b) micrograph of the silicon photonics
polarization QKD transmitter. The full transmitter consists of ring pulse generators, a variable optical attenuator (VOA), and
polarization controller [306]. (2) Schematic of integrated silicon photonics QKD transmitters for (a) coherent-one-way (COW)
protocol, (b) polarization BB84 protocol, and (c) time-bin BB84 protocol [305]. (3) (a) Schematic of the InP QKD transmitter,
which combines a laser, pulse modulator, phase randomization, intensity modulator, and phase encoder. (b) Schematic of the
TriPleX QKD time-bin receiver, which either immediately sends the signal for direct detection or interferes the signal before
sending it to detectors. Cross-section of (c) InP PIC, (d) laser in InP PIC, and (f) TriPleX PIC. (e) and (g) are micrographs
of the PICs [283]. (4) Aerial view of the intercity polarization QKD field test between the cities of Cambridge and Lexington
and the local field test between two adjacent buildings. Insets: (a) Micrograph and (b) schematic of the polarization silicon
photonics QKD transmitter used [284]. c©Google. Map data from Google, Landsat/Copernicus. All figures are adapted with
permission from: Ref. [306] c©OSA (2016), Ref. [305] c©OSA (2017), Ref. [283] c©NPG (2017), and Ref. [284] c©APS (2018).

wave mixing (SFWM) have been demonstrated without
the need of any off-chip filtering [307, 308].
One important challenge that remains in these novel

quantum sources is in increasing the brightness to be suf-
ficient for gigahertz-clocked QKD operations. Currently,
the amount of output flux of these quantum sources has
been limited at ∼ 10 MHz even at near unity collection
efficiency [309, 310]. These quantum sources are typi-
cally pumped using a coherent laser. Increasing the pump
power of the quantum dot sources induces multi-photon
emissions which degrade the single photon purity. How-
ever, alternative schemes of excitation have shown great
promise of reducing the probability of multi-photon emis-
sions by several orders of magnitude [311]. Increasing the
pump power of the entangled SFWM sources has been
shown to induce two-photon absorption which saturates
the source brightness [312].
Integrated photonics is poised to deliver major benefits

towards building QKD networks. The miniaturization of
devices coupled with highly robust manufacturing pro-
cesses can accelerate the adoption of QKD for real-world
data encryption, especially with the MDI configuration.
In this setting, only several central receiver nodes need
to have cryogenic high-efficiency SNSPDs [313], while
all the clients can make use of personal PICs to gen-
erate secret keys among each other. The lithographic
precision afforded by the platform also promises the

possibility of identical integrated light sources for MDI
QKD [304, 314].

In conclusion, PIC presents a novel opportunity to
design new devices that meet the needs of low-error
QKD operations. Investigations into new device physics
through heterogeneous integration of the multiple plat-
forms can enable the development of new quantum
sources and receivers with superior performance [315].
Furthermore, PIC’s phase stable platform also lends it-
self to highly-dense-multiplexed QKD operations, which
can dramatically increase the secret-key generation rate.

VI. SATELLITE QUANTUM
COMMUNICATIONS

A. Introduction

The quantum communication protocols on which QKD
is based are very well suited to be applied in space. Space
channels, in connection with ground single-links and net-
works, may be exploited in a number of scenarios em-
bracing the entire planet Earth, the satellite networks
around it and novel and more ambitious projects aimed
at more distant links with the Moon or other planets.
In the context of an evolving society that leverage more
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and more on secure communications, space is expected
to play a crucial role in quantum communications as it
is now playing for global communication, navigation and
positioning, time distribution, imaging and sensoring, re-
alized by several generation of satellites.

B. The satellite opportunity

The extension of the QKD to secure links to long dis-
tance, to connect nodes of networks spanning large scales,
including national, continental, planetary as well as space
missions, was devised in feasibility studies more than a
decade ago [323–327]. The extension to space of quantum
communications (QC) was initially proposed in combi-
nation with experiments devoted to testing fundamental
principles and resources of quantum information in the
novel space context. Some of these were directed to the
development of a payload for the International Space Sta-
tion (ISS) [328, 329], others as standalone satellites [324].
These proposals were supported by the early evi-

dence of long distance free-space QC experiments on the
ground [330–332]. In this way it was proved that sig-
nificant portion of atmosphere paths were suitable not
only for classical optical communications but also for the
quantum one. Indeed, the degrading role of the atmo-
sphere on the channel performances was already assessed
in terms of beam widening and wandering, fading of sig-
nal and scintillation at the receiver as a function of the
turbulence level, wavelength and link length [333, 334].
However, the single photon discrimination at the correct
wavelength, arrival time and direction as well as the de-
tection with an effective rejection of the background noise
is more demanding than the classical counterpart.
Starting in 2003 with an experimental campaign at the

Matera Laser Ranging Observatory (Italy), it was possi-
ble to demonstrate that the exchange of single photons
are suitably achievable between a LEO satellite and the
ground [335]. In this case, even without an active pho-
ton source in orbit, the demonstration was obtained by
exploiting satellites equipped with optical retroreflectors,
and directing to them a train of pulses with calibrated
energy such that the collected portion that is retrore-
flected back toward the transmitter on the Earth is a
coherent state with a content of a single photon or less.
A suitable bidirectional telescope on the ground allows
for the transmission of the uplink train of pulses and of
the single photons in downlink. This technique was then
extended to demonstrate QC using different degrees of
freedom, as later discussed [336, 337] and is a candidate
for QKD with a very compact payload [336].
The application of space QC for a global QKD was

considered since the beginning as an effective solution to
joint separate networks of fibre-based ground links. In-
deed, the key exchange between a trusted satellite and
two ground terminals may then be used to generate a se-
cure key between the two terminals via one-time pad. De-
spite these attracting opportunities for the improvement

of secure communications on ground, as well as other
that have been conceived for the use in space (described
below), the realization of a satellite for QKD was kept
on hold in Europe and USA and found at the beginning
of this decade a concrete interest in Asia. More in detail
China and Japan put in their roadmaps the demonstra-
tion of the space QKD with ambitious but concrete plans
to develop and launch satellites for QC. The Japanese
SOTA satellite was indeed launched in 2014 and Chinese
Micius in 2015, as will be described below. The per-
spective of using a very compact payloads as nanosat o
cubesat has recently vamped the European initiatives,
spurring for the development of space components of
great efficiency and small dimension [338, 339]. Such di-
rection is expected to be beneficial for the ground QKD
as well, for the realization of high performance small com-
ponents to be used in compact and power-saving QKD
terminals on ground networks.

C. Type of orbits and applications

The type of key exchange provided by an orbiting ter-
minal changes significantly with the type of orbit. The
altitude has relevant implications in the losses of the op-
tical link. Although the possible configuration of a space
QKD setup could use the transmitter in both the space
terminal (downlink of the qubits) and the ground termi-
nal (uplink), the detrimental impact of the atmosphere is
asymmetric. Indeed in the uplink, the propagation of the
wavefront associated to the qubit stream in the turbulent
atmosphere occurs at the beginning of the path. This in-
duce a non uniform modulation of the wavefront phase.
The subsequent propagation results in the development
of an amplitude modulation at the satellite altitude, with
a significant beam diameter broadening and a scintilla-
tion that causes a fluctuation of the link transmissivity.
On the contrary, in the downlink the propagation of the
qubit train occurs in vacuum and get degraded by the at-
mosphere only in the final portion, with an exponential
air density increase within the last 10 km. The broaden-
ing of the beam at the receiving terminal is then mainly
due to the diffraction and the scintillation is also reduced.
Therefore the downlink is the common configuration, and
the subsequent analysis will be referred to it.

1. Space-link losses

The evaluation of the QKD rate in a space link is based
on the analysis of the losses and the fluctuations of the
corresponding optical channel. From classical studies in
satellite optical communications [334], we know that the
geometric losses (namely the losses due to diffraction)
may be modeled considering, at the transmitter, a Gaus-
sian beam with waist w0 passing through a telescope
aperture of diameter D. The far-field distribution at dis-
tance d≫ D, can be written in terms of the coordinates
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(x, y) of the plane transverse to propagation as
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where a = 2w0/D is the ratio between the beam waist
and the Tx aperture radius. As first obtained by Sieg-
man, to optimize the received power it is necessary to
choose a ≃ 0.89 for classical communication. However,
for QKD we may use different values if we consider the
single-photon regime after the Tx aperture. By using a ≃
2 we obtain in the far-field (at distance d from the trans-
mitter) a beam which is well-approximated by a Gaus-
sian beam with radius w(d) ≃ 0.9 λ

Dd. The total losses of

the channel is evaluated in dB as ≃ −10 log10
D2

2w2(d) by

assuming a receiver aperture with equal diameter D.
In Fig. 7 we show the expected losses with a selection

of significant wavelengths and telescope diameters as a
function of the terminal separation. The range of losses
is radically different according to the orbit altitude, con-
ditioning the possible applications. In the classification
below, we discuss the roles played by the different satel-
lites and types of orbits for the purpose of QC.
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FIG. 7. Space-link losses for an optimized beam waist w0

at the transmitter, different telescope diameters D, and two
relevant wavelengths for space QKD, i.e., λ = 850nm (solid
line) and λ = 1550nm (dotted-dashed line).

2. Low-Earth-orbit (LEO)

This type of orbit, reaching not above the altitude of
2000 km, was the first choice to demonstrate QC proto-
cols from space. This is because of the relative ease to
reach the orbit with multiple launcher options combined
with the lower exposition to the aggressive ionizing radia-
tion affecting higher altitudes. The rapid round-trip time
around Earth of about one to two hours combined with a
wide selection of orbit inclinations, open possibilities so
as to cover all the planet in hours with a single sat or to
maintain a constant position relative to the Sun. Among

the limitations of LEO there is the fact that the passage
over a ground terminal is limited to just a few minutes
of effective link, whereas the sat is above the 10 degrees
of elevation from the horizon. Moreover, satellite speed
relative to ground may reach 7 km/s for a 400-km orbit,
like that of the ISS, which causes a varying Doppler shift
of the order of tens of GHz.
LEO sats for QKD were the first to be considered [328,

340], initially as payload to be operated on the ISS for
six months to one year, and then as independent space-
crafts. Ajisai, a LEO sat devoted to geodynamic studies,
was used as the first source of single photons in orbit
using its corner-cube retroreflectors. These were illumi-
nated by a train of pulses from the Matera Laser Ranging
Observatory (MLRO, Italy) in such a way that a single
photon was reflected on average by the satellite [335].
This approach was later used with 4 satellites equipped
with polarization preserving retroreflectors to realize an
orbiting source of polarization qubits, providing the ex-
perimental feasibility of the BB84 protocol on a space-
link [336]. See Fig. 8. The QBER observed was well
within the applicability of the BB84 protocol, and in line
with criteria of both general or pragmatic security [341].
Later and still at MLRO, the use of temporal modes, or
phase encoding, was also demonstrated [337].

FIG. 8. Satellite QKD demonstration. A train of qubit
pulses is sent to the satellite with a repetition rate of 100
MHz. These are reflected back from the satellite at the single
photon level, therefore mimicking a QKD source. In order
to achieve synchronization the experiment also employed a
train of bright satellite laser ranging (SLR) pulses at a rep-
etition rate of 10 Hz. Reprinted figure with permission from
Ref. [336] c©APS (2015).

The Chinese satellite Micius was announced as a ma-
jor step of the space program of the Chinese Academy
of Science [342] and was launched on the 16th of Au-
gust 2016. It provided the experimental verification of
various QC protocols in space. Indeed the spacecraft
was equipped as a quantum optics lab capable not only
to generate coherent and entangled states and to trans-
mit them to the ground but also to measure qubit sent
by the ground terminal. In this way, ground-to-satellite
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quantum teleportation was realized by teleporting six in-
put states in mutually unbiased bases with an average
fidelity of 0.80 ± 0.01 from the Ngari ground station in
Tibet [343]. The decoy-BB84 protocol was realized with
a key rate exceeding 10 kbps at about the central part of
the satellite passage. This remarkable result was possible
by very accurate pointing of the downward beam, whose
far field angle was about 10 µrad at 1/e2 and the pointing
fluctuation was reported to be a factor five lower [344].
The wavelength for the qubit was chosen to be about 850
nm and the observed losses were about 22 dB, in line with
the theoretical modeling based on a 300-mm telescope.
Entangled-based QKD was also demonstrated by Mi-

cius, using a high visibility source onboard. The twin
beam downlink was used to establish a secret key (via
violation of Bell inequalities) between the two stations
of Delingha and Lijiang, with a slant distance of about
1200 km [345]. Due to the composition of the losses of
the two channels, the QKD rate resulted of the order of
half a bps. In 2017, entangled-based QKD (in particu-
lar, the Ekert protocol [80]) was also realized with one
of the entangled photons measured at the satellite while
the other one was detected at the receiver in the Delingha
ground station. The link losses ranged from 29 dB at 530
km to 36 dB at 1000 km, allowing for a max key rate of a
few bps [346]. Micius was also used for demonstrating an
intercontinental quantum network, distributing the keys
for a text and video exchange between the ground sta-
tions of Xinglong (China), Nanshan (China) and Graz
(Austria) [347].
In 2017, QKD was also demonstrated in downlink from

the Tiangong-2 Space Lab, where a compact transmitter
with a 200-mm telescope was installed. Photons were
transmitted down to the 1.2-m telescope at the Nanshan
ground station [348]. The key rate was assessed to reach
beyond 700 bps with about 30 dB of losses. In the same
year, a Japanese team at the NICT developed the SOTA
lasercom terminal for testing the optical downlinks as
well as QC with a low-cost platform, the microsatellite
SOCRATES at an altitude of 650 km [349].
Since the beginning of this decade, the cubesats have

grown rapidly in the several areas of space science and
technology, including space QC [338, 339]. Two main
tasks are envisaged for such small sats: the test of novel
technology for QC in the space context and the oper-
ation of a apace network for capillary coverage of low
rate QKD. For the first purpose, the Singapore NUS
team developed a prototype of source and detector that
was successfully operated first on a balloon and then in
Space [350, 351]. Several proposal of cubesat use have
been put forward worldwide (e.g., see [339]).

3. Higher Earth orbits (MEO and GEO)

The medium Earth orbit (MEO) is above LEO and
below the geostationary orbit (GEO), the latter being
at 35,786 km above Earth’s equator. The MEO in-

cludes the Global Navigation Satellite Systems (GNSS)
while GEO includes weather and communication satel-
lites. These higher orbits are preferable because they
would extend the link duration (becoming permanent for
a GEO). However, they involve larger losses and the pay-
loads are exposed to much more aggressive ionizing radi-
ation from the Sun.
The first experimental single-photon exchange with a

MEO sat at 7000 km of slant distance was realized in 2016
at MLRO [352]. The QKD links were modeled in previ-
ous studies [326, 327]. A recent result addressing the
photon exchange with two Glonass sats has supported
the future possibility of QKD-enabled secure services for
the GNSS satellites [353]. This opportunity is seriously
considered, given the critical service that the navigation
system are playing in several continents. Finally, the fea-
sibility of quantum-limited measurement of optical signal
from an existing GEO communication satellite has been
recently carried out [354].

4. Night and day use of the link

Space QKDwas so far investigated experimentally dur-
ing night-time only. However, the operation in daylight
is of great interest for a significative expansion of the
satellite usage. The possibility of a daylight use in inter-
satellite communication was supported by a study on the
ground [355]. The key ingredients were a strong rejec-
tion of the background radiation, via a precise pointing
and a narrow field-of-view, together with the reduction
of the temporal integration interval for the arrival qubits,
obtained by means of a very precise temporal synchro-
nization. Finally, the wavelength of 1550 nm was used
thanks to its lower scattering.

D. Beyond satellite QKD

Several areas may be found in which quantum commu-
nication from and in space are crucial. Below we review
some possible other protocols (beyond QKD) that can
be realized by sending single photons at large distance in
space. We discuss some fundamental tests that were and
can be realized in this context.

1. Other protocols

Some possible protocols that can be realized with long
distance quantum communication are quantum digital
signature (QDS) and blind quantum computing (BQC).
A QDS refers to the quantum mechanical equivalent of a
digital signature (see Sec. XV). In a QDS protocol, Alice
sends a message with a digital signature to two recipi-
ents, Bob and Charlie. Then QDS guarantees nonrepu-
diation, unforgeability, and transferability of a signature
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with information-theoretical security. A very recent long-
distance ground demonstration exploiting decoy states
has been realized without assuming any secure channel.
A one-bit message was successfully signed through a 102-
km optical fiber [356].
A second example is BQC where a client sends a quan-

tum state |ψ〉 to the server, with such state encoding
both the chosen algorithm and the input (for a review
see Ref. [357]). For a cloud computer (an in particu-
lar a cloud quantum computer), the privacy of the users
may be a serious issue. BQC allows a client to execute a
quantum algorithm by using one or more remote quan-
tum computers while at the same time keeping the results
of the computation hidden. By satellite quantum com-
munication it could be possible to send quantum states
from a satellite to ground servers that may perform the
BQC.

2. Tests of quantum mechanics in space

Quantum communication in free space at large dis-
tance is the key ingredient to perform fundamental tests
of quantum mechanics in an unexplored scenario. In-
deed, as for any scientific theory, quantum mechanics
can be considered valid only within the limits in which
it has been experimentally verified. By exploiting quan-
tum communication in space it is possible to extend such
limits, by observing quantum phenomena in unexplored
conditions, such as moving terminals and/or larger and
larger distances. The possibly interplay of quantum me-
chanics with general (or special) relativity can be studied
in this context [358, 359]. Bell’s inequality with observers
at relative motion and gravitational-induced redshifts on
quantum objects are some very significant experiments
that can be performed in space (for a detailed review of
these possible experiments see [359]). As paradigmatic
examples of the possibilities offered by space quantum
communication we may recall two recent demonstrations:
the violation of a Bell’s inequality at a distance of about
1200km [345] and the Wheeler’s delayed-choice experi-
ment along a 3500-km space channel [360].
As we know, Bell’s inequalities [361] demonstrate that

a local hidden variable model cannot reproduce the ex-
perimental results that can be achieved by entangled
states. Nowadays, Bell’s inequality are used as a simple
and effective tool to certify the presence of entanglement
between separate observers. In 2017, the Micius satel-
lite, orbiting at an altitude of about 500km and hosting
a source of polarization entangled photons, allowed the
demonstration of the persistence of entanglement at the
record distance of 1200km between the two ground sta-
tion of Delingha and Lijiang in China [345]. The experi-
ment realized the violation of the CHSH inequality, with
a value S = 2.37± 0.09 larger than the limit of 2 by four
standard deviations. This result confirmed the nonlocal
feature of quantum mechanics excluding the local mod-
els of reality on the thousand km scale. Previous demon-

strations [332, 362], using fiber or ground free-space links
were limited to one order of magnitude less in distance,
due to photon loss in the fiber or the Earth curvature for
ground free-space links.

Quantum mechanics predicts that quantum entangle-
ment should be measured at any distance: however, it
is tempting to challenge such prediction and verify if
some unexpected effects (such as gravitational influence)
will put some limits of such distance. The availability of
quantum communication in space now allows to extend
such limit at larger and larger distance. For instance, by
using an entangled source on a GEO satellite that sends
the two photons on ground, it would be possible to in-
crease by one order of magnitude the distance between
two entangled photons.

The second example is Wheeler’s delayed-choice ex-
periment [363], a wave-particle duality test that cannot
be fully understood using only classical concepts. Wave-
particle duality implies that is not possible to reveal both
the wave- and particle-like properties of a quantum ob-
ject at the same time. Wheeler’s gedankenexperiment
was invented to highlight the contradictory interpreta-
tion given by classical physics on a single photon mea-
sured by Mach-Zehnder interferometer (MZI). In his idea,
a photon emerging from the first beam splitter (BS) of
a MZI may find two alternative configurations: the pres-
ence or absence of a second BS at the output of the in-
terferometer. In the former/latter case the apparatus
reveals the wave/particle-like character of the photon.
In a classical interpretation, one could argue that the
photon decides its nature at the first BS. However, if
the MZI configuration is chosen after the photon entered
the interferometer (hence the name delayed-choice), a
purely classical interpretation of the process would im-
ply a violation of causality. Several implementations of
Wheeler’s Gedankenexperiment have been realized on the
ground [364]. In the experiment of Ref. [365], a space-
like separation between the choice of the measurement
and the entry of the particle into the interferometer was
achieved with a 48-m-long polarization interferometer
and a fast EOM controlled by a QRNG.

Then, in Ref. [358], the delayed-choice paradigm has
been extended to space, by exploiting the temporal de-
gree of freedom of photons reflected by a rapidly moving
satellite in orbit. The two time bins represents the two
distinct paths of the interferometer. Photon polarization
was used as an ancillary degree of freedom to choose the
insertion or removal of the BS at the measurement appa-
ratus and thus observe interference or which-path infor-
mation. The experiment showed the correctness of the
wave-particle model for a propagation distance of up to
3500 km, namely at a much larger scale than all previous
experiments.
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E. Concluding remarks

We have reviewed the opportunities offered by space
quantum communications and their possible applica-
tions. In particular, they are expected to have a great im-
pact in the creation of a secure quantum network around
the globe. The design of a QKD network in space en-
compass the realization of the single-link connections,
the modeling of their performances and their further ex-
ploitation in networks based on multiples ground sta-
tions. The study of such features needs further inves-
tigations both theoretically and experimentally.

VII. CONTINUOUS-VARIABLE QKD

A. Brief introduction to CV systems

Recall that CV quantum systems are described by
an infinite-dimensional Hilbert space [6, 7]. Consider a
quantum system made of n bosonic modes of the electro-
magnetic field with tensor-product Hilbert space⊗n

k=1Hk

and associated n pairs of field operators â†k, âk, with
k = 1, . . . , n. For each mode k we can define the follow-
ing field quadratures

q̂k := âk + â†k, (70)

p̂k := i
(

â†k − âk

)

. (71)

These operators can be arranged in an N -mode vec-

tor x̂ := (q̂1, p̂1, . . . , q̂n, p̂n)
T
. Using the standard bosonic

commutation relation, for field’s creation (â†k) and anni-
hilation (âk) operators, one can easily verify that the any
pairs of entries of vector x satisfy the following commu-
tation relation

[x̂l, x̂m] = 2iΩlm, Ωlm =

(

0 1

−1 0

)

, (72)

where Ωlm is the symplectic form [6]. From Eqs. (70)-
(72) we can see that the vacuum noise is here set to 1.
An n-mode quantum state can be represented either as

a density operator ρ̂ acting on ⊗n
k=1Hk or as a Wigner

function defined over a 2n-dimensional phase space (see
Ref. [6] for more details). In particular, a state is Gaus-
sian if its Wigner function is Gaussian, so that it is com-
pletely characterized by the first two statistical moments,
i.e., the mean value x̄ := 〈x̂〉 = Tr (x̂ρ̂) and covariance
matrix (CM) V, whose arbitrary element is defined by

Vij :=
1
2 〈{∆x̂i,∆x̂j}〉 , (73)

where ∆x̂i := x̂i − 〈x̂i〉 and {, } is the anti-commutator.
For a single-mode, one can consider different classes of

quantum states, the most known are the coherent states.
These are states with minimum (vacuum) noise uncer-
tainty, symmetrically distributed in the two quadratures,

and characterized by their complex amplitudes in the
phase space. They are denoted as |α〉, where α = q̄+ ip̄,
where (q̄, p̄) are the components of the mean value. An-
other important class is that of squeezed states, where the
noise is less than the vacuum in one of the two quadra-
tures (while greater than in the other) [6]. The reader
can consult Appendix A for more details on the CV no-
tation (which typically varies between quantum informa-
tion and quantum optics) and a number of formulas that
are relevant for calculations with Gaussian states.
The basic one-way CV-QKD protocols can be classified

with respect to the quantum states employed (coherent or
squeezed), the type of encoding adopted (Gaussian mod-
ulation or discrete alphabet), and the type of measure-
ment used (homodyne or heterodyne detection). In par-
ticular, Gaussian protocols based on the Gaussian mod-
ulation of Gaussian states have received an increasing
attention in the latest years, not only because Gaussian
states are routinely produced in quantum optics labs but
also because they are relatively easy to study, due to their
description based on mean value and CM.

B. Historical outline

As an alternative to DV-QKD protocols, which are ide-
ally based on a single photon detection, CV-QKD pro-
tocols encode keys into CV observables of light fields [7]
that can be measured by shot-noise limited homodyne de-
tection. In a homodyne detector an optical signal is cou-
pled to a shot-noise limited strong local oscillator (LO)
beam on a balanced beamsplitter and the light intensi-
ties on the output ports are measured. Depending on
the optical phase difference between the signal and LO,
the difference of photocurrents produced at each of the
two detectors will be proportional to one of the two field
quadratures. The LO therefore carries the phase refer-
ence, which allows to switch between the measurement
of q− and p−quadrature (or more generally perform the
state tomography by measuring the Wigner function as-
sociated to the state).
The first proposal of using the quadratures of the

bosonic field for implementing QKD dates back to 1999,
when Ralph [366] considered the encoding of key bits
by using four fixed quadrature displacements of bright
coherent or two-mode entangled beams. Later, Ralph
discussed the security of the two-mode entanglement-
based scheme in more detail [367], considering not only
intercept-resend attacks but also CV teleportation. The
latter was identified as an optimal attack against the pro-
tocol, imposing the requirements of high signal squeezing
and low channel loss [367]. Independently, Hillery [368]
suggested a CV-QKD protocol based on quadrature en-
coding of a single-mode beam, randomly squeezed in one
of the quadrature directions. Security against intercept-
resend and beam-splitting attacks were assessed on the
basis of the uncertainty principle. Another early CV-
QKD scheme was suggested by Reid [369] and based on
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the verification of EPR-type correlations to detect an
eavesdropper.
In 2000 Cerf et al. [370] proposed the first all continu-

ous QKD protocol, where the quadratures of a squeezed
beam were used to encode a Gaussian-distributed secure
key. The security of the protocol was shown against indi-
vidual attacks based on the uncertainty relations and the
optimality of a quantum cloner. Later, reconciliation pro-
cedures were introduced for Gaussian-distributed data,
which allowed to implement error correction and privacy
amplification close to the theoretical bounds [371]. An-
other CV-QKD protocol based on the Gaussian modu-
lation of squeezed beams was suggested by Gottesman
and Preskill [372]. This protocol was shown to be secure
against arbitrary attacks at feasible levels of squeezing,
by using quantum error-correcting codes.
In 2001 Grosshans and Grangier introduced a sem-

inal coherent-state protocol with Gaussian quadrature
modulation and showed its security against individual
attacks [373] by resorting to the CV version of the no-
cloning theorem [374]. The standard protocol based on
the direct reconciliation (DR), where Alice is the refer-
ence side for the information post-processing, was how-
ever limited to 50% channel transmittance, i.e., 3dB.
As an attempt to beat the 3dB limit, the use of post-
selection in CV-QKD was suggested by Silberhorn et
al. [424]. Alternatively, it was shown that the use of
the reverse reconciliation (RR), where the reference side
is Bob, allowed the coherent-state protocol to be secure
against individual attacks up to arbitrarily-low channel
transmittances [375]. In 2004, the heterodyne detection
was then suggested for coherent-state protocols by Weed-
brook et al. [376]. This non-switching protocol has the ad-
vantage that both the quadratures are measured, there-
fore increasing the key rate.
The security of CV-QKD against collective Gaus-

sian attacks was shown independently by Navascués et
al. [377] and by Garćıa-Patrón and Cerf [378]. Collective
Gaussian attacks were fully characterized by Pirandola et
al. [379], who later derived the secret-key capacities for
CV-QKD [33, 34]. Security against collective attacks was
extended to the general attacks by Renner and Cirac [54]
using the quantum de Finetti theorem applied to infinite-
dimensional systems. This concluded the security proofs
for the basic one-way CV-QKD protocols in the asymp-
totic limit of infinitely large data sets [380, 381]. Next de-
velopments were the study of finite-size effects and fully
composable proofs (e.g. see Ref [60]).

C. One-way CV-QKD protocols

The family of one-way CV-QKD protocols can be di-
vided into four major ones, depending on the signal states
and the type of measurements applied. It was already
mentioned that CV-QKD can be realized using coherent
or squeezed signal states, and the homodyne measure-
ment is used to obtain quadrature value of an incoming

signal. As an alternative to the homodyne detection, the
heterodyne measurement can be applied. Here the signal
mode is divided on a balanced beamsplitter and q- and
p-quadratures are simultaneously detected using homo-
dyne detectors at the outputs. A vacuum noise is then
unavoidably being mixed to the signal.
The “prepare and measure” realization of a generic

one-way CV-QKD protocol includes the following steps:

• Alice encodes a classical variable α in the ampli-
tudes of Gaussian states which are randomly dis-
placed in the phase space by means of a zero-mean
Gaussian distribution, whose variance is typically
large. If coherent states are used, the modulation
is symmetric in the phase space. If squeezed states
are used instead, then the displacement is along
the direction of the squeezing and Alice randomly
switches between q- and p- squeezings.

• Alice then sends the modulated signal states to Bob
through the quantum channel, which is typically
a thermal-loss channel with transmissivity η and
some thermal noise, quantified by the mean num-
ber of thermal photons in the environment n̄ or,
equivalently, by the excess noise ε = η−1(1 − η)n̄.
In some cases, one may have a fading channel where
the channel’s transmissivity varies over time (e.g.
due turbulence) [382].

• At the output of the quantum channel, Bob per-
forms homodyne or heterodyne detection on the in-
coming signals, thus retrieving his classical variable
β. If homodyne is used, this is randomly switched
between the q- and the p- quadratures.

• If Alice and Bob have switched between different
quadratures, they will implement a session of classi-
cal communication (CC) to reconciliate their bases,
so as to keep only the choices corresponding to the
same quadratures (sifting).

• By publicly declaring and comparing part of their
sifted data, Alice and Bob perform parameter esti-
mation. From the knowledge of the parameters of
the quantum channel, they can estimate the maxi-
mum information leaked to Eve, e.g., in a collective
Gaussian attack. If this leakage is above a certain
security threshold, they abort the protocol.

• Alice and Bob perform error correction and privacy
amplification on their data. This is done in DR if
Bob aims to infer Alice’s variable, or RR if Alice
aims to infer Bob’s one.

D. Computation of the key rate

In a Gaussian CV-QKD protocol, where the Gaussian
signal states are Gaussianly-modulated and the outputs
are measured by homodyne or heterodyne detection, the
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optimal attack is a collective Gaussian attack. Here Eve
combines each signal state and a vacuum environmen-
tal state via a Gaussian unitary and collects the output
of environment in a quantum memory for an optimized
and delayed joint quantum measurement. The possi-
ble collective Gaussian attacks have been fully classified
in Ref. [34]. A realistic case is the so-called entangling
cloner [374] where Eve prepares a TMSV state with vari-
ance ω = n̄+1 and mixes one of its modes with the signal
mode via a beam-splitter with transmissivity η, therefore
resulting in a thermal-loss channel. In this scenario, the
asymptotic secret key rates in DR (◮) or RR (◭) are
respectively given by

R◮ = ξI(α : β)− I(α : E), (74)

R◭ = ξI(α : β)− I(β : E), (75)

where ξ ∈ (0, 1) is the reconciliation efficiency, defining
how efficient are the steps of error correction and privacy
amplification, I(α : β) is Alice and Bob’s mutual infor-
mation on their (sifted) variables α and β, while I(α : E)
[I(β : E)] is Eve’s Holevo information on Alice’s (Bob’s)
variable.

Theoretical evaluation of these rates is performed in
the equivalent entanglement-based representation of the
protocol, where Alice’s preparation of signal states on
the input mode a is replaced by a TMSV state Φµ

aA in
modes a and A. A Gaussian measurement performed on
mode A is able to remotely prepare a Gaussian ensem-
ble of Gaussian states on mode a. For instance, if A is
subject to heterodyne, then mode a is projected onto a
coherent state whose amplitude is one-to-one with the
outcome of the heterodyne and is Gaussianly modulated
in phase space with variance µ − 1. In this representa-
tion, Alice’s classical variable is equivalently represented
by the outcome of her measurement.

Once mode a is propagated through the channel, it
is perturbed by Eve and received as mode B by Bob.
Therefore, Alice and Bob will share a bipartite state ρAB.
In the worst case scenario, the entire purification of ρAB

is assumed to be held by Eve. This means that we assume
a pure state ΨABE involving a number of extra modes E
such that TrE(ΨABE) = ρAB. For a Gaussian protocol
under a collective Gaussian attack, we have that ΨABE

is pure, so that the Eve’s reduced output state ρE :=
TrAB(ΨABE) has the same entropy of ρAB, i.e.,

S(E) := S(ρE) = S(ρAB) := S(AB). (76)

Assuming that Alice and Bob performs rank-1 Gaus-
sian measurements (like homodyne or heterodyne), then
they project on pure states. In DR, this means that the
output α of Alice measurement, with probability p(α),
generates a pure conditional Gaussian state ΨBE|α whose
CM does not depend on the actual value of α. Then, be-
cause the reduced states ρB(E)|α := TrE(B)(ΨBE|α) have
the same entropy, we may write the following equality for

the conditional entropies

S(E|α) :=
∫

dα p(α)S(ρE|α)

= S(ρE|α) = S(ρB|α)

=

∫

dα p(α)S(ρB|α) := S(B|α). (77)

Similarly, in RR, we have Bob’s outcome β with proba-
bility p(β) which generates a pure conditional Gaussian
state ΨAE|β with similar properties as above. In terms
of the reduced states ρA(E)|β := TrE(A)(ΨAE|β) we write
the conditional entropies

S(E|β) :=
∫

dβ p(β)S(ρE|β)

= S(ρE|β) = S(ρA|β)

=

∫

dβ p(β)S(ρA|β) := S(A|β). (78)

By using Eqs. (76), (77) and (78) in the key rates of
Eqs. (74) and (75) we may simplify the Holevo quantities
as

I(α : E) := S(E)− S(E|α) = S(AB)− S(B|α), (79)

I(β : E) := S(E)− S(E|β) = S(AB)− S(A|β). (80)

This is a remarkable simplification because the two rates
are now entirely computable from the output bipartite
state ρAB and its reduced versions ρB|α and ρA|β . In
particular, because all these state are Gaussian, the von
Neumann entropies in Eqs. (79) and (80) are very easy
to compute from the CM of ρAB. Similarly, the mutual
information I(α : β) can be computed from the CM.
Given the expressions of the rates, one can also compute
the security thresholds by solving R◮ = 0 or R◭ = 0.

E. Ideal performances in a thermal-loss channel

The ideal performances of the main one-way Gaus-
sian protocols can be studied in a thermal-loss chan-
nel, assuming asymptotic security, perfect reconciliation
(ξ = 1), and infinite Gaussian modulation. Let us con-
sider the entropic function

s(x) :=
x+ 1

2
log2

x+ 1

2
− x− 1

2
log2

x− 1

2
, (81)

so that s(1) = 0 for the vacuum noise. For the protocol
with Gaussian-modulated coherent states and homodyne
detection [374], one has

R◮
coh,hom =

1

2
log2

η (1− η + ηω)

(1− η) [η + (1− η)ω]
− s(ω)

+ s

[
√

η + (1− η)ω

1− η + ηω
ω

]

, (82)

R◭
coh,hom =

1

2
log2

ω

(1− η) [η + (1− η)ω]
− s(ω). (83)
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For the non-switching protocol with Gaussian-modulated
coherent states and heterodyne detection [376], one in-
stead has

R◮
coh,het = log2

2

e

η

(1− η) [1 + η + (1− η)ω]
− s(ω)

+ s [η + ω(1− η)] , (84)

R◭
coh,het = log2

2

e

η

(1− η) [1 + η + (1− η)ω]
− s(ω)

+ s

[

1 + (1 − η)ω

η

]

. (85)

For the protocol with Gaussian-modulated squeezed
states (in the limit of infinite squeezing) and homodyne
detection [370], here we analytically compute

R◮

sq,hom =
1

2

[

log2
η

1− η
− s(ω)

]

, (86)

R◭
sq,hom =

1

2

[

log2
1

1− η
− s(ω)

]

. (87)

Note that, for this specific protocol, a simple bound can
be derived at low η and low n̄, which is given by [383]
R◭

sq,hom ≈ (η − n̄) log2 e + n̄ log2 n̄, which provides a se-

curity threshold n̄max(η) = exp[1+W−1(−η/e)] in terms
of the Lambert W-function.
Finally, for the protocol with Gaussian-modulated

infinitely-squeezed states and heterodyne detection [384],
here we analytically compute

R◮

sq,het =
1

2
log2

η2ω

(1 − η) [1 + (1− η)ω]
− s(ω), (88)

R◭
sq,het =

1

2
log2

1− η + ω

(1 − η) [1 + (1− η)ω]
− s(ω)

+ s

[
√

ω [1 + ω(1− η)]

1 + ω − η

]

. (89)

Note that this is a particular case of protocol where
trusted noise added at the detection can have beneficial
effects on its security threshold [381]. In CV-QKD this ef-
fect was studied in Refs. [384–386] and later in Refs. [387–
389] as a tool to increase the lower bound to the secret
key capacity of the thermal-loss and amplifier channels.
In particular, the protocol presented in Ref. [389] has the
highest-known security threshold so far (see also Sec. XI).
Also note that for a pure-loss channel (ω = 1), we find

R◭
sq,het = R◭

sq,hom =
1

2
log2

1

1− η
, (90)

which is half of the PLOB bound − log2(1−η). According
to Ref. [34], this bound is achievable if one of these two
protocols is implemented in the entanglement-based rep-
resentation and with a quantum memory. In particular
for the squeezed-state protocol with homodyne detection,
the use of the memory allows Alice and Bob to always
choose the same quadrature, so that we may remove the
sifting factor 1/2 from R◭

sq,hom in Eq. (90).

F. Finite-size aspects

The practical security of CV-QKD [29] deals with fi-
nite data points obtained experimentally. In this finite-
size regime the security of CV-QKD was first analyzed
against collective attacks [390] by including corrections
to the key rate taking into account of the data points
used and discarded during parameter estimation and the
convergence of the smooth min-entropy towards the von
Neumann entropy. The channel estimation in the finite-
size regime of CV-QKD was further studied in Ref. [391]
where it was suggested the use of a double Gaussian mod-
ulation, so that two displacements are applied and each
signal state can be used for both key generation and chan-
nel estimation. See also Ref. [392] for excess noise esti-
mation using the method of moments.
The finite-size security under general coherent attacks

have been also studied. Ref. [58, 59] used entropic uncer-
tainty relations for the smooth entropies to show this kind
of security for an entanglement-based protocol based on
TMSV states. The analysis was extended to the proto-
col with squeezed states and homodyne detection [393].
Finite-size security for one-way coherent-state protocols
against general attacks was studied in Ref. [394] by us-
ing post-selection and employing phase-space symme-
tries. More recently, it was shown that, for coherent-state
protocols, the finite-size security under general attacks
can be reduced to proving the security against collective
Gaussian attacks by using the de Finetti reduction [60].

G. Two-way CV-QKD protocols

In a two-way CV-QKD scheme [395], similar to its DV
counterpart [118, 122], Alice and Bob use twice the in-
secure channel in order to share a raw key. During the
first quantum communication, Bob randomly prepares
and sends a reference state to Alice who, in turn, en-
codes her information by performing a unitary transfor-
mation on the received state, before sending it back to
Bob for the final measurement. The appeal of this type
of protocol is its increased robustness to the presence of
excess noise in the channel. From an intuitive point of
view, this is due to the fact that Eve needs to attack
both the forward and backward transmissions in order to
steal information, resulting in an increased perturbation
of the quantum system. The promise is a higher security
threshold with respect to one-way protocols.
Let us now describe in detail a two-way protocol based

on coherent states and heterodyne detection [395]. Here
Bob prepares a reference coherent state |β〉 whose ampli-
tude is Gaussianly-modulated with variance µB . This
is sent through the quantum channel and received as
a mixed state ρ(β) by Alice. At this point, Alice ran-
domly decides to close (ON) or open (OFF) the “circuit”
of the quantum communication. When the circuit is in
ON, Alice encodes a classical variable α on the reference
state by applying a displacement D̂(α) whose amplitude
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is Gaussianly-modulated with variance µA. This creates
the state D̂(α)ρ(β)D̂(−α) which is sent back to Bob,
where heterodyne detection is performed with outcome
γ ≃ α + β. From the knowledge of γ and β, Bob can
generate a post-processed variable α′ ≃ α. In DR, the
key is generated by Bob trying to infer Alice’s variable
α. In RR, the situation is reversed with Alice guessing
Bob’s variable α′.
When the circuit is in OFF, Alice first applies hetero-

dyne detection on the incoming reference state ρ(β), ob-
taining a variable β′. Then she prepares a new Gaussian-
modulated coherent state |α〉 to be sent back to Bob. His
heterodyne detection provides an output variable α′. In
such a case the parties may use the variables {β, β′} and
{α, α′} to prepare the key. In DR the variables β and α
are guessed while, in RR, the primed variables β′ and α′

are. For both the ON and the OFF configuration, Alice
and Bob publicly declare and compare a fraction of their
data in order to estimate the transmissivity and noise
present in the round-trip process.
Note that the control of the parties over the ON/OFF

setup of the two-way communication represents an ad-
ditional degree of freedom evading Eve’s control. As a
matter of fact, Alice and Bob may decide which setup to
use for the generation of the key. The safest solution is
to use the ON configuration if Eve performs an attack of
the round-trip based on two memoryless channels, while
the OFF configuration is used when Eve performs an at-
tack which has memory, i.e., with correlations between
the forward and the backward paths.

1. Asymptotic security of two-way CV-QKD

The security of two-way CV-QKD protocols has been
first studied in the asymptotic limit of infinitely-many
uses of the channel and large Gaussian modulation [395–
397]. The most general coherent attack can be reduced by
applying de Finetti random permutations [54] which al-
low the parties to neglect possible correlations established
by Eve between different rounds of the protocol. In this
way the attack is reduced to a two-mode attack which is
coherent within a single round-trip quantum communi-
cation. Then, the security analysis can be further sim-
plified by using the extremality of Gaussian states [398],
which allows one to just consider two-mode Gaussian at-
tacks. The most realistic of these attacks is implemented
by using two beam-splitters of transmissivity η, where
Eve injects two ancillary modes E1 and E2, the first in-
teracting with the forward mode and the second with
the backward mode. Their outputs are then stored in a
quantum memory which is subject to a final collective
measurement.
In each round-trip interaction, Eve’s ancillae E1 and

E2 may be coupled with to another set of modes so as to
define a global pure state. However, these additional an-
cillary modes can be neglected if we consider the asymp-
totic limit where Eve’s accessible information is bounded

by the Holevo quantity [379]. As a result, we may just
consider a two-mode Gaussian state ρE1E2

for Eve’s in-
put ancillary modes. In practical cases, its CM can be
assumed to have the normal form

VE1E2
=

(

ωI G

G ωI

)

, G :=

(

g 0

0 g′

)

, (91)

where ω is the variance of the thermal noise, I =
diag(1, 1), Z = diag(1,−1), and matrix G describes the
two-mode correlations. Here the parameters ω, g and g′

must fulfill the bona fide conditions [399]

|g| < ω, |g′| < ω, ω2 + gg′ − 1 ≥ ω |g + g′| . (92)

We notice that when g = g′ = 0, then CM of Eq. (91) de-
scribes the action of two independent entangling cloners,
i.e., the attack simplifies to one-mode Gaussian attack.

2. Asymptotic key rates

Here we provide the asymptotic secret key rates of the
main two-way protocols based on coherent states and het-
erodyne or homodyne detection [395]. For each proto-
col, we summarize the key rates in DR (◮) or RR (◭)
for the two configurations in ON or OFF. In particular,
ON is assumed against one-mode Gaussian attacks, while
OFF is assumed to be used under two-mode Gaussian
attacks [395–397]. For an ON key rate under two-mode
attacks see Ref. [396], but we do not consider this here.
For the two-way protocol based on coherent states and

heterodyne detection we write the key rates

R◮
ON = log2

2η(1 + η)

e(1− η)Λ
− s(ω). (93)

R◭
ON = log2

η(1 + η)

e(1− η)Λ
+

3
∑

i=1

s(ν̄i)− 2s(ω), (94)

R◮
OFF = log2

2η

e(1− η)Λ̃
+
∑

k=±

s(ν̄k)− s(νk)

2
, (95)

R◭
OFF = log2

2η

e(1− η)Λ̃
+
∑

k=±

s(ν̄′k)− s(νk)

2
, (96)

where Λ := 1+ η2+(1− η2)ω, Λ̃ := 1+ η+(1− η)ω, the
eigenvalues ν̄i are computed numerically and

ν± =
√

(ω ± g)(ω ± g′), (97)

ν̄′± =

√

[(ω ± g)(1− η) + 1][(ω ± g′)(1 − η) + 1]]

η
. (98)

Note that, if we set g = g′ = 0 in the OFF rates, we
retrieve the two rates of the one-way coherent-state pro-
tocol in Eqs. (84) and (85).
Consider now the two-way coherent state protocol with

homodyne detection. In this case, the solution is fully
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analytical. In fact, we have the following key rates

R◮
ON =

1

2
log2

η(1 + η)ω

(1− η)[η2 + (1− η2)ω]
− s(ω), (99)

R◭
ON =

1

2
log2

η2 + ω + η3(ω − 1)

(1− η)[η2 + (1− η2)ω]
+ s(ν̃)− s(ω),

(100)

R◮
OFF =

1

2
log2

η
√

[1 + η(ω − 1)]2 − η2g2

(1 − η)[η + (1− η)ω]

−
∑

k=±

s(δk)− s (νk)

2
, (101)

R◭
OFF =

1

2
log2

4
√

(ω2 − g2)(ω2 − g′2)

(1 − η)[η + (1− η)ω]

−
∑

k=±

s(νk)

2
, (102)

where the νk are given in Eq. (97), and

ν̃ :=

√

ω[1 + η2ω(1− η) + η3]

η2 + ω + η3(ω − 1)
, (103)

δ± =

√

(ω ± g′)[η + (ω ± g)(1 − η)]

1− η + η(ω ± g′)
. (104)

Other cases with encoding by squeezed states and de-
coding by heterodyne/homodyne detection, have been
discussed in Ref. [397].

3. Further considerations

As discussed in Refs. [395–397] the security thresholds
of the two-way protocols, given by setting R = 0 in the
expression above, are higher of the corresponding one-
way protocols. This makes two-way CV-QKD a good
choice in communication channels affected by high ther-
mal noise (e.g., at the THz or microwave regime). The
security analysis provided in Refs. [395–397] is limited to
the asymptotic regime. However, recently the compos-
able security has been also proven in Ref. [400]. Other
studies on the security of two-way CV-QKD protocols
have been carried out in Refs. [401, 402], besides propos-
ing the use of optical amplifiers [403]. It is also important
to note that, besides the Gaussian two-way protocols, one
may also consider schemes that are based on quantum il-
lumination [404] or may implement floodlight QKD [405–
408]. The latter is a two-way quantum communication
scheme which allows one to achieve, in principle, Gbit/s
secret-key rate at metropolitan distances. This is done
by employing a multiband strategy where the multiple
optical modes are employed in each quantum communi-
cation.

H. Thermal-state QKD

In the protocols treated so far one assumes that the
Gaussian states are pure. This requirement can how-
ever be relaxed. The possibility of using “noisy” coher-
ent states, i.e., thermal states, was first considered in
Ref. [409] which showed that thermal states are suitable
for QKD if the parties adopt RR and the signals are
purified before transmission over the channel. This ap-
proach was later reconsidered in Ref. [410], which proved
its security in realistic quantum channels. Refs. [411, 412]
showed that thermal states can be directly employed in
CV-QKD (without any purification at the input) if the
protocol is run in DR. Similarly, they can be directly
employed in two-way CV-QKD if the protocol is run
in RR [413]. This possibility opened the way for ex-
tending CV-QKD to longer wavelengths down to the mi-
crowave regime, where the protocols can be implemented
for short-range applications and are sufficiently robust
to finite-size effects [414]. More recently, the terahertz
regime has been also proposed for short-range uses of
CV-QKD [415]. Following this idea, another work [416]
has proposed the same regime for satellite (LEO) com-
munications where the issue of the thermal noise is mit-
igated.

1. One-way thermal communication

For simplicity, we focus on the one-way protocol
where Bob homodynes the incoming signals, randomly
switching between the quadratures. An alternative no-
switching implementation based on heterodyne detection
can be considered as well. The protocol starts with Alice
randomly displacing thermal states in the phase space
according to a bivariate Gaussian distribution. She then
sends the resulting state to Bob, over the insecure quan-
tum channel. The generic quadrature Â = (qA, pA) of

Alice’s input mode A can be written as Â = 0̂+α, where
the real number α is the Gaussian encoding variable with
variance Vα, while operator 0̂ accounts for the thermal
‘preparation noise’, with variance V0 ≥ 1. The overall
variance of Alice’s average state is therefore VA = V0+Vα.
The variance V0 can be broken down as V0 = 1 + µth,

where 1 is the variance of the vacuum shot-noise, and
µth ≥ 0 is the variance of an extra trusted noise confined
in Alice’s station and uncorrelated to Eve. Bob homo-
dynes the incoming signals, randomly switching between
position and momentum detections. In this way, Bob col-
lects his output variable β which is correlated to Alice’s
encoding α. After using a public channel to compare a
subset of their data, to estimate the noise in the channel
and the maximum information eavesdropped, the parties
may apply classical post-processing procedures of error
correction and privacy amplification in order to extract
a shorter secret-key.
The security analysis of this type of protocol is analo-

gous to that of the case based on coherent states. Being
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the protocol Gaussian, the security is upper-bounded by
collective Gaussian attacks and Eve’s accessible informa-
tion overestimated by the Holevo bound. Assuming a
realistic entangling-cloner attack, in the typical limit of
large variance Vα ≫ 1, we obtain the following expres-
sions for the asymptotic key-rates [411, 412]

R◮
th =

1

2
log2

ηΛ(ω, V0)

(1− η)Λ(V0, ω)

+ s

[
√

ωΛ(1, ωV0)

Λ(ω, V0)

]

− s(ω) , (105)

R◭
th =

1

2
log2

ω

(1− η)Λ(V0, ω)
− s(ω), (106)

where function Λ(x, y) := τx+(1−τ)y and s (x) is defined
in Eq. (81).

2. Two-way thermal communication

The two-way thermal protocol [413] extends the one-
way thermal protocol [411, 412] to two-way quantum
communication. The steps of the protocol are the same as
described in Sec. VIIG but with thermal states replac-
ing coherent ones. Therefore, Bob has an input mode
B1, described by the generic quadrature B̂1 = 0̂ + β1,
where β1 is the encoding Gaussian variable having vari-
ance Vβ1

while mode 0̂ has variance V0 = 1 + µth ≥ 1.
After the first quantum communication Alice receives the
noisy mode A1 and randomly switches between the two
possible configurations [397, 413]. In case of ON config-
uration, Alice encodes a Gaussian variable α with vari-
ance Vα = Vβ1

, randomly displacing the quadrature of

the incoming mode Â1 → Â2 = Â1 + α. When the two-
way circuit is set OFF, Alice homodynes the incoming
mode A1 with classical output α1, and prepares another
Gaussian-modulated thermal state Â2 = 0̂+α2, with the
same preparation and signal variances as Bob, i.e., V0
and Va2

= Vβ1
. In both cases, the processed mode A2 is

sent back to Bob in the second quantum communication
through the channel. At the output, Bob homodynes the
incoming mode B2 with classical output β2.
At the end of the double quantum communication,

Alice publicly reveals the configuration used in each
round of the protocol, and both the parties declare which
quadratures were detected by their homodyne detectors.
After this stage, Alice and Bob possess a set of correlated
variables, which are α1 ≈ β1 and α2 ≈ β2 in OFF config-
uration, and α ≈ β in ON configuration. By comparing a
small subset of values of these variables, the parties may
detect the presence of memory between the first and the
second use of the quantum channel. If two-mode coher-
ent attacks are present then they use the OFF configura-
tion, extracting a secret-key from α1 ≈ β1 and α2 ≈ β2.
If memory is absent, the parties assume one-mode col-
lective attacks against the ON configuration, and they
post-process α and β. We remark that the switching be-
tween the two configurations can be used as a virtual

basis against Eve [397], who has no advantage in us-
ing two-mode correlated attacks against the CV two-way
protocol.
Let us assume the realistic Gaussian attack composed

by two beam-splitters of transmissivity η, where Eve in-
jects two ancillary modes E1 and E2 in a Gaussian state
whose CM is specified in Eq. (91. This is a two-mode
(one-mode) attack for g, g′ 6= 0 (= 0). Assuming ideal
reconciliation efficiency, working in the asymptotic limit
of many signals and large Gaussian modulations, one can
compute the following secret key rates for the two-way
thermal protocol with homodyne decoding

R◮
2-th =

1

2
log2

η(1 + η)ω

(1− η) [η2V0 + (1− η2)ω]
− s(ω), (107)

R◭
2-th =

1

2
log2

η2V0 + ω + η3 (ω − V0)

[V0η2 + (1− η2)ω] (1− η)
− s(ω)

+ s

(
√

ω [1 + η2V0ω + η3(1− V0ω)]

η2V0 + ω + η3(ω − V0)

)

. (108)

I. Unidimensional protocol

As an alternative to the standard CV-QKD proto-
cols described above, where both quadratures have to be
modulated and measured (be it simultaneously or subse-
quently), one may consider a unidimensional (UD) pro-
tocol [417, 418], which relies on a single quadrature mod-
ulation at Alice’s side while Bob performs a randomly-
switched homodyne detection. Because it requires a sin-
gle modulator, the UD CV-QKD protocols provide a sim-
ple experimental realization with respect to conventional
CV QKD. This also means that the trusted parties are
not able to estimate the channel transmittance in the
un-modulated quadrature, which remains an unknown
free parameter in the protocol security analysis. This
parameter however can be limited by considerations of
physicality of the obtained CMs. In other words, Eve’s
collective attack should be pessimistically assumed to be
maximally effective, but is still limited by the physical-
ity bounds related to the positivity of the CM and its
compliance with the uncertainty principle [6, 419].
Therefore, Eve’s information can be still upper-

bounded and the lower bound on the key rate can be eval-
uated. The performance of the protocol was compared
to standard one-way CV-QKD in the typical condition of
a phase-insensitive thermal-loss channel (with the same
transmittance and excess noise for both the quadratures).
While the UD protocol is more fragile to channel loss
and noise than conventional CV-QKD, it still provides
the possibility of long-distance fiber-optical communica-
tion. In fact, in the limit of low transmissivity η and
infinitely strong modulation, the key rate for the UD CV-
QKD protocol with coherent-state and homodyne detec-
tion is approximately given by (η log2 e)/3 [417], which
is slightly smaller than the similar limit for the stan-
dard one-way protocol with coherent states and homo-
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dyne detection [420] for which the rate is approximately
given by (η log2 e)/2. UD CV-QKD was recently ex-
tended to squeezed states [421], which were shown to be
advantageous only in the DR scenario if the anti-squeezed
quadrature is modulated. The security of coherent-state
UD CV-QKD was recently extended to the finite-size
regime [422].

J. CV-QKD with discrete modulation

In CV-QKD, information is encoded in quantum sys-
tems with infinite-dimensional Hilbert spaces. This al-
lows the sender to use bright coherent states and highly-
efficient homodyne detections, which naturally boost the
communication rate. These features do not come for
free. At the error correction stage, one pays a penalty
in mapping the continuous output data from the physi-
cal Gaussian channel into a binary-input additive white
Gaussian-noise channel. This mapping is more accu-
rate by employing discrete modulation [423]. The first
discrete-modulated CV-QKD protocol was based on a bi-
nary encoding of coherent states [424] and was designed
to overcome the 3dB limitation of CV-QKD in DR. Later
protocols have consider three [425] or arbitrary number
of phase-encoded coherent states [426].
The basic idea in Ref. [424] is to perform a binary en-

coding which assigns the bit-value 0 (1) to a coherent
state with positive (negative) displacement. Then, the
receiver switches the homodyne detection setup, measur-
ing quadrature q or p. After the quantum communica-
tion, the parties discard unfavorable data by applying
an advantage distillation routine [427, 428], which is a
post-selection procedure which extracts a key by using
two-way classical communication. The asymptotic secu-
rity of this protocol was first studied under individual
attacks [424] and later against collective attacks, with
also a proof-of-concept experiment [429]. In general, the
security of CV-QKD with non-Gaussian modulation re-
mains an open question. In the asymptotic limit, its
security has been proven against Gaussian attacks [430]
and, more recently, general attacks [431].

K. CV MDI-QKD

1. Basic concepts and protocol

As we know, MDI-QKD [176, 177] has been introduced
to overcome a crucial vulnerability of QKD systems, i.e.,
the side-channel attacks on the measurement devices of
the parties. The basic advantage of MDI scheme is that
Alice and Bob do not need to perform any measurement
in order to share a secret key. The measurements are in
fact performed by an intermediate relay, which is gener-
ally untrusted, i.e., controlled by Eve. This idea can also
be realized in the setting of CV-QKD with the promise
of sensibly higher rates at metropolitan distances. The

protocol was first introduced on the arXiv at the end
of 2013 by Ref. [182] and independently re-proposed in
Ref. [432].
The protocol proceeds as follows: Alice and Bob pos-

sess two modes, A and B respectively, which are pre-
pared in coherent states |α〉 and |β〉. The amplitude of
these coherent states is randomly-modulated, according
to a bi-variate Gaussian distribution with large variance.
Each one of the parties send the coherent states to the in-
termediate relay using the insecure channel. The modes
arriving at the relay, say A′ and B′, are measured by the
relay by means a CV Bell detection [433]. This means
that A′ and B′ are first mixed on a balanced beam split-
ter, and the output ports conjugately homodyned: on one
port it is applied a homodyne detection on quadrature q̂,
which returns the outcome q−, while the other port is ho-
modyned in the p̂-quadrature, obtaining an outcome p+.
The outcomes from the CV-Bell measurement are com-
bined to form a new complex outcome γ := (q−+ip+)/

√
2

which is broadcast over a public channel by the relay.
For the sake of simplicity, let us consider lossless links

to the relay. Then we can write γ ≃ α− β∗, so that the
public broadcast of γ creates a posteriori correlations be-
tween Alice’s and Bob’s variables. In this way, each of
the honest parties may infer the variable of the other.
For instance, Bob may use the knowledge of β and γ to
compute β∗ − γ ≃ α recovering Alice’s variable up to
detection noise [182]. Eve’s knowledge of the variable γ
does not help her to extract information on the individual
variables α and β. This means that Eve needs to attack
the two communication links with the relay in order to
steal information, which results in the introduction of loss
and noise to be quantified by the parties. In terms of mu-
tual information this situation can be described writing
that I(α : γ) = I(β : γ) = 0, while as a consequence of
the broadcast of variable γ Alice-Bob conditional mutual
information is non-zero, i.e., I(α : β|γ) > I(α : β) = 0.
As discussed in Ref. [182], the best decoding strategy is

to guess the variable of the party who is closer to the re-
lay (i.e., whose link has the highest transmissivity). Also
note that, as proven in Ref. [62], the whole raw data can
be used to perform both secret key extraction and param-
eter estimation. This is because the protocol allows the
parties to recover each other variable from the knowledge
of γ, so that they can locally reconstruct the entire CM
of the shared data without disclosing any information.

2. Security and key rates

The security of CV MDI-QKD has been first stud-
ied in the asymptotic limit [182, 434] (including fading
channels [382]) and recently extended to finite-size se-
curity [435, 436] and then composable security [61, 62].
The asymptotic security analysis starts by considering
the general scenario of a global unitary operation corre-
lating all the uses of the protocol. However, using ran-
dom permutations [52, 54], Alice and Bob can reduce this
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scenario to an attack which is coherent within the single
use of the protocol. After de Finetti reduction, this is a
joint attack of both the links and the relay. In particular,
since the protocol is based on the Gaussian modulation
and Gaussian detection of Gaussian states, the optimal
attack will be Gaussian [6, 377, 378]. More details can
be found in Ref. [182].
In analogy with the two-way CV-QKD protocol, a real-

istic two-mode Gaussian attack consists of Eve attacking
the two links by using two beam-splitters of transmissiv-
ity ηA and ηB that are used to inject to modes E1 and E2

in a Gaussian state with CM given in Eq. (91). Detailed
analysis of the possible two-mode attacks showed that,
in the asymptotic regime, the optimal attack is given by
the negative EPR attack, which corresponds to the case
where g = −g′ with g′ = −

√
ω2 − 1 in Eq. (91). In

such a case Eve injects maximally entangled states with
correlations contrasting those established by the CV-Bell
detection, resulting in a reduction of the key rate.
Indeed, assuming the asymptotic limit of many uses,

large variance of the signal modulation, and ideal recon-
ciliation efficiency, it is possible to obtain a closed formula
describing the secret key rate for CV MDI-QKD. In par-
ticular, we can distinguish between two setups: the sym-
metric configuration, where the relay lies exactly midway
the parties (ηA = ηB), and the asymmetric configuration
(ηA 6= ηB). Assuming that Alice is the encoding party
and Bob is the decoding party (inferring Alice’s variable),
the general expression of the asymmetric configuration
takes the form

Rasy = log2
2 (ηA + ηB)

e |ηA − ηB| χ̄
+ s

[

ηAχ̄

ηA + ηB
− 1

]

− s

[

ηAηBχ̄− (ηA + ηB)
2

|ηA − ηB| (ηA + ηB)

]

, (109)

where χ̄ := 2 (ηA + ηB) /(ηAηB)+ε, ε is the excess noise,
and s (x) is defined in Eq. (81). For pure-loss links (ε = 0)
the rate of Eq. (109) reduces to

Rasy = log2
ηAηB

e|ηA − ηB|
+ s

(

2− ηB
ηB

)

− s

(

2− ηA − ηB
|ηA − ηB |

)

. (110)

The asymmetric configuration, under ideal conditions,
allows to achieve long-distance secure communication. In
particular, for ηA = 1 and arbitrary ηB the maximum
achievable distance can be of 170 km (in standard optical
fibers with attenuation 0.2 dB/Km) and key rate of 2 ×
10−4 bit/use [437]. Under such conditions, the rate of
Eq. (110) becomes

Rasy = log2
ηB

e(1− ηB)
+ s

(

2− ηB
ηB

)

, (111)

which coincides with the RR rate of the one-way proto-
col with coherent states and heterodyne detection. The

performance degrades moving the relay in symmetric po-
sition with respect to Alice and Bob. In such a case, we
set χ̄ = 2/η + ε where η := ηA = ηB, and we write the
rate [182, 434]

Rsym = log2
16

e2χ̄ (χ̄− 4)
+ s

( χ̄

2
− 1
)

. (112)

For pure-loss links, this simplifies to

Rsym = log2
η2

e2(1− η)
+ s

(

2− η

η

)

, (113)

and the maximum achievable distance is about 3.8 km of
standard optical fiber from the relay.
Finite-size analysis and composable security have been

developed for CV MDI-QKD. In Refs. [435, 436] finite-
size corrections have been studied assuming Gaussian at-
tacks. The estimation of the channel parameters is pro-
vided within confidence intervals which are used to iden-
tify the worst-case scenario, corresponding to assuming
the lowest transmissivity and the highest excess noise
compatible with the limited data. The analysis showed
that using signal block-size in the range of 106÷109 data
points is sufficient to obtain a positive secret key rate of
about 10−2 bits/use.
The composable security proof of CV MDI-QKD has

been developed in Ref. [62] using the lower bound pro-
vided by the smooth-min entropy, and designing a novel
parameter estimation procedure [61] which allows to sim-
plify the analysis. The security has been proved against
general attacks using the optimality of Gaussian attacks
for Gaussian protocols, and the de Finetti reduction of
general attacks to collective ones. The lower bound to
the key rate is given by the following expression

Rε′′

n ≥ n− k

n
(ξIAB − IE)−

√
n− k

n
∆AEP

(

2pǫs
3
, d

)

+
1

n
log2

(

p− 2pǫs
3

)

+
2

n
log2 2ǫ

− 2

n
log2

(

K + 4

4

)

, (114)

where ξ accounts for all sources of non-ideality in the pro-
tocol, IAB is Alice-Bob mutual information and IE Eve’s
accessible information. The parameter k is the number
of signals used for the energy test, n is the total number
of signal exchanged, and

K = max
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The quantity ǫ′′ = k4ǫ′/50 is the overall security param-
eter with ǫ′ := ǫ + ǫs + ǫEC + ǫPE. Here ǫ comes from
the leftover hash lemma, ǫs is the smoothing parame-
ter, ǫEC is the error probability of the error correction
routine, and ǫPE that of the parameter estimation. The
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functional ∆AEP

(

2pǫs
3 , d

)

quantifies the error committed
bounding the smooth-min entropy using the asymptotic
equipartition property (AEP) [62, 438]. The dimension-
ality parameter d describes the number of bits used in the
analog-to-digital conversion (ADC) sampling, by which
the unbounded continuous variables used in the proto-
cols (q, p) are mapped into discrete variables, described
as a set of 22d elements (cardinality). The two parame-
ters, dA and dB, describe the dimensions of the sampling
of Alice and Bob variables, set to perform the energy
test. Parameter p gives the probability of success of the
error correction. The result obtained by Ref. [62] con-
firmed that CV MDI-QKD is composably secure against
general attacks and the use of block-size of 107÷109 data
points is sufficient to generate a positive key rate against
general coherent attacks.

3. Variants of CV MDI-QKD

Several schemes have been introduced to modify the
original design of the CV MDI-QKD scheme. One ap-
proach has been based on the used of non-Gaussian oper-
ations, like noiseless linear amplifiers (NLA) and photon
subtraction/addition (whose importance is well-known in
entanglement distillation [439]). The use of NLAs in
MDI-QKD setups was investigated in Ref. [440] while
photon subtraction has been explored in Refs. [441, 442].
Among other approaches, CV MDI-QKD has been stud-
ied with squeezed states [443] (with composable secu-
rity [444]), discrete modulation (alphabet of four coher-
ent states) [445], phase self-alignment [446], imperfect
phase reference calibration [447], and unidimensional en-
coding [448]. A multi-party version of the CV MDI-QKD
protocol [449] has been also introduced and it is discussed
below.

4. Multipartite CV MDI-QKD

An interesting feature to achieve in quantum cryp-
tography is the ability to reliably connect many trusted
users for running a secure quantum conference or quan-
tum secret-sharing protocols [450–453]. The MDI archi-
tecture, restricted to two [182] or three users [454], has
been recently generalized in this direction. In the scal-
able MDI network of Ref. [449], an arbitrary number N
of remote users send Gaussian-modulated coherent states
|αk〉 to an untrusted relay where a generalized multipar-
tite Bell detection is performed. This detection consists
of a suitable cascade of beam-splitters with increasing
transmissivities Tk = 1 − k−1, followed by N − 1 homo-
dyne detection in the q̂-quadrature, and a final homodyne
detection in the p̂-quadrature. The result can be denoted
as a single variable γ := (q2, . . . , qN , p) which is broadcast
to all parties. This measurement is responsible for cre-
ating bosonic GHZ-type correlations among the parties.
Ideally, it projects on an asymptotic bosonic state with

Einstein-Podolsky-Rosen (EPR) conditions
∑N

k=1p̂k = 0
and q̂k − q̂k′ = 0 for any k, k′ = 1, . . . , N .
After the measurement is broadcast, the individual

variables αk of the parties share correlations which can
be post-processed to obtain a common secret key. To
implement quantum conferencing, the parties choose the
ith user as the one encoding the key, with all the others
decoding it in DR. To realize quantum secret sharing, the
parties split in two ensembles which locally cooperate to
extract a single secret key across the bipartition. The
scheme is studied in a symmetric configuration, where
the users are equidistant from the relay and the links
are modeled by memoryless thermal channels, with same
transmissivity and thermal noise. In this scenario, high
rates are achievable at relatively short distances. The
security of the quantum conferencing has been proved in
both the asymptotic limit of many signals and the com-
posable setting that incorporates finite-size effects. The
analysis shows that, in principle, 50 parties can privately
communicate at more than 0.1 bit/use within a radius of
40m. With a clock of 25MHz this corresponds to a key
rate of the order of 2.5Mbits per second for all the users.

VIII. EXPERIMENTAL CV-QKD

A. Introduction

As discussed in the previous section, the various kinds
of CV-QKD protocols basically differ by the choice of in-
put states (coherent or squeezed states), input alphabets
(Gaussian or discrete) and detection strategy (homodyne
or heterodyne detection). Most of these schemes have
been tested in proof-of-concept experiments in a labora-
tory setting while a few have been going through different
stages of developments towards real-life implementations.
Specifically, the scheme based on Gaussian modulation
of coherent states and homodyne detection has matured
over the last 15 years from a simple laboratory demon-
stration based on bulk optical components creating keys
with very low bandwidth [455–458] to a robust telecom-
based system that generates keys with relatively high
bandwidth [459–471] and allows for in-field demonstra-
tions [472, 473] and network integration [474–476]. In the
following sections, we will first describe the experimen-
tal details of the standard point-to-point coherent state
protocol with emphasis on the most recent developments
followed by a discussion of some proof-of-concept experi-
ments demonstrating more advanced CV-QKD protocols
such as squeezed state QKD and measurement-device-
independent QKD.

B. Point-to-point CV-QKD

The very first implementation of CV-QKD was based
on coherent state modulation and homodyne detec-
tion [455]. The optical setup comprised bulk optical
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components and the operating wavelength was 780 nm.
This seminal work together with some follow-up experi-
ments [456–458] constituted the first important genera-
tion of CV-QKD systems. Despite its successful demon-
stration of the concept of CV-QKD, it was however un-
suitable for realizing robust long-distance and high-speed
QKD in optical fibers because of the use of telecom-
incompatible wavelengths, the relatively low mechanical
stability of the systems and the low efficiency of the em-
ployed error-correction protocols.

To overcome these impediments, a new generation
of CV-QKD systems was developed. This new gen-
eration made use of telecom wavelength, was mainly
based on telecom components, combined optimized error-
correction schemes and comprised several active feed-
back control systems to enhance the mechanical stabil-
ity [460, 462, 463, 471]. With these new innovations, key
rates of up to 1Mbps for a distance of 25km [460] and key
rates of around 300bps for a distance of 100km [462] have
been obtained. Recently, two different field tests of CV-
QKD through commercial fiber networks were performed
over distances up to ≃ 50km with rates > 6kpbs [476],
which are the longest CV-QKD field tests so far, achiev-
ing two orders-of-magnitude higher secret key rates than
previous tests.

A third generation of CV-QKD systems are now un-
der development. They are based on the generation of
power for a phase reference (or local oscillator (LO)) at
the receiver station in contrast to previous generations
where the power of the LO was generated at the trans-
mitter station and thus co-propagating with the signal
in the fiber. These systems have also evolved from sim-
ple proof-of-concept demonstrations [477, 478] to techni-
cally more advanced demonstrations using telecom com-
ponents [461, 464, 469, 474, 479, 480].

The basic optical configuration for realizing CV-QKD
is shown in Fig. 9. The signal is modulated in ampli-
tude and phase according to a certain distribution (often
a continuous Gaussian or a discrete QPSK distribution).
It is then multiplexed in time, polarization and/or fre-
quency with a phase reference (a strong local oscillator
or a weak pilot tone) and subsequently injected into the
fiber channel. At the receiver side, the signal and refer-
ence are de-multiplexed and made to interfere on a bal-
anced homodyne (or heterodyne) detector. A subset of
the measurement data are used for sifting and parameter
estimation, while the rest are used for the generation of a
secret key via error correction and privacy amplification.

In Fig. 10 we show the main layouts of three differ-
ent types of point-to-point CV-QKD experiments based
on coherent state encoding with a Gaussian distribu-
tion. The three experiments represent important steps
in the development of a telecom compatible QKD sys-
tem, and they illustrate different techniques for encoding
and detection. The experiment in Fig. 10a [463] applies
a time-multiplexed LO propagating along the fiber with
the signal while the experiments in Fig. 10b [461] and
Fig. 10c [470] use a locally generated LO. The two latter

experiments deviate by the signal encoding strategy (cen-
tered or up-converted base-band), the detection method
(homodyne or heterodyne) and the phase and frequency
difference determination. The experimental details are
described in the figure caption and discussed in the fol-
lowing sections.
The overarching aim for all QKD systems is to gener-

ate secret keys with as high speed as possible and over
as long distance as possible. These two quantifying pa-
rameters for QKD are strongly connected and they cru-
cially depend on the system’s clock rate, the excess noise
produced by the system and the efficiency, quality and
speed of the post-processing algorithms. With these crit-
ical parameters in mind, in the following we describe the
technical details associated with transmitter, the receiver
and the post-processing schemes.

1. Coherent state encoding

At the transmitter station, a telecom laser is often
transformed into a train of pulses using an amplitude
modulator with a certain clock rate (e.g. 1MHz [463]
or 50MHz [460]). It is also possible to use a CW signal
where the clock rate is determined by the measurement
bandwidth. The clock rate should be large as it dictates
the upper bound for the final rate of the secret key and
the accuracy in estimating the parameters of the chan-
nel. However, using high clock rates also places extra de-
mands on the detection system and the post-processing
schemes as discussed later. After pulse generation, a pair
of modulators encode information using different strate-
gies. The traditional approach is to create a base band
signal around the carrier frequency but in more recent
implementations, the base band signal is up-converted
to the GHz range to limit the amount of photons scat-
tered from the carrier [479]. As the base band signal
is separated from the carrier in frequency, it is possible
to significantly suppress the carrier through interference
and thus reduce the amount of excess noise resulting from
scattered carrier photons [464, 470].

2. Detection

At the receiver side, the signal is detected using either
homodyne, dual-homodyning or heterodyne detection. A
homodyne detector (sometimes called single-quadrature
intradyne detection) basically consists of the interference
of two light beams with identical frequencies - the sig-
nal and the local oscillator - on a balanced beam split-
ter, and two PIN diodes combined in subtraction and
followed by a transimpedance amplification stage. In
dual-homodyne detection (also known a phase diverse
detection), the LO and the signal are split in balanced
couplers and sent to two individual homodyne detector
to measured orthogonal phase-space components simul-
taneously. It enhances the phase estimation capabilities
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FIG. 9. Schematic setup of a generic experimental CV-QKD system. A laser beam is modulated with an amplitude and a
phase modulator, and subsequently multiplexed with a reference beam, sent through the optical fiber and de-multiplexed at
the receiver site. The quadrature variables of the signal is then measured with a homodyne or heterodyne detector. A subset of
the measurement outcomes are used for the estimation of channel parameters while the rest are used for secret key generation
using error-reconciliation and privacy amplification.

as two quadratures are measured but it also increases
the complexity of the setup. The heterodyne detection
scheme combines the advantages of the homodyne and
dual-homodyne schemes: It mimics the low-complexity
of homdyning and outputs the enhanced phase informa-
tion of dual-homodyning. In heterodyne detection, the
LO frequency is offset with respect to the carrier fre-
quency of the signal, and therefore is down-converting
the signal band to an intermediate frequency. Electronic
downconversion is subsequently able to extract informa-
tion about orthogonal phase space quadratures similar to
dual-homodyning. It is worth noting that in the quantum
community dual-homodyne detection is often referred to
as a heterodyne detection while in the classical commu-
nity heterodyne detection is reserved for the scheme de-
scribed above. The gained signal information and noise
penalties are basically similar for the two approaches but
the hardware implementations are very different.
The figure of merits associated with the detectors are

the quantum efficiency, the bandwidth and the electronic
noise power relative to the shot noise power. Naturally, a
large clock rate requires a large homodyne detector band-
width. E.g. in Ref. [460] a detector with GHz bandwidth
was used to resolve a 50MHz clock rate while in Ref. [463]
a much lower bandwidth suffices to detect 1MHz clocked
pulses. Homodyne detectors with large bandwidths are
commercially available but they have relatively poor elec-
tronic noise performance and low quantum efficiency. Al-
though these detectors have been widely used for CV-
QKD, a new generation of improved homodyne detec-
tors are under development [481, 482] which in turn will
improve the performance of future QKD systems.
Homodyne and heterodyne detectors require a stable

phase and frequency reference also known as a local oscil-
lator (LO). Two strategies for realizing such a reference
have been studied:
Transmission of LO. The traditional strategy is to

use a LO from the same laser as the signal and let it
co-propagate with the signal through the optical fiber.
Different techniques for combining the LO and signal
have been tested including time multiplexing [471] and
time-polarization multiplexing [463]. This method how-
ever entails some significant problems. First, due to
channel loss, the power of the LO at the receiver is
strongly reduced and thus in some cases insufficient for
proper homodyne detection, second, the large power of
the LO in the fiber scatters photons and thus disturbs the

other quantum or classical fiber channels [460, 465, 468],
and third, the co-propagating LO is vulnerable to side-
channel attacks [463, 483]. The approach is thus incom-
patible with the existing telecom infra-structure and it
opens some security loopholes.

Receiver generation of LO. The alternative strategy
which is now gaining increasing interest and which is
compatible with classical coherent communication is to
use a LO that is generated at the receiver station,
thereby avoiding the transmission of the large powered
LO through the optical fiber. To enable coherent detec-
tion between the LO and the signal, strong synchroniza-
tion of the frequencies and phases is required. This can be
performed in post-processing similar to carrier-phase re-
covery schemes applied in classical communication: The
phase and frequency synchronization of the LO do not
have to be carried out prior to signal measurements but
can be corrected a posteriori in digital signal processing
(DSP). This is done by measuring the phase and fre-
quency differences and subsequently counter-rotate the
reference axes to correct for the drifts. Phase and fre-
quency estimation cannot be performed by using the
quantum signal as a reference since its power is too weak.
Therefore, a small reference beam or pilot tone must be
sent along with the signal in the fiber channel to estab-
lish the phase and frequency at the receiver. However, it
is important to note that this pilot tone is very dim com-
pared to a LO and thus do not result in the complications
associated with the transmission of a LO. CV-QKD with
a locally generated LO have been demonstrated by trans-
mitting the reference beam with the signal using time
multiplexing [461, 480], frequency multiplexing [479] and
frequency-polarization multiplexing [464]. In all these
works, advanced DSP was used to correct for phase and
frequency mismatch in post-measurements. The quality
of the DSP algorithm is of utmost importance as inaccu-
racies in correcting for drifts directly lead to excess noise
and thus a reduction of the resulting key rate and dis-
tance. Recovery of the clock has been achieved either by
using or wavelength multiplexed clock laser [460], known
patterns as a header to the quantum signal [464] or a
second frequency multiplexed pilot tone [479].
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a)

b)

c)

FIG. 10. Details of three experimental setups for CV-QKD based on a Gaussian coherent state alphabet. a) Coherent state
pulses of 100ns with repetition rate 1MHz generated by a 1550nm telecom laser diode are split by an asymmetric beam splitter
(99/1) into a signal beam (which is attenuated by variable attenuators (VATTs)) and a bright local oscillator. The signal is
modulated by an amplitude (AM) and phase modulator (PM) and subsequently delayed by 200ns using a fiber delay line and
a Faraday mirror. The LO and signal are then multiplexed in time and further in polarization (with a polarizing beam splitter
(PBS)) before being injected into the fiber channel. At Bob’s site the LO and signal are polarization de-multiplexed with a
PBS and a dynamical polarization controller (DPC) and time-multiplexed with a delay line of the LO. The pulses are finally
interfered in a homodyne detector. The PM in the LO enables random π phase shift and thus random quadrature measurement.
Taken from Ref. [463]. b) A CW telecom laser at 1550nm is transformed into 1nsec pulses with a repetition rate of 100MHz
using an amplitude modulator (AM). The Gaussian distributed signal is produced with a pair of modulators (AM and PM)
and its brightness is controlled with a variable optical attenuator (VOA). Phase synchronization signals are also produced in
the modulators time-multiplexed with the quantum signal, either regularly as in (a) and (b) or randomly as in (c). The signals
are injected into the channel and measured with a locally generated local oscillator at Bob. An AM produces local oscillator
pulses while a PM randomly switches their phases by π to allow for a random quadrature measurement. Phase and frequency
synchronization between LO and signal is attained through DSP of the data produced by the interference between the LO and
the reference pulses. Taken from Ref. [461]. c) Transmitter and receiver are to a large extent controlled by software, thereby
reducing the complexity of the hardware. At the transmitter, software defines the pulse shape and the modulation pattern
(here QPSK), and it ensures that the single side-banded signal - concentrated in a 10MHz band - is upconverted and combined
with a pilot-tone which is used for controlling the frequency carrier-frequency offset and the phase noise. At the receiver, the
signal is measured with a heterodyne detector using a locally generated, and frequency shifted LO. The output of the detector
is demodulated into amplitude and phase quadrature components with a sampling rate of 200MS/s. Carrier-frequency offset,
phase noise, clock skew and quadrature imbalance are subsequently corrected in digital-signal-processing, and the output is fed
to the post-processing steps for key generation. Taken from Ref. [470]. Figures adapted with permissions from: a) Ref. [463]
c©NPG (2013), b) Ref. [461] c©OSA (2015), and c) Ref. [470] c©IEEE (2017).
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3. Post-processing

A critical part for the successful completion of CV-
QKD is the remaining post-processing protocols which
include error reconciliation, parameter estimation and
privacy amplification. The latter scheme is standard
for any communication system (and thus will not be
discussed further in this review) while the two former
schemes are more complicated as they require sophisti-
cated computational algorithms specifically tailored for
CV-QKD. Furthermore, the performance of CV-QKD,
that is key rate and distance, critically depends on the
efficiency of the error correction algorithm and the qual-
ity of parameter estimation scheme.
Error reconciliation. In long-distance communication,

the signal-to-noise ratio (SNR) of the acquired data is
usually very low and thus the reconciliation of the Gaus-
sian correlated variables is computationally very hard.
Earlier versions of high-efficiency error correction proto-
cols for CV-QKD could only handle data with an SNR
larger than around 1, thereby inherently limiting the se-
cure communication distance to about 25km correspond-
ing to a small metropolitan sized network. However, in
recent years there have been numerous new developments
in constructing high-efficiency error-correcting codes op-
erating at very low SNR. New code developments have
resulted in a significant improvement of the performance
of CV-QKD and was the key stepping stone for realizing
long-distance communication. E.g. the work in ref. [463]
performed error correction with an efficiency of 96% at
an SNR=0.08 as obtained with an 80km link while in
ref. [462] the efficiency was 95.6% at SNR=0.002 corre-
sponding to a 150km fiber link.

The key innovation leading to these improved codes
is to combine multi-edge low density parity check
(LDPC) codes with multidimensional reconciliation tech-
niques [459, 484–488]. A rate-adaptive reconciliation pro-
tocol was proposed in Ref. [487] to keep high efficiency
within a certain range of SNR, which can effectively re-
duce the SNR fluctuation of the quantum channel on the
system performance. Throughputs of 25Mbit/s [485] and
30Mbit/s [488] have been achieved, which are not yet
compatible with high speed system using clock speeds
of more than 100 MHz [461]. However, the speed of the
LDPC decoder do not currently representing the key bot-
tleneck in extending the distance of QKD. One of the
main limiting factors in extending the distance is the ef-
ficiency and quality in estimating the parameters of the
system.
Parameter Estimation. The quality of practical pa-

rameter estimation is crucial for the reliable extraction of
secret keys for long-distance communication. In addition
to the estimation of the phase and frequency differences
for LO adjustments as discussed above, it is important
also to estimate the transmitter’s modulation variance µ,
the channel transmittance η and the variance of the ex-
cess noise ε. The two variances are expressed in shot noise
units and thus a careful calibration of the shot noise level

is also required. Once all parameters are estimated, they
are used to compute the bounds on the Eve’s information.
However, the reliability in warranting security strongly
depends on the precision in estimating the parameters.
Very large data block sizes are often required to reduce
the finite-size effects to a level that is sufficiently low to
claim security (see also IX). As an example, in Ref. [463],
a secret key was generated by using blocks of size 109 for
a 80km channel but by reducing the block size to 108, no
key could be extracted as a result of the finite-size effect.
Likewise in Ref. [462] a block size of 1010 was used to
enable secret key generation over 100km. To extend the
distance further, even larger data blocks are required.
This places more stringent demands on the stability of
the system to allow for longer measurement series, and
it calls for an increase in the measurement rate realized
by a larger clock rate and higher detector bandwidth.

Practical key rate: Within a certain data block, half
of the data are used for sifting (if homodyne detection
is used), a subset is used for parameter estimation and
another subset is used for phase synchronization of the
local oscillator. The remaining data are then used for
secret key generation and thus undergo error correction
with efficiency ξ and privacy amplification. In a stable
system it is also possible to perform error correction first,
using the SNR estimate from the previous round, and
then use all the data for parameter estimation. If the
clock rate is given by C and the fraction of data used for
key extraction is f , the final practical key rate in RR is
given by

Rprac = fC(ξIAB − χBE) (116)

where IAB is Alice-Bob mutual information and χBE is
Eve’s Holevo information on Bob’s variable. The fastest
system of today produces secret keys of 1Mbps (for 25km)
while the longest distance attained is 150km with a key
rate of 30kbps. Both realizations are secure against col-
lective attacks and include finite-size effects.

C. Implementation of advanced CV-QKD

The point-to-point coherent state protocol discussed
above is by far the most mature CV-QKD scheme devel-
oped, and furthermore, since it is reminiscent of a coher-
ent classical communication system, it is to some extend
compatible with the existing telecom networks. However,
the point-to-point scheme might in some cases be vul-
nerable to quantum hacking attacks and it possess some
limitations in speed and distance. To circumvent some of
these vulnerabilities and limitations, more advanced CV-
QKD protocols have been proposed and experimentally
tested in proof-of-principle type experiments using bulk
optical components and often without post-processing.
In the following we briefly discuss these demonstrations.



51

1. Squeezed-state protocols

There has been two implementations of QKD based
on squeezed states. The schemes were discussed in Sec-
tion VIIC, and were shown to be capable of extending
the distance of QKD [386] or to enable composable secu-
rity [489]. In the following we briefly address the experi-
mental details of these realizations.

In both experiments, two-mode squeezed states were
generated by interfering two single-mode squeezed states
on a balanced beam splitter. The squeezed states
were produced in cavity-enhanced parametric down-
conversion using non-linear crystals (PPKTP) inside
high-quality optical cavities [490]. One mode of the two-
mode squeezed state was measured with high-efficiency
homodyne detection at the transmitter station while the
other mode was transmitted in free space to Bob who per-
formed homodyne/heterodyne measurements. The ho-
modyne measurements at Alice’s station steered the state
at Bob’s station into a Gaussian distribution of ampli-
tude or phase quadrature squeezed states and thus the
scheme is effectively similar to a single-mode squeezed
state protocol. The noise suppression below shot noise of
the two-mode squeezed states were measured to be 3.5dB
at 1064nm [386] and 10.5dB at 1550nm [489]. The clock
rate of the experiments was in principle limited by the
bandwidth of the cavity-enhanced parametric amplifiers
(21MHz in Ref. [386] and 63MHz in Ref. [489]) but in the
actual implementations, the bandwidth was set to a few
kHz given by filters in the homodyne detectors.

In such squeezed state systems, the size of the alphabet
is often limited to the degree of anti-squeezing and thus it
is not possible in practice to maximize the key rate with
respect to the modulation depth. However, in Ref. [386]
the Gaussian alphabet was further extended by modulat-
ing the mode sent to Bob with a pair of modulators. With
this approach, the system becomes more robust against
excess noise and thus it is possible to extend the dis-
tance over which secure communication can be realized.
The squeezed state experiment in Ref. [489] was used to
demonstrate CV-QKD with composable security. E.g.
for a channel loss of 0.76 dB (corresponding to 2.7km
fiber), they achieved composable secure key generation
with a bit rate of 0.1 bit/sample using a reconciliation
efficiency of 94.3%. Furthermore, the system was also
used to demonstrate one-sided-device-independent secu-
rity against coherent attacks.

In a recent work [491], it was experimentally demon-
strated that by using squeezed states encoding with a
uni-dimensional and small alphabet, it is possible to com-
pletely eliminate the information of Eve in a purely lossy
channel. This reduces the computational complexity of
the post-processing protocols and therefore might be of
interest in future CV-QKD schemes despite the limited
size of the alphabet.

2. CV MDI-QKD

As discussed in Section IVG, MDI-QKD schemes cir-
cumvent quantum hacking attacks on the measurement
system. A CV version of the MDI-QKD scheme (see Sec-
tion VII K) has been realized in a proof-of-concept exper-
iment [182]. Here amplitude and phase modulation were
applied to CW beams both at Alice’s and at Bob’s site.
The modulated beams underwent free space propagation
before being jointly measured in a CV Bell state ana-
lyzer. Such an analyzer consists normally of a balanced
beam splitter - in which the two incoming beams interfere
- followed by two homodyne detectors measuring orthog-
onal quadratures. In the current experiment, however,
the Bell analyzer was significantly simplified by using
the carriers of the signals as local oscillators: Through
a proper phase space rotation of the carriers enabled by
the interference, information about the sum of the ampli-
tude quadratures and the difference of the phase quadra-
tures were extracted by simple direct measurements of
the beam splitter output modes followed by an electronic
subtraction and summation. Losses of the channels were
simulated in the experiments by varying the modulation
depths of the modulators, and for an attenuation of re-
spectively 2% and 60% for the two channels, a bit rate
of 0.1 secret bits per use was deduced from a measured
excess noise of 0.01SNU and an assumed post-processing
efficiency of 97%.

IX. THEORETICAL SECURITY ASPECTS

A. Finite-size analysis in QKD

Here, we describe how to lift the security analysis of
QKD protocols from more physical considerations to the
same level of rigor as found for classical primitives in
theoretical cryptography. This is crucial to assure that
QKD can be safely used as a cryptographic routine in
any type of applications. We have already seen the gen-
eral structure of QKD protocols and discussed the precise
composable security criterion in Section II. Here we de-
scribe in detail how to give mathematically precise finite
key security analyzes. We emphasize that such finite key
analyzes are crucial to understand the security proper-
ties of any practical quantum hardware, just as every
distributed key will have finite length and will only be
approximately secure.
We start by reviewing the different known methods for

finite key analyzes in Section IXB and then describe in
more detail the state-of-the-art approach based on en-
tropic uncertainty relations with side quantum informa-
tion (Section IXC). As we will see, the security intuitively
follows from the two competing basic principles of quan-
tum physics: the uncertainty principle and entanglement.
We then discuss CV protocols in Section IXD and end
with an outlook Section IXE, commenting on extensions
to device-independent QKD.
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B. Finite-size statistical analysis

It is natural to split the finite-size statistical analysis
into two steps, and in fact most security proofs respect
that structure. In the first step, discussed in Subsec-
tion IXB1, called privacy amplification, we explain how
the criterion for composable security (introduced in Sub-
section IID) can be satisfied as long as we can guarantee
a sufficiently strong lower bound on a quantity called the
smooth min-entropy Hε

min of Alice and Bob’s corrected
raw key conditioned on Eve’s side information. The sec-
ond step, discussed in Subsection IXB2 is then to find
such lower bounds.

1. Privacy amplification

Privacy amplification is a procedure that allows Alice
and Bob, who are assumed to share a random bit string
(called the raw key) about which the eavesdropper has
only partial information, to extract a shorter random bit
string (the secret key) that is guaranteed to be uncorre-
lated with the eavesdropper’s information. To make this
more precise, we first need to define what partial infor-
mation about the raw key means. Since we are interested
in finite-size effects, it turns out that the proper way to
measure the eavesdropper’s information is by assessing
its probability of guessing the random bit string. This is
done using the smooth min-entropy [53]. The higher the
smooth min-entropy of the eavesdropper on the raw key,
the more secret key can be extracted using the privacy
amplification scheme.
A simple way of extracting Alice’s secret key is by ap-

plying a random hash function to her raw bit strings
(technically, the random hash function must form a two-
universal family). This was shown to work even when the
eavesdropper has a quantum memory by Renner [53] who
provided a quantum generalization of the so-called Left-
over Hashing Lemma. This method has the advantage
that the random seed used to decide on the hash func-
tion is independent of the resulting random bit string
(i.e. the extractor is strong) and hence the seed can be
published over the public channel to Bob. This way both
Alice and Bob can apply the same hash function, and
since their initial bit strings agreed their final strings will
too. Thus, we end up with Alice and Bob both holding
bit strings that are independent of the eavesdropper’s
information—and thus a secret key between them has
been successfully established.
Therefore, as long as we can guarantee some lower

bound on the min-entropy of the raw key, privacy am-
plification can be invoked to extract a secret key.

2. Guaranteeing large smooth min-entropy

There are a plethora of techniques available to analyti-
cally show that the smooth min-entropy of the raw key is

indeed large given the observed data but it is worth sum-
marizing the most important ones. We give a more de-
tailed exposition of one of the most powerful techniques,
based on entropic uncertainty relations, in Section IXC.
We restrict our attention here to finite-dimensional quan-
tum systems and discuss CV protocols in Section IXD.

a. Asymptotic equipartition and exponential de
Finetti [53]. Under the independent and identically dis-
tributed (i.i.d.) assumption where the total state of the
system after the quantum phase has product form, the
smooth min-entropy can be bounded by the von Neu-
mann entropy of a single measurement, using the so-
called quantum asymptotic equipartition property [492].
This von Neumann entropy can in turn be estimated us-
ing state tomography, performed on the quantum state
shared between Alice and Bob. This approach often
works directly when we only consider individual or col-
lective attacks, as the state after the distribution phase
then usually admits an i.i.d. structure. However, with
general coherent attacks such a structure can no longer
be guaranteed. Nonetheless, Renner [53], in his seminal
work establishing the security of BB84 for finite length
keys, uses an exponential de Finetti theorem to argue
that, in a suitable sense, the general case can be reduced
to the i.i.d. setting as well. This comes at a significant
cost in extractable key, however.

b. Asymptotic equipartition and post-selection [493].
In particular the latter reduction, using the exponen-
tial de Finetti theorem, leads to large correction terms
that make the security proof impractical. It can be re-
placed by a significantly tighter method (based on similar
representation-theoretic arguments), the so-called post-
selection technique [493].

c. Virtual entanglement distillation [84, 494]. This
technique can be traced back to one of the early security
proofs by Shor and Preskill [84] and has been adapted
to deal with finite key lengths by Hayashi and Tsuru-
maru [494]. The basic idea is to interpret part of the raw
key as a syndrome measurement of a Calderbank-Shor-
Steane (CSS) code and use it to virtually distill entan-
glement on the remaining qubits. The crucial point is
that this can be done after measurement (hence virtual)
so that no multi-qubit quantum operations are required.
The correctness and secrecy of Alice and Bob’s key then
follows directly from the fact that they effectively mea-
sured a close to maximally entangled state.

d. Entropic uncertainty relations with side quantum
information [495, 496]. This approach is based on an
entropic uncertainty relation [497] that allows us to di-
rectly reduce the problem of lower bounding the smooth
min-entropy of the raw key conditioned on the eavesdrop-
per’s information with a different, more tractable prob-
lem. Namely, instead of bounding the min-entropy we
need only ensure that the correlations between Alice’s
and Bob’s raw keys are strong enough in an appropriate
sense, which can be done by a comparably simple statis-
tical tests. This reduction naturally deals with general
attacks and gives tight bounds for finite keys.
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The intuition and some of the details behind this ap-
proach will be discussed in detail in the next section. The
proof technique has recently been reviewed in detail and
in a self-contained way in [498].
e. Entropy accumulation [499]. A recent proof tech-

nique uses entropy accumulation [157] to argue that the
smooth min-entropy accumulates in each round of the
protocol. This security proof naturally deals with the so-
called device independent setting (see Section IV). The
bounds, while still not as strong as the ones that can
be achieved using the last two methods discussed above,
have recently been improved in [171].

C. Uncertainty principle versus entanglement: an
intuitive approach to QKD security

One of the basic principles of quantum physics that is
intuitively linked to privacy is Heisenberg’s uncertainty
principle [500]. In its modern information-theoretic form
due to Maassen-Uffink [501] it states that for any two
measurements X,Z with eigenvectors |x〉, |z〉, respec-
tively, we have

H(X) +H(Z) ≥ − log2 max
x,z

|〈x|z〉|2, (117)

where H(X) = −∑x px log2 px denotes the entropy of
the post-measurement probability distribution. Impor-
tantly, the bound on the right-hand side is independent
of the initial state and the first ideas of directly making
use of this uncertainty principle for security proofs can
be traced back to [502, 503].
It turns out, however, that when taking into account

the most general coherent attacks, the adversary might
have access to a quantum memory and with that to the
purification of the state held by the honest parties. Now,
when starting with a maximally entangled bipartite state
ΦAB and applying measurementX or Z on the A-system,
then it is easily checked that there always exists a mea-
surement on the B-system that reproduces the measure-
ment statistics on A, independent if X or Z was mea-
sured! This phenomenon was first discussed in the fa-
mous EPR paper [504] and in terms of entropies it implies
that

H(X |B) +H(Z|B) = 0, (118)

where H(X |B) := H(XB) − H(B) denotes the condi-
tional von Neumann entropy of the post-measurement
classical-quantum state. We emphasize that this is in
contrast to classical memory systems B, for which the
left-hand side of (118) would always respect the lower
bound from (117).
Luckily, entanglement turns out to be monogamous in

the sense that for tripartite quantum states ABC the
more A is entangled with B the less A can be entangled
with C (and vice versa). Moreover, it is now possible to
make this monogamy principle of entanglement quantita-
tively precise by showing that the Maassen-Uffink bound

is recovered in the tripartite setting [495]

H(X |B) +H(Z|C) ≥ − log2 max
x,z

|〈x|z〉|2. (119)

It is this type of entropic uncertainty relation with quan-
tum side information that is employed for deducing the
security of QKD. (Entropic uncertainty relations with
and without quantum side information as well as their
applications in quantum cryptography are also reviewed
in [505].) Note that there is now no need to distin-
guish between individual, collective, and coherent attacks
but rather (119) directly treats the most general attacks.
This is crucial for not ending up with too pessimistic
estimates for finite secure key rates.
To continue, we actually need an entropic uncertainty

relation suitable for the finite key analysis. This is in
terms of smooth conditional min- and max-entropies,
taking the form [497]

Hε
min(Y

n|EΘn) +Hε
max(Y

n|Ŷ n) ≥ n, (120)

where Y n is Alice’s raw key (of length n bits), Ŷ n is Bob’s
raw key, E denotes Eve’s information and Θn labels the
basis choice of the measurements made in the n rounds by
the honest parties (e.g., for BB84 if X or Z was chosen in
each round). An information reconciliation protocol can
then be used to make sure that Alice and Bob hold the
same raw key. Taking into account the maximum amount
of information that gets leaked to the eavesdropper in this
process, denoted leakec, this yields the bound

Hε
min(Y

n|EΘn) ≥ n−Hε
max(Y

n|Ŷ n)− leakec (121)

Therefore, it only remains to statistically estimate
Hε

max(Y
n|Ŷ n), which can be done by calculating the

number of bit discrepancies between Alice and Bob on
a random sample of the raw keys [496].

D. CV protocols

For infinite-dimensional systems, finite-key approaches
based on exponential de Finetti or post-selection un-
fortunately fail [506], unless additional assumptions are
made that lead to rather pessimistic finite-key rate es-
timates [54]. Fortunately, for protocols based on the
transmission of TMSV states measured via homodyne
detection (therefore squeezed-state protocols), the proof
principle via entropic uncertainty applies as well, lead-
ing to a tight characterisation [58, 59]. This follows the
intuition from the early work [502] and is based on the
entropic uncertainty relations with side quantum infor-
mation derived in [507, 508].
Importantly, the analysis does not directly work with

continuous position and momentum measurements but
rather with a binning argument leading to discretized
position and momentum measurements. Namely, a finite
resolution measurement device gives the position Q by
indicating in which interval Ik;δ :=

(

kδ, (k + 1)δ
]

of size
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δ > 0 the value q falls (k ∈ Z). If the initial state is
described by a pure state wave function |ψ(q)〉Q we get
{ΓQδ

(k)}k∈Z,

ΓQδ
(k) =

∫ (k+1)δ

kδ

∣

∣ψ(q)
∣

∣

2
dq (122)

with entropy H(Qδ) := −
∞
∑

k=−∞
ΓQδ

(k) log2 ΓQδ
(k).

(123)

For these definitions we then recover a discretized ver-
sion of the of Everett-Hirschman [509, 510] entropic un-
certainty relation

H(Qδ) +H(Pδ) ≥ log2(2π) (124)

− log2

[

δqδp S
(1)
0

(

1,
δqδp
4

)2
]

,

where S
(1)
0 (·, ·) denotes the 0th radial prolate spheroidal

wave function of the first kind [511]. Extending this
to quantum side information we find similarly as in the
finite-dimensional case that [507]

H(Qδq|B) +H(Pδp|C) ≥ log2(2π) (125)

− log2

[

δqδp S
(1)
0

(

1,
δqδp
4

)2
]

.

Extending this to the smooth min-entropy then allows
for the same security analysis as in (119).
For other classes of CV protocols where the entropic

uncertainty approach is not known to work, finite key
security is analyzed via a recently discovered Gaussian
de Finetti reduction that exploits the invariance un-
der the action of the unitary group U(n) (instead of
the symmetric group S(n) as in usual de Finetti theo-
rems) [60, 400, 512, 513]. This then recovers the widely
held belief that Gaussian attacks are indeed optimal in
the finite key regime as well.

E. Extensions and Outlook

Going forward from a theoretical viewpoint some of
the main challenges in the security analysis of quantum
key distribution schemes are:

• To refine the mathematical models on which the
security proofs are based to more accurately match
the quantum hardware used in the actual imple-
mentations. This is of crucial importance to de-
crease the vulnerability to quantum hacking, which
is typically based on side channel attacks exploiting
weaknesses of the quantum hardware [514]. Inten-
sified collaborations of theorists and experimental-
ists should help to close this gap between realistic
implementations and provable security.

• Device independent QKD makes fewer assumptions
on the devices used and hence naturally takes care
of issues with imperfect hardware. However, it
still remains to determine the ultimate finite key
rates possible in device-independent QKD. The
state-of-the-art works are based on entropy accu-
mulation [157, 499] and have recently been im-
proved [171]. In contrast to the tightest device
dependent approach based on entropic uncertainty
relations with side quantum information (as pre-
sented in Section IXC), the lower bounds on the
smooth min-entropy are achieved in a device in-
dependent way by ensuring that there is enough
entanglement present. The details are beyond the
scope of this review but the open question is then
to determine if the same experimentally feasible
trade-off between security and protocol parameters
is available as in the device dependent case.

• From a more business oriented perspective it is cru-
cial to argue that QKD schemes not only offer secu-
rity in an abstract information-theoretic sense but
are actually more secure in practice compared to
widely used classical encryption schemes. That is,
it is important to realize that in typical every day
use cases no cryptographic scheme is absolutely se-
cure but instead the relevant question is how much
security one can obtain for how much money. Given
the ongoing development around post-quantum or
quantum-secure-cryptography [515] we believe that
there is still significant territory to conquer for
QKD.

X. QUANTUM HACKING

A practical implementation of QKD protocols is never
perfect and the performance of protocols depends on the
applicability of the security proofs and assumptions to
the real devices, as well as on numerous parameters, in-
cluding post-processing efficiency and the level of noise
added to the signal at each stage (including the noise
added due to attenuation). Broadly speaking, quantum
hacking encompasses all attacks that allow an eavesdrop-
per to gain more information about messages sent be-
tween the trusted parties than these parties assume to
be the case, based on their security proofs. Since secu-
rity proofs are constructed on physical principles, this
can only be the case if one or more of the assumptions
required by the security proof does not hold [516]. If this
is the case, the proof will no longer be valid, and Eve may
be able to gain more information about the message than
Alice and Bob believe her to have. These assumptions in-
clude the existence of an authenticated channel between
Alice and Bob, the isolation of the trusted devices (i.e.
that Eve cannot access Alice and Bob’s devices) and that
the devices perform in the way that they are expected
to. Certain forms of quantum hacking have already been
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mentioned in this review, such as the photon-number
splitting (PNS) attack against DV-QKD protocols.

Exploitable imperfections in the trusted parties’ de-
vices that allow quantum hacking are called side-
channels. These could take the form of losses within
the trusted devices that could potentially contribute to
Eve’s information about the signal, or added noise within
the devices that could be partially controlled by Eve, in
order to influence the key data. Such partially control-
lable losses and noises constitute threats to the security
of QKD protocols, if overlooked. Quantum hacking often
serves one of two purposes: to directly gain information
about the secret key or to disguise other types of attack
on a protocol, by altering the trusted parties’ estima-
tion of the channel properties. To restore security, the
trusted parties can either incorporate the side-channels
into their security analysis, in order to not underesti-
mate Eve’s information, or can modify their protocol to
include countermeasures. In this section, we will discuss
some common side-channel attacks, and how their effects
can be mitigated. See also Ref. [517] for a very recent re-
view on the topic. It is clear that the study of quantum
hacking is an important aspect for the real-life security
of QKD implementations; it is central to the ongoing ef-
fort for the standardization of QKD by the European
Telecommunications Standards Institute [518].

A. Hacking DV-QKD protocols

The security proofs for many DV protocols, such as
BB84 [519] and B92 [85], assume the use of single-photon
sources. However, real QKD implementations often use
strongly attenuated laser pulses, rather than true single-
photon sources, which will send some pulses with mul-
tiple photons [520]. The existence of such pulses allows
the use of the (previously mentioned) PNS attack. This is
where Eve beamsplits off all but one of the photons from
the main quantum channel. Since Bob is expecting to
receive a single-photon pulse, and since this pulse will be
undisturbed (if Eve does not carry out any other attack),
the trusted parties will not detect any additional error on
the line. Eve can then store the photons she receives in a
quantum memory until after all classical communication
has been completed. She can then perform a collective
measurement on her stored qubits, based on the classical
communication, to gain information about the secret key,
without revealing her presence to the trusted parties. For
instance, in BB84, she will know all of the preparation
bases used by Alice, after the classical communication is
complete, and so will be able to gain perfect information
about all of the key bits that were generated by multi-
photon pulses.

1. PNS and intensity-based attacks

A method used to counter the PNS attack is the use
of decoy states. For instance, the BB84 protocol can
be modified into BB84 with decoy states [106–110]. In
this protocol, Alice randomly replaces some of her sig-
nal states with multi-photon pulses from a decoy source.
Eve will not be able to distinguish between decoy pulses,
from the decoy source, and signal states, and so will act
identically on both types of pulse. In the post-processing
steps, Alice will publicly announce which pulses were de-
coy pulses. Using the yields of these decoy pulses, the
trusted parties can then characterize the action of the
channel on multi-photon pulses, and so can detect the
presence of a PNS attack. They can then adjust their
key-rate accordingly, or abort the protocol if secret key
distribution is not possible.

Imperfections in Alice’s source can give rise to ex-
ploitable side-channels, which can allow Eve to carry out
the PNS attack undetected. Huang et al [521] tested
a source that modulates the intensity of the generated
pulses by using different laser pump-currents, and found
that different pump-currents cause the pulse to be sent at
different times, on average. This means that the choice
of intensity setting determines the probability that the
pulse will be sent at a given time, and hence it is possi-
ble for Eve to distinguish between decoy states and signal
states, based on the time of sending. Eve can then enact
the PNS attack on states that she determines to be more
likely to be signal states, whilst not acting on states that
she determines to be likely to be decoy states. This would
allow her PNS attack to go undetected by the trusted
parties. They then bounded the key rate for BB84 with
decoy states, using an imperfect source (for which the
different intensity settings are in some way distinguish-
able).

Huang et al. [521] also tested a source that uses an ex-
ternal intensity modulator to determine the intensity set-
tings (meaning that the intensity is modulated after the
laser pulse is generated). They found that such sources
do not give a correlation between intensity setting and
sending time, giving a possible countermeasure to attacks
based on this side-channel. Another option is for Alice
to change the time at which the pump-current is applied
depending on the intensity setting, in order to compen-
sate for this effect. Eve may be able to circumvent this
countermeasure, however, by heating Alice’s source us-
ing intense illumination. Fei et al. [522] found that if
gain-switched semiconductor lasers are heated, the pulse
timings of different intensity settings shift relative to each
other, so Alice will no longer be able to compensate for
the timing differences unless she knows that they have
been changed. They also found that heating the gain
medium can cause the time taken for the carrier den-
sity to fall to its default level between pulses to increase.
This could lead to unwanted (by Alice) correlations be-
tween pulses, which could compromise the security of the
protocol.
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2. Trojan horse attacks

Another form of hacking that can be used against DV-
QKD protocols is the Trojan horse attack (THA) [523–
525]. This encompasses a variety of different types of
attack that involve sending quantum systems into one or
both of the trusted parties’ devices in order to gain in-
formation. For instance, Vakhitov et al. [525] considered
the use of large pulses of photons to gain information
about Alice’s choice of basis and about Bob’s choice of
measurement basis, in BB84 and B92. The information is
gained by sending a photon pulse into the trusted device
via the main channel and performing measurements on
the reflections. Considering the case in which the qubit is
encoded via a phase shift, if Eve is able to pass her pulse
through Alice’s phase modulator, measuring the resulting
pulse will give some information about the signal state.
This is possible because Alice’s phase modulator oper-
ates for a finite amount of time (rather than only being
operational for exactly long enough to modulate the sig-
nal state), giving Eve a window in which to send her own
pulse through, to be modulated similarly to the signal
pulse. The process of Eve gaining information about the
basis choice via reflectometry is described in some detail
by Gisin et al. [523].

The information may be partial, giving only the basis
used, or may directly give the key bit. Even in the case
in which only the basis can be obtained, the security of
the protocol is still compromised, as Eve is now able to
always choose the same measurement basis as Alice, for
an intercept and resend attack, gaining complete infor-
mation about the key without introducing any error. Al-
ternatively, Eve may be able to target Bob’s device. For
B92 or SARG04, it is sufficient to know Bob’s measure-
ment basis in order to gain complete information about
the key. In BB84, if Eve is able to ascertain the mea-
surement basis that Bob will use prior to the signal state
arriving at his device, she can carry out an undetectable
intercept and resend attack by choosing the same basis as
him. Vakhitov et al. [525] also note that even if Eve only
gains information about Bob’s basis after the signal state
has been measured, this can help with a practical PNS
attack, since it reduces the need for a quantum mem-
ory (Eve can carry out a measurement on the photons
she receives immediately, rather than having to wait un-
til after all classical communication is completed). This
does not aid an eavesdropper who is limited only by the
laws of physics, but it could help one who is using current
technology.

A number of methods of protecting against THAs have
been proposed. Vakhitov et al. [525] suggested placing
an attenuator between the quantum channel and Alice’s
setup, whilst actively monitoring the incoming photon
number for Bob’s setup. Gisin et al. [523] calculated
the information leakage due to a THA, assuming heavy
attenuation of the incoming state, and suggested apply-
ing phase randomization to any outgoing leaked photons.
Lucamarini et al. [526] calculated the key rates for BB84,

with and without decoy states (in the without case, as-
suming an ideal single-photon source), in the presence of
a Trojan horse side-channel, parameterized by the outgo-
ing photon number of the Trojan horse state. They then
proposed an architecture to passively limit the potential
information leakage via the Trojan horse system (without
using active monitoring). This was done by finding the
maximum incoming photon number in terms of the Laser
Induced Damage Threshold (LIDT) of the optical fibre,
which can be treated as an optical fuse. The LIDT is the
power threshold over which the optical fibre will be dam-
aged. The minimum energy per photon, which depends
only on the frequency of the photons, is lower-bounded
using an optical fibre loop, which selects for frequency
(photons of too low a frequency will not totally inter-
nally reflect, and so will leave the loop). The maximum
time for Eve’s pulse is also known and bounded by the
time it takes Alice’s encoding device to reset between sig-
nals. Hence, the maximum number of photons per pulse
can be upper-bounded. By correctly setting the attenu-
ation of incoming photons, Alice can then upper-bound
and reduce the information leakage due to any THA.

Jain et al. [524] considered using THAs at wavelengths
lower than the signal pulse in order to reduce the risk
of detection by the trusted parties. This could reduce
the efficacy of active monitoring of the incoming aver-
age photon number, as detectors often have a frequency
band at which they are most sensitive, and so may not
detect photons outside of this band. It could also lead to
reduced attenuation of the Trojan state by passive atten-
uators, as the transmittance of a material is frequency-
dependent. Sajeed et al. [527] carried out experimental
measurements on equipment used in existing QKD im-
plementations at a potential THA wavelength as well as
at the wavelength used by the signal state, and found
that the new wavelength (1924 nm) reduced the proba-
bility of afterpulses in Bob’s detectors, which could alert
the trusted users to the attack. This came at the cost of
increased attenuation and a lower distinguishability, due
to the phase modulator being less efficient at the new
wavelength. Jain et al. [524] suggest the use of a spec-
tral filter to prevent attacks of this type. Further, the
optical fibre loop in the setup proposed by Lucamarini et
al. [526] would help prevent attacks at low wavelengths.

Eve could also use a THA to target the intensity modu-
lator, used by Alice to generate decoy states. If Eve can
distinguish between decoy pulses and signal states, she
can carry out a PNS attack without being detected, by
ignoring decoy pulses and only attacking multi-photon
signal states. Tamaki et al. [528] created a formalism
for bounding the information leakage from the intensity
modulator in terms of the operation of the modulator
(i.e. the unitaries enacted by the modulator for each in-
tensity level). They also develop the formalism for calcu-
lating the information leakage due to a THA against the
phase modulator. Using these, they then calculated the
key rate for BB84 with various types of THA (different
assumptions about the details of the attack, and hence
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about the outgoing Trojan state), for fixed intensity of
the outgoing Trojan horse mode.
Vinay et al. [529] expanded on the work by Lucamarini

et al. in [526], and showed that coherent states (dis-
placed vacuum states) are the optimal Trojan horse state,
amongst the Gaussian states, for Eve to use in an attack
on BB84, assuming attenuation of the Trojan mode and
a limited outgoing photon number. Based on a calcula-
tion of the distinguishability (a measure of the informa-
tion leakage of a THA), they showed that adding ther-
mal noise to both the signal state and the Trojan horse
mode can provide an effective defence against a THA,
greatly increasing the key rate for a given outgoing pho-
ton number. They then upper-bounded the distinguisha-
bility for THA attacks using different photon number
statistics, expanding from the case of Gaussian states
to more general separable states (allowing correlations
between different Fock states, but assuming no entan-
glement between the Trojan horse mode and some idler
state held by Eve). They found that this upper bound on
the distinguishability was higher than the bound found
in Ref. [526] but that it could be reduced to below the
Lucamarini bound by applying their thermal noise de-
fence. They also proposed the use of a shutter between
Alice’s device and the main channel, in conjunction with
a time delay between the encoding apparatus and the
shutter, as a defence that could be used in place of an
attenuator. This would work by forcing the Trojan pulse
to make several journeys through Alice’s encoding ap-
paratus, making it more difficult for Eve to accurately
determine the encoded phase.

3. Backflash attacks

A different type of side-channel attack is the detector
backflash attack, introduced by Kurtsiefer et al. [530].
Detectors based on avalanche photodiodes (APDs) some-
times emit light (referred to as backflash light) upon de-
tecting a pulse. This backflash light can give information
to Eve about Bob’s measurement outcome in a variety of
ways. The polarization of the backflash light can give an
indication of which components of Bob’s system it has
passed through, which could tell Eve which detector it
originated from [531]. Alternatively, the travel time of
the backflash photons (after entering Bob’s detector) or
path-dependent alterations to the profile of the outgoing
light could also give Eve this information. This could
tell Eve which measurement basis was chosen by Bob,
and for certain detector setups could even reveal Bob’s
measurement outcome.
Meda et al. [532] characterized two commercially used

InGaAs/InP APDs and found that backflash light could
be detected for a significant proportion of avalanche
events. Pinheiro et al. [531] then built on this work by
characterizing a commercial Si APDs; they also found
that the backflash probability was significant, with a
backflash probability greater than or equal to 0.065.

Both papers found that the backflash light was broad-
band, and so could be reduced using a spectral filter.
Pinheiro et al. [531] also characterized a photomultiplier
tube, and found that it had a much lower backflash prob-
ability. They therefore suggested using photomultiplier
tubes in place of APDs in Bob’s detectors.

4. Faked states and detector efficiency mismatch

The security of BB84 (and most DV protocols) is based
on Eve and Bob’s basis choices being independent. If Eve
is able to exploit some imperfection in Bob’s device that
lets her influence Bob’s basis or even choose it for him,
this independence would no longer hold, and the security
of the protocol may be breached. Makarov et al. [533]
proposed a number of schemes that could allow an eaves-
dropper to control or influence Bob’s detector basis or
measurement results. These schemes use faked states;
this is where Eve does not attempt to gain information
without disturbing the signal state, but instead sends a
state designed to take advantage of flaws in Bob’s detec-
tion device to give him the results that she wants him to
receive.
Two of the proposed schemes take advantage of Bob’s

passive basis selection. Receiver implementations can se-
lect the measurement basis using a beamsplitter: this will
randomly allow a photon through or reflect it onto an-
other path. We call this passive basis selection, and dif-
ferentiate it from active basis selection, in which Bob ex-
plicitly uses a random number generator to select the ba-
sis and changes the measurement basis accordingly [534].
If the beamsplitter used is polarization-dependent, Eve
can tune the polarization of the pulses she sends such
that they go to the basis of her choosing, allowing her to
intercept and resend signals whilst ensuring that she and
Bob always choose the same basis.
The second scheme proposes a way around the coun-

termeasure of placing a polarizer in front of the beam-
splitter. Makarov et al. [533] suggest that imperfections
in the polarizer will allow Eve to still choose Bob’s ba-
sis if she uses sufficiently large pulses (albeit with heavy
attenuation due to the polarizer). They also suggest the
use of a polarization scrambler as a defence against these
two schemes. Li et al. [535] proposed a similar type of
attack, in which they exploit the frequency-dependence
of the beamsplitter to allow them to choose Bob’s basis
with high probability.
Makarov et al. [533] proposed two further schemes us-

ing faked states. One takes advantage of unaccounted
for reflections in Bob’s device, which could allow Eve to
choose Bob’s basis by precisely timing her pulses such
that part of them reflects into the detectors in the cor-
rect time window for the chosen basis. This would require
Eve to have a very good characterisation of Bob’s device
and carries the risk of detection due to side-effects caused
by the part of the pulse that is not reflected. The second
attack, briefly introduced in [533] and then expanded on
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in [536], exploits detector efficiency mismatch (DEM).
This is where the detector corresponding to the outcome
0 has a different efficiency to the detector correspond-
ing to the outcome 1 (here we are considering setups in
which both bases are measured using the same pair of
detectors, with a phase modulator beforehand to deter-
mine the basis used; it is also possible to have DEM in a
setup in which four detectors are used) for some values
of a parameter. This parameter could be time or some
other parameter such as polarization, space or frequency.

If Bob’s detectors have DEM, a photon with a certain
value of the parameter (e.g. a certain polarization) would
be more likely to be detected by the detector giving the
value 0, if it were to hit it, than to be detected by the
detector giving the value 1, if it were to hit that detector
(or vice versa). Note, however, that in reality the photon
will only hit one of the detectors, depending on what
value it encodes. In the attack, Eve intercepts Alice’s
states and measures them in some basis. She then sends
a state to Bob in the opposite basis, with the timing
chosen such that Bob is likely to receive no result rather
than an error, reducing Bob’s error rate at the cost of
increasing loss (with the likelihood of this depending on
how mismatched the detector efficiencies are). We say
that one of Bob’s detectors has been blinded, since it is
less able to pick up signals.

Lydersen et al. [148] demonstrated the possibility of
using faked states to attack commercial QKD systems.
They blinded the detectors using a continuous wave laser,
exploiting the fact that APDs can be made to operate in
linear mode; in this mode, the detectors do not register
single photons. Eve sends in pulses to trigger Bob’s de-
tectors, and they will only give a result when he chooses
the same basis as Eve (with the result in this case being
the same as Eve’s value). Lydersen et al. [537] showed
that the APDs could also be blinded by heating them
using bright light. Yuan et al. [538, 539] argued that a
properly operated APD would be difficult to keep in lin-
ear mode and that faked states attacks of this type could
be identified by monitoring the photocurrent. Stipčević
et al. [534] showed that detector blinding attacks can be
treated as an attack on Bob’s random number genera-
tor, and suggested that an actively selected basis with a
four detector configuration (rather than using the same
two detectors to measure both bases) could mitigate the
effects of many types of blinding attack.

Qi et al. [540] suggested a different attack based on
DEM with the time parameter, which they called the
time-shift attack. In this attack, Eve does not attempt
to measure the signal state, but simply shifts the time
at which it enters Bob’s device, such that, if Bob has a
detection event, it is more likely to be one value than
another. For instance, if the detector corresponding to
the outcome 0 has a higher efficiency at some given time
than the detector corresponding to the outcome 1, Eve
can know that if the time of arrival of the pulse is shifted
such that it arrives at the detector at that particular
time, and the pulse is detected by one of the detectors, it

is more likely that the outcome was 0 than that it was 1.
The greater the DEM, the more information Eve can gain
about the key. This attack does not introduce any error
in the resulting key bits, and was shown to be practical
using current technology by Zhao et al. [541], who carried
out the attack on a modified commercial system.
In fact, there is no requirement that the DEM be pa-

rameterized by time. The detectors could be mismatched
over polarization, frequency or even spatially [542].
Sajeed et al. [527] and Rau et al. [543] both showed that
by altering the angle at which pulses enter Bob’s device,
it is possible to alter the relative sensitivity of the de-
tectors, since the angle of entry will determine the angle
at which the light hits the detectors, but small changes
in the configuration of the setup could lead to different
angles of incidence on each detector. The angle at which
the pulse hits the detector determines the surface area
of the detector that is hit by the pulse, and hence the
sensitivity of the detector.
One proposed countermeasure against attacks exploit-

ing DEM is for Bob to use a four detector configuration,
with the mapping of outcomes to detectors randomly
assigned each time. However, this configuration is still
vulnerable to a time-shift (or other DEM) attack, if the
attack is coupled with a THA on Bob’s device (which
learns the detector configuration after the measurement
has been carried out) [544]. A THA of this type is hard
for Bob to defend against, and making Bob’s device more
complicated by adding hardware safeguards risks open-
ing up more vulnerabilities for Eve to exploit, and so it is
desirable to find a software solution (i.e. to calculate the
key rate accounting for the possibility of DEM attacks).
Fung et al. [542] found a formula for the key rate in the

presence of a DEM for a very broad class of attacks, us-
ing a proof devised by Koashi [545]. Lydersen et al. [544]
generalized this proof slightly. Both formulae require a
thorough characterisation of the detector efficiencies over
possible values of the DEM parameter. This may be dif-
ficult for the trusted parties, especially since they may
not always know which parameters of the detector give
rise to DEM. Fei et al. [546] calculated the key rate of
BB84 with decoy states in the presence of DEM, using a
new technique based on treating the detection process as
a combination of the case in which there is no DEM and
the case in which there is complete DEM (i.e. for some
value of the parameter, there is 0% detection efficiency
for one detector, but not for the other, and vice versa for
some other value of the parameter). They then numeri-
cally simulated QKD in this case, and found that DEM
decreases the secure key rate.

B. Hacking CV-QKD protocols

The differences between the types of protocols and de-
vices used in DV and CV protocols mean that not all
hacking attacks on DV systems are directly applicable
to CV systems. Some vulnerabilities, such as attacks
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on the local oscillator (LO), are specific to CV proto-
cols, whilst some, such as THAs, are analogous to the
attacks used on DV protocols. An important practical
issue in the implementation of CV-QKD is calibration of
the equipment used. The shot-noise must be determined,
since it affects the parameter estimation. If this is not
carried out accurately, the security of CV QKD may be
undermined [547]. During calibration, the phase noise
introduced during modulation should be estimated. By
taking it into account in the security analysis, the key
rate can be increased, since the phase noise added by the
modulator can then be treated as trusted noise.

1. Attacks on the local oscillator

To carry out measurements of Alice’s signal states, Bob
interferes them with an LO. Due to the difficulty of main-
taining coherence between Alice’s source and Bob’s LO,
implementations of CV-QKD often send the LO through
the quantum channel. Since security proofs of CV-QKD
do not account for this (as it is not theoretically neces-
sary to send the LO through the channel), this leaves
open some side-channels, which Eve can exploit. Häseler
et al. [548] showed that the intensity of the LO must
be monitored, in order to prevent Eve from replacing
the signal state and LO with squeezed states, in such
a way as to disguise an intercept and resend attack, by
reducing the error relative to what the trusted parties
would expect for such an attack. Huang et al. [549]
and Ma et al. [550] proposed an attack on the LO based
on the wavelength-dependency of beamsplitters. They
found that by exploiting the wavelength-dependence of
the beamsplitters in Bob’s device, they could engineer
Bob’s outcomes, whilst preventing Bob from accurately
determining the LO intensity. Huang et al. proposed a
countermeasure in which a wavelength filter is applied
at random, and any difference in channel properties be-
tween the cases in which it is applied and not applied is
monitored.
Jouguet et al. [551] devised another attack on the

LO. This attack uses the fact that Bob’s clock is trig-
gered by the LO pulse. By changing the shape of the
LO pulse, Eve can delay the time at which the clock
is triggered. This can lead to Bob incorrectly calculat-
ing the shot-noise, and hence can allow Eve to carry
out an intercept and resend attack undetected. As a
countermeasure, Jouguet et al. suggest that Bob should
measure the shot-noise in real-time by randomly apply-
ing strong attenuation to the signal. Huang et al. [552]
built on this by showing that an attack exploiting the
wavelength-dependence of beamsplitters could be used to
defeat Bob’s attempt to measure the shot-noise in real-
time. However, they found that by adding a third atten-
uation value (rather than just on or off) to the strong
attenuation could prevent their attack. Xie et al. [553]
also found that a jitter effect in the clock signal can lead
to an incorrect calculation of the shot noise, and Zhao et

al. [554] identified a polarization attack where the eaves-
dropper attacks unmeasured LO pulses to control and
tamper with the shot-noise unit of the protocol.

In order to prevent LO attacks altogether, Qi et
al. [478] and Soh et al. [477] proposed and analyzed a way
in which Bob could generate the local oscillator locally
(LLO). Alice regularly sends phase reference pulses, and
Bob applies a phase rotation to his results during post-
processing, to ensure that they are in phase with Alice’s
source. Marie et al. [555] improved on this scheme, in or-
der to reduce the phase noise. Ren et al. [556] proposed
that even an LLO could be vulnerable to a hacking at-
tack if the trusted parties assume that the phase noise is
trusted, and cannot be used by Eve. In this case, Eve can
lower the phase noise, by increasing the intensity of the
phase reference pulses, and compensate for the reduced
phase noise by increasing her attack on the signal states,
so that the total noise on Bob’s measurements remains
the same.

2. Saturation attacks on detectors

Qin et al. [557] considered saturation attacks on Bob’s
homodyne detectors. Such attacks exploit the fact that
CV-QKD security proofs assume a linear relationship be-
tween the incoming photon quadratures and the mea-
surement results (that the quadrature value linearly cor-
responds to the measurement result), but in reality, ho-
modyne detectors have a finite range of linearity. Above
a certain quadrature value, homodyne detectors will sat-
urate, meaning that the measurement result will be the
same whether the quadrature value is at the threshold
level or above it. For instance, a quadrature value of 100
shot-noises could give the same measurement result as
a quadrature value of 200 shot-noises. Qin et al. con-
sidered exploiting this by using an intercept and resend
attack and then rescaling and displacing the measured
states (multiplying them by some factor and then adding
a constant displacement to them). By causing Bob’s mea-
surement results to partially overlap with the saturation
region, Eve can alter the distribution of measurement re-
sults, and so reduce the trusted parties’ error estimation.

Qin et al. [557] also proposed some countermeasures,
including the use of a Gaussian post-selection filter [558,
559] to try and ensure that the measurement results used
for key generation fall within the linear range of the de-
tector and the use of random attenuations of Bob’s signal,
to test whether the measurement results are linearly re-
lated to the inputs. Qin et al. [560] expanded on their
previous work, considering a slightly different attack in
which an incoherent laser is used to displace Bob’s mea-
surement results into the saturated range. They also
demonstrated saturation of a homodyne detector experi-
mentally and numerically simulated their attack to show
feasibility.
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3. Trojan horse attacks

CV protocols are also vulnerable to THAs [561]. By
sending Trojan states into Alice’s encoding device, Eve
can try to learn how the signal states have been modu-
lated, without disturbing the signal state itself. Derkach
et al. [562] considered a leakage mode side-channel in Al-
ice’s device. They modeled this side-channel as a beam-
splitter in Alice’s device, coupling the signal state to a
vacuum state after modulation. They also considered a
side-channel allowing Eve to couple an untrusted noise
to the signal state prior to detection. They then cal-
culated the resulting key rates for both coherent state
and squeezed state protocols, using reverse reconcilia-
tion. Derkach et al. suggest some countermeasures to
the sender side-channel based on manipulation of the in-
put vacuum state to the beamsplitter, and to the re-
ceiver side-channel based on measuring the output of
the coupled noise. They then expanded on their earlier
work [563], considering two types of side-channel leakage:
leakage after modulation of the signal state and leak-
age prior to modulation, but after squeezing of the sig-
nal state (in the squeezed state protocol). They allowed
multiple leakage modes from each side-channel. They
calculated the key rates for both direct and reverse rec-
onciliation, for side-channels of this type, and optimized
the squeezing for post-modulation leakage.

Pereira et al. [564] considered a THA on Alice, in the
coherent state protocol, in which Eve is able to send a
Trojan state with a bounded average photon number into
Alice’s box. This state is then modulated in a similar way
to the signal state and returned to Eve. The key rate and
security threshold are calculated, for reverse reconcilia-
tion. Active monitoring of incoming light is suggested
as a countermeasure. Ma et al. [565] considered a THA
on the two-way protocol, in which Eve sends a state into
Alice’s device, following Bob’s signal state, and then mea-
sures this state to gain information about the modulation
applied by Alice. They suggest the use of active moni-
toring to remove the Trojan state.

Part of the noise originating from the trusted parties’
devices can be assumed to be trusted and therefore not
under the control of an eavesdropper. Such trusted noise
could be the noise of the signal states (e.g. thermal noise
in thermal-state protocols), noise added by the modula-
tors or the noise of the detection. Trusted noise can have
different impacts on CV QKD depending on the recon-
ciliation direction. Trusted noise on the reference side of
the protocol can even be helpful due to decoupling Eve’s
systems from the information shared by the trusted par-
ties. On the other hand, noise on the remote side of
reconciliation protocols can be harmful for the protocols,
despite being trusted [381].

C. General considerations

A number of more general attacks exist, which can be
used against both DV or CV protocols (although much
of the current research has been focused on DV proto-
cols), based on altering the properties of the devices used.
These type of attacks can be used to create vulnerabili-
ties even in well-characterized devices.
Jain et al. [566] suggested and experimentally tested

an attack that Eve could carry out during the calibration
phase of a QKD protocol. The attack targets the system
whilst Bob is calibrating his detectors (for a DV proto-
col) using a line length measurement (LLM). Attacks of
this type are implementation dependent; in the system
under consideration, Jain et al. found that by changing
the phase of the calibration pulses sent by Bob during
the LLM, they could induce a DEM (in the time param-
eter). This would open up the system to other types of
attack (such as those previously mentioned), and would
be especially problematic, since the trusted parties would
not realise that Bob’s device was miscalibrated. Build-
ing on this, Fei et al. [567] found that by sending faked
calibration pulses during the LLM process, they could
induce DEM or basis-dependent DEM with high proba-
bility. Fei et al. suggest adding a system to allow Bob
to test his own device for calibration errors after the cal-
ibration process.
Even if an implementation is perfect, it could be pos-

sible for Eve to create vulnerabilities, by damaging com-
ponents of the trusted parties’ devices using a laser.
Bugge et al. [568] suggested that Eve could use a laser
to damage to components such as the detectors or any
active monitoring devices, allowing other attacks to be
enacted. They showed that APDs could be damaged
by intense laser light, reducing their detection efficiency
and hence permanently blinding them. This creates loop-
holes for Eve, without requiring her to continuously en-
sure that the detectors are kept blinded. Higher laser
powers rendered APDs completely non-functional; this
could be exploited by Eve if an APD were being used as
a monitoring device (e.g. for Trojan pulses). Makarov
et al. [569] demonstrated this on a commercial system
and then showed that they were able to melt a hole in a
spatial filter, meant to protect against spatial DEM.
Sun et al. [570] considered an attack on Alice’s source.

By shining a continuous wave laser onto Alice’s gain
medium, Eve is able to control the phase of Alice’s pulses.
This could open up loopholes for other attacks in both
DV and CV systems. Sun et al. suggest monitoring the
light leaving Alice’s source and the use of active phase
randomization.

D. Device-independence as a solution?

A conceptually different approach to dealing with side-
channels is the development of device-independent pro-
tocols (DI-QKD) [80], which can prevent a lot of side-
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channel attacks. As discussed in Section IV, this is a
type of QKD that allows for untrusted devices, which
could even have been produced by Eve. Schemes for
implementing DI-QKD have been designed for both the
DV [163] and the CV [571] cases. Where sources can be
trusted, measurement device-independent QKD (MDI-
QKD) schemes can be used instead. These have also been
designed for both the DV [176, 177] and the CV [182]
cases. DI- and MDI-QKD protocols are harder to im-
plement and so in general give lower key rates than
device-dependent protocols. In spite of improving se-
curity, neither are immune to attack. In all protocols
there is a requirement that Alice and Bob’s devices be
isolated from the outside world (in particular from Eve).
If there is a hidden channel that allows Eve to gain ac-
cess to measurement outcomes, then the key will not be
secure. MDI-QKD is also vulnerable to source imperfec-
tions, such as the previously-mentioned attack by Sun et
al. [570]. Therefore, device-independence cannot be seen
as a panacea for side-channels.

XI. LIMITS OF POINT-TO-POINT QKD

A. Overview

One of the crucial problems in QKD is to achieve long
distances at reasonably-high rates. However, since the
proposal of the BB84 protocol [77], it was understood
that this is a daunting task because even an ideal im-
plementation of this protocol (based on perfect single-
photon sources, ideal detectors and perfect error correc-
tion) shows a linear decay of the secret key rate R in
terms of the loss η in the channel, i.e., R = η/2. One
possible way to overcome the rate problem was to in-
troduce CV QKD protocols. Their ideal implementation
can in fact beat any DV QKD protocol at any distance,
even though current practical demonstrations can achieve
this task only for limited distances due to some imple-
mentation problems connected with finite reconciliation
efficiency and other technical issues.
One of the breakthrough in CV QKD was the introduc-

tion of the reverse reconciliation (RR) [373], where it is
Alice to infer Bob’s outcomes β, rather than Bob guessing
Alice’s encodings α, known as direct reconciliation (DR).
This led the CV QKD community to considering a modi-
fied Devetak-Winter rate [51] in RR. This takes the form
of I(α : β) − χ(E : β), where the latter is Eve’s Holevo
information on Bob’s outcomes. In a CV QKD setup,
where both the energy and the entropy may hugely vary
at the two ends of a lossy communication channel, there
may be a non-trivial difference between the two reconcil-
iation methods. Most importantly, it was soon realized
that RR allowed one to achieve much longer distances,
well beyond the 3dB limit of the previous CV approaches.
At long distances (i.e., small transmissivity η), an ideal
implementation of the CV QKD protocols proposed in
Refs. [376, 455] has rate R ≃ η/(2 ln 2) ≃ 0.72η. An

open question was therefore raised:

• What is the maximum key rate (secret key capac-
ity) achievable at the ends of a pure-loss channel?

With the aim of answering this question, a 2009 pa-
per [34] introduced the notion of reverse coherent infor-
mation (RCI) of a bosonic channel. This was quantity
was previously defined in the setting of DVs [385, 572].
It was called “negative cb-entropy of a channel” in
Ref. [572] and “pseudocoherent information” in Ref. [4];
Ref. [385] introduced the terminology of RCI and, most
importantly, it showed its fundamental use as lower
bound for entanglement distribution over a quantum
channel (thus extending the hashing inequality [51] from
states to channels). Ref. [34] extended the notion to CVs
where it has its more natural application.
Given a bosonic channel E , consider its asymptotic

Choi matrix σE := limµ σ
µ
E . This is defined over a se-

quence of Choi-approximating states of the form σµ
E :=

IA ⊗ EB(Φµ
AB), where Φµ

AB is a two-mode squeezed vac-
uum (TMSV) state [6] with n̄ = µ − 1/2 mean thermal
photons in each mode. Then, we define its RCI as [34]

IRCI(E) := lim
µ
I(A〈B)σµ

E
, (126)

I(A〈B)σµ
E
:= S[TrB(σ

µ
E )]− S(σµ

E ), (127)

with S(σ) := −Tr(σ log2 σ) is the von Neumann entropy
of σ. Here first note that, by changing TrB with TrA
in Eq. (127), one defines the coherent information of a
bosonic channel [34], therefore extending the definition
of Refs. [573, 574] to CV systems. Also note that IRCI(E)
is easily computable for a bosonic Gaussian channel, be-
cause σµ

E would be a two-mode Gaussian state.
Operationally, the RCI of a bosonic channel repre-

sents a lower bound for its secret key capacity and, more
weakly, its entanglement distribution capacity [34]. A
powerful CV QKD protocol reaching the RCI of a bosonic
channel consists of the following steps:

• Alice sends to Bob the B-modes of TMSV states
Φµ

AB with variance µ.

• Bob performs heterodyne detections of the output
modes sending back a classical variable to assist
Alice.

• Alice performs an optimal and conditional joint de-
tection of all the A-modes.

The achievable rate can be computed as a difference
between the Alice Holevo information χ(A : β) and Eve’s
Holevo information χ(E : β) on Bob’s outcomes. Note
that this is not a Devetak-Winter rate (in RR) but rather
a generalization, where the parties’ mutual information
is replaced by the Holevo bound. Because Eve holds the
entire purification of σµ

E , her reduced state ρE has en-
tropy S(ρE) = S(σµ

E ). Then, because Bob’s detections
are rank-1 measurements (projecting onto pure states),
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Alice and Eve’s global state ρAE|β conditioned to Bob’s
outcome β is pure. This means that S(ρE|β) = S(ρA|β).
As a result, Eve’s Holevo information becomes

χ(E : β) := S(ρE)− S(ρE|β) = S(σµ
E )− S(ρA|β). (128)

On the other hand, we also write

χ(A : β) := S(ρA)− S(ρA|β), (129)

where ρA := TrB(σ
µ
E ) and ρA|β is conditioned to Bob’s

outcome. As a result we get the following achievable rate

Rµ(E) := χ(A : β)− χ(E : β) = I(A〈B)σµ
E
. (130)

By taking the limit for large µ, this provides the key
rate R(E) := limµR

µ(E) = IRCI(E), so that the secret
key capacity of the channel can be bounded as

K(E) ≥ IRCI(E) . (131)

In particular, for a pure-loss channel Eη with transmis-
sivity η, we may write [34]

K(Eη) ≥ IRCI(Eη) = − log2(1− η). (132)

At long distances η ≃ 0, this achievable key rate decays
as ≃ η/ ln 2 ≃ 1.44η bits per channel use.
With the aim of providing an upper bound to the key

rate of CV QKD protocols, in 2014 Ref. [575] introduced
the Takeoka-Guha-Wilde (TGW) bound by employing
the notion of squashed entanglement [576] for a bosonic
channel. This led to the upper bound

K(Eη) ≤ log2

(

1 + η

1− η

)

, (133)

which is ≃ 2.88η bits per use at long distances. By com-
paring the lower bound in Eq. (132) and the upper bound
in Eq. (133), we see the presence of a gap.
This gap was finally closed in 2015 by Ref. [33]

which derived the Pirandola-Laurenza-Ottaviani-Banchi
(PLOB) upper bound for the pure-loss channel

K(Eη) ≤ − log2(1− η). (134)

This was done by employing the relative entropy of entan-
glement (REE) [577–579], suitably extended to quantum
channels, combined with an adaptive-to-block reduction
of quantum protocols. As a result, Ref. [33] established
the secret key capacity of the pure-loss channel to be

K(Eη) = − log2(1 − η) ≃ 1.44η (at high loss). (135)

This capacity cannot be beaten by any point-to-point
QKD protocol at the two ends of the lossy channel. It can
only be outperformed if Alice and Bob pre-share some se-
cret randomness or if there is a quantum repeater split-
ting the quantum communication channel and assisting
the remote parties. For this reason, the PLOB bound not
only completely characterizes the fundamental rate-loss

scaling of point-to-point QKD but also provides the exact
benchmark for testing the quality of quantum repeaters.
Note that a weaker version of the PLOBmay also be writ-
ten by explicitly accounting for the overall detector effi-
ciency ηdet of a protocol. This corresponds to Alice and
Bob having a composite channel of transmissivity ηdetη,
so that the PLOB bound weakens to − log2(1 − ηdetη).
Soon after the introduction of the PLOB bound, in

early 2016 Ref. [39] (later published as Ref. [40]) estab-
lished the secret key capacities achievable in chains of
quantum repeaters and, more generally, quantum net-
works connected by pure-loss channels. In particular,
in the presence of a single repeater, in the middle be-
tween the remote parties and splitting the overall pure-
loss channel Eη of transmissivity η, one finds the following
single-repeater secret key capacity

K1rep(Eη) = − log2(1 −
√
η). (136)

In Fig. 11 we show the ideal key rates of state-of-
the-art point-to-point and relay-assisted QKD protocols,
compared with the PLOB bound of Eq. (135) and the
single-repeater bound of Eq. (136). By ideal rates we
mean the optimal ones that can be computed assuming
zero dark counts, perfect detector efficiency, zero mis-
alignment error, as well as perfect error correction and
reconciliation efficiency. Point-to-point protocols cannot
beat the PLOB bound and asymptotically scales as ≃ η
bits per channel use. This is the case for the BB84 pro-
tocol (both with single-photon sources and decoy-state
implementation) and one-way CV-QKD protocols. Even
though MDI-QKD is relay assisted, its relay is not effi-
cient (i.e., it does not repeat), which is why DV-MDI-
QKD is below the PLOB bound. After TF-QKD was
introduced, a number of TF-inspired relay-assisted pro-
tocols were developed, all able to beat the PLOB bound.
The middle relays of these protocols are efficient (i.e.,
they repeat). Their key rates cannot overcome the single
repeater bound, but clearly follow its asymptotic rate-
loss scaling of ≃ √

η bits per channel use.
In the following subsections, we provide the main

mathematical definitions, tools, and formulas related to
the study of the ultimate limits of point-to-point QKD
protocols over an arbitrary quantum channel. Then, in
subsequent Sec. XII we discuss the extension of these re-
sults to repeater-assisted quantum communications.

B. Adaptive protocols and two-way assisted
capacities

Let us start by defining an adaptive point-to-point pro-
tocol P through a quantum channel E . Assume that Alice
has register a and Bob has register b. These registers are
(countable) sets of quantum systems which are prepared
in some state ρ0ab by an adaptive LOCC Λ0 applied to
some fundamental separable state ρ0a⊗ ρ0b. Then, for the
first transmission, Alice picks a system a1 ∈ a and sends
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FIG. 11. State of the art in high-rate QKD. We plot the ideal key rates of several point-to-point and relay-assisted protocols with
respect to the PLOB bound [33] of Eq. (135) and the single-repeater bound [39, 40] of Eq. (136). The key rates are expressed in
terms of bits per channel use and plotted versus distance (km) at the standard fiber-loss rate of 0.2 dB per km. In particular,
below the PLOB bound we consider: (CV) One-way coherent-state protocol with heterodyne detection [376], which coincides
with the most asymmetric protocol for CV-MDI-QKD [182]. For long distances, the rate scales as 1/2 of the PLOB bound.
The same asymptotic scaling is found for the coherent-state protocol with homodyne detection [455]; (1ph-BB84) The ideal
BB84 protocol, implemented with single-photon sources [77]. This achieves the ideal rate of η/2; (decoy-BB84) BB84 protocol
implemented with weak coherent pulses and decoy states achieving the ideal rate of η/(2e); (DV-MDI) Ideal implementation
of a passive MDI-QKD node [176, 177]. In particular, we plot the ideal performance of decoy state DV-MDI-QKD [177] with a
rate of η/(2e2). Then, we consider relay-assisted protocols able to beat the PLOB bound. In particular: (TF) Twin-field QKD
protocol [183]; (PM) phase-matching QKD protocol [185]; (SNS) sending or not sending version of TF-QKD [187]; (AOPP)
Active odd-parity pair protocol [190], which is an improved formulation of the SNS protocol; (NPPTF) No-phase-postselected
TF-QKD protocol [191], including the variant of Ref. [195] with improved rate at short distances (blue dashed line).

it through channel E ; at the output, Bob receives a sys-
tem b1 which is included in his register b1b → b. Another
adaptive LOCC Λ1 is applied to the registers. Then,
there is the second transmission a ∋ a2 → b2 through E ,
followed by another LOCC Λ2 and so on (see Fig. 12). Af-
ter n uses, Alice and Bob share an output state ρnab which
is epsilon-close to some target state φn with nRε

n bits.
This means that, for any ε > 0, one has ‖ρnab − φn‖ ≤ ε
in trace norm. This is also called an (n,Rε

n, ε)-protocol.
Operationally, the protocol P is completely characterized
by the sequence of adaptive LOCCs L = {Λ0,Λ1 . . .}.
The (generic) two-way assisted capacity of the quan-

tum channel is defined by taking the limit of the asymp-
totic weak-converse rate limε,nR

ε
n and maximizing over

all adaptive protocols P , i.e.,

C(E) := sup
P

lim
ε

lim
n
Rε

n. (137)

The specification of the target state φn identifies a corre-
sponding type of two-way capacity. If φn is a maximally-
entangled state, then we have the two-way entanglement-
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FIG. 12. Point-to-point adaptive protocol. Each transmission
ai → bi through the quantum channel E is interleaved by
two adaptive LOCCs, Λi−1 and Λi, applied to Alice’s and
Bob’s local registers a and b. After n transmissions, Alice
and Bob share an output state ρnab close to some target state
φn. Adapted with permission from Ref. [389] c©IOPP (2018).

distribution capacity D2(E). The latter is in turn equal
to the two-way quantum capacity Q2(E), because trans-
mitting qubits is equivalent to distributing ebits under
two-way CCs. If φn is a private state [580], then we have
the secret key capacityK(E) and we haveK(E) ≥ D2(E),
because a maximally-entangled state is a particular type
of private state. Also note that K(E) = P2(E), where
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P2 is the two-way private capacity, i.e., the maximum
rate at which Alice may deterministically transmit secret
bits [581]. Thus, we may write the chain of (in)equalities

D2(E) = Q2(E) ≤ K(E) = P2(E). (138)

C. General weak-converse upper bound

The two-way capacity C(E) [i.e., any of the capacities
in Eq. (138)] can be bounded by a general expression in
terms of the REE [577–579]. First of all, recall that the
REE of a quantum state σ is given by

ER(σ) = inf
γ∈SEP

S(σ||γ), (139)

where γ is a separable state and S is the quantum relative
entropy, defined by [577]

S(σ||γ) := Tr [σ(log2 σ − log2 γ)] . (140)

The notion of REE can be extended to an asymptotic
state σ := limµ σ

µ, which is defined as a limit of a se-
quence of states σµ (e.g., this is the case for energy un-
bounded states of CV systems). In this case, we may
modify Eq. (139) into the following expression

ER(σ) := inf
γµ

lim inf
µ→+∞

S(σµ||γµ), (141)

where γµ is sequence of separable states that converges

in trace-norm, i.e., such that ||γµ − γ|| µ→ 0 for some
separable γ, and the inferior limit comes from the lower
semi-continuity of the quantum relative entropy (valid at
any dimension, including for CV systems [2]).
With these notions in hand, we may write a general

upper bound. In fact, for any quantum channel E (at
any dimension, finite or infinite), we have [33]

C(E) ≤ E⋆

R (E) := sup
P

lim
n

ER(ρ
n
ab)

n
, (142)

where E⋆

R (E) is defined by computing the REE of the
output state ρnab, taking the limit for many channels uses,
and optimizing over all the adaptive protocols P .

To simplify the REE bound E⋆

R (E) into a single-letter
quantity, we adopt a technique of adaptive-to-block re-
duction or protocol “stretching” [33, 389, 582]. A pre-
liminary step consists in using a suitable simulation of
the quantum channel, where the channel is replaced by
a corresponding resource state. Then, this simulation
argument can be exploited to stretch the adaptive pro-
tocol into a much simpler block-type protocol, where the
output is decomposed into a tensor product of resource
states up to a trace-preserving LOCC.

D. LOCC simulation of quantum channels

Given an arbitrary quantum channel E , we may con-
sider a corresponding simulation S(E) = (T , σ) based on

some LOCC T and resource state σ. This simulation is
such that, for any input state ρ, the output of the channel
can be expressed as

E(ρ) = T (ρ⊗ σ). (143)

See also Fig. 13. A channel E which is simulable as in
Eq. (143) can also be called “σ-stretchable”. Note that
there are different simulations for the same channel. One
is trivial because it just corresponds to choosing σ as
a maximally-entangled state and T as teleportation fol-
lowed by E completely pushed in Bob’s LO. Therefore,
it is implicitly understood that one has to carry out an
optimization over these simulations, which also depend
on the specific functional under study.
More generally, the simulation can be asymptotic, i.e.,

we may consider sequences of LOCCs T µ and resource
states σµ such that [33]

E(ρ) = lim
µ

Eµ(ρ), Eµ(ρ) := T µ(ρ⊗ σµ). (144)

In other words a quantum channel E may be defined as
a point-wise limit of a sequence of approximating chan-
nels Eµ that are simulable as in Eq. (144). We call
(T , σ) := limµ(T µ, σµ) the asymptotic simulation of E .
This generalization is crucial for bosonic channels and
some classes of DV channels. Furthermore, it may re-
produce the simpler case of Eq. (143). Note that both
Eq. (143) and (144) play an important role in quantum
resource theories (e.g., see also Eq. (54) of Ref. [584]).
Given an asymptotic simulation of a quantum channel,

the associated simulation error is correctly quantified in
terms of the energy-constrained diamond (ECD) norm.
Consider the compact set of energy-constrained states

DN̄ := {ρab | Tr(N̂ρAB) ≤ N̄}, (145)

where N̄ is the total multi-mode number operator. For
two bosonic channels, E and E ′, and N̄ mean number of
photons, we define the ECD distance as [33, Eq. (98)]

‖E − E ′‖⋄N̄ := sup
ρAB∈DN̄

‖IA ⊗ E(ρAB)− IA ⊗ E ′(ρAB)‖1 .

(146)
(See also Ref. [583] for a slightly different definition,
where the constraint is only enforced on the B part.)
The condition in Eq. (144) means that, for any finite N̄ ,
we may write the bounded-uniform convergence

‖E − Eµ‖⋄N̄
µ→ 0. (147)

Since the first teleportation-based simulation of Pauli
channels introduced in Ref. [585, Section V], the tool
of channel simulation has been progressively developed
over the years thanks to the contributions of several au-
thors [586–591] and it is still today a topic of improve-
ments and generalizations (e.g., see Table I in Ref. [389]).
Here we have presented the most general formulation for
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FIG. 13. LOCC simulation of an arbitrary quantum chan-
nel E by means of an LOCC T applied to the input state ρ
and a resource state σ, according to Eq. (143). For asymp-
totic simulation, we have the approximate channel Eµ which
is simulated by (T µ, σµ). We then take the point-wise limit
for infinite µ, which defines the asymptotic channel E as in
Eq. (144).

the LOCC simulation of a quantum channel at any di-
mension (finite or infinite) as it has been formalized in
Ref. [33]. This formulation enables one to deterministi-
cally simulate the amplitude damping (AD) channel.
As a matter of fact, today we only know asymptotic

simulations for the AD channel which either involves a
limit in the dimension of the Hilbert space or a limit in
the number of systems forming the resource state (e.g.,
implementing port-based teleportation [592–595] over an
infinite number of Choi matrices [596]). It is an open
problem to find a deterministic and non-asymptotic simu-
lation for this channel, which would provide a better esti-
mate of its secret key capacity, today still unknown. Also
note that the tool of conditional channel simulation [597]
seems to fail to simulate the AD channel, while it can
easily simulate a diagonal amplitude damping (“DAD”)
channel or a “dephrasure” channel [598].
Finally, note that the LOCC simulation is also useful

to simplify adaptive protocols of quantum metrology and
quantum channel discrimination [599]. See Ref. [600] for
a review on adaptive quantum metrology and Ref. [601]
for a recent review on quantum channel discrimination
with applications to quantum illumination [602, 603],
quantum reading [604] and optical resolution [605–607].

E. Teleportation covariance and simulability

For some channels, the LOCC simulation takes a very
convenient form. This is the case for the “teleportation
covariant” channels, that are those channels commuting
with the random unitaries of quantum teleportation [15–
18], i.e., Pauli operators in DVs [1], phase-space displace-
ments in CVs [6, 7]. More precisely, a quantum channel E
is called teleportation covariant if, for any teleportation
unitary U , we may write

E(UρU †) = V E(ρ)V † , (148)

for another (generally-different) unitary V . This prop-
erty was discussed in Ref. [590, 591] for DV systems and
then in Ref. [33] for systems of any dimension.

Note that this is a wide family, which includes Pauli
channels (e.g., depolarizing or dephasing), erasure chan-
nels and bosonic Gaussian channels. Thanks to the prop-
erty in Eq. (148), the random corrections of the tele-
portation protocol can be pushed at the output of these
channels. For this reason, they may be simulated by
teleportation. In fact, a teleportation-covariant channel
E can be simulated as

E(ρ) = Ttele(ρ⊗ σE), (149)

where Ttele is a teleportation LOCC (based on Bell detec-
tion and conditional unitaries) and σE is the Choi matrix
of the channel, defined as σE := I ⊗ E(Φ), with Φ being
a maximally entangled state.
For single-mode bosonic channels (Gaussian or non-

Gaussian), we may write the asymptotic simulation [33]

E(ρ) = lim
µ

T µ
tele(ρ⊗ σµ

E ), (150)

where T µ
tele is a sequence of teleportation-LOCCs (based

on finite-energy versions of the ideal CV Bell detection)
and σµ

E := I⊗E(Φµ) is a sequence of Choi-approximating
states (recall that Φµ is a TMSV state with n̄ = µ− 1/2
mean thermal photons in each mode).
When a quantum channel can be simulated as in

Eq. (149) or (150) may be called “Choi-stretchable” or
“teleportation simulable”. Let us also mention that,
recently, non-asymptotic types of teleportation simula-
tions have been considered for bosonic Gaussian chan-
nels [582, 608–610]. These simulations remove the limit
in the resource state (while the infinite-energy limit is still
assumed in the CV Bell detection). It has been found
that these simulations cannot provide tight results for
quantum and private capacities as the asymptotic one
in Eq. (150), as long as the energy of the resource state
remains finite [611].

F. Strong and uniform convergence

An important point here is to evaluate the quality of
the simulation of Eq. (150) for bosonic channels. It is
known that the Braunstein-Kimble (BK) protocol for
continuous-variable teleportation [16–18] strongly con-
verges to the identity channel in the limit of infinite
squeezing (both in the resource state and in the Bell de-
tection). In other words, for any input state ρ, we may
write the point-wise limit

lim
µ

T µ
tele(ρ⊗ Φµ) = I(ρ). (151)

Because of this, the channel simulation of any
teleportation-covariant bosonic channel strongly con-
verges to the channel. This condition can be expressed
in terms of the ECD norm, so that for any finite N̄ we
may write

‖E − T µ
tele(ρ⊗ σµ

E )‖⋄N̄
µ→ 0. (152)
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However, it is also known that the BK protocol does
not converge uniformly to the identity channel [389]. In
other words, if we consider the standard diamond norm
which is defined over the entire set D of bipartite states,
then we have

‖I − T µ
tele(ρ⊗ Φµ)‖⋄

µ→ 2. (153)

For this reason, the uniform convergence in the telepor-
tation simulation of bosonic channels is not guaranteed.
However, it can be explicitly proven to hold for specific
types of bosonic Gaussian channels.
Recall that a single-mode Gaussian channel transforms

the characteristic function as follows [612]

G : χ(ξ) → χ(Tξ) exp
(

− 1
2ξ

TNξ + idT ξ
)

, (154)

where d ∈ R
2 is a displacement, while the transmission

matrix T and the noise matrix N are 2 × 2 real, with
NT = N ≥ 0 and detN ≥ (detT− 1)2. In terms of
mean value x̄ and covariance matrix V, Eq. (154) corre-
sponds to [6, 612–614]

x̄ → Tx̄+ d, V → TVTT +N. (155)

Then, the asymptotic simulation of a single-mode Gaus-
sian channel uniformly converges to the channel if and
only if the channel’s noise matrix N has full rank. As
a specific case, this is true for phase-insensitive channels
having diagonalT andN. See [615, 616] for other details.

G. Stretching of an adaptive protocol

By exploiting the LOCC simulation S(E) = (T , σ) of
a quantum channel E , we may completely simplify an
adaptive protocol. In fact, the output state ρnab can be
decomposed into a tensor-product of resources states σ⊗n

up to a trace-preserving LOCC Λ̄. In other words, we
may write [33, Lemma 3]

ρnab = Λ̄
(

σ⊗n
)

. (156)

For non-asymptotic simulations the proof goes as follows.
As shown in Fig. 14, for the generic ith transmission, we
replace the original quantum channel E with a simulation
S(E) = (T , σ). Then, we collapse the LOCC T into
the adaptive LOCC Λi to form the composite LOCC ∆i.
As a result, the pre-transmission state ρi−1

ab := ρaaib is
transformed into the following post-transmission state

ρiab = ∆i

(

ρi−1
ab ⊗ σ

)

. (157)

The next step is to iterate Eq. (157). One finds

ρnab = (∆n ◦ · · · ◦∆1)(ρ
0
ab ⊗ σ⊗n). (158)

Because ρ0ab is separable, its preparation may be included
in the LOCCs and we get Eq. (156) for a complicated but
single trace-preserving LOCC Λ̄.

For a bosonic channel with asymptotic simulation as
in Eq. (144), the procedure is more involved. One
first considers an imperfect channel simulation Eµ(ρ) :=
T µ(ρ⊗ σµ) in each transmission. By adopting this sim-
ulation, we realize an imperfect stretching of the pro-
tocol, with output state ρµ,nab := Λ̄µ (σ

µ⊗n) for a trace-
preserving LOCC Λ̄µ. This is done similarly to the steps
in Fig. 14, but considering Eµ in the place of the original
channel E . A crucial point is now the estimation of the
error in the channel simulation, which must be controlled
and propagated to the output state. Assume that, dur-
ing the n transmissions of the protocol, the total mean
number of photons in the registers is bounded by some
large but finite value N̄ . By using a “peeling argument”
over the trace distance, which exploits the triangle in-
equality and the monotonicity under completely-positive
maps, we may write the output simulation error in terms
of the channel simulation error, i.e., [33, 389, 599]

‖ρnab − ρn,µab ‖ ≤ n ‖E − Eµ‖⋄N̄ . (159)

Therefore, we may write the trace-norm limit
∥

∥ρnab − Λ̄µ

(

σµ⊗n
)∥

∥

µ→ 0, (160)

i.e., the asymptotic stretching ρnab = limµ Λ̄µ(σ
µ⊗n).

This is true for any finite energy bound N̄ , an assumption
that can be removed at the very end of the calculations.
Let us note that protocol stretching simplifies an ar-

bitrary adaptive protocol over an arbitrary channel at
any dimension, finite or infinite. In particular, it works
by maintaining the original communication task. This
means that an adaptive protocol of quantum communi-
cation (QC), entanglement distribution (ED) or key gen-
eration (KG), is reduced to a corresponding block proto-
col with exactly the same original task (QC, ED, or KG),
but with the output state being decomposed in the form
of Eq. (156) or Eq. (160). In the literature, there were
precursory arguments, as those in Refs. [585, 587–591],
which were about the transformation of a protocol of QC
into a protocol of ED, over restricted classes of quantum
channels. Most importantly, no control of the simulation
error was considered in previous literature.

H. Single-letter upper bound for two-way assisted
capacities

A crucial insight from Ref. [33] has been the combina-
tion of protocol stretching with the REE, so that its prop-
erties of monotonicity and sub-additivity can be power-
fully exploited. This is the key observation that leads to
a single-letter upper bound for all the two-way capacities
of a quantum channel. In fact, let us compute the REE of
the output state decomposed as in Eq. (156). We derive

ER(ρ
n
ab)

(1)

≤ ER(σ
⊗n)

(2)

≤ nER(σ) , (161)

using (1) the monotonicity of the REE under trace-
preserving LOCCs and (2) its subadditive over tensor
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FIG. 14. Stretching of the ith transmission of an adaptive protocol. (a) We depict the original transmission through the channel
E which transforms the register state ρi−1

ab
:= ρaaib

into the output ρiab. (b) We simulate the channel by means of an LOCC
T and a resource state σ, as in previous Fig. 13. (c) We collapse T and the adaptive LOCC Λi into a single LOCC ∆i applied
to the tensor product ρi−1

ab
⊗ σ, as in Eq. (157 ). Adapted with permission from Ref. [33] c©NPG (2017).

products. By replacing Eq. (161) in Eq. (142), we then
find the single-letter upper bound

C(E) ≤ ER(σ) . (162)

In particular, if the channel E is teleportation-covariant,
it is Choi-stretchable, and we may write

C(E) ≤ ER(σE ) = ER(E) := sup
ρ
ER [I ⊗ E(ρ)] , (163)

whereER(E) is the REE of the channel E [33, Theorem 5].
These results are suitable extended to asymptotic

simulations. Using the weaker definition of REE in
Eq. (141), the bounds in Eqs. (162) and (163) are also
valid for bosonic channels with asymptotic simulations.
For a bosonic Gaussian channel E , the upper bound in
Eq. (163) is expressed in terms of its asymptotic Choi ma-
trix σE := limµ σ

µ
E . By inserting Eq. (141) in Eq. (163),

we derive

C(E) ≤ Φ(E) ≤ lim inf
µ→+∞

S(σµ
E ||γ̃µ) , (164)

for a suitable converging sequence of separable states γ̃µ.
Here σµ

E := I ⊗ E(Φµ) is Gaussian and also γ̃µ can be
chosen to be Gaussian, so that we are left with a simple
computation of relative entropy between Gaussian states.
In related investigations, Ref. [617] found that the

weak converse upper bound ER(E) in Eq. (163) is also a
strong converse rate, while Ref. [618] found that replac-
ing the REE with the max-relative entropy of entangle-
ment the strong converse bound can be written for any
quantum channel (but the resulting bound is generally
larger).

I. Bounds for teleportation-covariant channels

Because the upper bounds in Eqs. (163) and (164) are
valid for any teleportation-covariant channel, they may
be applied to Pauli channels and bosonic Gaussian chan-
nels. Consider a qubit Pauli channel

EPauli(ρ) = p0ρ+ p1XρX + p2Y ρY + p3ZρZ, (165)

where {pk} is a probability distribution and X , Y , and
Z are Pauli operators [1]. Let us call H2 the binary
Shannon entropy and pmax := max{pk}. Then, we may
write [33, Eq. (33)]

C(EPauli) ≤











1−H2(pmax), if pmax ≥ 1/2,

0, if pmax < 1/2,

(166)

which can be easily generalized to arbitrary finite dimen-
sion (qudits).
Consider now phase-insensitive Gaussian channels.

The most important is the thermal-loss channel Eη,n̄
which transforms input quadratures x̂ = (q̂, p̂)T as x̂ →√
ηx̂ +

√
1− ηx̂E , where η ∈ (0, 1) is the transmissivity

and E is the thermal environment with n̄ mean photons.
For this channel, we may derive [33, Eq. (23)]

C(Eη,n̄) ≤











− log2 [(1 − η)ηn̄]− h(n̄), if n̄ < η
1−η ,

0, if n̄ ≥ η
1−η ,

(167)
where we have set

h(x) := (x+ 1) log2(x+ 1)− x log2 x. (168)

The thermal-loss channel is particularly important for
QKD. From the variance parameter ω = n̄ + 1/2, we
define the so-called “excess noise” ε of the channel ω =
(1− η)−1ηε+ 1/2,which leads to

ε = η−1(1− η)n̄. (169)

Then, for a generic QKD protocol, we may write its rate
as R = R(η, ε). The security threshold of the proto-
col is therefore obtained for R = 0 and expressed as
ε = ε(η), providing the maximum tolerable excess noise
as a function of the transmissivity. An open question is
to find the optimal security threshold in CV-QKD. From
Eq. (167), it is easy to see that this must be lower than
the entanglement-breaking value εUB = 1. In terms of
lower bounds, we may consider the RCI which is however
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beaten by QKD protocols with trusted noise or two-way
quantum communication. The highest security thresh-
olds known in CV-QKD are plotted in Fig. 15, where
we may also note the big gap between the best-known
achievable thresholds and the upper bound.
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FIG. 15. Best-known security thresholds in CV-QKD ex-
pressed as maximum tolerable excess noise ε versus channel
loss (dB). Each protocol is secure only below its threshold.
The red line corresponds to the upper bound εUB = 1. The
blue line is the lower bound εLB computed from the RCI of the
thermal-loss channel [34]. The black dashed line is the best-
known security threshold, which is achieved by the one-way
trusted noise protocol described in Ref. [389, Sec. VII]. Then,
we show the thresholds for the one-way coherent-state proto-
col with heterodyne detection [376] and the two-way proto-
cols with coherent states [395] (solid line) and largely-thermal
states [413] (green dashed line). Reproduced with permission
from Ref. [389] c©IOPP (2018).

For a noisy quantum amplifier Eg,n̄ we have the trans-
formation x̂ → √

gx̂+
√
g − 1x̂E , where g > 1 is the gain

and E is the thermal environment with n̄ mean photons.
In this case, we may compute [33, Eq. (26)]

C(Eη,n̄) ≤















log2

(

gn̄+1

g − 1

)

− h(n̄), if n̄ < (g − 1)−1,

0, if n̄ ≥ (g − 1)−1.
(170)

Finally, for an additive-noise Gaussian channel Eξ, we
have x̂ → x̂ + (z, z)T where z is a classical Gaussian
variable with zero mean and variance ξ ≥ 0. In this case,
we have the bound [33, Eq. (29)]

C(Eξ) ≤











ξ−1
ln 2 − log2 ξ, if ξ < 1,

0, if ξ ≥ 1

(171)

J. Capacities for distillable channels

Within the class of teleportation-covariant channels,
there is a sub-class for which the upper bound ER(σE ) in
Eq. (163) coincides with an achievable rate for one-way
entanglement distillation. These “distillable channels”
are those for which we may write

ER(σE ) = D1(σE), (172)

where D1(σE ) is the distillable entanglement of the Choi
matrix σE via one-way (forward or backward) CC. This
quantity is also suitably extended to asymptotic Choi
matrices in the case of bosonic channels.
The equality in Eq. (172) is a remarkable coincidence

for three reasons:

1. Since D1(σE) is a lower bound to D2(E), all the
two-way capacities of these channels coincide (D2 =
Q2 = K = P2) and are fully established as

C(E) = ER(σE) = D1(σE ). (173)

2. The two-way capacities are achieved by means of
rounds of one-way CC, so that adaptiveness is not
needed and the amount of CC is limited.

3. Because of the hashing inequality, we have

D1(σE ) ≥ max{IC(σE ), IRC(σE )}, (174)

where IC and IRC are the coherent [573, 574] and
reverse coherent [34, 385] information of the Choi
matrix. Such quantities (and their asymptotic ver-
sions) are easily computable and may be used to
show the coincidence in Eq. (173).

In this way we can write simple formulas for the two-
way capacities of fundamental quantum channels, such as
the pure-loss channel, the quantum-limited amplifier, the
dephasing and erasure channels (all distillable channels).
In particular, for a bosonic pure-loss channel Eη with

transmissivity η, one has the PLOB bound [33, Eq. (19)]

C(η) = − log2(1− η) . (175)

The secret-key capacity K(η) determines the maximum
rate achievable by any QKD protocol in the presence of
a lossy communication line (see also Fig. 11). Note that
the PLOB bound can be extended to a multiband lossy
channel, for which we write C = −∑i log2(1− ηi), where
ηi are the transmissivities of the various bands or fre-
quency components. For instance, for a multimode tele-
com fibre with constant transmissivity η and bandwidth
W , we have

C = −W log2(1− η). (176)
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Now consider the other distillable channels. For a
quantum-limited amplifier Eg with gain g > 1 (and zero
thermal noise n̄ = 0), one finds [33, Eq. (28)]

C(g) = − log2
(

1− g−1
)

. (177)

In particular, this proves that Q2(g) coincides with the
unassisted quantum capacity Q(g) [619, 620]. For a qubit
dephasing channel Edeph

p with dephasing probability p,
one finds [33, Eq. (39)]

C(p) = 1−H2(p) , (178)

where H2 is the binary Shannon entropy. Note that this
also proves Q2(Edeph

p ) = Q(Edeph
p ), where the latter was

derived in ref. [621]. Eq. (178) can be extended to arbi-
trary dimension d, so that [33, Eq. (41)]

C(p, d) = log2 d−H({Pi}) , (179)

where H is the Shannon entropy and Pi is the probability
of i phase flips. Finally, for the qudit erasure channel
Eerase
p,d with erasure probability p, one finds [33, Eq. (44)]

C(p) = (1 − p) log2 d . (180)

For this channel, only Q2 was previously known [622],
while [33, 623] co-established K.

K. Open problems

There are a number of open questions that are cur-
rently subject of theoretical investigation. While the se-
cret key capacity has been established for a number of
important channels, there are others for which the gap
between best-known lower bound and best-known upper
bound is still open. This is the case for the thermal-
loss channel, the noisy quantum amplifier, the additive-
noise Gaussian channel, the depolarizing channel, and
the amplitude damping channel. For most of these chan-
nels, an improvement may come from refined calculations
(e.g., including non-Gaussian states in the optimization
of the REE, or by employing the regularized REE). As
we already mentioned before, for the amplitude damping
channel the problem is also its LOCC simulation, which
is not good enough to provide a tight upper bound. Re-
cently this simulation has been improved in the setting
of DVs by resorting to the convex optimization of pro-
grammable quantum processors [624, 625], e.g., based on
the port-based teleportation protocol [592, 596].
For the thermal-loss channel, we also know that the

lower bound to the secret key capacity given by the RCI is
not tight. There are in fact QKD protocols with trusted-
noise in the detectors whose rates may beat the RCI, as
shown in Refs. [34, 387]. Similarly, for the noisy ampli-
fier, we know [388] trusted-noise protocols that are able
to beat the CI of the channel, which is therefore not tight.
The non-tightness of the CI (and RCI) is also a feature

in the computation of energy-constrained quantum ca-
pacities of bosonic Gaussian channels [626]. An interest-
ing approach to bound the quantum capacities of these
channels has been recently pursued in Refs. [627–629] by
using the Gottesman-Preskill-Kitaev (GKP) states [630],
realizable with various technologies [631–635].

XII. REPEATER CHAINS AND QUANTUM
NETWORKS

A. Overview

In order to overcome the fundamental rate-loss scal-
ing of QKD, one needs to design a multi-hop network
which exploits the assistance of quantum repeaters. In
an information-theoretic sense, a quantum repeater or
quantum relay is any type of middle node between Al-
ice and Bob which helps their quantum communica-
tion by breaking down their original quantum channel
into sub-channels. It does not matter what technology
the node is employing, e.g., it may or may not have
quantum memories. A repeater actually repeats only
when it is able to beat the performance of any point-
to-point QKD protocol, i.e., the PLOB bound. We
may call these “effective repeaters”. Example of non-
effective repeaters are MDI-nodes simply based on Bell
detections [176, 177, 182] while examples of effective re-
peaters are MDI-nodes exploiting phase-randomization,
such as TF-QKD [183, 184] and the related protocols
of PM-QKD [185], SNS-QKD [187–190], and NPPTF-
QKD [191–195]. According to our definitions above, the
proof-of-concept experiment in Ref. [202] represents the
first effective repeater ever implemented. See Fig. 11
for an overview of the ideal performances of these relay-
assisted protocols.

While the violation of the PLOB bound provides a
simple criterion for benchmarking the quality of quan-
tum repeaters, one also needs to understand what opti-
mal performance an ideal repeater may achieve. In other
words, how much key rate can be generated by a chain of
quantum repeaters or by a more general multi-hop quan-
tum network? In the information-theoretic setting and
considering the general case of adaptive protocols, upper
bounds on this key rate have been studied in Refs. [39, 40]
and later in a series of other papers [41–46]. Here we re-
port the tightest-known bounds that establish the end-to-
end capacities in chains and networks connected by fun-
damental channels (subsections XII B and XIIC). This
has been developed in Refs. [39, 40] which extended
the channel simulation methods from point-to-point to
repeater-assisted quantum communications. In the sec-
ond part of the section (subsection XIID), we will then
discuss practical aspects and designs of quantum re-
peaters.
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B. Ideal chains of quantum repeaters

Consider a linear chain of N quantum repeaters, la-
beled by r1, . . . , rN . This is characterized by an ensemble
of N +1 quantum channels {Ei} describing the sequence
of transmissions i = 0, . . . , N between the two end-points
Alice a := r0 and Bob b := rN+1 (see Fig. 16). Assume
the most general adaptive protocol P , where the genera-
tion of the secret key between Alice and Bob is assisted
by adaptive LOCCs involving all the parties in the chain.
After n uses of the chain, Alice and Bob will share an out-
put state ρnab which depends on P . By taking the limit
of large n and optimization over the protocols P , we may
define the repeater-assisted secret key capacity K({Ei}).
This quantity satisfies the bound

K({Ei}) ≤ E⋆

R ({Ei}) := sup
P

lim
n
ER(ρ

n
ab). (181)

where the REE ER is defined in Eq. (139) and, more
weakly, in Eq. (141) for asymptotic states.

Alice Bob r
1

r
N

ℰ� ℰ� ℰ�
r
i

a br
i+1

FIG. 16. Chain of N quantum repeaters r1, . . . , rN between
Alice a := r0 and Bob b := rN+1. The chain is connected by
N + 1 quantum channels {Ei}.

In order to bound this capacity, let us perform a cut
“i” which disconnects channel Ei between ri and ri+1.
We may then simulate channel Ei with a resource state
σi, either exactly as in Eq. (143) or asymptotically as
in Eq. (144). By stretching the protocol with respect to
Ei, we may decompose Alice and Bob’s output state as
ρnab = Λ̄i

(

σ⊗n
i

)

for a trace-preserving LOCC Λ̄i, which is
local between “super-Alice” (i.e., all the repeaters with
≤ i) and the “super-Bob” (i.e., all the others with ≥
i+1). This decomposition may be asymptotic for bosonic
channels, as specified in Eq. (160).
If we now compute the REE on the output state, we

find ER(ρ
n
ab) ≤ nER(σi) for any i and protocol P . By

replacing this inequality in Eq. (181), we establish the
single-letter bound [39, 40]

K({Ei}) ≤ min
i
ER(σi) . (182)

Consider now a chain of teleportation-covariant channels
{Ei}, so that each quantum channel satisfies the condi-
tion in Eq. (148). These channels {Ei} can all be simu-
lated by their (possibly-asymptotic) Choi matrices {σEi

}.
Therefore, Eq. (182) takes the form

K({Ei}) ≤ min
i
ER(σEi

) . (183)

Furthermore, if the quantum channels are distillable,
i.e., ER(σEi

) = D1(σEi
) as in Eq. (172), then we have

ER(σEi
) = K(Ei) and Eq. (183) becomes K({Ei}) ≤

miniK(Ei). Remarkably, this upper bound coincides

with a simple lower bound, where each pair of neighbor
repeaters, ri and ri+1, exchange a key at their channel
capacity K(Ei) and one-time pad is applied to all the
keys to generate an end-to-end key at the minimum rate
miniK(Ei). As a result, for distillable chains, we have an
exact result for their secret key capacity [39, 40]

K({Ei}) = min
i
K(Ei) . (184)

Thanks to the result in Eq. (184), we know the
repeater-assisted secret key capacities of chains composed
of fundamental channels, such as bosonic pure-loss chan-
nels, quantum-limited amplifiers, dephasing and erasure
channels. In particular, for a chain of repeaters connected
by pure-loss channels with transmissivities {ηi}, we may
write the secret key capacity [39, 40]

Kloss = − log2

[

1−min
i
ηi

]

, (185)

which is fully determined by the minimum transmissiv-
ity in the chain. In particular, consider an optical fiber
with transmissivity η which is split into N + 1 parts by
inserting N equidistant repeaters, so that each part has
transmissivity N+1

√
η. Then, we write the capacity

Kloss(η,N) = − log2 (1− N+1
√
η) . (186)

In a chain connected by quantum-limited amplifiers
with gains {gi}, we may write [39, 40]

Kamp = − log2

[

1−
(

max
i
gi

)−1
]

. (187)

For a chain connected by dephasing channel Ei with prob-
ability pi ≤ 1/2, we find [39, 40]

Kdeph = 1−H2(max
i
pi) , (188)

where H2 is the binary Shannon entropy. Finally, for a
chain of erasure channels Kerase = 1−maxi pi [39, 40].

C. Quantum communication networks

The results for repeater chains can be generalized to
arbitrary quantum networks by combining methods of
channel simulation with powerful results from the clas-
sical network theory. Here we do not present the de-
tails of this methodology but only an introduction to the
main notions and the specific results for pure-loss chan-
nels. The reader interested in further details may consult
Refs. [39, 40] where they can find a comprehensive treat-
ment and general results for arbitrary quantum channels.
We may represent a quantum communication network

as an undirected finite graph N = (P,E), where P is
the set of points and E is the set of edges. Each point
p has a local set of quantum systems and two points, pi

and pj , are logically connected by an edge (pi,pj) ∈ E if
and only if they are physically connected by a quantum
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channel Eij := Epipj
. Between the two end-points, Alice

a and Bob b, there is an ensemble of possible routes Ω =
{1, . . . , ω, . . .}. Here the generic route ω is an undirected
path between a and b, and is associated to a sequence
of quantum channels {Eω

0 , . . . , Eω
k . . .}. Then, a cut C is

a bipartition (A,B) of the points P such that a ∈ A

and b ∈ B. Correspondingly, the cut-set C̃ of C is the
set of edges with one end-point in each subset of the
bipartition, i.e., C̃ = {(x,y) ∈ E : x ∈ A,y ∈ B}.
Given these notions we may define two type of network
protocols, which are based either on sequential or parallel
routing of the quantum systems.
In a sequential protocol Pseq, the network N is initial-

ized by a network LOCCs, where each point classically
communicates with all the others (via unlimited two-way
CCs) and each point adaptively performs LOs on its lo-
cal quantum systems on the basis of the information ex-
changed. Then, Alice connects to some point pi by ex-
changing a quantum system (with forward or backward
transmission depending on the physical direction of the
quantum channel). This is followed by a second network
LOCC. Then, point pi connects to another point pj by
exchanging another quantum system, which is followed
by a third network LOCC and so on. Finally, Bob is
reached via some route ω, which completes the first se-
quential use of N . For the second use, a different route
may be chosen. After n uses of N , Alice and Bob’s out-
put state ρnab is ε-close to a private state with nRε

n secret
bits. Optimizing their rate over Pseq and taking the limit
for large n and small ε (weak converse), one may define
the single-path (secret key capacity) capacity of the net-
work K(N ).
Following Refs. [39, 40], a general upper bound may be

written for K(N ), which is particularly simple for net-
works of teleportation-covariant channels. For networks
of distillable channels, the formula for K(N ) can exactly
be found. In particular, consider an optical network, so
that two arbitrary points x and y are either disconnected
or connected by a pure-loss channel with transmissivity
ηxy. The single-path capacity of the lossy network Nloss

is determined by [39, 40]

K(Nloss) = − log2(1− η̃), η̃ = min
C

max
(x,y)∈C̃

ηxy, (189)

where η̃ is found by computing the maximum transmis-
sivity along a cut, and then minimizing over the cuts.
This result can be formulated in an equivalent way. In

fact, for any route ω of pure-loss channels with transmis-
sivities {ηωi }, we may compute the end-to-end transmis-
sivity of the route as ηω := mini η

ω
i . Then the single-

path capacity is determined by the route with maximum
transmissivity [39, 40]

K(Nloss) = − log2(1− η̃), η̃ := max
ω∈Ω

ηω . (190)

Finding the optimal route ω̃ corresponds to solving the
widest path problem [636]. Adopting the modified Di-
jkstra’s shortest path algorithm [637], this is possible in

time O(|E| log2 |P |), where |E| is the number of edges
and |P | is the number of points.
Consider now a parallel protocol, where multiple routes

between the end-points are used simultaneously. More
precisely, after the initialization of the network N , Al-
ice exchanges quantum systems with all her neighbor
points (i.e., all points she share a quantum channel with).
This multipoint communication is followed by a network
LOCC. Then, each receiving point exchanges quantum
systems with other neighbor points and so on. This is
done in such a way that these subsequent multipoint com-
munications are interleaved by network LOCCs and they
do not overlap with each other, so that no edge of the net-
work is used twice. The latter condition is achieved by
imposing that receiving points only choose unused edges
for their subsequent transmissions. This routing strategy
is known as “flooding” [638]. Eventually, Bob is reached
as an end-point, which completes the first parallel use
of N . The next parallel uses of N may involve differ-
ent choices by the intermediate nodes. After n uses, Al-
ice and Bob share a private state with nRε

n secret bits.
By optimizing over the flooding protocols and taking the
limit for many uses (n → ∞) and the weak converse
limit (ε→ 0), one defines the multi-path capacity of the
network Km(N ).
Again, a general upper bound may be written for

Km(N ), which simplifies for network of teleportation-
covariant channels and even more for distillable chan-
nels for which Km(N ) is completely established. As an
example, consider again a network Nloss composed of
pure-loss channels, so that each edge (x,y) has trans-
missivity ηxy. For any cut C, define its total loss as
l(C) :=

∏

(x,y)∈C̃(1 − ηxy). By maximizing l(C) over

all cuts we define the total loss of the network, i.e.,
l(Nloss) := maxC l(C). The multi-path (secret key ca-
pacity) capacity of Nloss is therefore given by [39, 40]

Km(Nloss) = − log2 l(Nloss). (191)

The optimal multi-path routing of is provided by the so-
lution of the maximum flow problem, which can be found
in O(|P |× |E|) time by using Orlin’s algorithm [639]. As
one may expect, the multi-path capacity Km(Nloss) gen-
erally outperforms the single-path version K(Nloss).

D. Practical designs for quantum repeaters

One of the key features of future quantum communi-
cations networks is the ability to transfer quantum states
reliably from one point to another. As basic as it sounds,
this is one of the most challenging implementation tasks
that quantum technologies face. There are two main ap-
proaches to solving this problem. One relies on using
teleportation techniques, which themselves rely on one of
the pillars of quantum information science, i.e., entangle-
ment. In this scenario, the state transfer problem reduces
to how we can efficiently distribute entanglement across a
network [35, 37, 640, 641]. The second solution relies on
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using quantum error correction techniques to overcome
loss and operation errors [642–647]. This is similar to
what we have in data communications networks where by
adding some redundancy to our message we can correct
some of the errors that might be added by the channel.
In the quantum case, not only we have to correct the bit
flip errors, but also phase flip and erasure errors in possi-
bly a fault-tolerant way. This approach will then require
advanced quantum computing modules. Both above so-
lutions are considered to be part of an underlying plat-
form that enables quantum networks to operate at any
distance, i.e., the platform of quantum repeaters.

Original proposals on quantum repeaters rely on the
use of entanglement swapping in a nested way. Sup-
pose you have distributed and stored a Bell state be-
tween nodes A and B at distance L0 in a network. Sup-
pose node B also shares a Bell state with node C farther
apart by L0. Then, by performing a Bell-state measure-
ment (BSM) on the two subsystems in node B, we can
entangle the systems in node A and C. That means that
if we can distribute entanglement over distance L0, by
using entanglement swapping, we can extend it to 2L0.
By using this technique n times, in a nested way, we
can then in principle cover entanglement over a distance
L = 2nL0, where n would be the nesting level for our
repeater system; see Fig. 17. Looking at this from a dif-
ferent angle, what we have basically done is that in order
to distribute entanglement over distance L, we have di-
vided the entire distance into 2n segments, distributed
and stored entanglement over elementary links with dis-
tance L0, and then have applied BSMs on the middle
nodes to extend the entanglement over distance L.

The key advantage of the above nested way for en-
tanglement distribution is its efficiency. Distributing en-
tanglement over an elementary L0-long link often re-
quires the transmission and detection of single-photon-
level light across the channel, which would only succeed
with a probability on the order of exp(−αL0), where α is
proportional to the channel attenuation parameter. Note
that using a similar technique over the total distance L
would be exponentially worse as now the success rate
scales with exp(−αL). That implies that entanglement
distribution over elementary links must be repeated until
it succeeds. The distributed entanglement should also be
stored somewhere until entanglement is also distributed
over neighboring links. That is why quantum storage
will be needed for such probabilistic entanglement distri-
bution techniques. But, entanglement distribution over
elementary links can be attempted in parallel, and, al-
though they do not necessarily succeed all at the same
time, sooner or later we are in a position to perform BSMs
on the middle nodes. The entanglement distribution rate
over distance L would then scale with exp(−αL0).

The above discussion makes some idealistic assump-
tions on the system components. In practice, we should
also account for the imperfections in the setup. For in-
stance, the distributed state over elementary links may
not be a maximally entangled states, in which case,

FIG. 17. (a) A quantum repeater link with nesting level n.
(b) An example quantum repeater link with nesting level 2.
BSM1 operations extend the entanglement over 2L0. BSM2
would then extend it further to 4L0. Note that if BSM oper-
ations are probabilistic, BSM2 should not be done until the
middle node learns about the success of BSM1 operations.
This requirement slows down the process and makes the co-
herence time requirements on the memories more demanding.
Reproduced from Ref. [650] under permission of the IOPP.

by every BSM, we deviate further from the ideal state.
The measurement operations may also not be error free
or deterministic to begin with. These issues require
us to apply certain entanglement distillation techniques
to improve the quality of distributed entangled states
[585, 648]. But, that would add to the quantum com-
putational cost of the system and makes its implemen-
tation even more challenging. Depending on the state
of the art on quantum computing, we can then envisage
several different stages of development for quantum re-
peaters [649, 650]. In the following, we review three such
classes, or generations [651], of quantum repeaters.

1. Probabilistic quantum repeaters

Since the introduction of quantum repeaters in 1998
[35], experimentalists have been looking for practical
ways to implement the underlying ideas. The original re-
peater protocol requires distribution, storage, swapping,
and distillation of entanglement. A lot of research has
therefore been directed into devising quantum memory
units that can interact efficiently with light and can store
quantum states for a sufficiently long time. The interac-
tion with light is necessary for such devices as it would
allow us to use photonic systems for both distribution
and swapping of entanglement. Photon-based systems
are, however, fragile against loss and that could result in
probabilistic operations, which, in turn, require us to re-
peat a certain procedure until it succeeds. Probabilistic
quantum repeaters are those that rely on probabilistic
techniques for entanglement distribution and entangle-



73

FIG. 18. A probabilistic quantum repeater with multiple
memories per node. In each round, entanglement distribu-
tion is attempted on all available elementary links. BSMs, at
different nesting levels, will also be performed by matching
as many entangled pairs as possible [658] Reproduced from
Ref. [650] under permission of the IOPP.

ment swapping. This class of repeaters has been at the
center of experimental attention in the past 20 years.

There are different ways of distributing entangled
states between quantum memories of an elementary link.
In some proposals [640], entangled photons are generated
at the middle of the link and sent toward quantum memo-
ries located at the two end of the elementary link. If these
photons survive the path loss and can be stored in the
memories in a heralding way we can then assume that the
two memories are entangled. This technique requires us
to have a verification technique by which we can tell if the
storing procedure has been successful. Alternatively, in
some other proposals, we start with entangling a photon
with the memory and either send it to the other side for a
similar operation or swap entanglement in the middle be-
tween two such memories. The most famous proposal of
this type is that of Duan, Lukin, Cirac, and Zoller [37],
known as DLCZ, whose many variants [641] have been
proposed and partly demonstrated in practice [652, 653].

The BSM operation in probabilistic quantum repeaters
is typically done by first converting the state of quantum
memories back into photonic states and then use linear
optics modules to perform the BSM. Such linear optics
modules can, however, be inefficient and face certain lim-
itations in offering a full BSM [654]. There are certain
tricks [655–657] by which their performance can be im-
proved, but, in the end, the chance of success in most
practical settings would remain below one. An implica-
tion of a probabilistic BSM is that we cannot perform
BSMs in a certain nesting level until we have learned
about the results of the BSMs in the previous nesting
level. That requires exchanging data between intermedi-
ate nodes, which can not be done faster than the trans-
mission delay between such nodes. This would result in
requiring long coherence time and a low entanglement
generation rate for probabilistic repeaters.

One remedy to the above problems is the multiple-
memory configuration in Fig. 18. In this setup, instead
of one QM in each site, we use a bank of N memories. In
each round of duration T0 = L0/c, with c being the speed
of light in the classical channel, we attempt to entangle
as many elementary links as possible. We then mix and
match entangled pairs across two neighboring links and
perform as many BSM operations as possible. As we
continue doing informed BSMs and, at the same time,

refilling available elementary links with fresh entangled
states, we get to a steady state that in every period we
roughly generate NPSP

n
M entangled states, for N ≫ 1,

between the far two ends of the network [658]. Here, PS

is the success probability for the employed entanglement
distribution scheme for elementary links and PM is the
success probability for the BSM operation. Moreover, it
roughly takes T = L/c to generate an entangled pair,
which minimizes the requirements on the memory coher-
ence time. Multi-mode structures for quantum memories
have also been proposed and implemented to improve the
performance in repeater setups [659–661].
Probabilistic repeaters are perhaps the simplest re-

peater technology to be implemented in practice. In
fact, even the simplest setup, when there is only one
repeater node in the middle, can offer certain advan-
tages for QKD applications. These setups, known as
memory-assisted QKD [662, 663], can soon offer better
rate-versus-distance scaling than most conventional QKD
systems in operation by using existing quantum memory
technologies [664–669]. Over long distances, however,
probabilistic repeater would suffer from a low rate, or
require a large number of memories to perform well [670–
672]. Part of the reason for such low key rates is the use
of probabilistic BSM modules. We next see what can be
achieved if we have a deterministic BSM unit.

2. Deterministic quantum repeaters

Unlike our previous scheme, the original proposal for
quantum repeaters relies on deterministic, but possibly
erroneous, gates for BSM, or similar, operations [35].
Proposed in 1998, the authors assume that the initial en-
tanglement distribution and storage have already taken
place, and now we need to manipulate a bunch of en-
tangled quantum memories in such a way that we end
up with a high quality entangled states between nodes
A and B. In Sec. XII D 1, although we assumed that the
BSM operation may succeed probabilistically, we did not
account for possible errors that may be caused by BSM
modules. Further, we assumed that the initial entan-
glement over the elementary links was of the ideal form
of a maximally entangled state, e.g., Bell states. The
proposed work in [35] looks at the latter two issues by
assuming that BSMs can directly be applied to QMs in a
deterministic way. The immediate advantage is that PM

would become 1, which increases the rate and also re-
duces the waiting time caused by the probabilistic events
and their corresponding transmission delays. Once one
accounts for errors, however, other problems arise.
In reality, it is very challenging to generate and dis-

tribute truly maximally entangled states. In practice,
we should often allow for deviations from this ideal case,
which can be measured in different ways. For instance,
for two pairs of entangled states in a Werner state with
parameter p, a BSM on the middle memories would leave
the remote memories in a Werner state with parameter
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2p [35]; that is, the error, or the deviation from the ideal
state, has been doubled. In a quantum repeater link as
in Fig. 17(a), such an error will get doubled, even if we
have perfect deterministic BSM gates, for every nesting
level. The danger is that after a certain number of nest-
ing levels the quality of the resulting entangled states is
so low that it may not be of any use for quantum appli-
cations. If we include the possible errors in the gates, the
situation would become even worse.

The solution suggested in [35] is based on the use of
purification, or, entanglement distillation, techniques. In
short, the idea is that if we are given M pairs of non-
ideal entangled states, we can use some LOCCs to come
up with N < M entangled states of higher quality, for
instance, higher fidelity. Depending on the type of dis-
tillation techniques used, we may end up with different
rate behaviors. Original distillation schemes relied on
performing CNOT gates on pairs of memories [673] and
then measuring one of them. The result should have
been compared with that of a similar measurement at
the other end of the link, and success was dependent on
whether the two results, for instance, matched or not. In
essence, you could not tell without classical communica-
tion between the nodes, if the distillation succeeds or not,
despite the fact that deterministic gates are being used
throughout. This, in effect, would have turned a deter-
ministic repeater setup to a probabilistic one, suffering to
some extent from the same impediments we mentioned
in the previous section.

The alternative solution is to use quantum error correc-
tion schemes to distil entanglement [674, 675]. In essence,
we can think of the M non-ideal entangled states that
we wish to distil to have been obtained by hypothetically
starting with N ideal entangled states, adding M − N
redundant states to this batch, and sending all M pairs
through an error-prone channel. In such a setting, one
can, in principle, use error correction techniques to get
the original N pairs back. This can be done with a high
probability if the ratio N/M is chosen properly with re-
spect to the expected amount of error in our system. It
turns out that if we want to do this in an error resilient
way, we need quantum gates with error rates on the or-
der of 0.001–0.01 or below. Such error correction can also
alleviate some of the errors caused by the memory deco-
herence once we are waiting to learn about the success of
the initial entanglement distribution.

Using the above techniques, we can design quantum re-
peaters with a modestly high key rate. The limitation is
mainly from the original requirement for entangling ele-
mentary links, which is still probabilistic, and the trade-
off between having more nesting levels, and, therefore,
higher PS , versus fewer nesting levels, hence less accu-
mulated error and distillation. Next we show that if we
allow for sophisticated quantum operations to be used in
quantum repeaters, we can further improve the rate by
relaxing the requirement on entangling elementary links.

3. Memory-less quantum repeaters

The most advanced protocols for quantum repeaters
leave as little as possible to probabilistic schemes. In
such schemes, loss-resilient error correction techniques
are used to make sure that the quantum information car-
ried by photonic systems can be retrieved at each inter-
mediate node. This can be achieved in different ways.
The common feature of all these schemes is that we no
longer need quantum memories for storage purposes, al-
though we may still need them for quantum processing.
That is why they are sometime called memory-less quan-
tum repeaters.

Here, we explain one example that relies on quantum
error correction for loss resilience. This idea was first
proposed in [643] and then further work followed up to
also account for not only the loss in the channel, but
also possible errors in the system [645, 646]. In [643], a
quantum state α|0〉+ β|1〉 is encoded as

|Ψ〉(m,n) = α|+〉(m)
1 · · · |+〉(m)

n + β|−〉(m)
1 · · · |−〉(m)

n ,
(192)

where n is the number of logical qubits and m is the
number of physical qubits in each logical qubit. Here,
|±〉(m) = |0〉⊗m ± |1〉⊗m. This encoding has the prop-
erty that the original quantum state can be recovered
provided that at least (1) one photon survives in each
logical qubit, and (2) one logical qubit, with all its m
constituent photons, is fully received. The authors show
that for sufficiently short channels one can find appropri-
ate values of m and n such that a high key rate on the
order of tens of MHz can, in principle, be achieved. The
requirements are, however, beyond the reach of current
technologies.

Such memory-less quantum repeaters, while offering a
substantial improvement in the key rate, require a set of
demanding properties for their required elements. In par-
ticular, we need operation errors as low as 10−4 − 10−3,
large cluster states of photons, whose generation may re-
quire a series of other advanced technologies (e.g. high-
rate efficient single-photon sources), and a large number
of intermediate nodes. The latter may cause compatibil-
ity problems with existing optical communications infras-
tructure, in which, at the core of the network, nodes are
rather sparsely located. That said, such advanced tech-
nologies for quantum repeaters would perhaps be one of
the latest generations of such systems, by which time
sufficient improvement in our quantum computing capa-
bilities as well as other required devices and technologies
may have already happened. For such an era memory-
less repeaters offer a solution that is of an appropriate
quality for the technologies that rely on the quantum in-
ternet [676, 677].
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XIII. QKD AGAINST A BOUNDED QUANTUM
MEMORY

A. Introduction

QKD is commonly defined under the assumption that
a potential eavesdropper have access to unlimited tech-
nology. For example, the eavesdropper (Eve) may have
a universal quantum computer with unlimited computa-
tional power, as well as a perfect quantum memory of un-
bounded capacity and ideal detectors. While these strong
assumptions put QKD on a solid theoretical ground, they
may be considered unrealistic given the present stage of
development of quantum technologies. Such strong as-
sumptions create a disproportion between the technology
that will be deployed in a foreseeable future and what is
assumed that is already available to Eve.
One different security scenario is defined by assuming

that a potential eavesdropper has only access to limited
quantum technologies. Here we consider QKD under two
similar though different assumptions about the techno-
logical capability of Eve. First we review the Bounded
Quantum Storage Model (BQSM), in which Eve is as-
sumed to be able to store only a limited number of qubits.
Furthermore, this number is assumed to grow only sub-
linearly with the number of bits exchanged between Al-
ice and Bob. Second we consider the effect of Quantum
Data Locking (QDL) and its application to QKD and se-
cure communication under the assumption that Eve can
store unlimited number of qubits but only for a finite
time. In both cases, equivalent constraints are imposed
on the trusted users Alice and Bob. Furthermore we as-
sume that Eve, unlike Alice and Bob, has access to a
universal quantum computer with unbounded computa-
tional power and can perform ideal quantum measure-
ments. Entropic uncertainty relations, which are briefly
reviewed in the next section, play a major role in se-
curity proofs against an eavesdropper with constrained
quantum memory.
It is of utmost importance to remark that QDL yields

composable security given the above assumption that Eve
is forced to make a measurement (for example because
she has no quantum memory or a quantum memory with
finite and known storage time). Under this assumption
one consistently obtain composable security [678, 679].
Otherwise, QDL does not guarantee composable security
against an eavesdropper with access to perfect and un-
bounded quantum resources [65].

B. Entropic uncertainty relations

For the sake of self-consistency, we briefly recall the
entropic uncertainty relations (EURs) [505, 680], already
discussed in Section IX but here adapted to the notation
of the present problem. Consider a collection of k mea-
surements M = {Mj}j=1,...k. On a given state ρ, the
j-th measurement produces a random variable Mj(ρ)

with output xj and associated probability pMj(ρ)(xj).
An EUR is expressed by an inequality of the form

inf
ρ

1

k

k
∑

j=1

H [Mj(ρ)] ≥ cM , (193)

where H [Mj(ρ)] = −∑xj
pMj(ρ)(xj) log2 pMj(ρ)(xj) is

the Shannon entropy of Mj(ρ) and cM is a constant
that only depends on the set of measurements M. By
convexity, it is sufficient to restrict on pure states.
As an example, consider the case of a d-dimensional

Hilbert space and a pair of projective measurements A
and B. Each measurement is defined by a corresponding
collection of d orthonormal vectors, A ≡ {|a1〉, . . . , |ad〉}
and B ≡ {|b1〉, . . . , |bd〉}. Then the Maassen-Uffink
EUR [501] states that

inf
ρ

H [A(ρ)] +H [B(ρ)]
2

≥ cA,B , (194)

where cA,B = log2 maxk,h |〈ak|bh〉| and

H [A(ρ)] = −
d
∑

k=1

〈ak|ρ|ak〉 log2 〈ak|ρ|ak〉 , (195)

H [B(ρ)] = −
d
∑

k=1

〈bk|ρ|bk〉 log2 〈bk|ρ|bk〉 . (196)

In particular, if the two observables are mutually unbi-
ased, then maxk,h |〈ak|bh〉| = d−1/2 and we obtain

inf
ρ

H [A(ρ)] +H [B(ρ)]
2

≥ 1

2
log2 d . (197)

Given a collection of k observables, one can always
find a state ρ such that H [Mj(ρ)] = 0 for a given j.
Therefore the constant cM in Eq. (193) is at least larger
than

(

1− 1
k

)

log2 d. An EUR that saturates this bound
is said to be maximally strong. An almost maximally
strong EUR is obtained for a maximal choice of k =
d + 1 mutually unbiased observables, in which case the
constant cM in Eq. (193) equals log2

d+1
2 [681].

Maximally strong EURs can be obtained for multiple
measurements in a high dimensional space. Ref. [682]
showed that a random choice of k random observables
(distributed according to the unitary invariant measure)
satisfies a maximally strong EUR with probability ar-
bitrary close to 1, provided that d is large enough
and k grows at least logarithmically in d (see also
Refs. [683, 684]). Recently, Ref. [685] showed that this
property holds for large d at any fixed value of k.
Uncertainty relations can be expressed not only in

terms of the Shannon entropy. For example, fidelity
uncertainty relations have been defined in Ref. [686],
and metric uncertainty relations have been introduced
in Ref. [684]. These are stronger forms of uncertainty
relations, in the sense that they always imply an EUR,
while the contrary does no necessarily hold.
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C. Bounded quantum storage model

In this section we briefly review some basic notions re-
garding the BQSM, Our presentation will mostly follow
Ref. [687] (see also Ref. [688]). To make things more con-
crete, we consider a one-way protocol in which the sender
Alice encodes a variable X into a d-dimensional Hilbert
space, with |X | = d. The protocol is specified by a col-
lection of k different orthogonal bases. Alice randomly
selects one of the bases and then encodes the classical
random variable X by using the d mutually orthogonal
vectors in the chosen basis. On the receiver side, Bob
independently selects one of the k bases at random and
applies the corresponding projective measurement. The
protocol is indeed analogous to a d-dimensional version
of BB84 with k different bases. After the quantum part
of the protocol, in which n states are prepared, trans-
mitted, and measured, the users proceed with the sifting
phase, in which they select only the signal transmissions
for which they have made the same choice of bases. The
protocol then concludes with error reconciliation and pri-
vacy amplification. The difference with standard QKD
is that in the BQSM the eavesdropper Eve is assumed
to be only capable of storing a finite amount of quantum
information. More specifically, it is assumed that Eve
has kept no more than q qubits in her quantum memory
after n quantum signal transmissions and before sifting.
Therefore, all remaining quantum states intercepted by
Eve have been already measured before the sifting phase
takes place.
A fundamental estimate of the number of secret bits

(excluding sifting) that can be extracted from such a pro-
tocol is given by (for direct reconciliation):

ℓǫ ≃ Hǫ
min(X

n|ZE)−Hmax(C) , (198)

where ǫ is a security parameter, Hǫ
min(X

n|ZE) is the
smooth min-entropy [74, 438] conditioned on Eve’s side
information for n signal transmissions, and Hmax(C) is
the number of bits publicly exchanged for error reconcil-
iation. Under the assumptions of the BQSM, here Eve’s
side information comprises a quantum part E and a clas-
sical part Z. Furthermore, since Eve’s quantum memory
has capacity below q qubits, we have

ℓǫ & Hǫ
min(X

n|Z)− q −Hmax(C) . (199)

It remains to bound the (classical) conditional smooth
min-entropyHǫ

min(X
n|Z). It has been shown in Ref. [687]

that if the set of k bases employed in the protocol satisfies
an EUR as in Eq. (193), then for any λ ∈ (0, 1/2)

Hǫ
min(X

n|Z) ≥ (cM − 2λ)n , (200)

with

ǫ = exp

[

− λ2n

32(log2(kd/λ))
2

]

. (201)

For example, using two mutually unbiased bases we can
apply the Maassen-Uffink EUR in Eq. (197) and obtain,

for sufficiently small λ

Hǫ
min(X

n|Z) & n

2
log2 d . (202)

In general, the assumptions of BQSM allow us to increase
the resilience to noise of a QKD protocol, but the rate
is not expected to improve dramatically compared to an
unbounded quantum-capable eavesdropper. We conclude
by noting that the number of secret bits in Eq. (198)
must be multiplied by a factor 1/k to account for the
probability that Alice and Bob chose the same basis.

D. Quantum data locking

The phenomenon of QDL can be exploited to obtain
efficient high-dimensional QKD protocols within the as-
sumption that Eve has access to a quantum memory of
unlimited capacity but that can store quantum informa-
tion only for finite time. This assumption implies that
she is forced to measure her share of the quantum system
within a given time after having obtained it. When the
memory time goes to zero, we obtain as a limiting case
the setting of individual attacks, where Eve is forced to
measure the signals as soon as she receives them.

The first QDL protocol was discussed in Ref. [689].
Such a protocol is analogous to BB84, with the funda-
mental difference that now Alice and Bob share 1 secret
bit at the beginning of the protocol [689]. While in BB84
Alice and Bob randomly select their local basis, and only
later reconcile their choice in the sifting phase, in QDL
they use the 1 bit of information they secretly share to
agree on the choice of the basis in which encode (and
decode) information. Therefore, according to this secret
bit, Alice encodes n bits into n qubits, using either the
computational or the diagonal basis, and Bob measures
the received qubits in the same basis. We follow the
original presentation of Ref. [689] and assume a noiseless
channel from Alice and Bob. Suppose that Eve intercepts
the n signal qubits. As she is forced to measure them (ei-
ther instantaneously or after a given time) the amount of
information that she can obtain about the message can
be quantified by the accessible information.

Consider the joint state representing the classical n-
bits sent by Alice together with the quantum state inter-
cepted by Eve. Such a classical-quantum state reads

ρXE =

2n−1
∑

xn=0

2−n|xn〉〈xn| ⊗ 1

2

∑

j=0,1

Un
j |xn〉〈xn|Un

j
† ,

(203)
where X denote the classical variable sent by Alice, U0

is the identity transformation and U1 is the unitary that
maps the computational basis into the diagonal one. No-
tice that this expression reflects the fact that Eve does
not know which basis has been used for the encoding.



77

For such a state the accessible information is

Iacc(X : E)ρ = max
ME→Z

I(X : Z) (204)

= max
ME→Z

H(X)−H(X |Z) (205)

= n− min
ME→Z

H(X |Z) , (206)

where the maximum is over all possible measurements
ME→Z performed by Eve on n qubits. A straightforward
calculation yields [689]

Iacc(X : E)ρ = n− min
ME→Z

H(X |Z) (207)

≤ n+max
φ

1

2

∑

j,xn

|〈φ|Uj |xn〉|2 log2 |〈φ|Uj |xn〉|2 . (208)

Notice that the last term on the right hand side is
bounded by an EUR. In particular, here we can apply
Maassen-Uffink EUR [501] and obtain

Iacc(X : E)ρ ≤ n

2
. (209)

In summary, being ignorant of one single bit of informa-
tion, Eve is able to access only n/2 bits of information
about the n bits of information communicated from Alice
to Bob. This holds for all values of n.
We remark that QDL violates a fundamental property,

know as total proportionality, that is natural property of
any well-behaved information quantifier [689]. In fact
given a mutual information I(X : Z) we expect that

I(X : ZK) < I(X : Z) +H(K) , (210)

that is, the knowledge of the variable K can increase the
mutual information by no more than its entropy. As a
matter of fact this property is fulfilled by the classical
mutual information as well as by the quantum mutual
information. Interestingly enough, QDL shows that this
is not the case for the accessible information. After the
seminal work by DiVincenzo et al. [689], other works have
introduced QDL protocols that presents an even stronger
violation of total proportionality.
From a broader perspective, a QDL protocol is defined

by a set of k ≪ d different bases in a Hilbert space of
dimensions d. For an eavesdropper that does not have
which-basis information (i.e., log2 k bits) the accessible
information is smaller than δ. Therefore, EURs for k
bases in a d-dimensional space can be applied to obtain a
corresponding QDL protocol. Ref. [682] has shown that
a random choice of the k = (log2 d)

3 bases (sampling
according to the distribution induced by the Haar mea-
sure) in a d-dimensional Hilbert space will yield a QDL
protocol with δ = ǫ log2 d + O(1), as long as d is large
enough. The probability that a random choice of bases
yield a QDL protocol with these feature is bounded away
from 1 if log2 d >

16
C′′ǫ ln

20
ǫ , with C

′′ = (1760 ln2)−1. As
log2 d grows faster than linearly in 1/ǫ, this implies that
QDL is obtained only for asymptotically large values of

d. For example, putting ǫ = 10−1 one gets the condition
log2 d & 106. A typicality argument shows that as long as
k is sufficiently smaller than d, these bases are with high
probability approximate mutually unbiased [684]. Inter-
estingly enough, a collection of (exact) mutually unbiased
bases does not necessarily yield QDL [680].
A major advance in QDL was provided by the work of

Fawzi et al. [684], which has introduced the notion of met-
ric uncertainty relations. Exploiting this powerful tool
they have been able to obtain strong QDL protocols with
δ = ǫ log2 d and log2 k = 4 log2 (1/ǫ) +O(log2 log2 (1/ǫ)),
for any ǫ > 0 and for d large enough. While these pro-
tocols are for random unitaries (which cannot be simu-
lated efficiently), they also demonstrated QDL with a set
of unitaries that can be simulated efficiently on a quan-
tum computer. We remark that these results still require
asymptotically large values of d. The QDL protocols of
Ref. [684] were the first to allow for an arbitrary small
accessible information. As for Ref. [682], the protocols
succeed only for asymptotically large values of d.
Whereas QDL was historically introduced in terms of

the accessible information, it can also be expressed in
terms of stronger security quantifiers, e.g., the total vari-
ation distance via Pinsker inequality [690]. As additional
examples, the metric uncertainty relations of Ref. [684]
and the fidelity uncertainty relations of Ref. [686] also
yield QDL with a stronger security quantifier.

E. Quantum data locking for communication: the
quantum enigma machine

QDL was considered for the first time in a communica-
tion scenario in Refs. [691, 692]. The authors of Ref. [692]
considered a noisy communication channel from Alice to
Bob (notice that previous works only considered a noise-
less channel). Two scenarios were analyzed: in strong
QDL Eve is able to access the input of the channel; in
weak QDL she has access to the output of the comple-
mentary channel from Alice to Bob. Notice that weak
QDL is analogous to the familiar wiretap channel model.
Strong QDL is instead closer to the original formula-
tion of QDL. The notion of weak and strong QDL ca-
pacities were introduced and in part characterized. In
analogy to the notion of private capacity of quantum
channel, the (weak and strong) QDL capacities are de-
fined as the maximum asymptotic rate at which Alice
and Bob can communicate through the quantum channel
with the guarantee that Eve has no information about
the exchanged messages. The difference with the notion
of private capacity is that to achieve the QDL capacities
we assume that Eve is forced to make a measurement as
soon as she obtains a train of n signals (then n is made
arbitrary large to obtain an asymptotic rate).
Since it is defined accordingly to a weaker security def-

inition, the weak QDL capacity is never smaller than
the private capacity. A consequence of the results of
Ref. [684] is that the identity qubit channel has unit
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strong QDL capacity. Entanglement breaking channels
and Hadamard channels are instead shown having vanish-
ing weak QDL capacity [692]. Ref. [693] provided explicit
examples of quantum channels with a large gap between
the private capacity and the weak QDL capacity.
A quantum optics device that exploits QDL for secure

communication was dubbed a quantum enigma machine
(QEM) by Lloyd [691]. In fact, the protocol of QDL can
be seen as a quantum generalization of poly-alphabetic
ciphers, among which one of the most famous examples
was the Enigma machine. Ref. [691] put forward two
architectures for a QEM, using either unary encoding of
a single photon over n modes (this would be a direct
application of the QDL protocols in Refs. [682, 684]) or
using encoding in coherent states. Ref. [692] showed that
a weak QDL protocol with coherent state cannot surpass
the private capacity by more than log2 e ≃ 1.44 bits per
bosonic mode, and an almost matching lower bound was
obtained in Ref. [694].

F. Practical quantum data locking

The QDL protocols of Refs. [682, 684] require coherent
control over large (actually asymptotically large) Hilbert
space. For this reason there is little hope that these pro-
tocols may be ever realized experimentally, not even as
a proof-of-principle demonstration. In order to make an
experimental realization of QDL feasible, one needs to
solve two problems: 1) to design QDL protocols that
require control over Hilbert space of reasonably small di-
mensions; 2) to design protocols that are robust in the
presence of a noisy channel from Alice to Bob. Step for-
wards towards the solution of these two problems were
made in Ref. [695]. The authors of this work considered
a collection of n d-dimensional systems, where d is sup-
posed to be a small integer and n is asymptotically large.
Instead of considering random unitaries in a large Hilbert
space, they considered local random unitaries in the small
d-dimensional systems. This model can be physically re-
alized by a train of n photons, each living in the space
defined by a discrete collection of d bosonic modes (span-
ning, for example, spatial, temporal, frequency, or angu-
lar momentum degrees of freedom).
Unlike other QDL protocols that exploit EURs, QDL

with local unitaries is obtained from a different upper
bound on the accessible information, i.e.,

Iacc(X : E) ≤ n log2 d−min
φ
H [Q(Φ)] , (211)

where

H [Q(Φ)] = −
∑

xn

Qxn(φ) log2Qxn(φ) , (212)

and

Qxn(φ) =
1

k

k
∑

j=1

|〈φ|Un|xn〉|2 . (213)

The quantity minφH [Q(Φ)] is then bounded by exploit-
ing the fact that Qxn(φ) typically concentrates around
1/dn (a similar approach was used in Ref. [696] to obtain
QDL with a set of commuting unitaries). Exploiting this
approach, Ref. [695] demonstrated strong QDL protocols
for QKD through generic memoryless qudit channels, and
Ref. [697] obtained weak QDL protocols for direct secret
communication. The price to pay to deploy QDL with
local unitaries is that the amount of pre-shared secret
key bits is no-longer exponentially smaller than the mes-
sage but grows linearly with the number of channel uses,
with an asymptotic rate of 1 bit per use of the channel.
This implies that non-zero rates can only be obtained for
d > 2, yet any value of d equal or larger than 3 can yield
a non-zero rate of QKD or direct communication.

G. Experimental demonstrations

The first experimental demonstrations of QDL ap-
peared in 2016. Ref. [698] realized the original QDL
protocol [689] with encoding in heralded single photon
polarization. They also implemented error correction
to counteract loss and verified a violation of the total
proportionality inequality of Eq. (210). Ref. [699] real-
ized the QDL protocol of Ref. [695] using pulse-position
modulation (PPM). In Ref. [699] a lens was used to im-
plement a Fourier transform and an array of 128 × 128
spatial light modulators (SLM) was applied to generate
random phase shifts. This transformation provides QDL
given that at the receiver end a trusted user applies the
inverse phase shift and inverse Fourier transform to de-
code [695]. Finally, Ref. [700] presented an on-chip array
of programmable ring resonators that can be naturally
applied to QDL with encoding in time of arrival degree
of freedom.

XIV. QUANTUM RANDOM NUMBER
GENERATION

A. Introduction

Generating random numbers is an important task:
most cryptographic protocols rely on them, they are used
in simulations, in lotteries, in games and numerous other
places. However, in spite of their usefulness, random
number generators (RNGs) are difficult to construct and
the use of poor-quality random numbers can be detri-
mental in applications. For instance, in Ref. [701] public
RSA keys were collected from the web and a significant
number were found to share a prime factor, posing prob-
lems for the security of those running the algorithm. In
general, problems can arise whenever something that is
assumed to be chosen randomly is in fact not [702].
A typical way to make random numbers is to use a

pseudo random number generator, in which a short ran-
dom seed is expanded into a longer string. The idea is
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that this string is sufficiently random for the application
it will be used in. However, a pseudo random number
generator is a deterministic algorithm, so, in spite of its
length, the output contains no more randomness than
the input. It must therefore contain subtle correlations
that in principle could be detected and exploited. Given
a powerful enough computer, a long enough output se-
quence could be used to find the seed and hence all of
the remaining purportedly random numbers.
Since classical physics is deterministic, RNGs based

on classical effects can never be fundamentally random.
Instead classical RNGs rely on a lack of knowledge mak-
ing the numbers appear random. Whether this is good
enough for a particular application is a matter of faith,
and an undesirable property of such RNGs is that it can
be difficult to detect if they are functioning badly. In-
deed, while statistical tests are able to attest (beyond
reasonable doubt) to particular shortcomings of a can-
didate RNG, there is no set of tests that can take the
output from a candidate RNG and eliminate all short-
comings.
To understand this, it is helpful to define what we mean

when we say that a particular string is random. Note
that, although the string S will always be classical, we
want it to appear random even to an adversary holding
quantum information and hence the definition is phrased
in terms of quantum states. This definition is related to
the definition of a secure key (cf. Section II D). If a ran-
dom number generation protocol outputs an n bit string
S, we would like it to be uniform and unknown to any
other party, i.e., independent of any side information E
held. Mathematically, for S to be a high quality random
string we would like that

D(ρSE ,
1

n
11n ⊗ ρE)

is small and we say that a protocol is secure if

p(⊥̄)D(ρSE ,
1

n
11n ⊗ ρE)

is small, where p(⊥̄) is the probability that the pro-
tocol does not abort (note the similarity with the se-
crecy error, εsecr, from Section IID). As before, this
means that whenever there is a high probability of not
aborting, the output is close to perfect randomness, i.e.,
ρSE ≈ 1

n11n ⊗ ρE . Unlike in key distribution, there is
no second string that the first one needs to be perfectly
correlated with, so there is no analogue of the correctness
error.
From this definition, it is evident that no amount of

statistical testing on the output can verify that S is a
high quality random string: statistical tests on S can
only increase confidence that ρS ≈ 1

n11n, but cannot say

anything about whether ρSE ≈ 1
n11n ⊗ ρE , i.e., whether

another party could already know the string S. (For some
applications, it may not be a problem for another party
to know the string, provided that it is statistically ran-
dom; here we focus on the stronger form of randomness.)

Whether a string is random or not is ultimately not a
property of the string itself, but on how it is generated.

Like in the case of QKD, we can divide quantum ran-
dom number generators (QRNGs) into two types de-
pending on whether or not the users trust the appara-
tus they use (there are also hybrids, not discussed here,
in which certain features are trusted and others not,
e.g., semi-device-independent QRNGs [703]). Both types
work by exploiting the fundamental randomness of cer-
tain quantum processes, but with trusted devices, it is
more straightforward to do so. We briefly mention one
example here. A simple trusted-device QRNG can be
based on a 50:50 beamsplitter and two detectors, one for
the reflected arm and the other for the transmitted arm.
If a single photon is incident on the beamsplitter, then
with probability half it will go to one detector and with
probability half the other. In principle this is a source of
quantum random numbers.

However, building such a QRNG is not as straightfor-
ward as it sounds. Generation and detection of single
photons is challenging, and it is difficult to ensure that
the beamsplitter is perfect. Furthermore, correlations
may be brought into the string by other factors such as
fluctuations in the power supply, asymmetries in the de-
tector responses and dead times. The standard way to
account for such difficulties is to try to quantify these ef-
fects, estimate the min-entropy of the outputs and then
use a classical extractor to compress the imperfect raw
string into arbitrarily good randomness.

One issue that needs to be considered when doing this
is that extraction of randomness typically requires a seed,
i.e., an independent random string. Fortunately, this
seed can act catalytically if a strong extractor is used,
i.e., the seed randomness remains random and virtually
independent of the output randomness so is not con-
sumed in the process. Nevertheless, the need for this
seed means that QRNG protocols should more accurately
be described as quantum randomness expansion (QRE)
protocols. In order to have a good rate of expansion,
randomness extractors requiring a short seed should be
used. Note also that to have full security guarantees,
quantum-proof randomness extractors should be used.

For the type of QRNG mentioned above the security
relies on the accuracy of the model used to describe it.
Like in the case of QKD, various additional advantages
can be gained by moving to device-independent proto-
cols (see Section IVA). These shift reliance away from
the model: that the output string is random is checked
on-the-fly and relies on the correctness and completeness
of physical laws (note that correctness and completeness
of quantum theory are related [704, 705]). The idea has
been described earlier in the review where DI-QKD was
introduced (see Section IVB). In essence, if we have some
number of separate systems whose correlations violate a
Bell inequality, then their outcomes must contain some
min-entropy, even conditioning on an adversary holding
arbitrary side information (for instance a quantum sys-
tem entangled with those being measured). This min-
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entropy can be lower bounded and an extractor applied
leading to arbitrarily good randomness output.
To use this idea, some initial randomness is required,

so we need to ensure that the protocol outputs more ran-
domness than it requires giving genuine expansion. This
can be achieved using a protocol analogous to the spot-
checking CHSH QKD protocol from Section IVD 2.

B. Protocols for DI-QRE

1. The setup for DI-QRE

The setup is different from that for DI-QKD because
there is only one honest party (Alice) in this protocol,
and, because the protocol is for randomness expansion,
we do not give an unlimited supply of random numbers
to Alice. These are the assumptions:

1. Alice has a secure laboratory and control over all
channels connecting her laboratory with the out-
side world. For any devices in her labs, Alice can
prevent unwanted information flow between it and
any other devices.

2. Alice has a reliable way to perform classical infor-
mation processing.

3. Alice has an initial seed of perfectly random (and
private) bits, known only to her.

Like for DI-QKD, security is proven in a composable
way (cf. Section II D) allowing the protocol’s output to
be used in an arbitrary application. The remarks made
in the last paragraph of Section IVD 1 all apply to QRE
as well. However, mitigating the device-reuse problem
is easier for QRE than in QKD because QRE does not
involve public communication during the protocol [162].

2. The spot-checking CHSH QRE protocol

There are many possible types of protocol; we will
describe a specific protocol here, based on the CHSH
game with spot-checking. The protocol has parameters
α ∈ (0, 1), n ∈ N, β ∈ (2, 2

√
2], δ ∈ (0, 2(

√
2− 1)), which

are to be chosen by the users before it commences.

1. Alice uses her initial random string to generate an
n-bit string of random bits Ti, where Ti = 0 with
probability 1− α and Ti = 1 with probability α.

2. Alice uses a preparation device to generate an en-
tangled pair. She sends one half to one measure-
ment device and the other half to another such de-
vice. (As in the case of DI-QKD, although this step
refers to the generation of an entangled state, se-
curity does not rely on this taking place correctly.)

3. If Ti = 0 (corresponding to no test) then Alice
makes fixed inputs into each measurement device,
Ai = 0 and Bi = 0 and records the outcomes, Xi

and Yi. These inputs are made at spacelike separa-
tion and each device only learns its own input.
If Ti = 1 (corresponding to a test) then Alice uses
her initial random string to independently pick uni-
formly random inputs Ai ∈ {0, 1} and Bi ∈ {0, 1}
to her devices and records the outcomes, Xi and
Yi.

4. Steps 2 and 3 are repeated n times, increasing i
each time.

5. For all the rounds with Ti = 1, Alice computes the
average CHSH value (assigning +1 if A.B = X⊕Y
and −1 otherwise). If this value is below β− δ, she
aborts the protocol.

6. If the protocol does not abort, for the rounds with
Ti = 0 the outputs Xi are fed into a randomness
extractor whose seed is chosen using Alice’s initial
random string. The EAT can be used to compute
how much randomness can be extracted, depending
on the value of β.

The ideal implementation of this protocol is as for
the CHSH QKD protocol in Section IVD2 (except that
Bi = 2 is not needed) and the intuition for its operation
is the same. The completeness error is again exponen-
tially small in n. By taking n sufficiently large, this pro-
tocol can output at a rate arbitrarily close to H(X |E)
from (63) (see Section IVC). This rate is the amount of
randomness output per entangled pair shared. We make
a few remarks about the protocol.

1. The protocol aims for randomness expansion, so it
is important to use as little randomness as possible
to implement it. Since each test round consumes
two bits of randomness, we would like α to be cho-
sen to be small. This also helps reduce the amount
of randomness required to choose the test rounds,
since generating a string of n bits with bias α re-
quires roughly nh2(α) bits of uniform randomness
from Alice’s initial random string, where h2 is the
binary entropy which drops away steeply for small
α. The value of α can be chosen such that in the
large n limit, the randomness required to choose it
is negligible.

2. If a strong extractor is used in the last step then
randomness is not consumed for this. Neverthe-
less, it is helpful to use an extractor with a small
seed, e.g., Trevisan’s extractor, so as to reduce the
randomness required to initiate the expansion.

3. In the case of the CHSH QKD protocol the aim is to
generate an identical key shared by Alice and Bob.
Here the aim is to generate randomness, so there is
no need for the ideal implementation to lead to the
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same outcomes for both devices in the case of no
test. This allows randomness expansion rates that
go beyond that of the QRE protocol given above,
while still using maximally entangled qubit pairs
(see [161] for a robust protocol giving up to two
bits of randomness per entangled pair). Like in the
case of DI-QKD, finding tight bounds on the min-
entropy in terms of the observed correlations for
general protocols is an open problem.

4. As the number of rounds, n, increases the classi-
cal computation required by the protocol (e.g., to
perform the randomness extraction) may become
prohibitively slow.

C. Historical remarks and further reading

The use of non-local correlations for expanding ran-
domness without trusting the devices used goes back
to Ref. [706] and the ideas there were developed in
Ref. [707]. The idea was developed experimentally in
Ref. [708] and security proofs against classical adversaries
were presented in Refs. [709, 710]. The first work covering
quantum adversaries was Ref. [711], although this lacked
tolerance to noise. Quantum security with error toler-
ance was proven in Ref. [168] and improved in Ref. [712],
where it was shown that any Bell violation can be used
to generate randomness.
Most recently, using the EAT [157] the expansion rate

was improved [156] so as to be asymptotically optimal
and a recent experiment has been performed based on
these recent techniques [713].
Note that several review articles devoted to the topic of

(quantum) random number generation have appeared in
the last few years [714–716]. These go beyond the scope
of the present review and provide a useful resource for
further reading on the topic.

D. Implementations

DI-QRE suffers from some of the same drawbacks as
DI-QKD, the most significant being the difficulty of per-
forming a Bell experiment while closing the detection
loophole. For DI-QRE this is slightly easier to do be-
cause there is no need for the two measurement devices
to be distant from one another. Instead, they only need
to be far enough apart to enable sufficiently shielding to
ensure they cannot communicate during the protocol. (In
particular, each device should make its output indepen-
dently of the input of the other device on each round of
the protocol.) Nevertheless, it remains challenging to do
this. While the first DI-QRE experiment ran at a very
low rate [708], recent state-of-the-art experiments achieve
reasonable rates [713] and even close the locality loophole
as well as the detection loophole. Such a demonstration
could be turned into a future randomness beacon, but is

still far from being built reliably into a small scale device
that could reasonably be included in a desktop computer
or mobile phone.
Because of this, for the next few years or so DI-QRE

is unlikely to be used in commercial products. One pos-
sibility is to use RNGs that rely on a detailed model of
how the device operates (see, e.g., Ref. [717]). To en-
sure such RNGs work as intended it will be important
to make increasingly sophisticated models of them and
to diagnose and patch any weaknesses as and when they
are identified. Furthermore, the performance of a RNG
may change with time and if and when it degrades, it
is important that this is noticed before the purportedly
random outputs are used. A problem such as this can be
mitigated by combining the outputs of several random
number generators (in an appropriate way) to give the
random string that will be used.

E. Randomness amplification

As we saw in the last section, in order to generate ran-
domness in a device-independent way we require some
seed randomness to start the process. This is necessary:
to constrain a device based only on its input-output be-
havior we use the violation of a Bell inequality, and ran-
dom numbers are needed to choose the inputs when ver-
ifying such a violation.
However, while random numbers are required for this

task, the protocol given above assumes these are perfectly
random. The task of randomness amplification concerns
whether a source of imperfect randomness can be used
to generate perfect randomness. (This should not be
confused with the related task of randomness extraction,
where an additional perfect seed is available.) Like ran-
domness expansion, this task is impossible classically in
the following sense: given a particular type of imperfect
source of randomness, a Santha-Vazirani source [718],
and no other source of randomness, there is no classi-
cal protocol can generate perfectly random bits [718].
A Santha-Vazirani source is a way of modeling a source

of bad randomness. It has the property that each bit
given out can be biased towards either 0 or 1 within some
limits which are specified by a parameter ε ∈ [0, 1/2].
More precisely, call the outputs Si, and let Wi be a ran-
dom variable representing arbitrary additional informa-
tion available that could not be caused by Si. The se-
quence of bits Si in a Santha-Vazirani source with pa-
rameter ε if
∣

∣

∣

∣

PSi|Si−1=si−1,...,S1=s1,Wi=w(0)−
1

2

∣

∣

∣

∣

≤ ε ∀si−1, . . . , s1, w .

In other words, even given the entire prior sequence and
any other information that could not be caused by Si,
the probability of 0 and 1 each lie between 1/2 − ε and
1/2 + ε.
It turns out that such a source of randomness can be

amplified with a quantum protocol. The first proof of
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this appeared in Ref. [719] where the task was introduced.
There it was shown that for ε ≤ 0.058 a single source of ε-
free bits can be used to generate bits that are arbitrarily
close to uniform. Subsequently it was shown that this
bound on ε could be extended to cover all ε < 1/2, i.e.,
any source of partially random bits can be amplified, no
matter how small the randomness [720]. These initial
protocols gave important proofs of principle, but were
impractical due to low noise tolerance or the need for
large numbers of devices, a problem addressed in [721].
The current state of the art can be found in [722], which
includes a protocol with two devices that tolerates noise
and works for all ε < 1/2.
Further works considered other types of imperfect ran-

domness, in particular, min-entropy sources which take
as input a single string with an assumed lower bound
on its min-entropy conditioned on arbitrary side infor-
mation, and no further assumptions about the structure
of the randomness. A security proof in this scenario is
given in [723].
It is worth noting that while all of the above works

prove security of randomness amplification against quan-
tum adversaries, several also show security against a
post-quantum adversary whose power is only limited
by the impossibility of signalling. Protocols that work
against arbitrary no-signalling adversaries tend to lack ef-
ficiency. One reason for this is the difficulty of extracting
randomness against a no-signalling adversary [724, 725].
Another noteworthy property of many of the above

protocols (all except the protocol of [721]) is that they
can work using a public source of randomness as a seed.
This is relevant in the context of randomness beacons (for
example that of NIST). If a user suspects that the output
of the beacon is imperfect in some specified way, they
may be able to use a randomness amplification protocol
to increase their trust in the output randomness.

XV. QUANTUM DIGITAL SIGNATURES

A. Introduction

Digital signature is a cryptographic primitive that
ensures that a digital message was (i) created by the
claimed sender (authenticity), (ii) that the message was
not altered (integrity) and (iii) that the sender cannot
deny having sent this message (non-repudiation). It is
the digital analogue of handwritten signatures but comes
with a higher level of security guaranteed by crypto-
graphic means. Digital signatures play a very different
role than encryption in modern communications, but this
role is of no less importance. Ronald Rivest, one of the
inventors of public-key cryptography, stated in 1990 that
“the notion of digital signature may prove to be one of
the most fundamental and useful inventions of modern
cryptography”. This prediction has been fulfilled, since
nowadays it is a necessary tool for a huge range of ap-
plications, from software distribution, financial transac-

tions, emails to cryptocurrencies and e-voting.
Here we review the research on quantum digital signa-

tures (QDS) that demonstrate how using simple quan-
tum communications we can achieve digital signature
schemes that are more secure than most of the com-
monly used digital signatures algorithms. We start in
Section XVB with definitions and security properties
of digital signatures and motivate the use of quantum
means in Sections XVC and XVD. We present the sem-
inal Gottesman-Chuang scheme, and identify the practi-
cal limitations it has in Section XVE. In Section XVF
we describe how one-by-one these restrictions were lifted,
making QDS a currently realizable quantum technology.
In Section XVG we describe a generic practical QDS pro-
tocol. A reader interested in quickly catching-up with
the current state-of-the-art for QDS, could read this sec-
tion directly after the introduction. In Section XVH we
give theoretical and in Section XV I experimental recent
developments. Finally, in Section XVJ we give a (fully
classical) alternative to QDS that requires point-to-point
secret keys (potentially obtained via QKD) and then we
conclude in Section XVK.

B. Definitions and security properties

A QDS scheme involves multiple parties: one sender
and (potentially many) receivers. It consists of three
phases each described by a corresponding algorithm
Gen, Sign, V er.

(Gen) Key generation algorithm. This sets and dis-
tributes the “keys” to be used in the subsequent
interactions. (It is also known as the “distribution
phase”.) A private key (sk) that is given to the
sender, and (possible multiple) public key(s) (pk)
given to the receivers are selected. In protocols
where the public key of different receivers is not
the same, a subscript will indicate which receiver
refers to e.g. pki.

(Sign) Signing algorithm. The sender chooses a messagem
and uses her private key sk to generate a signature
σ = Sign(m) and then send the pair (m,Sign(m))
to the desired receiver.

(V er) Verifying algorithm. A receiver has as input a
message-signature pair (m,σ) and the public key
pk and checks whether to accept the message as
originating from the claimed sender or not. In cer-
tain types of signatures (including the QDS), there
are multiple levels of “accepting” a message, de-
pending on what confidence the receiver has that
this message would also be accepted if forwarded
to other receivers.

An important property of digital signatures schemes
is that after the Gen phase, the actions of the parties
are determined without further (classical or quantum)
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communication, i.e. they sign and decide to accept or re-
ject a message-signature pair, based solely on the keys sk
and pk respectively, that were distributed during the Gen
phase. This is precisely how hand-written signatures are
used, where one signs and accepts/reject a signature “lo-
cally”. Let us define the correctness and security notions
for a digital signature scheme:

• A digital signature scheme is correct if a message-
signature pair signed with Sign algorithm using the
correct private key sk is accepted by the V er algo-
rithm with unit probability.

• A digital signature scheme is secure if no adversary
without access to the private key sk can generate
a signature that is accepted by the V er algorithm
with non-negligible probability.

These definitions, along with the guarantee that the
private key sk is not leaked and that all parties share the
same (correct) public key pk, lead to three important
properties: unforgeability, non-repudiation and transfer-
ability. We will see that ensuring parties received the
same and correct public key becomes a non-trivial task
when the keys are quantum. Instead of using the above
security definitions, for analyzing QDS schemes, we will
instead aim to ensure that the following three properties
are satisfied:

1. Unforgeability: A dishonest party cannot send a
message pretending to be someone else.

2. Non-repudiation: A sender cannot deny that she
signed a message.

3. Transferability: If a receiver accepts a signature,
he should be confident that any other receiver (or
judge) would also accept the signature.

Firstly, we need to clarify how the words “cannot” and
“confident” are used. The meaning is that, for any ad-
versary allowed (which, depending on the setting, may or
may not have restrictions in his computational power),
the probability of the protocol failing can be made ar-
bitrarily small with suitable choices of parameters. The
exact magnitude of how small is determined by the level
of security requested by the use of the given scheme,
and is characterized by a small positive number ǫ. In
other words, formally we should write ǫ-unforgeability,
etc. Secondly, we note that non-repudiation and trans-
ferability are very closely related. Not being able to deny
a signature typically depends on the way one resolves a
dispute, i.e., if Alice refuses that she signed a contract,
who will decide whether the contract had her signature
or not. In most cases this is the same as asking if a signa-
ture accepted by one receiver would also be accepted by
a judge or other receivers, and this is exactly the trans-
ferability property. Here we will identify non-repudiation
with transferability, while keeping in mind that this may

not be the most general treatment, if one chooses a dif-
ferent (less natural) “dispute-resolution” mechanism.
For simplicity, in the following we will refer to the

sender as Alice, the received as Bob and when a second
receiver is required (e.g. for transferability of messages),
he will be referred to as Charlie.

C. What is a quantum digital signature scheme and
why it is useful?

There are various things that one could call QDS, but
in this review we present the research that started with
Gottesman’s and Chuang’s seminal work [726] and deals
with: signing a classical message and using quantum
communication (and computation) in order to provide
information-theoretic security (ITS), so that the signa-
tures generated are “one-time” in the sense that when a
message is signed the corresponding private/public keys
cannot be reused for signing other messages. Other
uses of the term include: signing a quantum message,
“blind” quantum signatures, arbitrated quantum signa-
tures, classical signatures secure against quantum com-
puters [727], quantum tokens for signatures [728], etc.
The most common digital signature schemes are RSA-

based, DSA and ECDSA and ElGamal. The security of
all these schemes is based on the assumption that the
adversaries have limited computational power and that,
in particular, it is hard for them to solve the discrete
logarithm or factoring problems. While these problems
are still believed to be hard for classical computers, since
Shor’s algorithm [729] we know that an efficient quan-
tum algorithm exists. In other words, if a large quan-
tum computer is built, then it could solve these problems
efficiently and break the security of all these signature
schemes. This provides a compelling argument in favor
of solutions that provide ITS, which is the strongest type
of security, holding irrespectively of the computational
resources that an adversary has.
Here it is important to stress that while the most com-

monly used classical digital signatures schemes (men-
tioned above) would break, this is not the case for all clas-
sical digital signature schemes. There exist many (less
practical) classical signature schemes, that appear to re-
main secure against quantum computers (post-quantum
secure), possibly after small modifications in the security
parameters (e.g. by doubling the key-lengths). Exam-
ples of such schemes are the Lamport [730], Merkle [731],
Ring-Learning-With-Errors [732], CFS [733], etc.
Having said that, there is another strong argument

for ITS (and thus QDS). The research in quantum algo-
rithms is not as mature as in classical algorithms, there-
fore the confidence we have on the hardness of problems
still changes. For example, in a recent result [734] one
of the best candidates for post-quantum cryptography,
the learning-with-errors (LWE) problem, was proven to
be equivalent to the dihedral-coset problem, for which
there is a sub-exponential quantum algorithm. While
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this algorithm still would not fully break the security
of LWE, it certainly weakens its security and one may
wonder whether we should base the security of our com-
munications on such computational assumptions.

D. The Lamport one-time signature scheme

QDS schemes were inspired by Lamport’s one-time sig-
natures [730] and for this reason we present here a high-
level description of this scheme. Assume that we have
a (classical) one-way function f . For such a function,
it is simple to evaluate f(x) given x. However, given
f(x) = y it is hard to find the pre-image, i.e. invert the
function to get the value x. Of course, we can already
see that this definition (hardness of inverting) assumes
(i) limited computational resources (otherwise one could
“brute-force” by trying all x’s until he finds the pre-image
or a collision) and (ii) the function is such that it is not
efficiently invertible. In other words any scheme based
solely on the above cannot offer ITS.
Alice chooses two random inputs x0, x1 and evalu-

ates f(x0), f(x1). She then publicly broadcasts the pairs
(0, f(x0)) and (1, f(x1)) which will be the public keys
pk, while she keeps the values x0, x1 secretly stored (pri-
vate key sk). This completes the Gen algorithm. Then
to Sign, Alice simply sends the message b along with
her stored corresponding secret key xb. The receivers, to
accept/reject (V er algorithm) they evaluate f(xb) and
check if it agrees with their public key in order to accept.
The intuition why this is secure comes from the fact

that the function is hard to invert. Therefore an adver-
sary with access only to the public keys (images) cannot
find the secret key (pre-image) for any message, in order
to provide a valid (forged) signature. At the same time,
if anyone receives a valid signature (with respect to the
publicly available public key), they are convinced that it
came from Alice (non-repudiation), even if she claims it
does not, because nobody else could have generated such
signature.
Finally, at the end of such scheme, all used and unused

keys are discarded (thus one-time signatures). Such pro-
tocol has been modified using Merkle trees [731] to allow
the signing multiple messages.

E. The Gottesman-Chuang QDS

In 2001, Gottesman and Chuang [726] proposed the
first QDS protocol, that we may briefly call GC-QDS.
The central idea was to use the fact that non-orthogonal
states cannot be distinguished perfectly so as to real-
ize a “quantum one-way function”, where the inability
to invert is not based on computational assumptions but
guaranteed by the laws of quantum mechanics. The basic
idea is that if we have a quantum state |f(x)〉, where f(x)
represents the classical description of the state, and the
set of possible states are non-orthogonal, no-one should

be able to determine the classical description of the state,
with high probability, unless they already know it (oth-
erwise they could also copy/clone the state). Moreover,
the amount of information obtained is bounded by the
Holevo theorem [735]. In other words, we have the clas-
sical description of the state to play the role of the secret
key sk, while the quantum state itself is the public key
|pk〉. Such “one-way function”, by construction, cannot
be broken even if one has unlimited computational power.

1. The protocol

A function f is chosen and is made public. This func-
tion takes input x and returns f(x) that is the classical
description of a quantum state. For example, x can be
a two-bit string and f(x) denotes one of the four BB84
states. There is no need for this function to be one-way,
since what replaces the one-wayness of classical proto-
cols is that one cannot obtain the classical description
of a quantum state with certainty. In GC-QDS some
choices of functions were made, but this is not crucial for
the general description. Let us analyze the various steps.
a. Key generation. For the private key, Alice

chooses pairs of bit-string {xi0, xi1}, where 1 ≤ i ≤ L.
The x0’s will be used to sign the message 0 and the x1’s
to sign the message 1. The number of pairs L is deter-
mined by the security level requested.
For the public key Alice generates multiple copies of

the state {|f(xi0)〉, |f(xi1)〉}. Since only Alice knows the
secret keys, and unknown quantum states cannot be
copied, she generates all the copies. Then she distributes
to each potential receiver the corresponding states, along
with the label for which message they correspond.
In a digital signature scheme, all parties may be dis-

honest (not simultaneously though). When the public
key is classical, parties could easily check that they have
the same public keys. This is far from trivial in our case.
Gottesman and Chuang proposed to use multiple copies
(of each public key for each party) and they interact by
performing SWAP tests (see Fig. 19). This is a test that
gives always affirmative answer without disturbing the
state, when two states are identical, while fails proba-
bilistically otherwise. This comes with considerable cost,
since each copy of the public key (quantum state) circu-
lated makes easier the task for an adversary to recover the
classical description (secret key) and therefore to forge a
message. Finally, all receivers store the public key into a
quantum memory until they receive a signed message.
b. Signing. To sign a message, Alice simply chooses

the message value b ∈ {0, 1} and sends (b, xib) to the
desired receiver. This is a completely classical phase.
c. Verification. In order to confirm whether the

message-signature pair is valid, the receiver uses the clas-
sical description: for each xib he generates the correspond-
ing quantum state |f(xib)〉 and checks if it is consistent
with his stored public key. Then he counts the fraction of
incorrect keys st (out of the L keys). At this point QDS
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FIG. 19. The SWAP test. If |ψ〉 = |φ〉 then it gives always
0, otherwise the result 1 is obtained with probability that
depends on the overlap |〈ψ|φ〉|.

deviates from standard digital signature schemes. The
verification algorithm takes three answers (rather than
the usual two accept/reject). The receiver can return
REJ when convinced that the message-signature pair is
not valid, can return 0-ACC if he is certain that is valid
but is uncertain if this signature would also be accepted
by other receivers when forwarded (or by a judge), and
return 1-ACC if he is certain that is valid and will also
be accepted by other receivers or judges. The reason
for this modification is subtle and is explained below in
the section on the intuition of the security. Depending
on the details of the protocol, there are two parameters
0 < sa < sv < 1 that determine what V er outputs. If
st > sv the receiver REJ . If sv > st > sa the receiver
0-ACC and if st < sa the receiver 1-ACC.

2. Security intuition

Unforgeability is guaranteed by the fact that, given
an unknown quantum state, one cannot guess its classi-
cal description with certainty, even if the state is from
within a known (non-orthogonal) set. A potential forger
has in his disposal all the copies of the quantum pub-
lic keys, and, if colluding with other receiver, may even
have extra copies. We assume that the forger performs
a minimum-error (or minimum-cost in general) quantum
measurement to obtain his best guess, with an associated
probability pf of failure. Provided that this probability
is higher than an accepting threshold pf > sv, a forger
cannot mimic a valid signature, at least not with proba-

bility higher than a decreasing exponential e−c(pf−sv)
2L

for some constant c. This argument is similar in all QDS
protocols, where calculating pf and c varies on the details
(number of copies circulated, form of the quantum states
sent, method to measure/identify errors in the key, etc).
To prove non-repudiation is even more subtle. Alice is

not forced to send identical quantum public keys to Bob
and Charlie. As outlined above, they communicate quan-
tumly and perform a number of SWAP tests on copies of
the public keys. The result of these tests succeeds proba-
bilistically. If there was a single verification threshold sv,
then Alice could tune the public key she sends to Bob and
Charlie to have (expected) svL errors. Since the number
of errors is determined by a normal probability distribu-
tion with mean at svL, the probability that one of them
finds more than svL errors is exactly 1/2. This means

that with probability 1/4 one of them will practically de-
tect more than svL errors while the other less than svL
errors, and therefore they would disagree on whether this
signature is valid or not.
This is why Gottesman and Chuang introduced a sec-

ond threshold sa and used both sa and sv. Now to repu-
diate, Alice needs to generate a signature that the first
receiver accepts as message that can be forwarded while
the second receiver completely rejects. In other words
we need the errors of Bob to be below saL while those of
Charlie to be above svL. We can see that, similarly with
the forging case, this probability decays exponentially if

sa < sv with a rate e−c′(sa−sv)
2L.

Finally, in any realistic setting, even an honest run
would result to certain errors due to the noise and im-
perfections in the quantum communication and quantum
memory. This could lead to honest signatures being re-
jected, which again is undesirable. (This is known as
correctness, soundness or robustness in different places
in the literature.) We denote the fraction of those hon-
est errors as pe and once again we see that the protocol
does not reject honest signatures if pe < sa, so that the

probability of honest rejection decays as e−c′′(pe−sa)
2L.

To summarize, we have 0 < pe < sa < sv < pf .
The parameter pe is determined by the system, noise,
losses, etc, while pf is theoretically computed as the best
guess/attack. The two parameters sa, sv should be suit-
ably chosen within the gap g = pf − pe, and approxi-
mately in equal distances so that we have minimum prob-
ability that something undesirable (forging, repudiation,
honest-reject) happens.

3. Remarks

Let us note that exact calculation of the above param-
eters for GC-QDS was not done since there were many
practical limitations to actually implement such protocol.
It served more as an inspiration for later works.
Then note that this protocol involves multiple par-

ties (at least when considering transferability/non-
repudiation) and any one of them could be malicious.
This is one of the most crucial differences compared to
QKD. The adversaries in QDS are legitimate parties in
the (honest) protocol (while Eve in QKD is an exter-
nal party). This means that even when we are guaran-
teed that all quantum communications are done as the
sender wishes, there are still potential attacks. It is ex-
actly this type of attacks that we have so-far considered.
Receivers using their legitimate quantum public key to
make a guess of the private key and forge; or a sender
sending different quantum public key to each receiver in
order to repudiate.
In [726] and in the first few works on QDS, to sim-

plify the security analysis, it was assumed that these
are essentially the only possible attacks. This formally
was described as having an authenticated quantum chan-
nel between the parties. However, to actually have such
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a channel (or to have quantum-message-authentication-
codes [736]), there is a considerable cost. Subsequent
works lifted this assumption.
Finally, while we have described QDS as a public-key

cryptosystem, strictly speaking this is not quite precise.
The “public key” is a quantum state, thus it cannot be
copied or broadcasted as classical keys. Therefore to
properly ensure that the public key is the same, point-to-
point (quantum) communication is required, while par-
ties that have not participated in the Gen phase, cannot
enter later (i.e., it lacks the “universal verifiability” of
classical public key cryptosystems). Whether these issues
are crucial or not, it depends on the use/application that
the digital signatures are required (e.g., how important
is the security) and the efficiency of the QDS protocol
after having taken into account the above issues.

4. Practical limitations of GC-QDS

The GC-QDS scheme highlighted the possibility of a
beyond-QKD quantum cryptographic primitive, but it
did not trigger a wide research burst immediately. The
reason that it took more than 10 years to have the wider
research community following these steps was, mainly,
because the original protocol was highly impractical to be
actually implemented and used. The three major practi-
cal restrictions were:

1. The quantum public key is a quantum state re-
ceived during the Gen phase and then later used
again during the V er phase. However, in normal
practise, the acts of establishing the possibility of
digital signatures and actually signing and even
later verifying (or forwarding) a signature can be
separated by long periods of time (days or even
months). Storing quantum information for even
seconds is hard and is one of the major restrictions
in building scalable quantum computers.

2. In order to test that receivers obtained the same
quantum public key, they need to communicate and
have multiple copies of the key, then test whether
they are the same using a comparing mechanism
such as the SWAP test, send copies to other par-
ties and re-use the SWAP test between their public
key and the one received from other parties. This
involves extra quantum communication and, more
importantly, using ancillae and controlled SWAP
gates on each qubit. These operations are oper-
ations sufficient for a universal quantum computa-
tion and adding the quantum memory requirement,
it appears that all parties should have a full univer-
sal quantum computer to participate in GC-QDS.
This is in sharp contrast with QKD, that requires
minimal quantum technologies, for example prepar-
ing and measuring single qubits.

3. In the analysis of GC-QDS we have assumed that

the quantum states that parties want to send, ar-
rive to the desired party correctly, i.e., they have an
authenticated quantum channel. While quantum-
message-authentication-codes do exist [736], they
bring extra cost. Alternatively, one could modify a
QDS protocol to be secure even when there is no
guarantee about the quantum channel(s) used.

F. Practical QDS: Lifting the limitations

Since the appearance of the GC-QDS protocol there
were four major developments, which we outline here.
These lifted all the aforementioned limitations transform-
ing QDS from a theoretical idea to a practical quan-
tum communication primitive, technologically as ma-
ture as QKD. Further improvements (in the security
proofs/guarantees, performance and realizations) will be
summarized in the subsequent sections.

1. Simplifying state comparison

Andersson et al. [737] introduced a practical quantum
comparison for coherent states (here expressed in the
photon number basis)

|α〉 = e−
|α|2

2

∞
∑

n=0

αn

√
n!
|n〉. (214)

Provided that the quantum public key of a QDS protocol
consists of coherent states, this practical test can replace
the SWAP-test in both its uses. First to ensure that
the quantum public keys are identical and thus Alice is
not attempting to repudiate. Second, to check the va-
lidity of a signature by checking that a quantum public
key matches its classical description (given when a signed
message is received).
In Ref. [737], the quantum public key consists of two

states (b = 0 for signing message 0 and b = 1 for
message 1) whose form |ψb

pk〉 corresponds to a string

of coherent states ||α|eiθ〉 with the same (known) am-
plitude |α| and phase chosen randomly from the angles
θ ∈ {2π 1

N , 2π
2
N , . . . , 2π

N−1
N }, for suitable N . The classi-

cal description of this string (the choice of phase for each
coherent state in the string) is the private key sk.
The main idea of the coherent-state quantum compar-

ison is depicted in Fig. 20, where we can see that the
“null-ports” measure the phase difference between the
two incoming coherent states (and is the vacuum when
they are identical). Note, that this comparison is very
simple technologically, since all that is needed is beam
splitters, mirrors and photon detectors. This is why this
set-up is a considerable advancement compared to the
SWAP-test used in GC-QDS.
Since this comparison should be performed for the

quantum public keys that receivers (Bob and Charlie)
have, the multiport of Fig. 20 is placed between different
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FIG. 20. Coherent-state quantum comparison introduced in
Ref. [737]. If |α〉 = |β〉 then only the signal port of Bob
and Charlie detects photons. Otherwise, the null-port detects
photons too. Reprinted figure with permission from Ref. [738]
c©APS (2014).

locations (Bob’s and Charlie’s labs). This has two conse-
quences, one practical and one theoretical. The practical
is that being in a distance, ensuring path lengths are
identical is not trivial, while extra losses occur, since not
only the quantum public key needs to go from Alice to
Bob/Charlie, but then it needs to go through this com-
parison process. The theoretical issue is that Alice, in
principle, could also tamper the quantum states commu-
nicated between Bob and Charlie, something that com-
plicates the (full) security proof. Such proof was only
completed for some modified protocols much later.
To sign a message Alice sends the corresponding mes-

sage b along with the string of phases corresponding to
ψb
pk. Bob (Charlie) to accept, reconstruct the state |ψb

pk〉
and use state-comparison with their stored state. They
count the number of positions in the string that the null-
port clicks and compare the fraction with the thresholds
(sa, sv) and decide to accept as original (1-ACC), as for-
warded (0-ACC) or to reject the message.

2. No quantum memory requirement

As we have already stressed, in GC-QDS the public
key is a quantum state and one needs to store it until
the V er phase, something that makes impractical such
scheme. Dunjko et al. [738] constructed a QDS protocol
that does not require a quantum memory. The central
idea is to replace the quantum public key (which needs to
be stored coherently) with a classical “verification key”,
which is no longer the same for all receivers.
The protocol builds on Refs. [737, 739] and starts with

Alice distributing a “quantum public key” being two
strings of coherent states, where for simplicity, the possi-
ble phases of each state are two, i.e., the strings are of the
type |α〉| − α〉|α〉 · · · | − α〉 (if Alice is honest). Bob and
Charlie use the multiport scheme of Fig. 20 to ensure that

Alice was (mostly) honest. Then they directly measure
each coherent state pulse, using unambiguous state dis-
crimination (USD) [740–742]. With this measurement,
Bob and Charlie know with certainty the classical de-
scription of some positions in the string(s) of coherent
states that Alice sent, while they have no information
about other positions.
This information (position in string and value mea-

sured) are stored by Bob and Charlie and will be their
verification key. (Note that the verification key of Bob
and Charlie is different, even in the honest case. This is
because for which positions a USD gives conclusive out-
come is probabilistic and happens independently for the
copy that Bob and Charlie have.) When Alice sends a
signature, she needs to return the classical description for
all the string corresponding to the message b she wants to
sign. Bob and Charlie count the fraction of mismatches
that the string that Alice has with their stored verifica-
tion key(s) st and they reject, 0-ACC or 1-ACC com-
paring these mismatches with the thresholds sv an sa.
The important detail that makes such scheme secure,

is that Alice does not know for which positions Bob and
Charlie know the state and for which they do not. It is
therefore impossible for her to send a classical description
that agrees with all the possible verification keys unless
she sends the honest private key.
Note that, to achieve ITS encryption, one uses quan-

tum communication (QKD) to achieve a shared secret
key and then uses the fully classical one-time-pad proto-
col to encrypt a message. Similarly, here, we use quan-
tum communication to achieve correlations between the
classical information of the parties involved in the signa-
ture scheme (their private/verification keys). Then after
establishing these correlations, a fully classical signing
and verifying algorithm follows and achieves the digital
signature functionality.

3. QDS from QKD technology

After removing the quantum memory requirement, the
only remaining difficulty making QDS harder than QKD
is the mechanism to ensure that the same quantum pub-
lic key was sent to different receivers (ensuring non-
repudiation), whether this mechanism is the SWAP-test
or the much simpler coherent-state comparison (using a
spatially separated multiport).
A crucial observation is that both the SWAP-test and

the coherent-state comparison accept symmetric states.
In other words, if the states compared are in the global
state 1√

2
(|ψ〉|φ〉+|φ〉|ψ〉), both tests would always accept.

While this may appear as a problem, it turns out that
Alice is unable to repudiate by sending such symmetric
states. In fact, since the state is symmetric, Alice is un-
able to make Bob accept (with the lower error threshold
sa) and in the same time make Charlie rejects (with the
higher error threshold sv used for forwarded messages).
It is the symmetry of the state and the gap g = (sv − sa)
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that ensures non-repudiation.
Starting from this observation, Wallden et al. [743] re-

placed the comparison test with a “symmetrizing” step
and proposed three protocols. This extra step ensures
that, even if Alice did not distribute identical quantum
public keys, the classical verification keys that Bob and
Charlie store will be symmetric and thus Alice is unable
to make them disagree. All protocols given in [743] can
be performed with BB84 states. Here we outline one of
these protocols to demonstrate these ideas.
Alice selects two strings of BB84 states (one for each

future message b), and she generates two copies of
these strings and send them to Bob and Charlie. For
each qubit, Bob (Charlie) either forwards it to Charlie
(Bob) or keeps it and measures it in either {|0〉, |1〉} or
{|+〉, |−〉} basis. Similarly, he measures the forwarded
qubit that he received from Charlie (Bob). Depending
on the result, he rules-out one of the possible states. For
example if for the nth qubit he obtains the outcome “+”,
Bob stores that the nth qubit is not |−〉 (something he
can know with certainty). Bob (Charlie) stores the se-
quence of eliminated states, the position in the string,
and whether he received it directly from Alice or as for-
warded from Charlie (Bob). This classical information
will be Bob’s (Charlie’s) verification key.
As usual, Alice to sign sends the message and the clas-

sical description of the corresponding string of qubits.
Bob checks for positions that the declaration of Alice con-
tradicts his stored verification key (i.e. places that Alice
sends the state that Bob has ruled-out). Then the frac-
tion of this mismatches is compared to the two thresholds
sa, sv and Bob rejects or 0-ACC or 1-ACC.

4. Insecure quantum channels

One major assumption made so far was that the quan-
tum channels used were authenticated, i.e., the quantum
states sent during the quantum communication part of
the protocol were the same as the one received. While
there are general (costly) methods to achieve this, an in-
tuition why this may not be necessary was already given.
One can imagine “sacrificing” part of the communicated
qubits to test (and bound) the tampering that third par-
ties performed. This is exactly what parameter estima-
tion in QKD achieves. In Refs. [744, 745] the authors
made this intuition precise. As part of the interaction
that leads to a private key for Alice and (partial infor-
mation) for Bob (Charlie), they included a parameter
estimation phase. As far as the experiment is concerned,
it is now a normal QKD protocol, that stops before error
correction and privacy amplification. The way to bound
forging and repudiation is very different and depends on
the specific protocol.
In Ref. [744] there was another change. The quantum

states (quantum public key) that Alice sends to Bob and
Charlie were no longer the same. Since the only condition
that secures Bob and Charlie against repudiation is the

symmetrization procedure, whether Alice sends initially
the same or different states makes no essential difference.
The only practical difference is that Alice’s private key is
now composed from the classical description of both the
different strings sent to Bob and Charlie. On the other
hand, by sending different quantum states, Alice limits
the potential forging attacks, since forgers have no longer
copies of the full legitimate quantum public key.
Finally, a very interesting observation is that the

(channel) error rates for which QDS was possible in [744]
were higher than those for QKD. This means that by us-
ing this QDS scheme, one may be able to perform QDS
in a setting where QKD is not experimentally feasible.

G. A generic modern QDS protocol

1. Description

We can now give a description of a generic modern
QDS protocol, i.e., one that does not require quantum
memory, that can be realized with the same technology
as QKD and that makes no assumption on the quan-
tum channels used. The description below is restricted
to three parties, but can be generalized to more parties.
a. Key generation. We start with (any) QKD sys-

tem as basis. Alice performs the first part of a QKD
protocol (separately) twice with Bob and twice with
Charlie. The QKD protocol is completed up to obtain-
ing the raw key (i.e., before error correction and pri-
vacy amplification). As result, Alice has four bit strings
AB

0 , A
B
1 , A

C
0 , A

C
1 , Bob has two strings KB

0 ,K
B
1 and Char-

lie has KC
0 ,K

C
1 . By the properties of a (non-aborted)

QKD protocol, the correlation between, say, AB
0 and KB

0

is greater than the correlation of AB
0 and a string that any

other party can produce. The private key sk that Alice
uses to sign a message in the future is the concatenation
of the two corresponding strings sk = (AB

0 ||AC
0 , A

B
1 ||AC

1 ).
During this process, the error rates of the channels are
estimated, and values for sa, sv are chosen such that
0 < pe < sa < sv < pf < 1, and sa, sv are “placed”
equally separated within the gap pf − pe. Here, pe is the
estimated (“honest”) error rate between Alice-Bob using
their quantum channel, while pf is the minimum error
rate that Eve makes trying to guess Alice’s string.
Bob and Charlie perform a symmetrization by ex-

changing secretly half of their strings (e.g., using another
full QKD link). The new strings for Bob SB

0 , S
B
1 (and

similarly for Charlie SC
0 , S

C
1 ) are each composed from

half of the string initially sent to Bob and half of that
to Charlie, but which part from Bob’s initial string and
which part from Charlie’s is unknown to Alice (since the
symmetrization was performed secretly). The verifica-
tion keys for Bob and Charlie are pkB = (SB

0 , S
B
1 ) and

pkC = (SC
0 , S

C
1 ). (Note that we no longer call them pub-

lic keys, being different for Bob and Charlie.)
b. Signing. In order to sign a message m, Alice

sends (m,AB
m||AC

m) to Bob.
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c. Verification. To accept a message coming di-
rectly from Alice, Bob checks the mismatches rate pBt
between the signature received AB

m||AC
m and his stored

verification key SB
m, for each part of the signature sepa-

rately (i.e. mismatches in the part he obtained directly
from Alice and mismatches in the part he obtained from
Charlie during the symmetrization). If pBt < sa he ac-
cepts for both cases, i.e. 1-ACC. Charlie receives a mes-
sage with Alice’s signature, but from Bob. He checks the
mismatches rate pCt similarly to Bob, and if pCt < sv for
both parts, he accepts the message as coming originally
from Alice.

2. Security intuition and performance

Forging is not possible because any potential forger,
even a legitimate party (e.g. Charlie), cannot guess the
part of the Alice’s private key that was not directly send
to him, at least not with any probability significantly
better than pf . His forging probability actually scales

at best as e−c(pf−sa)
2L which vanishes for sufficiently

large length of string L. Similarly, non-repudiation is
guaranteed by the fact that Alice is ignorant on which
part of KB

m,K
C
m is in SB

m and which is in SC
m, she is

therefore unable to make Bob accept and Charlie to re-
ject, and her probability of succeeding in this scales as

e−c′(sv−sa)
2L. Finally, an honest abort is unlikely, since

we chose sa > pe which leads to the honest abort occur-

ring with probability at most e−c′′(pe−sa)
2L.

A QDS protocol performance is judged by the time
taken to distribute the verification key(s) among the par-
ties, but also the distance that the parties could be sepa-
rated. (The signing algorithm and verification algorithm
are both assumed to be much quicker and thus we judge
the protocols, essentially, on the time required for the key
generation.) In most cases, we consider single-bit mes-
sage and assume linear scaling, however there may exist
more efficient ways to sign longer messages (e.g. [746] for
a classical ITS scheme). The time taken to distribute the
verification key(s) depends on the clock-rates (how many
pulses are sent per second) and on how long strings L are
required to achieve a desired level of security. In other
words, what L and other choices should be made, so that
the probability of something going wrong (forging, repu-
diation, honest-abort) is below ǫ – the desired level of
security.
To jointly minimize the probabilities of forging, re-

pudiation and honest-abort, we first need to determine
the values pe, pf . The estimated honest-error rate pe is
obtained from the specific channel/experimental set-up
used, and can be thought as a practical constraint. It is
easy to see that pe increases with the distance between
parties, therefore there is a trade-off between speed of
distributing verification key(s) and distance. We should
keep this in mind when comparing different implemen-
tations. The best forging error attempt pf is theoreti-
cally evaluated for example by considering the minimum-

cost quantum measurement that adversaries can per-
form. Once these two are given, optimal choices for
sa, sv are calculated to jointly minimize the probabil-
ities of forging, repudiation and honest abort. Typi-
cally we require equal separation between the intervals
(sa − pe), (sv − sa), (pf − sv), since they all appear in
similar form in the exponential decay of the expressions
of honest-abort, repudiation and forging, respectively.

H. Extending QDS: Multiple parties, longer
messages, and MDI

The QDS schemes we presented considered the case of
three parties, the smallest number sufficient to illustrate
the transferability property. In that setting, only one
party at a time can be an adversary. In real practise
however, multiple parties would be involved as potential
receivers.
A potentially-important disadvantage of QDS com-

pared with classical schemes is the way the communi-
cation required in the Gen phase scales as a function of
the number of parties involved. For most QDS proto-
cols, a quadratic number of communication channels is
required. Moreover, when multiple parties are involved,
the issue of colluding parties (including sender colluding
with some receivers) should be considered, while also the
issue of multiple transfers of a signed message (and the
corresponding honest parties fraction thresholds) need to
be considered. In Ref. [747] the general framework for
multiple-party QDS, certain generic properties, and the
concept of multiple levels of transferability (and verifi-
cation) were introduced, along with a multi-party gener-
alization of one protocol. In Ref. [748] the three-party
protocol of [744] was also extended to multiple parties.
Most of the research on QDS is focused on signing

single-bit messages, and it is usually stated that a simple
iteration can be used for longer messages. While this is
mostly true, there are two issues that require attention.
First, as analyzed in Ref [749], there are attacks on longer
messages impossible to be addressed from single-bit sig-
natures, e.g. tampering with the order of the bits. The
second issue is that of efficiency. In classical schemes,
using hash functions one can reduce the extra cost from
being linear in the size of the message (as in simple iter-
ations) to being logarithmic [746]. It is worth exploring
QDS schemes that could improve the scaling with the
message size.
As with QKD, many QDS protocols are vulnerable

to side-channel attacks [750], with the best known side-
channel attacks exploiting measurement-device/detector
vulnerabilities (e.g. the “blinding attack”). For this rea-
son, MDI protocols for QDS where first introduced in
Ref. [751]. The analysis follow closely that of QKD and
of Ref. [744] and we omit further details. One interesting
thing to note is that the extra security guarantee (against
some side-channel attacks) comes at no (or low) cost in
terms of practicality, unlike the fully device-independent
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protocols. Moreover, the MDI setting that contains un-
trusted mediating parties is suitable for QDS (where
there are multiple parties and each party can be adver-
sarial). It allows us to consider optimization of routing
of quantum information in quantum networks, i.e. con-
sider different (or even flexible) connectivity of parties to
optimize the multiparty versions of QDS schemes.

I. Experimental QDS realizations

Since 2012, a number of experiments implementing
QDS protocols has been performed, and from the first
proof-of-principle experiments we now have fully secure,
long-distance QDS implementations on existing quantum
networks, suitable for real life applications. As men-
tioned in Section XVG and similarly to QKD, there
is a trade-off between the distance that parties can be
separated and the speed that verification keys for fixed
length messages are distributed. The distances men-
tioned below are the maximum distances that QDS could
run, while it is understood that for smaller distances the
“rate”/performance would improve.

1. Proof-of-principle

The first QDS experiment by Clarke et al. [739] was
based on the QDS protocol outlined in Ref. [737], where
the coherent-state comparison (see Fig. 20) was intro-
duced in order to replace the SWAP-test [726]. The sim-
plest case of three-parties was implemented, where each
coherent-state pulse |α〉 = ||α| exp(2πiφ)〉 had its phase
randomly chosen from eight possible choices (φ = k/8 for
k ∈ {0, 7}). Different mean-photon numbers |α|2 were
examined. As explained in the end of Section XVG,
one needs to jointly minimize the forging, repudiation
and honest-abort probabilities. Too high |α| makes pf
small (and forging simple since the states approach clas-
sical states and can be copied), while too low |α| makes
pe large (dark counts are a larger fraction of detections,
making honest-abort more likely) so an optimal value for
|α| should be sought.
The experiment was meant to be a proof of principle.

Firstly, the parties were all located within small distance
(same lab). Secondly, the signing and verifying happened
immediately (no quantum state stored). In particular,
instead of Bob regenerating the quantum state of the
signature from Alice’s signature (classical description),
and then compare it with his stored states, Bob obtained
directly the sequence of the qubits from Alice (that used
a beam-splitter before sending the quantum public key)
and compared it with the hypothetically stored quantum
public key.
A second QDS experiment was performed by Collins

et al. [752], based on the QDS protocol of Ref. [738] that
does not require quantum memory. Because of this prop-
erty, the only unrealistic assumption was the separation

of the parties (still within the same lab), while the signing
and verifying happened in arbitrary later time. The pro-
tocol used a generalization of the unambiguous discrim-
ination measurement, namely unambiguous elimination
measurement. Again it involved three parties, sharing
strings of phase-encoded coherent states, where this time
the possible phases were four N = 4.

2. Kilometer-range and fully-secure QDS

Subsequently, based on the idea that one can replace
the state comparison with symmetrization [743], two ex-
periments [753, 754] were performed that had parties able
to be separated by a distance of the order of kilome-
ter. Callum et al. [754] was also the first QDS proto-
col that used continuous variables (heterodyne detection
measurements) and the first experiment to be performed
through a free-space noisy 1.6 km channel (in Erlangen).
Following [744, 745], the last unrealistic assumption

was removed, i.e., authenticated quantum channels. The
use of decoy states, and other theoretical but also techni-
cal improvements, resulted in protocols with far superior
performance, having the parties separated by tens to hun-
dred kilometers [755, 756]. This brings QDS in par with
QKD in terms of practicality. Finally, MDI-QDS pro-
tocols, addressing measurement-device side-channel at-
tacks, have been implemented over a metropolitan net-
work [757] and at high rates by using a laser seeding tech-
nique together with a novel treatment of the finite-size
effects [758].

J. Classical unconditional secure signatures

The type of digital signatures that are achieved by
QDS offer ITS, but are one-time (cannot be reused) and
require a fixed number of parties all participating during
the key generation phase. Only those parties can sign
and verify in the future messages and, if one wanted to
extend the participating parties, new interactions would
be required between (many) parties. In contrast, classi-
cal public-key signatures can be verified by anyone with
access to the public key (that can be obtained later than
the Key Generation phase).
This specific type of signatures that QDS achieve, was

actually first considered by Chaum and Roijakkers [759]
and were termed unconditionally secure digital signa-
tures (USS). In order to achieve USS, all parties needed
to share (long) secret key pairwise, while another as-
sumption was also necessary (an authenticated broad-
cast channel or anonymous channels). Only a few pa-
pers followed this work [760–763]. The main reason for
the limited interest was probably because such protocols
were seen as impractical, specifically because they re-
quire point-to-point shared secret keys. Then, the extra
security offered (information theoretic) was not viewed
as necessary. Both of these issues have been revisited
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with the recent advances in quantum technologies since:
(i) sharing long secret keys can be achieved with QKD,
and (ii) advances in quantum computers make realis-
tic the prospect of large scale quantum computers that
could break existing cryptosystems in the medium term.
Therefore, it appears likely that interest for this type of
protocols could increase.
In a parallel direction, inspired by QDS, a classical

USS protocol was proposed in Ref. [743], where only pair-
wise secret keys were required. This scheme was gener-
alized to multiple parties in Ref. [747]. Subsequently,
in Ref. [746], a USS protocol that scales much better
for longer messages was obtained using universal hashing
(it requires key-sizes that scale logarithmically with the
message length). All these protocols require only point-
to-point secret keys and neither authenticated broadcast
channel nor anonymous channels or trusted third par-
ties were assumed. Because no further assumptions were
made, these protocols prove a “reduction” of the task
of USS to that of point-to-point secret keys and thus to
standard QKD.

K. Summary and outlook

QDS is a type of digital signatures that offers informa-
tion theoretic security, a very attractive feature, that the
progress in building quantum computers has made even
more timely. The “trade-off” is that this type of digital
signatures that QDS achieve is missing some of the el-
ements that made digital signatures such an important
functionality (e.g. the universal verifiability).
In this review we described the research that trans-

formed QDS from a theoretical interesting observation
to a practical possibility. In Sections XVE and XVF
we presented the developments and choices made in a
historical order, while in Section XVG we gave a de-
scription and brief analysis of a generic modern QDS
protocol. Latest state-of-the-art developments were sub-
sequently mentioned briefly, referring the reader to the
original works for further details.
Possibly the biggest challenge for QDS is how do they

compare with the classical digital signature schemes that
offer ITS. In Section XVJ we presented those classical
protocols and noted that all of them require point-to-
point (long) secret keys between the participants. Indeed,
it appears that the classical scheme given in Ref. [746] (in-
spired by QDS) offers similar guarantees and cost with
QDS while being more efficient for long messages, i.e., ex-
ponentially better with respect to the size of the message
signed.
However, there are at least three directions (and rea-

sons) that further research in QDS is still very promising.

1. Firstly, it is likely that a QDS protocol with bet-
ter scaling for long messages can be developed. So
far, the majority of research in QDS focused on the
single-bit message case and the possibility of better

scaling for longer messages has not been sufficiently
examined.

2. Secondly, classical protocols require communica-
tion between all parties, i.e., quadratic in the num-
ber of participants and number of communication
channels. In contrast, with QDS it is possible to
achieve linear scaling with respect to the quantum
channels. The QDS scheme given in Ref. [745] is
an example that offers such feature. This particular
protocol would not scale so well with more parties
for different reasons (sensitive in forging probabil-
ity), but it demonstrates the possibility of using
quantum resources to reduce the communication
channels.

3. Thirdly, in Ref. [744] a QDS protocol was given that
could be secure even when the noise in the channels
was too high for QKD, again demonstrating the
possibility that fundamentally quantum protocols
are possible when the “classical” ones (that in any
case require QKD) are impossible.

Finally, the so-called “classical” ITS protocols, such as
the one given in Ref. [746], require point-to-point secret
keys, and those keys can only be practically achieved us-
ing QKD. In this sense we can view even these schemes as
quantum digital signature schemes. While the theory of
classical ITS protocols involves little or no new quantum
research, their development makes stronger the case for
building a quantum communication infrastructure and
thus increases the impact of quantum cryptography by
offering further functionalities.
In particular, digital signatures are useful when they

involve many (potential) parties, which means that QDS
could be useful for real applications only if the corre-
sponding infrastructure is in place, i.e., a large quantum
network. While this infrastructure is not currently avail-
able, the possibility of QDS (including the USS protocols
given above) offers greater value to quantum networks
and thus makes the argument for developing such infras-
tructure more compelling.

XVI. CONCLUSIONS

In this review we have presented basic notions and
recent advances in the field of quantum cryptography.
We have focused most of the discussion on QKD, but
also presented some developments which goes beyond
the standard setting of key distribution. As a matter
of fact, quantum cryptography is today a big umbrella
name which includes various areas, some of which have
not been treated in this review. For instance, other topics
of interest are cryptographic primitives such as oblivious
transfer and bit commitment, or topics of secure comput-
ing, including blind, verifiable quantum computing, and
secure function evaluation. Post-quantum cryptography
(e.g., lattice-based cryptography) is an interesting area
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that may offer a temporary solution to security. Then,
a number of protocols have not been treated and worth
mentioning such as quantum fingerprinting, quantum se-
cret sharing, quantum Byzantine agreement, and quan-
tum e-voting.

While quantum cryptography is certainly the most ma-
ture quantum technology so far, a number of challenges
and open questions are facing both theoretical and ex-
perimental work. There is still the need to develop and
implement more robust QKD protocols, which are able
to achieve long distances at reasonably high rates. This
seems to be matter of developing a QKD network based
on practical quantum repeaters. An even more ideal task
would be to realize the end-to-end principle in such a
QKD network, so that the middle nodes may generally be
unreliable and untrusted. Today, this idea seems only to
be connected to the exploitation of EPR-like correlations,
either in a direct way (i.e., assuming that middle nodes
produce maximally-entangled states) or in a reverse fash-
ion (i.e., assuming that the nodes apply projections onto
maximally-entangled states, i.e., Bell detections).

Theoretically, there are efforts directed at establishing
the fully-composable finite-size security of a number of
QKD protocols, both in DV and CV settings. It is then
an open question to determine the secret key capacity
of several fundamental quantum channels, such as the
thermal-loss channel and the amplitude damping chan-
nel. While the recently-developed simulation techniques
have been successful in many cases, the two-way assisted
capacities of these channels may need the development
of a completely new and different approach.

Experimentally, the current efforts are going towards
many directions, from photonic integrated circuits to
satellite quantum communications, from more robust
point-to-point protocols to implementations in trusted-
node quantum networks, from qubit-based approaches
to higher dimensions and continuous variable systems.
While optical and telecom frequencies are by far the more
natural for quantum communications, longer wavelengths
such as THz and microwaves may have non-trivial short-
range applications which are currently under-developed.

A number of loopholes need to be carefully considered
before QKD can be considered to have become an fully-
secure quantum technology. Practical threats are coming
from side-channel attacks, for which countermeasures are
currently being studied and developed for some of the
most dangerous quantum hacks. Weakness may come
from things like imperfections in detectors or the random
number generators. Quantum hacking and countermea-
sures is therefore an important and growing area.

In general, for a technological deployment of quantum
cryptography and QKD, we will need to consider its in-
tegration with the current classical infrastructure and
develop layers of security, depending on the degree of
confidentiality to be reached which, in turn, depends on
the stakeholder and the type of business involved. Pro-
tocols based on bounded-memories and quantum data
locking provide a temporary low-level of quantum secu-

rity that may be suitable for private personal communi-
cations. Standard QKD protocols provide higher levels of
security that may be suitable for financial transactions.
Within QKD, different secret key rates might be consid-
ered, for instance, with respect to individual, collective
or fully-coherent attacks. The choice of these rates may
also be associated with a specific sub-level of security to
be reached. Higher level of security, for applications such
as political or strategic decisions, may involve the use of
DI-QKD, which is more robust to both conventional and
side-channel attacks. These aspects will become clearer
and clearer as quantum cryptography will progressively
become a wider technological product.
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Appendix A: Formulas for Gaussian states

Consider n bosonic modes described by the creation

and annihilation operators â†j , âj with j = 1, . . . , n and
define the quadrature operators as

q̂j = (âj + â†j)/
√
2κ, p̂j = −i(âj − â†j)/

√
2κ, (A1)

where the factor κ is introduced to consistently de-
scribe different notations used in the literature (see also
Ref. [764]). The canonical choice is κ = 1 (vacuum noise
equal to 1/2) where we recover the canonical commuta-
tion relations [q̂k, p̂j ] = iδkj , while a popular alternative
in quantum information is κ = 1/2 (vacuum noise equal
to 1). For any general κ, the quadrature operator can be
grouped into a vector x̂ with 2n components that satisfies
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the following commutation relation

[x̂, x̂T ] =
iΩ

κ
. (A2)

The coordinate transformations x̂′ =Sx̂ that preserve
the above commutation relations form the symplectic
group, i.e. the group of real matrices such that SΩST =
Ω. There are essentially two standard ways of grouping
the quadrature operators, and the definition of Ω changes
accordingly. These are

x̂ := (q̂1, . . . , q̂n, p̂1, . . . , p̂n)
T ,Ω :=

(

0 1

−1 0

)

⊗ 11 , (A3)

where 11 is the n× n identity matrix, or

x̂ := (q̂1, p̂1, . . . , q̂n, p̂n)
T ,Ω :=

n
⊕

j=1

(

0 1

−1 0

)

. (A4)

All the formulae that we review here are independent of
this choice, provided that the grouping x̂ and matrix Ω
are chosen consistently.
Any multimode bosonic state ρ can be described us-

ing phase-space methods by means of the Wigner char-

acteristic function χ(ξ) = Tr[ρeix̂
TΩξ]. The state ρ is

called Gaussian when χ(ξ) is Gaussian [6]. For a Gaus-
sian state, the density operator ρ has a one-to-one cor-
respondence with the first- and second-order statisti-
cal moments of the state. These are the mean value
x̄ := 〈x̂〉ρ = Tr(x̂ρ) ∈ R

2n and the covariance matrix
(CM) V , with generic element

Vkl =
1

2
〈{x̂k − x̄k, x̂l − x̄l}〉ρ , (A5)

where {, } is the anticommutator.
According to Williamson’s theorem, there exists a sym-

plectic matrix S such that [6]

V = S(D⊙D)ST , D = diag(v1, . . . , vn), (A6)

where the vj ’s are called symplectic eigenvalues and sat-
isfy vj ≥ (2κ)−1. When vj = (2κ)−1 for all j the
state is pure. With the canonical choice κ = 1 this
means that a pure state is defined by vj = 1/2 for
all j, while with the choice κ = 1/2 a pure state has
vj = 1 for all j. The dot operator ⊙ in Eq. (A6) has
been introduced to make the notation uniform depend-
ing on the different grouping rules of Eqs. (A3) and (A4).
When Eq. (A3) is employed the dot operator is defined
as D ⊙ D := D ⊕ D = (v1, . . . , vn, v1, . . . , vn), while
when Eq. (A4) is employed the dot operator is defined as
D⊙D := (v1, v1, . . . , vn, vn).
Although the Wigner function formalism is a popu-

lar approach for describing Gaussian quantum states [6],
quantities normally appearing in quantum information

theory can often be computed more straightforwardly us-
ing an algebraic approach [765]. Any multi-mode Gaus-
sian state ρ(V, x̄) parameterized by the first- and second-
moments x̄ and V can be written in the operator expo-
nential form [765] (see also [766, 767])

ρ(V, x̄) = exp
[

−κ
2
(x̂− x̄)TG(x̂− x̄)

]

/Zρ , (A7)

where

Zρ = det

(

κV +
iΩ

2

)1/2

, (A8)

and the Gibbs matrix G is related to the CM V by

G = 2iΩ coth−1(2κViΩ), V =
1

2κ
coth

(

iΩG

2

)

iΩ.

(A9)
The above relations are basis independent and allow the
direct calculation of G from V without the need of the
symplectic diagonalization (A6). This is a consequence
of the “symplectic action” formalism that is discussed in
the next section. From the operator exponential form,
we then show how to compute quantities like the fidelity
between Gaussian states, the von Neumann entropy, the
quantum relative entropy and its variance.

1. Symplectic action and its computation

Given a function f : R → R we can extend f to map
Hermitian operators to Hermitian operators in the fol-
lowing way: let M = UxU † be the spectral decomposi-
tion of a Hermitian operator M , then f(M) := Uf(x)U †

where f(x) is a vector whose j-th element is f(xj). For
more general operators M that admit a decomposition
M = UxU−1, with a possibly non-unitary U , we define
an operator function as f(M) := Uf(x)U−1.
The symplectic action was introduced in Ref. [774]

to extend a function f to any operator with symplec-
tic structure. More precisely, for a given matrix V with
symplectic diagonalization as in Eq. (A6), the symplectic
action f∗ on V is defined by

f∗(V) = S[f(D)⊙ f(D)]ST , (A10)

where f(D) = diag[f(v1), f(v2), . . . , f(vn)] acts as a
standard matrix function. In Ref. [765] it was proven
that, for any odd function f(−x) = −f(x), the symplec-
tic action can be explicitly written as

f∗(V) = f(ViΩ)iΩ. (A11)

where f(ViΩ) is a matrix function.
Matrix functions are part of most numerical libraries

and symbolic computer algebra systems, so their compu-
tation, either numerical or analytical, can be easily done
on a computer. This is an advantage especially for sym-
bolic calculations [33, 765]. On the other hand, for a
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full symplectic diagonalization, the practical problem is
not the computation of the symplectic spectrum but the
derivation of the symplectic matrix S performing the di-
agonalization SVST into the Williamson’s form [6]. For
this matrix S, we know closed formulas only for specific
types of two-mode Gaussian states [768] which appear
in problems of quantum sensing [601], such as quantum
illumination [603] and quantum reading [604].
The Gibbs exponential form (A7) can be proven by

first noting that a single mode thermal state with di-
agonal CM V = v ⊙ v can be written as an operator
exponential

ρ = e−
g
2
κ(q̂2+p̂2)/Zρ , (A12)

with g = 2 coth−1(2κv) and extending the result to multi-
mode, possibly non-thermal states, via the symplectic

action. Indeed, since ρ ∝ e−gâ†â, we may write

v := 〈q̂2〉 = 〈p̂2〉 = 〈â†â〉+ 1/2

κ
=

1

2κ
coth

g

2
. (A13)

Following the same construction of Ref. [765], which was
done for κ = 1, we get the final result of Eq. (A7).

2. Fidelity between arbitrary Gaussian states

The fidelity F (ρ1, ρ2) quantifies the degree of similarity
between two quantum states ρ1 and ρ2. It is a central
tool is many areas of quantum information, especially
for quantum state discrimination which is a fundamental
process in any decoding process. For pure states, it is
defined as F = |〈ψ1|ψ2〉|2, while for mixed states it may
be defined in terms of the trace norm ||O|| := Tr|O| =
Tr

√
O†O as [769]

F := ||√ρ1
√
ρ2|| = Tr

√√
ρ1ρ2

√
ρ1 . (A14)

A general closed-form for the fidelity between two
arbitrary multi-mode Gaussian states was derived in
Ref. [765], thus generalizing partial results known for
single-mode states [770–772], two-mode states [773],
pure [774] or thermal states [775].
Given two arbitrary multi-mode states with CMs Vi

and first moments x̄i, the fidelity F can be written
as [765]

F (ρ1, ρ2) =
Ftot

4
√

det [κ(V1 +V2)]
e−

1
4
δT (V1+V2)

−1δ,

(A15)
where δ := x̄2 − x̄1, while the term Ftot only depends on
V1 and V2 and is easily computable from the auxiliary
matrix

Vaux = ΩT (V1 +V2)
−1

(

Ω

4κ2
+V2ΩV1

)

, (A16)

as

F 4
tot = det

[

2κ

(
√

11 +
(VauxΩ)−2

4κ2
+ 11

)

Vaux

]

.

(A17)
The general solution (A15) has been derived thanks to
the operator exponential form (A7) that makes straight-
forward the calculation of the operator square roots in
the fidelity (A14). Indeed, using the Gibbs matrices Gi

of the two Gaussian states, it was found in [765] that

Ftot = det

(

eiΩGtot/2 + 11

eiΩGtot/2 − 11
iΩ

)

1
4

, (A18)

where

eiΩGtot = eiΩG1/2eiΩG2eiΩG1/2 . (A19)

The final form (A15) is then obtained by expressing the
above matrix functions in terms of CMs. Note that the
asymmetry of Vaux upon exchanging the two states is
only apparent and comes from the apparent asymme-
try in the definition of Eq. (A14). One can check that
the eigenvalues of VauxΩ, and thus the determinant in
Eqs. (A17), are invariant under such exchange.
As already mentioned, an efficient computation of

the quantum fidelity is crucial for solving problems of
quantum state discrimination [91, 92, 601], where two
multi-mode Gaussian states must be optimally distin-
guished. Consider N copies of two multimode Gaus-
sian states, ρ⊗N

1 and ρ⊗N
2 , with the same a priori proba-

bility. The minimum error probability perr(N) in their
statistical discrimination is provided by the Helstrom
bound [776], for which there is no closed form for Gaus-
sian states. Nonetheless, we may write a fidelity-based
bound [765, 777] as

1−
√

1− [F (ρ1, ρ2)]
2N

2
≤ perr(N) ≤ [F (ρ1, ρ2)]

N

2
.

(A20)
The fidelity can be expressed [778] as a minimization

over POVMs Ex of the overlap between two classical
probability distributions pi = Tr[ρiEx]

F (ρ1, ρ2) = min
{Ex}

√

Tr[ρ1Ex]Tr[ρ2Ex] . (A21)

Calling Ẽx the optimal POVM that achieves the mini-
mum of the above quantity, we see that the fidelity can
be measured with a single POVM without state tomog-
raphy. As such we may write

perr(N) ≤ 1

2

(
√

Tr[ρ1Ẽx]Tr[ρ2Ẽx]

)N

. (A22)

where Ẽx is optimal for the bound, in the sense that
any other POVM provides a larger upper bound. Re-
cently [779], it has been shown that such optimal POVM
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can be explicitly computed between any two multi-mode
Gaussian states. Indeed, it was found that the optimal
POVM is formed by the eigenbasis of the operator [779]

M̂ ∝ D̂(x̄1) exp
[

−κ
2
x̂TGM x̂− vTM x̂

]

D̂†(x̄1), (A23)

where D̂ is a displacement and vM = 0 when x̄1 = x̄2,
while the general case is provided in [779]. On the other
hand, the matrix GM is given by

eiΩGM = e−iΩG1/2
√

eiΩG1/2eiΩG2eiΩG1/2e−iΩG1/2.
(A24)

Based of this general multi-mode solution, it was found
in [779] that, for single-mode Gaussian states, there
are only three possible kinds of optimal measurements,
depending on ρ1 and ρ2: number-resolving detection,
quadrature detection, or a projection onto the eigenbasis
of operator q̂p̂+ p̂q̂.

3. Entropic quantities

Entropic quantities are widespread in quantum infor-
mation theory, and are employed to bound the perfor-
mances of QKD protocols, entanglement sharing and
data compression, to name a few examples. Here we pro-
vide some simple formula for the von Neumann entropy
of a Gaussian state and for the relative entropy between
two arbitrary Gaussian states ρ1(x̄1,V1) and ρ2(x̄2,V2)
directly in terms of their first moments x̄j and covariance
matrices Vj . The following results first appeared in [33],
where the operator exponential form (A7) was employed
to explicitly evaluate operator logarithms.
Consider two arbitrary multimode Gaussian states,

ρ1(x̄1,V1) and ρ2(x̄2,V2). Then, the entropic functional

Σ := −Tr (ρ1 log2 ρ2) (A25)

is given by [33, Theorem 7]

Σ(V1,V2, δ) =
1

2 ln 2
× (A26)

[

ln det

(

κV2 +
iΩ

2

)

+ κTr(V1G2) + κδTG2δ

]

,

where δ := x̄2 − x̄1 and Gj are the Gibbs matrices, ob-
tained from the covariance matrices Vj from Eq. (A9).
From the above entropic functional, we may compute

both the von Neumann entropy and the quantum relative
entropy. Indeed, from (A26), the von Neumann entropy
of a Gaussian state ρ(x̄,V) is equal to

S(ρ) := −Tr (ρ log2 ρ) = Σ(V,V, 0) , (A27)

The functional Σ(V,V, 0) is a symplectic invariant,

namely Σ(SVST ,SVST , 0) = Σ(V,V, 0). As such, from
the Williamson decomposition (A6) we find that S(ρ)

only depends on the symplectic eigenvalues vj of V, that
can be written as

vj =
2n̄j + 1

2κ
, (A28)

where n̄j are the mean number of photons in each mode.
The von Neumann entropy of an m-mode Gaussian state
can then be expressed as [766]

S(ρ) =
m
∑

j=1

h(n̄j), (A29)

where h(x) := (x + 1) log2(x+ 1)− x log2 x.
The entropic functional of Eq. (A25) also provides a

tool for writing the relative entropy between two arbi-
trary Gaussian states ρ1(x̄1,V1) and ρ2(x̄2,V2), in terms
of their statistical moments. Indeed, we may write [33]

S(ρ1||ρ2) := Tr [ρ1(log2 ρ1 − log2 ρ2)]

= −S(ρ1)− Tr (ρ1 log2 ρ2)

= −Σ(V1,V1, 0) + Σ(V1,V2, δ) . (A30)

It is worth mentioning that the final result Eq. (A30) is
expressed directly in terms of the statistical moments of
the two Gaussian states. There is no need of resorting to
full symplectic diagonalizations (A6) as in previous for-
mulations [780, 781]. This is an advantage because, while
the computation of the symplectic spectrum needed for
the von Neumann entropy is easy to get, the symplectic
matrix S performing such a symplectic diagonalization is
known only in a few cases as for specific types of two-
mode Gaussian states [768]. On the other hand, the in-
variant matrix formulation shown Eq. (A30) allows one
to bypass such complicate diagonalization and directly
compute the quantum relative entropy.
Finally, we consider the quantum relative entropy vari-

ance

VS(ρ1‖ρ2) = Tr
[

ρ1 (log2 ρ1 − log2 ρ2 − S(ρ1‖ρ2))2
]

.

(A31)
The relative entropy variance was introduced in Ref. [782,
783] to bound the capacity of quantum channels and
quantum hypothesis testing. Using the operator expo-
nential form (A7) and the definitions (A9), one can show
that, for any two Gaussian states ρ1 and ρ2, the variance
VS(ρ1‖ρ2) can be written in terms of the states’ first and
second moments as

VS(ρ1‖ρ2) =
4κ2Tr[(V1G̃)2] + Tr[(G̃Ω)2] + δTBδ

2(2 ln 2)2
,

(A32)

where G̃ = G1−G2, δ = x̄1− x̄2 and B = 8κ2G2V1G2.
The above formula was first derived in Ref. [784] for
κ = 1. It was then easily generalized to arbitrary κ
in Ref. [611], where an alternative simplified proof was
presented by exploiting a trace formula from Ref. [785].
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variable quantum key distribution with a real local os-
cillator using simultaneous pilot signals,” Opt. Lett. 42,
1588 (2017).

[480] T. Wang, P. Huang, Y. Zhou, W. Liu, H. Ma, S. Wang,
and G. Zeng, “High key rate continuous-variable quan-
tum key distirbution with a real local oscillator,” Opt.
Express 26, 2794 (2018).

[481] D. Huang, J. Fang, C. Wang, P. Huang, and G..H.
Zeng. “A 300-MHz bandwidth balanced homodyne de-
tector for continuous variable quantum key distribu-
tion,” Chin. Phys. Lett. 30, 114209 (2013).

[482] R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H.
Huntington, and A. I. Lvovsky “Versatile wideband bal-
anced detector for quantum optical homodyne tomog-
raphy,” Optics Commun. 285, 5259, (2012).

[483] X.-C. Ma, S.-H. Sun, M.-S. Jiang, and L.-M. Liang, “Lo-
cal oscillator fluctuation opens a loophole for Eve in
practical continuous-variable quantum key distribution
systems,” Phys. Rev. A 88, 022339 (2013).
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