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1. Introduction  

Accurate information relating to the impact of fire on the environment and the way it is 
distributed throughout the burned area is a key factor in quantifying the impact of fires on 
landscapes (van Wagtendonk et al. 2004), selecting and prioritizing treatments applied on 
site (Patterson and Yool 1998), planning and monitoring restoration and recovery activities 
(Jakubauskas 1988; Jakubauskas et al. 1990; Gitas 1999) and, finally, providing baseline 
information for future monitoring (Brewer et al. 2005). 
In order to assess economic losses and ecological effects, post-fire impact assessment 
requires precise information on extent, type and severity of fire (short-term impact 
assessment) as well as on forest regeneration and vegetation recovery (long-term impact 
assessment). Assessing the short-term impact is related to the study of fire behaviour, fire 
suppression and fire effects while the long-term impact assessment of fires is needed in 
order to establish post-fire monitoring management and introduce restoration and recovery 
activities. 
As fire sizes increase and time becomes a constraining factor, traditional methods to 
assess post-fire impact on vegetation have become costly and labour-intensive (Bertolette 
and Spotskey 2001; Mitri and Gitas 2008). Given the extremely broad spatial expanse and 
often limited accessibility of the areas affected by fire, satellite remote sensing is an 
essential technology for gathering post-fire related information in a cost-effective and 
time-saving manner (Smith and Woodgate 1985; Chuvieco and Congalton 1988; 
Jakubauskas et al. 1990; White et al. 1996; Patterson and Yool 1998; Beaty and Taylor 2001; 
Escuin et al. 2002).  
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In addition, the development of high spatial and spectral resolution remote sensing 
instruments, both airborne and spaceborne, as well as advanced image analysis techniques 
have provided an opportunity to evaluate patterns of forest regeneration and vegetation 
recovery after wildfire.  
The aim of this chapter is to review the role of Remote Sensing (RS) in post-fire monitoring 
of vegetation recovery. More specifically, traditional and advanced methods and techniques 
that have been so far employed to monitor vegetation regrowth after fire by RS will be 
reviewed and future trends will be identified.  
More specifically, Part 2 deals with the ecological framework of the effects of fire on the 
ecosystem, Part 3 describes the methods and techniques that have so far been employed to 
estimate forest regeneration and vegetation recovery by means of field survey and by RS, Part 
4 focuses on the advances in RS of post-fire vegetation monitoring, Part 5 emphasises on future 
trends in RS of post-fire monitoring, and Part 6 outlines the main conclusions of the chapter. 

2. Ecological framework  

Fire is an integral part of many ecosystems (Trabaud 1994). However, in recent decades the 

general trend in the number of fires and in the surface burned has increased spectacularly. 

This increase can be attributed to: (a) land-use changes (Rego 1992; García-Ruiz et al. 1996), 

and (b) climatic warming (Maheras 1988; Torn and Fried 1992; Amanatidis et al. 1993; Piñol 

et al. 1998; EPA 2001).  

The ecological effects of forest fires are very diverse. This is not only because of the 

complexity of plant communities and the interface of disturbances such as grazing and 

cutting with burning, but also because of the different responses to the type, duration and 

intensity of fire, the season in which it occurs and its frequency (Le Houerou 1987).  

The effect of fire on forested ecosystems can range from disastrous to beneficial. Harmful 

effects include changes in the physical, chemical and biological properties of soils; benefits 

are the removal of accumulated fuels, an increase in water yield, the control of insects and 

diseases, the preparation of seedbeds, and the release of seeds from serotinous cones 

(Kozlowski 2002). 

Specifically, the main effects of fire on soils are the loss of nutrients during burning and the 

increased risk of erosion after burning. The latter is in fact related to the regeneration traits 

of the previous vegetation and to environmental conditions (Pausas et al. 1999). Large fires 

that produce a greater number of intensely burned patches can favour the colonization of 

invasive, fire tolerant species at the expense of rare/endemic species that are less tolerant to 

post-fire conditions. Thus biodiversity is also affected by fire (Dafis 1990). Climate change 

predictions and repercussions of forest fires on erosion, water yield and desertification 

further add to these threats (Moreno et al. 1990). 

The effects of forest fires on vegetation are the most evident due to plants vulnerability to 
burning leading to permanent changes in the composition of the vegetation community, 
decreased vegetation cover, biomass loss and the alteration of landscape patterns (Perez-
Cabello et al. 2009). However, forest fire is the major force in the biological evolution of biota 
such as in the Mediterranean (Naveh 1991). For instance, most Mediterranean plant species 
exhibit effective regeneration mechanisms for overcoming the immediate effects of fire 
(Mooney and Hobbs 1986). Plant species mechanisms can be passive (e.g. thick insulating 
bark), or active (e.g. re-sprouting from underground storage organs and seedlings from fire 
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protected seeds), which may lead to a rapid process of vegetation cover with similar 
characteristics to the previous communities (Perez-Cabello et al. 2009). However, the 
response of vegetation to fire is very complex and it is not easy to generalize because of the 
large number of factors that can affect the regeneration process (e.g. topographic-climatic 
influences, plant composition, topographic parameters, soil characteristics, etc.). 
Natural regeneration (the regrowth of lost or destroyed parts or organs) of disturbed mature 
forests to a pre-disturbance condition is often slow, unpredictable, and fraught with 
difficulties (Kozlowski 2002). The natural regeneration of disturbed forest stands typically 
occurs in four sequential stages:  
1. A stand initiation and regeneration stage: interactions among propagules (including 

seeds in seed banks and those dispersed into a site as well as sprouting or layering of 
residual trees) and soil and climatic conditions. 

2. A thinning or stem exclusion stage: canopy closes and mortality of trees accelerates, 
competition for resources (light, water, mineral nutrients), leaf area index reaches its 
maximum. 

3. A transition or understory regeneration stage: death of some overstorey trees, resulting 
in the formation of gaps in the canopy and the reintroduction of understorey 
vegetation. 

4. A steady-state or old-growth stage: the continuation of a series of successional stages 
beginning in the previous stage and which may culminate in an old-growth climax 
forest (Oliver 1981; Oliver and Larson 1996; Kozlowski 2002).  

Plant species react to fire through different morphological and physiological traits (Perez-
Cabello et al. 2009). Some can survive fires due to protected plant tissues sprouting (e.g. 
underground storage organs) and high growth rates after fire and others can rapidly 
establish seedlings (Buhk et al. 2007). Resprouting ability is a very common survival 
strategy. Post-fire buds respond by producing new shoots (Miller 2000) and this engenders a 
rapid return to pre-fire conditions. Differently, seedling establishment may originate from 
on-site seeds or from off-site seed sources if favourable environmental conditions appear 
following fire (Baeza and Roy 2008). 
The total recovery of a burned area includes different aspects such as revegetation, fauna 
recuperation, biodiversity, landscape aesthetics, ‘natural’ runoff rates and sediment yield 
(Inbar et al. 1998). Opinions about the natural state (the target value of post-fire recovery) 
differ among disciplines. Seen from a soil and water conservation point of view, a return to 
the original vegetation cover is sufficient, while ecologists consider recovery as a return in 
the richness of the original species. From a silvicultural perspective, it is important to 
consider both the quantity and quality of fire-induced tree regeneration (Gould et al. 2002).  
The assessment of the ecological effects of fires on biodiversity, soil degradation and on the 
cycling of carbon and nitrogen requires not only a detailed and accurate mapping of the 
burned areas but also an accurate mapping of the type and severity of fire and of post-fire 
forest regeneration ( for example pine regeneration) and vegetation recovery (for example 
shrub recovery) (Le Houerou 1987; Jabukauskas et al. 1990; Naveh 1991).  

3. Post-fire monitoring using remote sensing  

This part of the chapter consists of three different sections. Section (3.1) provides 
information on field based post-fire vegetation monitoring, section (3.2) discusses the 
airborne and spaceborne sensors used in post-fire monitoring, and section (3.3) introduces 
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the relative satellite image analysis techniques. The latter, provides a thoroughly description 
of well-known methods employed in post-fire monitoring and discuses studies related to 
the estimation of post-fire albedo and Land Surface Temperature. Subsection (3.3.6) deals 
with the use of SAR data to monitor the post-fire impact on forests. A summary table (Table 
2) is also included.  

3.1 Field based post-fire monitoring  

Traditional methods of recording post-fire impact on vegetation include extensive field 

work or observations from an airborne platform, followed by the initial mapping (manually) 

of resource damage into predetermined classes (Bertolette and Spotskey 2001). As fire sizes 

increase and time becomes a constraining factor, traditional methods have become costly 

and labour-intensive.  

Most studies are carried out in the first years after fire, and are mainly focused on seedling 

germination and on the survival and the restoration of plant cover (Table 1). Several years 

after the fire, measurements usually focus more on the characteristics of, for example, the 

trees, namely height, canopy width, basal diameter and volume. It has been realised that 

long-term monitoring is often required in order to evaluate the resilience of the different 

ecosystems towards forest fires. Normally, in long-term post-fire vegetation monitoring 

sampling units are established right after the fire event and the studied variables are 

monitored for several consecutive years (Calvo et al. 1998; Tarrega et al. 2001).  

The most common sampling technique for monitoring plant populations is the use of 

permanent square plots. Taking into account both species characteristics and the extent of 

the study area, the size, the shape and the number of different plots are determined 

(Arianoutsou 1984; Clemente et al. 1996; Calvo et al. 2002; Cruz et al. 2003; Mitri and Gitas 

2010). Accordingly, and in order to facilitate the objective collection of data on the ground, a 

number of field variables have been measured. In addition, there is a wide variety of 

sampling protocols depending on the type of survey (Daskalakou and Thanos 2004) that 

have been developed.  

The analysis of post-fire vegetation recovery and monitoring can be either structural (involving 

variables such as cover and spatial heterogeneity), which is based on visual or floristic 

assessments (species composition, richness, community diversity, etc.), or a combination of the 

above (Pausas et al. 1999; Eshel et al. 2000; Kazanis and Arianoutsou 2004). In addition, 

protocols used can be distinguished into two general categories, that of plots (Thanos et al. 1996; 

Daskalakou and Thanos 1997; Tsitsoni 1997; Martínez-Sánchez et al. 1999; De Luis et al. 2001; 

Bailey and Covington 2002; Kennard et al. 2002) and that of transects (Ne'eman et al. 1999; 

Pausas et al. 1999; Caturla et al. 2000; Wahren et al. 2001; Gould et al. 2002). 

Pausas et al. (1999) investigated the effect of different environmental conditions (climatic 
zones, aspect, and lithology) on the recovery process. They found large spatial variation in 
plant recovery in different localities with the same aspect, and for different aspects in the 
same locality. The recovery rate was different for different years due to changing climatic 
conditions and was higher on north-facing slopes, which are wetter than south-facing 
slopes. Belda and Meliá (2000) investigated the influence of climate on the natural post-fire 
regeneration of the burned area and found that regeneration followed an exponential curve, 
which was stronger in wet zones and had high correlation coefficients. Tsitsoni (1997) found 
that a high value of organic matter of the burned soil was a favourable factor for natural 
regeneration, as well as the position on the hillside, with lower regeneration indice values 
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for the upper position and increasing values when descending the slope. De Luís et al. 
(2001) investigated the combined effect of fire and rainstorm on short-term ecosystem 
response by simulating high intensity rainfall on burned field plots in a Mediterranean 
shrubland. They found that one-year seedling survival was lower in the plots affected by 
rainfall simulation than in the control plots. A higher mortality rate, as a consequence of 
rainfall, was observed in the most abundant species. Pre-fire conditions may also affect the 
heterogeneity of burn severity, creating a wide range of local and landscape effects 
(Ne'eman et al. 1999). The propagation of fires and recolonisation processes are events that 
depend on the spatial organization of vegetation (Mouillet et al. 2001).  
 

Variables assessed in the field Reference 

Different environmental conditions (climatic 

zones, high intensity rainfall, aspect, and 

lithology) 

(Pausas et al. 1999; Belda and Meliá 2000; De 

Luis et al. 2001) 

Organic matter of the burned soil (Tsitsoni 1997) 

Pre-fire conditions (i.e. spatial organisation 

of vegetation) 

(Calvo et al. 1994; Ne'eman et al. 1999; 

Mouillet et al. 2001) 

Resprouting vigour (plant’s anatomical 

features, and the characteristics of the 

individual before disturbance), intensity of 

disturbance, and the environmental 

conditions after disturbance  

(Lloret and Vilà 1997; Díaz-Delgado and 

Pons 2001)  

Seed banks and germination - Seed number 

contained in soil samples - Cone opening 

and seed dispersal 

(Thanos and Georghiou 1988; Skordilis and 

Thanos 1995; Daskalakou and Thanos 1996; 

Ferrandis et al. 1996; Herranz et al. 1999; 

Keeley 2000)  

Seedling germination, survival and growth 

in a plot and along a transect on which 

samples are taken of plant cover, tree cover, 

tree characteristics or the floristic 

composition and cover per species 

(Thanos et al. 1996; Daskalakou and Thanos 

1997; Tsitsoni 1997; Martínez-Sánchez et al. 

1999; Ne'eman et al. 1999; Pausas et al. 1999; 

Caturla et al. 2000; De Luis et al. 2001; 

Wahren et al. 2001; Bailey and Covington 

2002; Gould et al. 2002; Kennard et al. 2002) 

Post-fire structural dynamics (Calvo et al. 1991) 

Species richness patterns and vegetation 

diversity -density of seedlings – abundance 

of different age classes 

(Pausas et al. 2003; Perula et al. 2003; 

Kavgaci et al. 2010)  

Permanent plot collection per plant 

community type and data reduction - Visual 

cover of the plant species 

(Santalla et al. 2002; Clemente et al. 2009) 

Non-native species cover correlated with 

high native species richness 
(Hunter et al. 2006) 

Field spectrometry 

(Broge and Leblanc 2000; Thenkabail et al. 

2000; Thenkabail et al. 2002; Mitri and Gitas 

2010) 

Table 1. Field variables assessed to determine post-fire monitoring 
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Vegetative resprouting is possible when buds survive the fire to resprout. Some species 
regenerate by both sexual and vegetative reproduction. Resprouting vigour depends upon 
the plant’s anatomical features, the characteristics of the individual before disturbance 
(plant size, number of shoots and physiological status of the plant), intensity of disturbance, 
and the environmental conditions after disturbance (Lloret and Vilà 1997). Areas where 
sprouting species are available usually show higher recovery rates than areas with mainly 
obligated seeders (Díaz-Delgado and Pons 2001). Seed banks are important in the dynamics 
of many plant communities as they provide an immediate source of propagules for 
recruitment after disturbance.  
Measurements may be focused on the monitoring of seedling germination, survival and 
growth (height) in a plot (Tsitsoni 1997; Martínez-Sánchez et al. 1999; De Luis et al. 2001; 
Bailey and Covington 2002; Kennard et al. 2002), or may be along a transect on which 
samples are taken of plant cover (Caturla et al. 2000), tree cover (Ne'eman et al. 1999), tree 
characteristics (Ne'eman et al. 1999; Gould et al. 2002) or the floristic composition and cover 
per species (Pausas et al. 1999; Wahren et al. 2001).  
Field spectrometry measurements were employed to investigate the spectral properties of 
plants, vegetation recovery, and naturally regenerating forest (Broge and Leblanc 2000; 
Thenkabail et al. 2000; Thenkabail et al. 2002; Mitri and Gitas 2010). More general methods 
to estimate vegetation abundance (Bonham 1989), recovery and forest regeneration in the 
field were adopted.  

3.2 Airborne and spaceborne sensors 

In comparison with extensive and labour-intensive field campaigns, remote sensing offers a 

time- and cost-effective alternative for mapping post-fire vegetation over large areas. 

Ground truthing based on limited sample sets is, however, always suggested for calibration 

and validation purposes (Shaw et al. 1998; Mitri and Gitas 2010). Airborne platforms 

provide a first option to acquire remotely sensed imagery. Stueve et al. (2009) used aerial 

photography in combination with KH-4B (Key Hole 4B) imagery from the CORONA 

mission to detect post-fire tree establishment at an alpine treeline ecotone, whereas Amiro et 

al. (1999) employed airborne measurements to monitor the post-fire energy balance of boreal 

forest. Peterson and Stow (2003) applied Spectral Mixture Analysis on Airborne Data and 

Acquisition and Registration (ADAR) data for the mapping of post-fire chaparral regrowth 

in Southern California. Airborne imagery allows detailed spatial information (Bobbe et al. 

2001). However, despite the increasing availability of digital aerial images, these data are 

rather seldom used. This is explained by the fact that airborne measurements usually cover 

relatively small areas. As a result, many photographs are required to cover large burned 

areas, which subsequently require correction and mosaicking (Gitas et al. 2009). 

In addition to aerial photographs, spaceborne sensors have shown big potential for 

assessing post-fire regrowth effects. Table 2 lists a multitude of studies focusing on the use 

of remote sensing for assessing post-fire vegetation recovery. Satellite sensors are 

characterized by their technical specifications. These technical specifications determine the 

sensor's capabilities with regards to the monitoring of post-fire recovery trajectories. In this 

context, the term resolution is of paramount importance. Resolution is the character of data 

that limits the user's ability to detect and identify an object of feature within the data (Bobbe 

et al. 2001). Resolution is fourfold; difference is made between spatial, temporal, spectral 

and radiometric resolution: 
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 Spatial resolution is a measure of fineness of spatial detail and it determines the 
smallest object that can be identified in the data. For digital sensors, spatial resolution is 
expressed as pixel size. 

 Temporal resolution refers to the sensor's revisiting time, i.e. the time period in which 
the same area is successively sensed. Temporal resolution depends upon orbital 
characteristics. 

 Spectral resolution is a measure of the specific wavelength intervals in which the sensor 
records. It is important to distinguish between broadband sensors, in which reflectance 
values are averaged over relatively wide bandpasses, and hyperspectral sensors, which 
are characterized by the acquisition over many fine wavebands. 

 Radiometric resolution is a measure of the sensor's ability to distinguish between two 
features of similar reflectance. 

Sensor design is a determinant factor when choosing the appropriate image analysis 

technique. In this context, it is important to trade-off between spatial and temporal 

resolution. High to moderate spatial resolution (e.g. smaller than 30 m) acquire only a few 

images a year, while low spatial resolution sensors (e.g. larger than 250 m) are characterized 

by daily image acquisition (Veraverbeke et al. 2011a). 

Most studies listed in Table 2 are based on optical satellite sensors. These images generally 

are subject to preprocessing prior to the analysis. In order to obtain geometrically registered 

top-of-canopy (TOC) reflectance values the imagery usually requires geometric, radiometric, 

atmospheric and topographic corrections (e.g. Veraverbeke et al. 2010a). After the abrupt 

changes caused by the fire, the more gradual vegetation recovery leads to alterations in 

radiometric response at landscape scale. These changes are governed by: (i) disappearance 

of the charcoal/ash, (ii) changes in the proportion of bare soils and (iii) an increase in 

vegetative cover. So far, many studies focused on the red-near infrared (R-NIR) bi-spectral 

space to discriminate between bare soils and vegetated areas because vegetation recovery 

results in higher NIR reflectance values and lower R reflectance values due to augmented 

chlorophyll absorption.  

According to the references included in Table 2, applications conducted for post-fire 

monitoring can be sorted based on the characteristics of the sensor that was used: 

 High resolution sensors: 6 studies were based on airborne imagery, 1 on Quickbird 
imagery and one on KH-4B imagery. 

 Moderate resolutions sensors: the majority of the studies applied Landsat sensors: 27 
studies used Thematic Mapper (TM) images, 10 Enhanced Thematic Mapper plus 
(ETM+) images and 5 Multispectral Scanner images (MSS). In addition, 3 authors 
applied Satellite Pour l'Observation de la Terra (SPOT) Multispectral (XS) data, 2 
Synthetic Aperture Radar (SAR), 1 Earth Observing-1 (EO1) Hyperion and 1 ICESAT 
Geoscience Laser Altimeter System (GLAS). 

 Low resolution sensors: although these sensors are characterized by their low spatial 
resolution, they have the advantage of repeated temporal sampling with high temporal 
frequency. Nine studies used Terra Moderate Resolution Imaging Spectroradiometer 
(MODIS) time series, 5 SPOT Vegetation (VGT) and 5 National Oceanic and 
Atmospheric Administration (NOAA) Advanced Very High Resolution (AVHRR) Data. 

 SAR: three studies used multi-temporal ERS images (C band), in one study the potential 
of ALOS PALSAR (L band) was investigated for post-fire monitoring, while multiple-
polarization aircraft L-band was used to monitor burn recovery in a coastal marsh.  

www.intechopen.com



 
Remote Sensing of Biomass – Principles and Applications  

 

150 

Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data 
Remotely 

sensed data 

Alcaraz-

Segura et al. 

2010 

Greening NDVI Boreal forest / AVHRR 

Amiro et al. 

1999 

Sensible heat 

(H), latent 

heat (LE), 

CO2 flux, 

surface 

radiometric 

temperature 

net radiation

Surface 

energy 

balance 

Boreal forest / 

BOREAS 

Twin Otter 

airborne data 

Belda and 

Melia 2000 
/ NDVI 

Mediterranean 

ecosystem 
/ TM 

Bisson et al. 

2008 
/ NDVI 

Mediterranean 

ecosystem 
Selected plots TM, ETM+ 

Bourgeau-

Chavez et al 

2007 

Soil moisture 

variations in 

fire disturbed 

areas 

Regression 

models 
Boreal forest 

5 10X10 

sample plots, 

randomly 

selected along 

200m long 

transcects 

ERS 2 

Carranza et 

al. 2001 
/ 

NDVI and 

landscape 

structure 

Mediterranean 

ecosystem 

33 line 

transect plots
TM 

Clemente et 

al. 2009 

Fractional 

vegetation 

cover 

NDVI and 

other indices 

Mediterranean 

ecosystem 
/ TM, ETM+ 

Cuevas-

Gonzalez et 

al. 2008 

fAPAR 
NDVI 

transformation
Boreal forest / MODIS 

Cuevas-

Gonzalez et 

al. 2009 

/ 
NDVI and 

other indices 
Boreal forest / MODIS 

Diaz-

Delgado and 

Pons 2001 

/ 

NDVI and 

control plot 

selection 

Mediterranean 

ecosystem 
/ MSS 

Diaz-

Delgado et 

al. 2002 

/ 

NDVI and 

control plot 

selection 

Mediterranean 

ecosystem 
/ MSS 

Diaz-

Delgado et 

al. 2003 

/ 

NDVI and 

control plot 

selection 

Mediterranean 

ecosystem 
/ MSS, TM 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data 
Remotely 

sensed data 

Goetz et al. 

2006 
/ NDVI Boreal forest 11 sites AVHRR 

Goetz et al. 

2010 
Tree height LIDAR Boreal forest / 

GLAS, TM, 

MODIS 

Gouveia et 

al. 2010 
/ NDVI 

Mediterranean 

ecosystem 
/ VGT 

Hall et al. 

1991 

Land cover 

classification 

including 

regeneration 

classes 

Supervised 

classification 
Boreal forest / MSS 

Henry and 

Hope 1998 
/ 

NDVI and 

other indices 

Mediterranean 

ecosystem 

36 line 

transect plots 

with plant 

community 

statistics 

XS 

Hernandez-

Clemente et 

al. 2009 

/ NDVI 
Mediterranean 

ecosystem 
/ TM, ETM+ 

Hicke et al. 

2003 
NPP 

NDVI 

transformation
Boreal forest / AVHRR 

Hope et al. 

2007 
/ NDVI 

Mediterranean 

ecosystem 
/ TM, ETM+ 

Idris et al. 

2005 
/ 

NDVI and 

control plot 

selection 

Tropical and 

boreal forest 
/ AVHRR 

Jabukauskas 

et al. 1990 

Land cover 

classification 

including 

regeneration 

classes 

Supervised 

minimum 

distance-to-

mean 

classification 

Temperate 

coniferous 

forest 

32 linguistic 

sample points
TM 

Jacobson 

2010 
/ 

NDVI and 

other indices 

Woodland 

community 
/ XS 

Kasischke et 

al 2007 

Relations 

between soil 

moisture 

patterns and 

post-fire tree 

recruitment 

Empirical 

relations 
Boreal forest 2 test sites ERS 1 and 2 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data 
Remotely 

sensed data 

Kasischke et 

al 2011 

Biomass 

estimation of 

regenerating 

forests 

Empirical 

relations 
Boreal forest / 

ALOS 

PALSAR 

Lhermitte et 

al. 2010 
/ 

NDVI and 

control plot 

selection 

Savannah 

ecosystem 
/ VGT 

Lhermitte et 

al. 2011 
/ 

NDVI and 

control plot 

selection 

Savannah 

ecosystem 
/ VGT 

Li et al. 2008 / 

NDVI, EVI 

and control 

plot selection

Temperate 

forest 
/ MODIS 

Lozano et al. 

2010 
/ 

NDVI and 

other indices, 

landscape 

structure 

Mediterranean 

ecosystem 
/ TM, ETM+ 

Lyons et al. 

2008 
/ Albedo Boreal forest / MODIS 

Malak and 

Pausas 2006 
/ NDVI 

Mediterranean 

ecosystem 
/ TM 

Marchetti et 

al. 1995 
/ Infrared index

Mediterranean 

ecosystem 
/ TM 

McMichael 

et al. 2004 
LAI 

NDVI 

transformation

Mediterranean 

ecosystem 

62 sample 

points and 

field 

spectroscopy

TM, ETM+ 

Minchella et 

al. 2009 

Vegetation 

recovery 

Simulations 

with 

scattering 

model 

Mediterranean 

ecosystem 
/ ERS 

Mitchell and 

Yuan 2010 
/ NDVI 

Temperate 

forest 
/ TM 

Mitri and 

Gitas 2010 

Land cover 

classification 

including 

regeneration 

classes 

Object-based 

classification 

Mediterranean 

ecosystem 
/ Hyperion 

Palandjian et 

al. 2009 

Classification 

of 4 

regeneration 

classes 

Density 

slicing on 

NDVI data 

Mediterranean 

ecosystem 
Flux tower Quickbird 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data 
Remotely 

sensed data 

Peterson and 

Stow 2003 

Fractional 

vegetation 

cover 

SMA 
Mediterranean 

ecosystem 
/ TM, ADAR 

Ramsey et al. 

1999 

Time-since-

burn 

Regression 

analysis 

Marsh 

ecosystem 
/ Aircraft SAR 

Randerson et 

al. 2006 
/ Albedo Boreal forest 

93 line 

transect 

points and 

field 

spectroscopy

MODIS 

Riaño et al. 

2002 
/ 

NDVI and 

control plot 

selection 

Mediterranean 

ecosystem 
/ AVIRIS 

Ricotta et al. 

1998 
/ 

NDVI and 

landscape 

structure 

Mediterranean 

ecosystem 
/ TM 

Roder et al. 

2008 

Fractional 

vegetation 

cover 

SMA 
Mediterranean 

ecosystem 

Ground-

based NDVI 

MSS, TM, 

ETM+ 

Sankey et al. 

2008 

Fractional 

vegetation 

cover 

SMA 
Sagebrush 

community 

Field 

spectroscopy

XS, aerial 

photographs 

Schroeder 

and Pereira 

2002 

/ 
Landscape 

structure 
Boreal forest / TM 

Segah et al. 

2010 
/ NDVI Tropical forest

60 sample 

points 
TM, VGT 

Shaw et al. 

1998 
/ 

NDVI and 

other indices 
Boreal forest / 

Field 

spectroscopy 

Steyaert et 

al. 1997 

Land cover 

classification 

including 

regeneration 

classes 

Unsupervised 

cluster 

classification 

Boreal forest / AVHRR, TM 

Stueve et al. 

2009 

Tree 

establishment 

classification

Supervised 

minimum 

distance-to-

mean binary  

classification 

Alpine 

treeline 

border 

Line transect 

plots 

Airborne 

and KH-4B 

imagery 
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Reference 
Ecological 

parameter(s) 
measured 

Technique Ecosystem Field data 
Remotely 

sensed data 

Telesca and 

Lasaponara 
2006 

/ 

Detrended 
fluctuation 

analysis on 
NDVI time 

series 

Mediterranean 

ecosystem 

78 line 
transect plots 

and field 
spectroscopy

VGT 

Van 
Leeuwen 

2008 

Phenological 

metrics 
NDVI 

Temperate 

ecosystem 
/ MODIS 

Van 

Leeuwen et 
al. 2010 

Phenological 

metrics 

NDVI and 

control plot 
selection 

Temperate 
and 

Mediterranean 
ecosystems 

78 line 
transect plots 

and field 
spectroscopy

MODIS 

Veraverbeke 
et al. 2012 

Fractional 
vegetation 

cover 

NDVI and 
other indices 

Mediterranean 
ecosystem 

/ TM 

Veraverbeke 

et al. 2012 
/ 

NDVI, albedo, 
LST and 

control plot 
selection 

Mediterranean 

ecosystem 
/ MODIS 

Veraverbeke 
et al. 2012 

Fractional 

vegetation 
cover 

SMA 
Mediterranean 

ecosystem 

19 line 

transect 
points 

TM 

Vicente-

Serrano et al. 
2008 

/ 
NDVI and 

other indices 
Mediterranean 

ecosystem 
/ TM/ETM+ 

Viedma et al. 
1997 

Regeneration 
rate 

NDVI 
Mediterranean 

ecosystem 
/ TM 

Vila and 

Barbosa 2010 

Fractional 

vegetation 
cover 

NDVI and 

other indices, 
SMA 

Mediterranean 

ecosystem 
Field data TM, ETM+ 

White et al. 

1996 
/ NDVI Boreal forest / TM 

Wittenberg 

et al. 2007 
/ EVI 

Mediterranean 

ecosystem 
/ TM, ETM+ 

(ADAR: Airborne Data and Acquisition and Registration, AVHRR: Advanced Very High Resolution 
Radiometer, AVIRIS: Airborne Visible/Infrared Imaging Spectroradiometer, ETM+: Enhanced Thematic 
Mapper plus, EVI: Enhanced Vegetation Index, fAPAR: fraction of Absorbed Photosynthetically Active 
Radiation, GLAS: Geoscience Laser Altimeter System, KH: Key Hole, LAI: Leaf Area Index, LST: Land 
Surface Temperature, LIDAR, Light Detection and Ranging)MSS: Multispectral Scanner, MODIS: 
Moderate Resolution Imaging Spectroradiometer, NDVI: Normalized Difference Vegetation Index, 
NPP: Net Primary Productivity, RADAR: Radio Detection and Ranging, SAR: Synthetic Aperture 
Radar, SMA: Spectral Mixture Analysis, TM: Thematic Mapper, XS: Multispectral VGT: Vegetation 

Table 2. Examples of post-fire vegetation recovery studies using remotely sensed data 
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A review of the studies presented in Table 2, shows that current research mainly focused on 
multispectral Landsat, MODIS, VGT and AVHRR data. The moderate and low resolution 
scales are relatively well documented. For the coarse spatial resolution this usually goes hand 
in hand with time series analysis. The overview also highlights a need for further exploration 
of high spatial resolution and high spectral resolution, i.e. hyperspectral, data. High resolution 
data (e.g. Quickbird, IKONOS) could help in the recognition of individual plants, whereas 
hyperspectral data have the potential to discriminate between different vegetation species 
(Asner and Lobell 2000; Mitri and Gitas 2010; Somers et al. 2010). Besides optical imagery, 
Synthetic Aperture Radar (SAR) data is also worth a more in-depth evaluation. 
From Table 2 it can also be concluded that vegetation recovery studies have been carried out 
in a number of different ecosystems including: 

 Mediterranean ecosystems: 26 studies were conducted in the Mediterranean basin, 
whereas 5 papers concentrate on the Mediterranean ecozone of California (USA). 

 Boreal forests: 20 study areas were carried out in boreal forests of North American and 
the Eurasian boreal zone. 

 Τemperate forests: 5 studies focused on temperate forests.. 

 Other types of forests: 2 studies were conducted in tropical forests, 2 in savannah 
ecosystems, 1 along an alpine treeline border, 1 in a sagebrush community and 1 in a 
marsh ecosystem. 

Post-fire recovery rates depend on fire severity (Diaz-Delgado et al. 2003), soil properties 

(Bisson et al. 2008), post-fire meteorological conditions (Henry and Hope 1998; van Leeuwen 

et al. 2010) and ecotype (Viedma et al. 1997; Veraverbeke et al. 2010b; Lhermitte et al. 2011; 

Veraverbeke et al. 2011b). In fire-adapted sclerophyllous shrub lands, for example, recovery 

only takes a few years (Viedma et al. 1997; Pausas and Verdu 2005) whereas in boreal forests 

recovery lasts several decades (Nepstad et al. 1999). The summary above clearly shows that 

recovery research so far focused on boreal and Mediterranean ecosystems. Table 2 also 

reveals that only 26 % of the papers included in the list were supported by ground truth. 

This highlights a need to conduct research on the remote sensing of post-fire vegetation 

recovery supported by field campaigns, while other ecosystems such as tropical forest and 

savannah ecosystems urgently require a knowledge gain. 

3.3 Image analysis techniques 

Several image analysis techniques are employed in the remote sensing of post-fire recovery. 
Most of the traditional approaches have an origin outside fire applications but their 
methodology is easily adjustable for recovery studies. The most important traditional 
methods are image classification, Vegetation Indices (VIs) and Spectral Mixture Analysis 
(SMA). They are thoroughly discussed below. In addition, one specific technique applicable 
for ecological disturbances, i.e. control plot selection, is also incorporated. Finally, some less 
frequently used approaches are shortly described. 

3.3.1 Image classification 

Since long, multispectral image classification is known to be a powerful technique to 

translate remotely sensed data into ecologically relevant cover classes. Both supervised 

(Jakubauskas et al. 1990; Hall et al. 1991; Stueve et al. 2009; Mitri and Gitas 2010) and 

unsupervised (Steyaert et al. 1997) techniques have been applied in post-fire recovery 

studies. Most applications rely on pixel-based classifiers such as the minimum-distance-
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to-mean (Jakubauskas et al. 1990; Stueve et al. 2009) and maximum likelihood classifiers 

(Hall et al. 1991). While the majority of the studies focused on four or more cover classes 

(Jabukauskas et al. 1990; Hall et al. 1991; Steyaert et al. 1997; Mitri and Gitas 2010), the 

study of Stueve et al. (2009) was restricted to a binary classification of tree establishment 

along an alpine treeline border. A major problem associated with pixel-based 

classifications is the occurrence of salt-and-pepper artifacts. As a solution, object-based 

classification schemes include both spectral and contextual information (Wicks et al. 2002) 

(See more in Section 4).  

Apart from multispectral classification approaches Palandjian et al. (2009) applied density 

slicing on post-fire Normalized Difference Vegetation Index (NDVI) data. As such, they 

discriminated four different regeneration classes. Generally spoken, relatively few studies 

applied image classification to monitor post-fire recovery. This is mainly explained by the 

fact that the spatial resolution of most popular satellite systems (e.g. Landsat) exceeds the 

size of individual regenerating plants. As a result, it is very difficult in these applications to 

find pure training data because most image pixels are mixed. This incites a need to explore 

the potential of high resolution imagery (e.g. Quickbird, IKONOS) to classify individual 

plants. This would also open new research pathways to study the small-scale spatial 

patterns of post-fire vegetation recovery. 

3.3.2 VIs 

By far the most widely used remote sensing technique to assess post-fire recovery is the 
NDVI (Tucker 1979) because of its strongly established relationship with above-ground 
biomass in a wide range of ecosystems (Carlson and Ripley 1997; Henry and Hope 1998; 
Cuevas-Gonzalez et al. 2009). The post-fire environment typically consists of a mixture of 
vegetation and substrate. Theoretically, Soil Adjusted Vegetation Indices (SAVIs) (Huete 
1988; Baret and Guyot 1991; Qi et al. 1994) are better suited for these mixed environments. 
Relatively few studies have assessed the correlation between field estimates of vegetative 
cover and VIs. Clemente et al. (2009) contrasted the NDVI with the SAVI (Huete 1988), 
Transformed SAVI (TSAVI), (Baret and Guyot 1991) and Modified SAVI (MSAVI) (Qi et al. 
1994) for estimating post-fire vegetation regrowth 7 and 12 years after a fire in Spain. The 
NDVI was stronger related to field estimates of vegetation cover than any other index. Vila 
and Barbosa (2010) drew more or less the same conclusion. They also found that the NDVI 
was most accurately related to field data eight years after a fire in Italy. Van Leeuwen et al. 
(2010) also retrieved high correlations between NDVI and field data of recovery. Veravrbeke 
et al. (2012b) comprehensively evaluated thirteen R-NIR vegetation indices for assessing 
post-fire vegetation recovery. They found that the NDVI indeed obtained the best 
correlations with line transect field data and the failure of the SAVIs was due to their 
inability to account for variations in background brightness. This approves the use of the 
NDVI as an appropriate recovery measure, however, it should be noted that the potential of 
spectral indices with a SWIR or MIR spectral band has not been fully explored yet. These 
spectral regions have proven to be very effective in discriminating soil and vegetation 
(Drake et al. 1999; Asner and Lobell 2000). In the context of post-fire recovery, VIs including 
a SWIR or MIR band have shown prospect in the studies of Marchetti et al. (1995), Cuevas-
Gonzalez et al. (2009) and Jacobson (2010). 
Several studies used NDVI data as a linkage to more ecologically relevant parameters such 

as fractional vegetation cover (Clemente et al. 2009; Vila and Barbosa 2010; Veraverbeke et 
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al. 2012b), fraction of Absorbed Photosynthetically Active Radiation (fAPAR), (Cuevas-
Gonzalez et al. 2008), Net Primary Production (NPP), (Hicke et al. 2003) and Leaf Area Index 

(LAI), (McMichael et al. 2004). Usually, these index transforms are based on thorough field 
calibration. Only few studies incorporated a substantial number of field plots to calibrate 

and validate the VI approach (Shaw et al. 1998; Bisson et al. 2008; Clemente et al. 2009; 
Jacobson 2010; Segah et al. 2010; van Leeuwen et al. 2010; Vila and Barbosa 2010; 

Veraverbeke et al. 2011b Hernandez-Clemente et al. 2009). Figure 1 presents an example of 
the relationship between the NDVI and field estimates of vegetative cover which was used 

to model post-fire vegetation cover in the burned area. The majority of the authors, 
however, use the NDVI as a well-accepted methodology without additional field efforts. In 

a mono-temporal context NDVI were related to climatic variables (Belda and Meliá 2000), 
topographic parameters (Mitchell and Yuan 2010) and fire severity (White et al. 1996; 

Mitchell and Yuan 2010).  
Other studies employed multiple images to construct recovery trajectories (Viedma et al. 

1997; Henry and Hope 1998; Ricotta et al. 1998; Carranza et al. 2001; Díaz-Delgado and Pons 
2001; Diaz-Delgado et al. 2002; Riaño et al. 2002; Malak and Pausas 2006; Wittenberg et al. 

2007; Bisson et al. 2008; Vicente-Serrano et al. 2008; Clemente et al. 2009; Hernandez-
Clemente et al. 2009). Where Landsat-based studies allow only a few cloud-free images a 

year (Ju and Roy 2008), satellite sensors with high temporal frequency permit the 
construction of continuous time series. More recently, several authors have explored this 

data type for assessing post-fire effects (Idris et al. 2005; Goetz et al. 2006; Telesca and 
Lasaponara 2006; Li et al. 2008; van Leeuwen 2008; Alcaraz-Segura et al. 2010; Gouveia et al. 

2010; Lhermitte et al. 2010; Segah et al. 2010; van Leeuwen et al. 2010; Lhermitte et al. 2011; 
Veraverbeke et al. 2012a; Veraverbeke et al. 2012c). Thanks to this it is possible to 

discriminate between regeneration patters and seasonal fluctuations (Veraverbeke et al. 
2010b; Lhermitte et al. 2011; Veraverbeke et al. 2012b). A major advantage of multi-temporal 

data is that regression fits between time since fire and NDVI data give reliable recovery rate 
estimates (Viedma et al. 1997; Díaz-Delgado and Pons 2001; Gouveia et al. 2010). Extension 

of these regeneration rates allows prediction on the future state of biomass. This is of major 
interest for decision makers in rangeland management. NDVI data also served as the 

preferred data source for the control plot selection procedure (Díaz-Delgado and Pons 2001; 
Diaz-Delgado et al. 2002; Lhermitte et al. 2010; Lhermitte et al. 2011) and landscape 

ecological applications (Ricotta et al. 1998; Carranza et al. 2001). 

3.3.3 Spectral mixture analysis 

The post-fire environment typically consists of a mixture of vegetation and substrate. Thus, 
monitoring post-fire regeneration processes essentially poses a sub-pixel issue at the 
resolution of most operational satellite systems such as Landsat. A number of image 
analysis techniques accommodating mixing problems exist (Atkinson et al. 1997; Arai 2008) 
with SMA being the most common technique utilized in many applications (Roberts et al. 
1998; Asner and Lobell 2000; Riaño et al. 2002; Roder et al. 2008; Somers et al. 2010). SMA 
effectively addresses this issue by quantifying the sub-pixel fraction of cover of different 
endmembers, which are assumed to represent the spectral variability among the dominant 
terrain features. A major advantage of SMA is its ability to detect low cover fractions, 
something which remains difficult with the traditional vegetation indices (VIs) approach 
(Henry and Hope 1998; Elmore et al. 2000; Rogan and Franklin 2001). Moreover, SMA 

www.intechopen.com



 
Remote Sensing of Biomass – Principles and Applications  

 

158 

 

Fig. 1. Fractional vegetation cover map (A) three years after the large Peloponnese (Greece) 
fires based on the regression fit between the Landsat Normalized Difference Vegetation Index 
(NDVI) and line transect field ratings of vegetation cover (B) (Veraverbeke et al. 2012b). 
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directly results in quantitative abundance maps, without the need of an initial calibration 

based on field data as with VIs (Somers et al. 2010; Vila and Barbosa 2010). With regards to 

post-fire effects, rather few studies employed SMA to monitor post-fire vegetation responses 

(Riaño et al. 2002; Peterson and Stow 2003; Roder et al. 2008; Sankey et al. 2008; Vila and 

Barbosa 2010; Veraverbeke et al. 2012a). Although results of these studies were consistent, 

most of them were all restricted to simple linear SMA models in which only one spectrum 

was allowed for each endmember. As a consequence, the performance of these SMA models 

often appeared to be suboptimal (Roder et al. 2008; Vila and Barbosa 2010) because these 

models did not incorporate the natural variability in scene conditions of terrain features 

inherent in remote sensing data (Asner 1998). To overcome this variability effect Peterson 

and Stow (2003) applied multiple endmember SMA (MESMA), (Roberts et al. 1998). 

MESMA incorporates natural variability by allowing multiple endmembers for each 

constituting terrain feature. These endmember sets represent the within-class variability 

(Somers et al. 2010) and MESMA models search for the most optimal endmember 

combination by reducing the residual error when estimating fractional covers (Asner and 

Lobell 2000). Rogge et al. (2006) and Veraverbeke et al. (2012a), however, clearly 

demonstrated that reducing the residual error by applying MESMA not always results in 

the selection of the most appropriate endmember spectrum. An initial segmentation of the 

area prior to the unmixing process in order to retain areas which reveal a high similarity in 

the spectral properties of a certain endmember has been presented as a sound and 

computationally efficient solution to address this issue (Rogge et al. 2006; Veraverbeke et al. 

2012a). 

A possible amelioration in post-fire vegetation mapping using SMA could be the 

inclusion of SWIR and MIR spectral regions in the unmixing process. These spectral 

regions have proven to be very effective in discriminating soil and vegetation (Drake et 

al. 1999; Asner and Lobell 2000). Carreiras et al. (2006) demonstrated that adding the 

SWIR-MIR Landsat bands resulted in better estimates of tree canopy cover in 

Mediterranean shrublands. Additionally, enhancing the spectral resolution by 

employing hyperspectral data would increase the amount of spectral detail which would 

benefit the differentiation between spectra (Mitri and Gitas 2008). By including more and 

other spectral wavebands the unmixing model could gain discriminative power. 

Potentially, this would make it even possible to distinguish between non-photosynthetic 

vegetation and substrate (Asner and Lobell 2000; Somers et al. 2010), which appeared to 

be impossible in current applications. 

3.3.4 Control plot selection 

A major difficulty in post-fire time series analysis is that the analysis can be hampered by 
phenological effects, both due to the differences in acquisition data and due to inter-annual 
meteorological variability (Díaz-Delgado and Pons 2001). To deal with these phenological 
effects Diaz-Delgado and Pons (2001) proposed to compare vegetation regrowth in a burned 
area with unburned reference plots within the same image. As such, external and 
phenological variations are minimized among the compared areas. Several authors have 
successfully adapted the reference plot approach (Diaz-Delgado et al. 2002; Diaz-Delgado et 
al. 2003; Idris et al. 2005; Li et al. 2008; van Leeuwen et al. 2010). The reference plot selection 
procedure has, however, two main difficulties. Firstly, large scale application remains 
constrained due to the necessity of profound field knowledge to select relevant control plots. 
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Secondly, the reference plot approach fails to describe within-burn heterogeneity as it uses 
mean values per fire plot. To solve these problems, Lhermitte et al. (2010) proposed a pixel-
based control plot selection method which follows the same reasoning with respect to the 
minimization of phenological effects by comparison with image-based control plots. The 
difference with the reference plot procedure, however, is situated in the fact that the pixel-
based method assigns a unique unburned control pixel to each burned pixel. This control 
pixel selection is based on the similarity between the time series of the burned pixel and the 
time series of its surrounding unburned pixels for a pre-fire year (Lhermitte et al. 2010). The 
method allows the quantification of the heterogeneity within a fire plot since each fire pixel 
is considered independently as a focal study pixel and a control pixel is selected from a 
contextual neighbourhood around the focal pixel. This approach has been used in studies 
assessing the temporal dimension of fire impact and subsequent recovery (Veraverbeke et 
al. 2010b; Lhermitte et al. 2011; Veraverbeke et al. 2011a; Veraverbeke et al. 2012c). Figure 2 
presents an example of the principle of the control plot selection procedure on a NDVI time 
series. With the exception of Veraverbeke et al. (2012c) who also incorporated Land Surface 
Temperature (LST) and albedo data in the procedure, so far, the control plot selection 
procedure has only been applied on NDVI data. Nevertheless, in theory, the control plot 
selection procedure allows any kind of remotely sensed data as input. Moreover, the 
procedure has the potential to provide valuable reference information other disturbance in 
which external forces abruptly remove the vegetation (e.g. volcanic eruptions, landslides, 
hurricanes, tsunamis, etc.). 
 
 
 

 
 
 

Fig. 2. Example of Normalized Difference Vegetation Index (NDVI) time series of a 
burned pixel (black line) and its corresponding control pixel (green line). The control pixel 
mimics how the burned pixel would have behaved without fire occurrence (after 
Veraverbeke et al. (2012c)). 
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Despite of the merits of the control pixel selection procedure as presented by Lhermitte 
et al. (2010) and Veraverbeke et al. (2010b) two constraints remain. Firstly, due to the 
necessity to search in larger windows for pixels in the middle of the burn the 
performance of the procedure is likely to be better near the contours of the burn 
perimeter. On one hand this is inevitable as the potentially most similar neighbour pixels 
are burned. On the other hand one could argue that this phenomenon incites to make the 
control pixel selection settings dependent on the distance to the fire perimeter. The 
procedure is also affected by a second constraint, i.e. the heterogeneity of the unburned 
landscape matrix. It is obvious that the procedure will be more optimal in highly 
homogeneous landscapes, even for large search windows. In contrast, in highly 
heterogeneous mixtures of different land cover types the procedure will potentially fail 
to retrieve similar pixels for small window sizes. It is a hard task to uncouple and 
quantify the effects of both constraints. Solutions to this have the potential to further 
improve the selection procedure. 

3.3.5 Post-fire albedo and land surface temperature  

Besides the use of optical data and its derivatives (e.g. VIs) some authors focused on the 
recovery of remotely sensed bioclimatic variables such as albedo and Land Surface 
Temperature (LST) (Amiro et al. 1999; Lyons and Randerson 2008; Veraverbeke et al. 
(2012c)). The increase in post-fire LST progressively weakens over time (Veraverbeke et al. 
(2012c)), whereas Lyons et al. (2008) and Veraverbeke et al. (2012c)) observed that albedo 
quickly recovers after an initial post-fire drop. The albedo even exceeds pre-fire values when 
char materials are removed and vegetation starts to regenerate (Veraverbeke et al. (2012c)). 
Thus, where the immediate fire effect results in an increased absorption of radiative energy, 
the long-term effect generally is an increased albedo (Amiro et al. 2006; Randerson et al. 
2006). The quantification of these effects, together with an accurate estimation of the amount 
of greenhouse gasses emitted by the fire and the subsequent post-fire carbon sequestration 
of regenerating vegetation, are necessary for a holistic comprehension of the effect of 
wildfires on regional and global climate. In this context, Randerson et al. (2006) 
comprehensively demonstrated that, although the first post-fire year resulted in a net 
warming, the long-term balance was negative. As such they concluded that an increasing 
fire activity in the boreal region would not necessarily lead to a net climate warming. 
Remotely sensed proxies of albedo and LST can also be used to estimate the spatio-temporal 
behaviour of several radiative budget parameters of paramount biophysical importance 
such as sensible and latent heat fluxes (Bastiaanssen et al. 1998; Roerink et al. 2000). The 
immediate post-fire surface warming and its ecological consequences as well as the long-
term post-fire temporal development of heat fluxes could form a relatively unexplored and 
captivating research topic. 

3.3.6 Post-fire monitoring using SAR  

Synthetic-aperture radar (SAR) data has been extensively used for various ecological 

processes (Kasischke et al. 1997) and have been especially useful in areas characterized by 

frequent cloud conditions such as the tropics and in the remote locations of the boreal 

forests. However, the application of SAR data in monitoring vegetation regrowth has been 

rather limited, while in most of the studies empirical relationships between field 

measurements and the backscatter values have been investigated.  
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Ramsey et al (1999) investigated the use of multiple-polarization aircraft L-band to monitor 
burn recovery in a coastal marsh. The authors found a significant relationship between VH-

polarization and time-since-burn. In addition, Ramsey et al 1999 examined the same 
relationship with scaled SAR returns. Scaled by control data [e.g. VH(burn)-VH(control)], all 

three polarizations (VV, HH, VH) regressions were found significant, with 83% of the time-
since-burn explained by the VH variable. 

Kasischke et all (2011) investigated the utility of L-band ALOS PALSAR data (23.6 cm 
wavelength) for estimating low aboveground biomass in a fire-distributed black spruce 

forests in interior Alaska nearly 20 years after the fire events. Field measurements were 
analyzed against the radar backscatter coefficient.  Significant linear correlations were 

found between the log of the aboveground biomass and σο (L-HH) and σο (L-HV), with 
the highest correlation found when soil moisture was high. Kasischke et all 2011 

concluded that using spaceborne SAR systems to monitor forest regrowth will not only 
require collection of biomass data to establish the relationship between biomass and 

backscatter, but may also require developing methods to account for variations in soil 
moisture. 

Kasischke et al (2007) based on the findings of Bourgeau-Chavez et al (2007) explored the 
relations between soil moisture patterns and post-fire tree recruitment in fire-disturbed 

black spruce forests in Interior Alaska using ERS-1 and ERS-2 C band (5.7 cm wavelength). 
Both Kasischke et al (2007) and Bourgeau-Chavez et al (2007) found high correlations 

between ERS SAR backscatter and measured soil moisture in the burned areas. Furthermore, 
Kasischke et al (2007) found that the measured levels of tree recruitment are related to the 

levels of soil moisture: aspen seedlings were able to germinate and grow within the severely 
burned areas because of adequate soil moisture was present during the growing season. In 

contrast, low aspen recruitment at a severely burned area was attributed to lower soil 
moisture. 

Minchella et al. (2009) used multitemporal ERS SAR images to monitor the vegetation 
recovery in a Mediterranean burned area.  Following a qualitative approach (analysis of the 

multitemporal backscattering signatures) they observed that, due to the increase in soil 
moisture in the backscattering, the measurements, taken throughout at least one year, of the 

similarity between the backscattering of the burned area and the backscattering of a bare soil 
around or inside the burned area, may provide a SAR-based index for the vegetation 

recovery in the burned area. In addition, Minchella et all 2009 used a microwave scattering 
model. A minimization of the distance between simulated results and measured data has 

been carried out using the re-growth rate as the key variable. Results showed that the 

retrieved values were in agreement with in-situ measurements. 
Tanase et al 2011 analyzed SAR metrics from burned forested areas in Spain and Alaska. 

SAR dataset that were used consisted of ERS (C band), TerraSAR-X (X-band), 

Environmental Satellite (Envisat) Advanced SAR (ASAR) (C-band) and ALOS PALSAR (L-

band) images. The authors concluded that for Mediterranean forests, the L-band HV-

polarized SAR backscatter allowed the best differentiation of regrowth phases whereas at X- 

and C-band the HV-polarized backscatter was less sensitive to modification in forest 

structure due to the rapid saturation of the signal. For boreal forest four different regrowth 

phases were separated.  Co-polarized repeat-pass coherence presented weak sensitivity to 

the different forest regrowth phases. Separation was possible only for the most recently 

affected sites (<15 year since disturbance) regardless of the radar frequency. 
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4. Advances in remote sensing of post-fire monitoring  

Given that older generation sensors have many known limitations with respect to their 
suitability for studying complex biophysical characteristics (De Jong et al. 2000, Steininger 
2000, Sampson et al. 2001, Salas et al. 2002), the need to benefit from new generation of high 
spatial and spectral resolution sensors as well as active sensors is of critical importance. 
Accurate quantification of vegetation regeneration could be essential for biodiversity 
assessment, land cover characterization and biomass modelling (Blackburn and Milton 
1995). High spectral resolution facilitates the identification of features while high spatial 
resolution permits accurate location of features (Gross and Scott 1998). Additionally, 
advanced multispectral sensors also allow significantly improved signal to noise ratios 
(Levesque and King 2003).  
The development of new hyperspectral remote sensing instruments, both airborne and 
spaceborne, has provided an opportunity to study vegetation recovery after wildfire (Riaño 
et al. 2002). A number of recent studies have indicated the advantages of using discrete 
narrowband data from specific portions of the spectrum, rather than broadband data, to 
obtain the most sensitive quantitative or qualitative information on vegetation 
characteristics.  
Mitri and Gitas (2010) mapped post-fire vegetation recovery using EO-1 Hyperion imagery 

and OBIA and an overall accuracy of 75.81 % was reported (Figure 3). Object-oriented image 

analysis has been developed to overcome the limitations and weaknesses of traditional 

image processing methods for feature extraction from high resolution images (Mitri and 

Gitas 2004; Mitri and Gitas 2010). The basic difference, especially when compared with 

pixel-based procedures is that image object analysis does not classify single pixels but rather 

image objects that have been extracted in a previous image segmentation step (Baatz and 

Schape 1999). The concept here is that the information that is necessary to interpret an image 

is not represented in a single pixel, but in image objects. Object-based classification involves 

three main steps, namely, image segmentation, object training, and object classification. 

“Ground truth” information using field spectroradiometry instruments is equally important 

for validation of representative image wavebands to be used in object-based classification. 

According to Wicks et al. (2002), object-based classification may result in an increased 

accuracy and more realistic presentation of the environment.  

Furthermore, many applications of remote sensing require high spatial resolution data for a 

correct determination of small objects. For instance, high spatial resolution imagery can be 

used before, during, and after a fire to measure fuel potential, access, progress, extent, as 

well as damage and financial loss. High spatial resolution multispectral data such as 

QuickBird (60 centimetres in panchromatic and 2.4 m in multispectral) can identify not only 

individual tree crowns, but often also the type of tree, estimate biomass, condition and age 

class (Wang et al. 2004, Palandjian et al. 2009). 

LIDAR data have been used extensively for estimating various forest attributes such as 

canopy height, biomass, basal area and LAI forest variables as diameter at breast height, 

volume and density (Dubayah and Drake 2000; Lim et al. 2003a; Bortolot and Wynne 2005) 

and individual tree heights. The limited use of LIDAR data for monitoring vegetation 

regrowth can be attributed to the limited existence of spaceborne LIDAR Also, the operation 

of airborne LIDAR can be hampered by weather conditions, it is cost prohibited and can 

cover only limited areas.  
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Fig. 3. Example of post-fire recovery map obtained after applying object-based classification 
in a Mediterranean ecosystem (Mitri and Gitas 2010). 

However, it is worth mentioning the work of Wulder et al (2009) who used the integration 

of Landsat TM/ETM+ imagery and profiling LIDAR transects to characterize post-fire 

conditions on boreal forest in Canada shortly after the fire event. The main goals of their 

research were to evaluate whether LIDAR can be used to detect changes in vertical forest 

structural characteristics associated with the wildfire and find relationships between the 

vertical information extracted from the LIDAR datasets and horizontal information such as 

the indices NBR, dNBR and RdNBR extracted from the Landsat datasets in pre- and post-

fire conditions. The authors had available LIDAR data collected along the same transect pre- 

and post-fire and could identify differences in forest structure before and after the fire, but 

those differences in structure were more related to post fire effects in dense forest than open 

or sparse forests. However, no significant correlation was found between the Landsat 

measures of post-fire effect and the LIDAR -derived measures of pre-fire forest structure. 

Kim et al (2009) used LIDAR intensity values in conjunction with field measurements to 

distinguish between live and dead standing tree biomass in a mixed coniferous forest in 

USA.  Result of their regression analysis showed that low intensity returns from LIDAR 

were associated with dead tree biomass. It was suggested that knowing the background 

value of dead biomass in the forest (from field observations) one can estimate the additional 

contribution of dead standing tree biomass associated with a fire.  

In addition to the airborne LIDAR applications, there has been a study using the satellite-

based LIDAR instrument Geoscience Laser Altimeter System (GLAS) onboard ICESAT. 

Goetz et al (2010) used the LIDAR data acquired from GLAS to derive canopy structure 

information in burned areas and associated forest regrowth across Alaska. The LIDAR data 

were stratified by age class (using fire perimeters) and vegetation type (using the EVI 

calculated from MODIS NBAR). Data were also analyzed in relation to the burn severity. 

Tree height estimates derived from GLAS data were then compared to field measurements. 

The results showed that the GLAS data have the utility for inferring height properties of 

vegetation in fire disturbed areas of boreal forest, but it was mentioned that the data require 

both careful screening and some knowledge of the study area.   
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Furthermore, even though Polarimetric Interferometric SAR (PolInSAR) data has not been 

used so far for monitoring vegetation regrowth in fire affected areas, PolInSAR proved capable 

in estimating tree height (Papathanasiou and Cloude, 2001). The height estimation with 

PolInSAR has been successfully demonstrated on various forest types, ranging from boreal to 

tropical forests, and achieves high accuracies, (Praks et al. 2007; Garestier et al. 2008; Hajnsek et 

al. 2009). The operation of single-pass interferometric systems (TanDEM-X has been operating 

since May 2010) in space opens the door to a new set of unique applications (Krieger et al. 

2010), one of them being the monitoring of forest biomass after fire.  

5. Future investigation 

Given that older generation sensors have many known limitations with respect to their 

suitability for studying complex biophysical characteristics, the need to benefit from new 

generation of high spatial and spectral resolution sensors as well as active sensors is of 

critical importance. The development of new remote sensing instruments, both airborne and 

spaceborne, has provided an opportunity to advance studies and researches on vegetation 

recovery after wildfire. Future research related to advances in remote sensing in post-fire 

monitoring is expected to focus on the following: 

 Ecosystems with high environmental importance such as tropical forest and savannah 
ecosystems urgently require a knowledge gain. 

 The need to conduct research on the remote sensing of post-fire vegetation recovery 
supported by field campaigns.  

 The potential of spectral indices with a SWIR or MIR spectral band. 

 Given that older generation sensors have many known limitations with respect to their 
suitability for studying complex biophysical characteristics, the need to benefit from 
new generation of high spatial and spectral resolution sensors and active sensors with 
different characteristics is of critical importance. Also the use of combined data 
acquired from more than one sensor. 

 New research pathways to study the small-scale spatial patterns of post-fire vegetation 
recovery are required (e.g. the need to explore the potential of high resolution imagery 
such as QuickBird and IKONOS to classify individual plants). 

 Investigation of the potential of Polarimetric Interferometric SAR data (TanDEM-X) to 
estimate post-fire biomass. 

 Exploitation of advanced image analysis techniques in order to develop automated and 
transferable procedures.  

6. Conclusions 

Based on a review of the literature, a number of conclusions can be drawn: 

 The role of remote sensing is increasingly becoming very important in post-fire 
monitoring. 

 Most research has so far been carried out in areas covered by Mediterranean forests and 
shrublands.  

 Current research is mainly based on the employment of Landsat, MODIS, VGT and 
AVHRR data. The extensive use of moderate and low resolution imagery is related to 
time series analysis. 
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 Vegetation indices and SMA are the main techniques employed so far in post-fire 
monitoring while the NDVI is the most commonly used index due to its strong 
relationship with above-ground biomass in a wide range of ecosystems. Only a small 
number of studies employ image classification due to the fact that the spatial resolution 
of the most commonly used satellite sensors exceeds the size of individual regenerating 
plants 

 A number of developments including: the increase in the number of sensors with 
different characteristics suitable for post-fire monitoring (e.g. LIDAR, hyperspectral), 
the improved access to and availability of satellite data and derived products, and the 
development of new methods and advanced digital image analysis techniques (e.g. 
OBIA, Control plot selection) are expected to move forward research and establish RS 
an operational tool for post-fire monitoring. 
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