
ESA CENTENNIAL PAPER

Advances in restoration ecology:
rising to the challenges of the coming decades

MICHAEL P. PERRING,1,2,� RACHEL J. STANDISH,1,3 JODI N. PRICE,1 MICHAEL D. CRAIG,1,3 TODD E. ERICKSON,1,4

KATINKA X. RUTHROF,3 ANDREW S. WHITELEY,5 LEONIE E. VALENTINE,1 AND RICHARD J. HOBBS
1

1School of Plant Biology, The University of Western Australia, 35 Stirling Highway,

Crawley, Western Australia 6009 Australia
2Forest & Nature Lab, Ghent University, BE-9090, Gontrode-Melle, Belgium

3School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia 6150 Australia
4Kings Park and Botanic Garden, Fraser Avenue, Kings Park, Western Australia 6005 Australia
5School of Earth and Environment, The University of Western Australia, 35 Stirling Highway,

Crawley, Western Australia 6009 Australia

Citation: Perring, M. P., R. J. Standish, J. N. Price, M. D. Craig, T. E. Erickson, K. X. Ruthrof, A. S. Whiteley, L. E.

Valentine, and R. J. Hobbs. 2015. Advances in restoration ecology: rising to the challenges of the coming decades.

Ecosphere 6(8):131. http://dx.doi.org/10.1890/ES15-00121.1

Abstract. Simultaneous environmental changes challenge biodiversity persistence and human well-

being. The science and practice of restoration ecology, in collaboration with other disciplines, can contribute

to overcoming these challenges. This endeavor requires a solid conceptual foundation based in empirical

research which confronts, tests and influences theoretical developments. We review conceptual

developments in restoration ecology over the last 30 years. We frame our review in the context of

changing restoration goals which reflect increased societal awareness of the scale of environmental

degradation and the recognition that inter-disciplinary approaches are needed to tackle environmental

problems. Restoration ecology now encompasses facilitative interactions and network dynamics, trophic

cascades, and above- and belowground linkages. It operates in a non-equilibrium, alternative states

framework, at the landscape scale, and in response to changing environmental, economic and social

conditions. Progress has been marked by conceptual advances in the fields of trait-environment

relationships, community assembly, and understanding the links between biodiversity and ecosystem

functioning. Conceptual and practical advances have been enhanced by applying evolving technologies,

including treatments to increase seed germination and overcome recruitment bottlenecks, high throughput

DNA sequencing to elucidate soil community structure and function, and advances in satellite technology

and GPS tracking to monitor habitat use. The synthesis of these technologies with systematic reviews of

context dependencies in restoration success, model based analyses and consideration of complex socio-

ecological systems will allow generalizations to inform evidence based interventions. Ongoing challenges

include setting realistic, socially acceptable goals for restoration under changing environmental conditions,

and prioritizing actions in an increasingly space-competitive world. Ethical questions also surround the use

of genetically modified material, translocations, taxon substitutions, and de-extinction, in restoration

ecology. Addressing these issues, as the Ecological Society of America looks to its next century, will require

current and future generations of researchers and practitioners, including economists, engineers,

philosophers, landscape architects, social scientists and restoration ecologists, to work together with

communities and governments to rise to the environmental challenges of the coming decades.
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INTRODUCTION

We are in an unprecedented era of simulta-
neous global environmental changes, many
unperceived at the founding of the Ecological
Society of America (ESA) one hundred years ago
(Steffen et al. 2011, Barnosky et al. 2012, Steffen et
al. 2015). Significant challenges facing humanity
include global biodiversity loss, anthropogenic
pollution and associated climate change, land
allocation, energy generation and coping with a
growing global human population (Vitousek et
al. 1997, Steffen et al. 2005). However, there are
inspiring messages that suggest global environ-
mental change and associated challenges can be
tackled (DeFries et al. 2012). One long-term,
potentially cost-effective, and optimistic solution
is the science of restoration ecology and its
applied practice of ecological restoration (Dob-
son et al. 1997, Nelleman and Corcoran 2010,
Suding et al. 2015).

The restoration of ecosystems that have been
damaged, degraded or destroyed, through es-
tablishing or re-introducing flora and fauna
(SERI 2004), provides options to mitigate envi-
ronmental degradation, especially at large scales
(Menz et al. 2013). Ecological restoration has the
potential to improve air quality, reverse forest
clearance and desertification, slow biodiversity
loss, enhance urban environments and perhaps
improve human livelihoods and humanity’s
relationships within nature. These examples
highlight the opportunity for restoration ecology
to develop the tools that will allow people to rise
to the environmental challenges of the coming
decades, finding solutions that meet both social
and environmental goals, particularly when
coupled with other disciplines. However, rising
to these challenges will require clear articulation
of restoration goals (Hobbs and Norton 1996)
and solid ecological foundations upon which to
build restoration practice.

Here, we elucidate the conceptual foundations
upon which to build restoration practice, in the

context of the plurality of restoration motivations
and goals that characterize the current era. We
explicitly consider conceptual ecological devel-
opments pertinent to restoration since A. D.
Bradshaw’s (1983) Presidential Address to the
British Ecological Society in 1982, when he stated:
‘‘The acid test of our understanding is not whether we
can take ecosystems to bits on paper, however
scientifically, but whether we can put them together
in practice and make them work’’. We explore how
conceptual developments are being applied to
restoration practice and how ecological knowl-
edge is faring against the ‘acid test’.

We were motivated to provide this review in
acknowledgement of the ESA’s Centenary and
given the fact that restoration ecology has
become an important discipline within the broad
corpus of ecological knowledge since Bradshaw’s
address. We aim to build on earlier reviews (e.g.,
Young et al. 2005, Brudvig 2011, Suding 2011)
and present evidence for a coherent conceptual
framework that represents the development and
contemporary state of restoration ecology (see
also Figs. 1 and 2). This framework synthesizes
the development and incorporation of important
ecological concepts in restoration ecology, as it
moved beyond traditional foci of plant commu-
nities and single functional goals within a patch
(Young 2000). Contemporary practice considers
organisms beyond plant communities and mul-
tiple functional, as well as compositional, goals.
It applies concepts with a landscape scale,
anthro-ecological perspective that is required to
address environmental issues in the current and
future human-influenced biosphere (Ellis 2015).

Ecological restoration provides an ideal setting
for hypothesis generation and testing in ecology
(Jordan et al. 1987 in Young et al. 2005, Laughlin
2014) but the full potential of this opportunity
has yet to be realized. Our review highlights the
need for practical tests of the concepts we present
while discussing the challenges associated with
this call. We further highlight how conceptual
and practical developments may be aided by

v www.esajournals.org 2 August 2015 v Volume 6(8) v Article 131

ESA CENTENNIAL PAPER PERRING ET AL.



technological advancement (see also Table 1). We

mainly focus on terrestrial ecosystems and

examples. However, environmental changes in

the marine biosphere (Halpern et al. 2008) also

demand restorative action. Many of the ecolog-

ical concepts we discuss apply to marine areas as

well and can inform marine restoration programs

into the future and those that are already

underway (e.g., Elliott et al. 2007, Bastyan and

Cambridge 2008, Campbell et al. 2014).

Fig. 1. Framing conceptual and technological advances in restoration. (a) The development of restoration

ecology: Restoration traditionally focused either on a functional goal (e.g., reinstating soil processes,

productivity) or, in conservation settings, achieving desired (plant) species composition that was assumed to

lead to desired (ecosystem) function, with an ecological worldview that tended to think in terms of equilibrium in

an unchanging environment. Over time, non-equilibrium dynamics, simultaneous environmental changes, and

widespread persistent degradation of the global environment including the presence of thresholds in ecosystem

dynamics became more apparent. This necessitated a rethinking of restoration goals and has led to a plurality of

motivations and goals for contemporary restoration across scales. (b) Contemporary restoration ecology:

Contemporary restoration ecology sits at the nexus between ecological and social systems and is therefore

influenced by changes within each of these dimensions and interactions between them. Contemporary

restoration uses trait frameworks and new understanding of trophic networks to achieve dynamic, process-based

functional and compositional goals in an era of socio-environmental change. Increasingly, restoration aims to

deliver functions such as ecosystem services and resilience, across scales, and has taken far greater account of the

human dimension, in terms of our capacity to achieve goals and what form these goals should take. Table 1 and

the main text use this framing of contemporary restoration ecology to review conceptual and technological

advances that will allow ecological restoration to rise to the environmental challenges of the coming decades.
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We conclude by presenting important chal-
lenges and opportunities that remain for resto-
ration ecology, especially the necessity to develop
mechanisms to test the conceptual ideas present-
ed at the required scale. Robust testing will
identify context dependency and the appropri-
ateness of various concepts in different restora-
tion efforts. Our overarching goal is to show how
concepts in restoration ecology have the potential
to allow ecological restoration to rise to the
challenges of the coming decades. The challenge
for restoration ecologists, in conjunction with
practitioners, colleagues from disciplines such as
landscape architecture and economics, and stake-

holders, is to reach this potential.

RESTORATION MOTIVATIONS AND GOALS

The practice of ecological restoration has
varied motivations (Wiens and Hobbs 2015).
Some projects are undertaken primarily to
address environmental problems (e.g., environ-
mental plantings for carbon sequestration; reveg-
etation to tackle loss of productive capacity
through salinity or soil erosion) while others are
motivated by legislative requirements for repa-
ration following development or mining (e.g.,
Carrick et al. 2015). Other projects are focused on

Fig. 2. Achieving functional and compositional goals among flora, fauna and soil. Recent conceptual advances

highlight the interactions between flora, fauna and soil in restoration ecology. Developments in plant

establishment (technological advances in brown) and soil resource supply have been complemented by a focus

on fauna from the outset of projects, the potential for aboveground-belowground linkages to influence

restoration success and the use of trait-environment frameworks to integrate across ecosystem properties to

achieve restoration success. Although in this schematic the circles are of equal size, it is neither the case that all

restorative actions are influenced by each sphere equally, nor do they occur on the same spatial and temporal

scales. For instance, it is not possible to restore some soil properties over short time frames at large scales. The star

denotes the intersection of all three spheres, and, while it is not always necessary to aim for the star (i.e.,

manipulate soil, flora and fauna) in restoration, we argue that it is important to consider each sphere and their

interactions at the outset and plan restoration accordingly. Example ecological concepts that pertain to the star

are outlined at the base of the figure and explored further in the main text.
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Table 1. Ecological concepts with direct application to restoration practice. (a) Concepts with an established
history of application in restoration (see also Young et al. 2005); (b) concepts being incorporated into
restoration practice; and (c) concepts with potential that have yet to be fully realized. Recent advances in
concepts are listed in the third column and examples of technological advances that have facilitated the
practical application of concepts appear in the far column. Technological advances that have facilitated global
networks of experiments and widespread exchange of information and ideas have in turn contributed to
advances of many of the concepts listed. A major challenge is working out context dependency—i.e., under
what circumstances can the different ecological insights be best utilized to achieve restoration goals. Another
challenge is identifying emerging ecological concepts that may influence restoration success (e.g., the
importance of chemical ecological cues Dixson et al. 2014).

Ecological theory/concept Examples of practice Conceptual advances Technological advances

a) Established in practice
Competition/plant
strategy theory

Weed control; nutrient stripping
and reduction

Importance of facilitation/
parasitism; stoichiometric
theory

GIS to map weed invasion;
unmanned aerial vehicles to
aid mapping

Succession Interventions informed by initial
floristics or relay models

Assembly rules; tests of ‘‘field of
dreams’’ hypothesis

Digital processing of historical
aerial photographs; satellite
imagery/NDVI; digital
multispectral imagery to
detect changes in greenness

Recruitment
limitation

Seed addition Ecology of ontogeny (Young et
al. 2005); chain of seed use:
restoration seed bank (Merritt
and Dixon 2011) and systems
approach (James et al. 2013);
seeds and seedling traits

Optimum seed processing and
pre-treatments; seed coats and
extruded pellets for native
seeding

Herbivory/
predation

Fencing; pest control Integrated pest management Seed coating, bait development,
infra-red cameras

Niche concept Ground preparation;
mycorrhizal inoculation;
assisted migration and
translocations

Plant-soil feedback; ecosystem
engineers

Tools to measure the niche, e.g.,
electrical resistivity
tomography for fine-scale
measures of soil water;
modelling capabilities, e.g.,
cellular automata models

Disturbance Prescribed burning; grazing;
taxon substitution

Temporal and spatial scales of
disturbance regimes

Simulation modelling to predict
outcomes of management
interventions; de-extinction

b) Increasingly incorporated into practice
Ecotypes/genetic
diversity

Seed collection based on genetic
provenance with assumption
that local provenance is best
practice; assisted migration

Role of genetic diversity in
ecosystem services

Seed banking, e.g., cryo-
preservation

Facilitation/
mutualism

Nurse planting; mycorrhizal
inoculation

Mycorrhizal networks;
phylogenetic relatedness

Analytical models to understand
interactive effects (e.g.,
structural equation modelling)

Island
biogeography

Reserve design (several small
reserves or single large
reserve); planting buffers and
corridors to improve
connectivity

Meta-population and meta-
community theory; landscape
ecology; land sharing concept

Machinery to re-vegetate at
scale; radio collars to track
movement of fauna; satellite-
GPS technology and micro-
collars

Biodiversity–
ecosystem
function

Interventions to restore
particular functions/ecosystem
services; planting species to
attract keystone pollinators
and seed dispersers

Trait based approaches;
response-effect framework

High throughput next
generation DNA sequencing
and functional gene mapping

c) Yet to be fully realized
Alternative stable
states/thresholds

Interventions to overcome
abiotic/biotic thresholds

State and transition models;
novel ecosystem framework
for management

State and transition simulation
models; Bayesian approaches

Trophic dynamics Improve practices to facilitate
faunal return, e.g., decaying
log piles, tree hollows

Improvements in understanding
of trophic networks and role
of fauna in ecosystem
processes

Use of stable isotopes to
determine trophic interactions
and food web structure

Resilience Notable as a concept that
explicitly includes people

Network theory; links to
functional diversity, scale,
thresholds and connectivity;
socio-ecological systems

Machinery with ability to detect
thresholds, i.e., small changes
in environmental attributes
that result in large changes in
state variable
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reinstating locally important ecosystems or spe-
cies and/or involving local communities in
conservation and reconnecting people with na-
ture. This range of projects can be implemented
from small-scales by individuals or community
groups (e.g., Thomas 2009), to large-scales by
government agencies and programs (e.g., Yin
and Yin 2010). Ultimately, project directors may
wish to engage people with nature, to restore
nature for its own sake and/or to benefit human
wellbeing. Restoration offers the potential to
incorporate different motivations and this is
reflected in the plurality of restoration goals.
The switch from single to multiple goals parallels
changing concepts of the relationship(s) among
conservation, nature and people over the last
century (Mace 2014).

Developing clear goals for restoration facili-
tates shared understanding and allows progress
to be monitored (Hobbs and Norton 1996).
Arguably, this articulation has increased in
importance since Bradshaw’s address (December
1982). At that time, the predominant ecological
worldview was of deterministic systems ap-
proaching some kind of equilibrium in essential-
ly unchanging environmental conditions. The

goal for many restorationists was hastening a
return to the pre-disturbance equilibrium state.
In essence, there was a clear goal for restoration,
not open to debate except perhaps with regards
to methodology. Success was generally measured
against static compositional targets that were
assumed to relate to a properly functioning
ecosystem, usually a managed or unmanaged
reference state (Ruiz-Jaen and Aide 2005). Reha-
bilitation of some systems incorporated explicit
functional targets, for example soil stabilization
at former mine sites.

In the ensuing decades, awareness grew of
simultaneous and rapid environmental changes,
including climate change and global biodiversity
decline. These abiotic and biotic environmental
changes, which sometimes led to rapid ecosys-
tem change with apparent hysteresis (e.g., Sud-
ing et al. 2004, Groffman et al. 2006, Suding and
Hobbs 2009, Samhouri et al. 2010), necessitated a
radical rethink of classical restoration goals (e.g.,
Harris et al. 2006). Changes called into question
aims of restoring to some historic species
composition or to within the historic range of
variability (Swetnam et al. 1999). There was a

growing appreciation of non-equilibrium dynam-
ics, alternative ecosystem states, and thresholds
and barriers with concomitant acknowledgement
of the major interventions sometimes required to
reverse these state changes (Whisenant 1999,
Hobbs and Harris 2001). Thus, environmental
changes prompted a conversation about the
degree of intervention required to meet tradi-
tional restoration goals, and also a debate about
the restoration goals themselves, that continues
to this day. Most recently, this took the form of a
call for ecological restoration to be based on four
principles which inform appropriate goals for
restoration: increasing ecological integrity, sus-
tainability, taking account of the past and future,
and benefitting and engaging society (Suding et
al. 2015).

It has been recently argued that systems are
likely to change to such an extent that alterations
are no longer reversible or even desirable given
that historical compositional references could
lead to ossification of systems (Harris et al.
2006). This may either be due to the extent or
severity of changes, or because they render
restorative action impractical or beyond available
resources. Such ‘‘novel ecosystems’’ can then be
considered as candidates for some other type of
management that focuses on the benefits these
systems can provide (e.g., particular ecosystem
services or faunal conservation) (Hobbs et al.
2006, Hobbs et al. 2009, Hobbs et al. 2013). The
idea of novel ecosystems is considered by some
authors as an accurate depiction and necessary
consideration of the current and future reality
facing many ecosystem managers (Kowarik 2011,
Belnap et al. 2012, Doley and Audet 2013, Perring
et al. 2013). However, it has also been criticized
as a dangerous and baseless idea that runs the
risk of lowering restoration standards and
diminishing the restoration enterprise (Wood-
worth 2013, Murcia et al. 2014). These commen-
tators suggest recognizing the existence of novel
ecosystems threatens the progress made in
restoration to date, whereas others suggest that
incorporating alternative approaches to deal with
radically altered ecosystems enlarges the range of
goals available for restoration and could make
for more efficient use of scarce management
resources (Hobbs et al. 2014). This debate
remains ongoing, and the ideas are being
expanded and refined (Morse et al. 2014; Larson,
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in press) and interpreted in the context of case
studies across a wide range of ecosystems
(Zedler et al. 2012, Graham et al. 2014, Trueman
et al. 2014).

The greater awareness of complexity and
contingency in ecology led to suggestions that
references and endpoints should be viewed as
dynamic (Norgaard et al. 2009, Hiers et al. 2012)
or even that ecosystems could be allowed to
develop without being directed at a particular
endpoint (Hughes et al. 2012). Hence, there has
been a growing call for future-focused goals that
are dynamic, process-based and functional but
that still account for historical knowledge, a so-
called ‘‘Restoration v2.0’’ (Higgs et al. 2014),
goals that align with anticipative management
(e.g., Rogers et al. 2015). Ultimately, desired
attributes of restored ecosystems will likely need
to take far greater account of environmental
change (e.g., Shackelford et al. 2013, Poff 2014).

This dynamic focus in an era of environmental
change has led to many policy documents and
management agencies aiming to achieve a goal of
‘resilient’ ecosystems through restoration. The
concept has its roots in ecology, where the
original definition is the capacity of an ecosystem
to absorb change and disturbance and still
maintain the same relationships between popu-
lations or state variables (Holling 1973). Thus,
one can see its conceptual appeal for managing
dynamic ecosystems in the face of global
changes. However, it is fair to say that the
concept of resilience remains difficult to quantify
especially in a restoration context (Brand and Jax
2007, Standish et al. 2014). Emerging research on
the contribution of functional diversity to resil-
ience offers a promising way forward to oper-
ationalizing the concept (e.g., Laliberté et al.
2010). From a restoration perspective, it is
important to note that highly degraded states
may be very resilient to change, hence requiring
large management inputs to return to a more
desirable condition (Standish et al. 2014).

Clearly stated goals, as developmental trajec-
tories or as compositional or functional end-
points, increase ecological understanding
through assessment of the appropriateness,
achievability and the relative progress of the
system towards stated goals (Zedler 2007, Hobbs
et al. 2009). The idea of measuring ecological
progress against well-defined restoration success

is one aspect that has changed little since
Bradshaw’s address in 1982, and also refers to
the idea that applied and fundamental sciences
are arrayed on the same continuum and should
influence each other (Lawton 1996, Hobbs and
Harris 2001). It allows us to ask: how are
ecological concepts faring against the ‘acid test’?
In other words, are advances in ecological
concepts aiding the setting and achievement of
ecological restoration goals? In the ensuing
sections, we will explore these questions by
discussing how established and emerging eco-
logical concepts, together with technological
advances, have been influencing the science of
restoration ecology and practice of ecological
restoration since Bradshaw’s address over 30
years ago. Firstly we discuss concepts that aid
achievement of compositional goals, then func-
tional goals, at the patch scale. We then outline
concepts and approaches that are useful at the
landscape scale, and finally explore the human
dimension to ecological restoration. We illustrate
our review with site-specific examples and
technological advances. However, explicit tests
of many ecological (and socio-economic) ideas
remain absent in a restoration framework, and
knowing the relative importance of different
processes in different locations is an ongoing
challenge that restoration ecologists need to
address.

RESTORING SPECIES COMPOSITION REQUIRES

MORE THAN JUST PLANTS

Restoration is often seen as a largely plant-
focused enterprise (Young 2000). Indeed, at the
time of Bradshaw’s presidential address, al-
though acknowledging the importance of fauna
in organic matter decomposition and pollination,
he stated: ‘‘From the point of view of the reconstruc-
tion of a properly functioning ecosystem they
[animals] play little part since it is the first trophic
level which is so crucial to any ecosystem’’. In this
section, we first present conceptual ecological
advances and some technological advances that
have aided the establishment of plants in
ecosystems, usually to achieve compositional
targets. We then highlight, in turn, recent
evidence detailing the vital part that soil resource
supply, soil biota (especially fungi), plant-soil
feedbacks and fauna play from the outset in
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achieving these compositional goals. We partic-
ularly focus on the interactions amongst these
facets (Fig. 2) that can determine achievement of
goals.

Plant establishment requires the identification,
and, if necessary the removal, of barriers to
effective plant germination and survival. It may
be possible for this to occur through facilitation
of dispersal/creation of gaps to promote sponta-
neous establishment of plants (Baeten et al. 2009).
However, in other areas and particularly for
restoration at scale, the removal of barriers
necessitates the efficient collection, handling
and use of large volumes of viable seed. The
development of the restoration seed bank con-
cept, in conjunction with a systems approach, has
highlighted the connected nature of processes
ranging from seed procurement at scale, break-
ing of dormancy and emergence, to early
establishment and subsequent maturation of the
young plant at restoration sites (James et al. 2011,
Merritt and Dixon 2011, James et al. 2013).
Without considering all components of this chain
of seed use, there remain impediments to
increasing the likelihood of plant establishment
in a cost-effective and predictable manner (James
et al. 2013).

Recent technological advances to aid success-
ful revegetation (Table 1) include improved seed
handling, processing and quality assessments of
wild collected seeds (e.g., X-ray seed viability
analysis/ex situ storage) (Crawford et al. 2007,
Probert et al. 2007, Martyn et al. 2009), and the
use of treatments and germination stimulants to
overcome dormancy and promote germination
(Merritt et al. 2007, Turner et al. 2013). Further-
more, proven agricultural seeding technologies
are being modified to suit restoration programs
using native species (Jonson 2010). Seed enhance-
ment technologies such as polymer seed coating
and embedding seeds in a soil matrix with
compounds that are known to assist in promot-
ing germination and plant establishment, while
reducing pathogen attack, are also rapidly being
developed (Turner et al. 2006, Madsen et al. 2012,
Madsen et al. 2014). In combination these
technological advances have been shown to be
critical in establishing sufficient plants for suc-
cessful restoration in some systems (e.g., Turner
et al. 2006). The vagaries of climate often
influence recruitment and better predictions of

climatic oscillations (e.g., El Nino phases) may
aid restoration planning to improve plant estab-
lishment success in combination with these
technological advancements (Holmgren et al.
2006).

Soil resource supply also affects the attainment
of restoration goals by influencing community
assembly and plant-plant dynamics. Traditional-
ly, plant strategy theory (Grime 1979) and plant
competition theory (Tilman 1982) formed the
basis of restoration interventions; for example,
the use of species with traits that allowed
establishment and growth on toxic waste from
mine spoil (such as hyperaccumulators and other
stress tolerators (Kramer 2010)) or attempting to
reduce high nutrient supply levels to aid the
development of the desired community compo-
sition by altering competitive interactions (e.g.,
Marrs 1993, Perring et al. 2009). This focus has
been broadened to include facilitative (Brooker et
al. 2008) and parasitic (Pywell et al. 2004, Demey
et al. 2015) relationships. Facilitation has proven
to be especially important for restoration in semi-
arid environments, for instance through planting
nurse plants to provide appropriate conditions
for survival and growth of target species (Padilla
and Pugnaire 2006, Siles et al. 2008).

Soil biota are also required to improve soil
structure and conditions and hence restoration
success (Harris 2009). Insights from agriculture
have long suggested the use of facilitative
legumes to ameliorate soil conditions (Bradshaw
1983, Wong 2003). More recent studies have
shown mycorrhizal inoculation improves plant
survival and growth (e.g., Requena et al. 2001,
Pineiro et al. 2013) although in some systems it
may be the presence of a mycorrhizal network
(Simard and Durall 2004, Teste et al. 2009, Booth
and Hoeksema 2010), as opposed to the presence
of certain mycorrhizas alone, that facilitates
successful restoration.

Knowledge of above- and belowground link-
ages (Wardle et al. 2004, Bardgett and van der
Putten 2014) and especially plant-soil feedbacks
(Kardol and Wardle 2010) have been utilized in
restoration ecology. Plant-soil feedbacks are
generally used to describe the negative or
positive conditioning effects that a particular
plant species has on the soil community which
influences subsequent growth and recruitment of
the same or different species (van der Putten et
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al. 2013). The few plant-soil feedback experi-
ments in a restoration context suggest that
restoration of a soil community may be crucial
for establishing late successional plant commu-
nities (e.g., De Deyn et al. 2003, Kardol et al. 2006,
Middleton and Bever 2012) although success is
not always observed (Kardol et al. 2009). Much
remains to be learnt about where feedbacks are
likely to affect restoration success, including how
closely related plants may be affected by soil
biota (Anacker et al. 2014).

There is increasing recognition of the impor-
tance of considering fauna from the outset in
restoration, both for their role in ecosystem
degradation and recovery, and for aiding the
reinstatement of plant communities (e.g., New-
some et al. 2015). In the past, reinstating a plant
community was assumed to provide ‘habitat’ for
fauna: the ‘‘field of dreams’’ concept, or ‘‘build it
and they will come’’ (Palmer et al. 1997, Sudduth
et al. 2011, Frick et al. 2014), but it is now
recognized that fauna can be critical for ecosys-
tem recovery through their role in, for example,
seed dispersal, pollination and/or nutrient cy-
cling (e.g., Tucker and Murphy 1997, Majer et al.
2007, Lomov et al. 2010). The lack of attention to
fauna from the outset can also lead to a lack of
provision of key resources for them (e.g., tree
hollows or logs Vesk et al. 2008), spatial
mismatches between restoration and faunal
requirements, and imbalances (from the perspec-
tive of defined restoration goals) in the faunal
communities that develop (Miller and Hobbs
2007). Establishing tree islands in degraded areas
can attract faunal components (e.g., birds) which
in turn may instigate further system changes
(e.g., through seed dispersal of desired species)
(i.e., applied nucleation Zahawi et al. [2013]).
Technological advances in satellite technology
and GPS collars (Matthews et al. 2013) will also
improve our understanding of habitat use by
fauna, and this will improve our ability to
provide suitable habitat.

The addition or removal of key faunal species
can have complex and far-reaching effects on
ecosystem composition and structure, particular-
ly if these species are ecosystem engineers or top
order predators (Dirzo et al. 2014, Ripple et al.
2014, Seddon et al. 2014, McCauley et al. 2015)
(see also functional effects in next section). The
importance of key species has been highlighted

by studies showing the influence of top preda-
tors, such as wolves or bears, in structuring plant
communities through their effects on herbivore
populations and behavior via antagonistic and
mutualistic relationships (as described eloquent-
ly in Leopold’s ‘‘Thinking Like a Mountain’’;
Leopold 1949, Ripple and Beschta 2007, Grinath
et al. 2015). Overabundance of herbivores, such
as deer, has important effects on plant commu-
nity dynamics, often, for instance, preventing
tree regeneration (Côté et al. 2004, Hobbs 2009).
Removal of grazing either by fencing, culling or
reintroduction of predators is often a prerequisite
for effective restoration of desired plant commu-
nities (Prober et al. 2011). Given that restored
areas are often subject to heavy grazing pressure
(e.g., Koch et al. 2004), it seems likely that the
absence of top predators may result in restored
areas developing different plant communities
than if these predators were present.

In summary, a variety of ecological concepts
have been applied for the achievement of
compositional restoration goals. However, pro-
viding guidance to practitioners as to when and
where particular approaches may be most
appropriate to apply remains difficult. Identify-
ing what concepts are likely to be most valuable
now and in the future is clearly an avenue for
future research (see Challenges and Oppor-
tunities. . . section).

MOVING FROM COMPOSITIONAL TO

FUNCTIONAL GOALS IN A CHANGING

ENVIRONMENT

Attention in restoration is increasingly turning
to achievement of functional goals, beyond those
classically considered in rehabilitation projects
(Montoya et al. 2012, Shackelford et al. 2013).
Functional goals, such as the delivery of ecosys-
tem services or reinstatement of trophic net-
works, often aim for resilience to anticipated
change. Trait-based ecology has great potential to
help achieve functional goals in the restoration of
degraded systems and we elucidate this poten-
tial, across trophic levels, in this section. Restor-
ing functioning ecosystems will necessarily
involve including, and understanding, the inter-
actions between the environment and flora,
fauna and soil biota more broadly, and all the
ideas require testing in a restoration framework
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(Fig. 2).
The response-and-effect trait framework (Sud-

ing et al. 2008) conceptually demonstrates how
functional trait targets can be used in restoration
goals, and this framework has been operational-
ized by the development of a quantitative
approach for translating trait targets into plant
species assemblages that can be directly used in
restoration (Laughlin 2014). In the quantitative
framework, systems can be restored by selecting
plant species to suit current, or changing,
environmental filters (using response traits), or
to optimize specific ecosystem processes or
functions (using effect traits) (Suding et al. 2008,
Laughlin 2014). The response-and-effect trait
framework can also be used to understand
multi-trophic linkages in ecosystem service pro-
vision (Lavorel et al. 2013).

Response traits can be used in restoration goal
setting by selecting plant species with functional
characteristics that should enable persistence
under specific abiotic conditions (Suding et al.
2008). For example, if a restoration practitioner is
interested in restoring a native community that
will be resilient to predicted future occurrences of
drought, drought-adapted species can be select-
ed—however, where drought tolerance of species
is not known, a trait target can be set that
includes suitable plant species with higher leaf
mass per area and higher wood density as these
traits confer greater tolerance to moisture deficits
(Laughlin 2014). There are limits to setting
specific trait targets as knowledge of which traits
drive fitness and performance along environ-
mental gradients is still developing (Webb et al.
2010). Recent work has highlighted the need to
move beyond considering adult leaf and root
traits to also assessing seed and seedling traits
when considering the role of functional traits in
restoration performance (Larson et al. 2015).
Assessment of multiple traits is likely to improve
the ability of restoration practitioners to develop
restoration that is more resilient to future
environmental changes.

In addition to choosing plant species based on
their traits for specific edaphic/climatic condi-
tions, response traits are also affected by biotic
processes. Funk et al. (2008) suggested that
strategically increasing the abundance of native
plant species with functional traits similar to non-
native plant species can increase biotic resistance

to invasion, through limiting similarity. Howev-
er, a meta-analysis of experimental studies
testing the effect of functional similarity on
invasion success, only found evidence for this
in synthetic experimental assemblages, and not
in more ‘natural’ removal experiments (Price and
Pärtel 2013). Hence ‘‘restoration through reas-
sembly’’ (Funk et al. 2008) may only be useful as
a guiding principle when communities are built
de novo. Importantly, trait-based predictive
models can be used in an experimental context
to test hypotheses about which traits and species
combinations will be most effective at achieving
the functional targets. The effectiveness of these
targeted trait values for achieving restoration
success can then be monitored over time for
different experimental conditions and targets can
be adjusted as we learn which traits help achieve
restoration goals (Laughlin 2014).

Effect traits may be used in restoration to set
functional targets to provide specific ecosystem
services (Montoya et al. 2012, Perring et al. 2012).
Biodiversity and ecosystem function studies have
established clear links between functional com-
position and varied ecosystem services (Lavorel
and Grigulis 2012) but there are few examples in
a restoration context (e.g., Doherty et al. 2011).
Large-scale experiments are needed, especially in
woodland systems, given the grassland and
microbial focus of this research (Cardinale et al.
2012). Furthermore, there is still room to improve
our fundamental understanding of the links
between biodiversity and ecosystem services
(Mace et al. 2012, Balvanera et al. 2014) in
addition to its application to restoration. Re-
search is required on the importance of function-
al diversity and identity in regulating restoration
outcomes, rather than just focusing on species
numbers per se (see also TreeDivNet www.
treedivnet.ugent.be; and Verheyen et al., in press).
Restoring some functions for instance could
involve a few species with particular traits that
are critical to ecosystem processes e.g., pollina-
tion and seed dispersal can be conducted by
‘hub’ species (Forup et al. 2008, Menz et al. 2011).

Many ecosystem services rely on interactions
between plants and other trophic levels (e.g.,
Kremen et al. 2007), but few studies have
examined functional trait links between these
components of biodiversity. Recently, Lavorel et
al. (2013) developed a conceptual framework for
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linking plant functional diversity with other
trophic levels for the quantification of ecosystem
services. In an application of this framework,
Moretti et al. (2013) demonstrated that, under
land management change, a plant trait (leaf dry
matter content) related to the grasshopper trait of
dry body mass which then acted as an effect trait
on primary production via a negative link to
plant biomass. Thus, the functional goal of
restoring ecosystem services likely needs to
consider trophic levels other than plants. This
consideration extends to vertebrates, but we are
not aware of research that has specifically
utilized the response-effect framework to include
these organisms.

Fauna affect the flow of energy through
ecosystems via trophic cascades and networks
(Terborgh and Estes 2010, Sandom et al. 2013b,
Fleming et al. 2014). In addition to the impor-
tance of trophic cascades in determining ecosys-
tem composition (see previous section), trophic
network theory highlights the importance of key
species in ensuring a functioning ecosystem.
Conceptual developments include acknowledg-
ing that trophic networks contain strong and
weak links and trophic modules (Kondoh 2008).
Varying link strengths likely determine the extent
to which loss or addition of a particular species
affects the success of restoration efforts. In
addition, many recent studies have highlighted
how a changing environment (warming in
particular) has created a ‘trophic mismatch’

between the emergence of prey species and the
breeding of their predators, typically leading to
reduced breeding success in the predators (Both
et al. 2009, Donnelly et al. 2011). While this
phenomenon, to the best of our knowledge, has
not been studied in restored areas, it highlights
that the complexity of trophic networks provide
many challenges to increasing the success of
restoration efforts.

Fauna can also be important ecosystem engi-
neers in many ecosystems (e.g., Sandom et al.
2013a) and, by definition, their presence will
fundamentally influence the type of restored
community that develops. Beavers provide a
classic example of an ecosystem engineer that act
as potential restoration agents through slowing
water flows and altering stream morphology
with subsequent cascading impacts (Albert and
Trimble 2000, Pollock et al. 2014). Indeed, it is

possible that accepted restoration goals and
practices for rivers may need to be reassessed
because they are based on a reference situation
that lacks the influence of beavers (Burchsted et
al. 2010). Restoration may aim to reintroduce
such engineers; indeed beavers have a long
history of translocation accompanied by interest-
ing methodologies including via parachute (He-
ter 1950).

Recent debates discuss the extent to which
species might be substitutable, and hence func-
tions performed by recently extinct species could
be reinstated by the translocations of closely
related extant species (e.g., Griffiths et al. 2013,
Hunter et al. 2013). An extreme form of this
approach is what has been dubbed ‘‘rewilding’’

(e.g., Donlan et al. 2005), in which functional
equivalents of long-extinct but presumably key-
stone species are introduced to ecosystems.
Debate over this approach has mirrored larger
discussions in restoration about the appropriate-
ness of different reference systems on which to
model restored ecosystems, and, if past ecosys-
tems are to be used as a template, how far into
the past is it appropriate to consider? It is likely
that some time spans are too large a gap to
restore across, because in the intervening time
ecosystems have almost certainly developed into
a new condition. This time gap likely varies
widely between ecosystems and continents and
whether restoration goals are compositional or
functional.

The restoration of function may also rely on
interactions among plants and soil, for example
nutrient cycling involves complex interactions
between plants, soil biota and their associated
traits (Kardol et al. 2015). Simulation modeling
using trait frameworks provides a means to
advance fundamental understanding in this area,
and may have application to ecological restora-
tion (Ke et al. 2015). Additionally, recent techno-
logical advances in high throughput DNA
sequencing and functional gene analysis may
allow rapid assessment of what functional genes
are present in systems and how they relate to soil
microbial composition and ecosystem function
(Zimmerman et al. 2014). The functional (and
compositional) gap between reference and re-
stored ecosystems (Rey-Benayas et al. 2009,
Banning et al. 2011) may likely be due to the
decoupling of above- and belowground linkages
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that occurs following land clearance and the time
taken for ecosystems to approach the chosen
reference. This idea remains an untested hypoth-
esis but the decreasing cost of these genetic
technologies should allow its investigation, in-
cluding testing the reintroduction of specific
functional genes and phylogenetic diversity to
improve restoration outcomes.

MAGNITUDE OF ENVIRONMENTAL CHANGES

REQUIRES RESTORATION AT SCALE

Restoration science and practice has tradition-
ally considered mainly the restoration of partic-
ular ecosystems or patches in particular places.
However, the scale of environmental changes
requires the adoption of a landscape perspective
in restoration, for instance where there has been
regional hydrological change or large scale
deforestation or tree mortality (Allen et al.
2015). In this section we explore the ecological
concepts underpinning restoration at scale draw-
ing on the field of landscape ecology in partic-
ular. Further, we explore the challenges and
opportunities that a multi-functional landscape
perspective provides for ecological restoration in
a changing environment.

The need to scale-up restoration activities
demands that the patch-based approach consider
processes at the broader landscape- and regional-
scales, for example movement of water or
dispersal of biota (Menz et al. 2013). This need
has perhaps been most evident in efforts to
restore aquatic ecosystems with consideration of
processes from the scale of individual river
reaches through to entire regional river or
wetland systems (e.g., Culotta 1995, Gunderson
et al. 1995). Advances in the application of
Geographic Information Systems (GIS) technolo-
gy have brought new understanding to questions
around aquatic dispersal. For instance, in the
Great Lakes Basin, common assumptions about
restoring connectivity for fish populations
through tackling problems with dams misses
opportunities to aid dispersal by addressing
barriers created by the far more numerous road
crossings; opportunities that were only made
apparent through GIS analysis (Januchowski-
Hartley et al. 2013). Ecological restoration is
harnessing the power of such technologies for
more effective landscape-scale restoration.

There is ongoing effort to find cost-effective,
practical and successful methods for achieving
broad-scale restoration (Jonson 2010, St Jack et al.
2013). Technological improvements can be com-
plemented with the use of simulation models to
identify restoration priorities based on habitat
characteristics and land-parcel prices (e.g., Tor-
rubia et al. 2014). However, upscaling may not
always be straightforward, with the adopted
management approach depending on the type of
landscape under consideration. Where individu-
al management units are significantly smaller
than the landscape in which they sit (for instance,
in agricultural landscapes with fragmented na-
tive ecosystems or urban and peri-urban areas)
effective landscape management requires co-
ordination of, and co-operation among, multiple
landholders and managers, each with potentially
conflicting goals and approaches (Gobster 2001).
This is presumably less of an issue in larger
management units such as large pastoral prop-
erties or national parks.

Landscapes are likely to comprise an array of
patch or ecosystem types in different conditions,
each providing an array of benefits or dis-
benefits, and each likely to require differing
management approaches, both individually and
as part of a broader landscape or regional
strategy (Zedler et al. 2012, Hobbs et al. 2014).
This patchwork provides an opportunity for
restoration: an overall goal of landscape multi-
functionality may allow the provision of multiple
ecosystem services that would not be possible by
considering the individual patch scale alone
(Jarchow and Liebman 2011, Potschin and
Haines-Young 2011, Schindler et al. 2014). Recent
initiatives point to effective ways to map and
assess ecosystem services at landscape scales
(Nelson et al. 2009, Kareiva et al. 2011) while
policy instruments such as payments for ecosys-
tem services provide mechanisms for achieving
multifunctionality through funding restoration
(van Noordwijk et al. 2012).

Conceptually, discussion of landscape restora-
tion has progressed from ideas about habitat size
and number (e.g., several small reserves versus
one large reserve) to habitat corridors and then to
assessing the role of the whole landscape matrix
in promoting or inhibiting biotic movement
(Lindenmayer et al. 2008). The management of
the matrix could determine restoration outcomes
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for biodiversity, with three core matrix effects
(movement and dispersal, resource availability
and abiotic environment) being modified by five
dimensions: spatial and temporal variation in
matrix quality, its spatial scale, the longevity and
demographic rates of species relative to the
temporal scale of matrix variation, and adapta-
tion (Driscoll et al. 2013). Landscape connectivity
is increasingly seen as a key conservation and
restoration goal, particularly as a strategy to
allow biotic movement in response to changing
environments (Roever et al. 2013, Tambosi et al.
2014, Okin et al. 2015). Deciding what and where
to restore is a key challenge for future landscape-
scale restoration efforts (McRae et al. 2012,
Torrubia et al. 2014). Decisions may be aided
by technological advances around, for instance,
the application of climate velocity models in
conjunction with more traditional ecological
models to ascertain areas of potential future
habitat suitability as targets for restoration efforts
(Hamann et al. 2015).

Landscape and regional approaches require
effective ways of directing and prioritizing
restoration efforts. Numerous decision support
approaches to this problem are evolving (e.g.,
Thomson et al. 2009, Wilson et al. 2011, Egoh et
al. 2014), although deciding what characteristics
should be included in the prioritization process is
not a straightforward process (Knight et al. 2011,
Tambosi et al. 2014). Decisions will in any case
continue to include both local and landscape
dimensions—for instance, priorities for restora-
tion involving weed management will depend on
the likelihood of weeds spreading from one patch
to another (e.g., Trueman et al. 2014).

RESTORATION IN COMPLEX, SOCIO-
ECOLOGICAL SYSTEMS

The importance of the human dimension in
ecological restoration was recognized early (e.g.,
see remarks in Bradshaw 1983, Geist and
Galatowitsch 1999), and restoration is widely
acknowledged to be value laden, context driven,
prone to disagreement and compromise, and
experiential (Egan et al. 2011). There is increasing
recognition of the importance of social and
economic factors in determining restoration
success (e.g., Jacobs et al. 2013) and the need to
understand the human dimension in meeting

restoration goals (Gold et al. 2006, Egan et al.
2011, Naiman 2013, Shackelford et al. 2013).
There is growing emphasis on the requirement to
consider ecological, socio-economic and gover-
nance aspects of ecosystem management (Car-
penter et al. 2009, Hobbs et al. 2011). This idea is
not new: As the Ecological Society of America
was just emerging from its teenage years in 1935,
Aldo Leopold noted that: ‘‘One of the anomalies of
modern ecology is the creation of two groups, each of
which seems barely aware of the existence of the other.
The one studies the human community, almost as if it
were a separate entity, and calls its findings sociology,
economics and history. The other studies the plant and
animal community and comfortably relegates the
hodge-podge of politics to the liberal arts. The
inevitable fusion of these two lines of thought will,
perhaps, constitute the outstanding advance of this
[20th] century’’ (quoted in Knight and Riedel
2002).

Although restoration may focus on ecosystems
and non-human species, it is primarily a human
endeavor, with a range of motivations and goals.
Some types of restoration will be driven mostly
by economic considerations, while others will be
more focused on participatory or eco-cultural
perspectives. Whichever perspective predomi-
nates in any given situation, there is increasing
recognition that cost-effectiveness is an essential
ingredient for good design of restoration projects
(McConnachie et al. 2012). Cost effectiveness will
be enhanced by solution scanning (Sutherland et
al. 2014) and is a pre-requisite for broad scale
restoration. Additionally, restoration of ecosys-
tems and their services can be seen as having
important socio-economic benefits (e.g., job
creation, farm income) that have only recently
begun to be factored into assessments of resto-
ration success (Aronson et al. 2010, Nielsen-
Pincus and Moseley 2013, Wortley et al. 2013)
and thus cost effectiveness. Ecological restoration
is now a big business, with many non-govern-
mental organizations and government agencies
investing large amounts of money in the enter-
prise and many businesses making money from
undertaking restoration at all scales. Cunning-
ham (2002) has suggested that we are entering
the era of the ‘‘restoration economy’’ where more
and more economic activity is derived from
restoring existing infrastructure and repairing
ecosystems rather than investing in new infra-
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structure.
Egan et al. (2011) identified three themes

characterizing human involvement in restora-
tion: participation (e.g., volunteering; collabora-
tion); power (e.g., restoration economics; politics,
planning and governance); and, perspective (eco-
cultural restoration; restoration-based educa-
tion). They suggest that to improve restoration
success, participation has to be embraced as an
integral part of the process. There are two main
arguments for embracing participation: on the
one hand democratic rights and public skepti-
cism about science, and on the other involvement
of stakeholders leading to greater quality, dura-
bility and ownership of decisions (Reed 2008).
There is surprisingly little empirical research to
test these arguments (e.g., van Marwijk et al.
2012, Petursdottir et al. 2013), but decision
making quality appears to be strongly dependent
on the processes involved, especially highly
skilled facilitation (Reed 2008). Community
restoration/conservation projects that perceive
local people as the solution to habitat degrada-
tion, and involve them at all stages of project
development, appear to perform better than large
scale ‘integrated conservation and development
projects’ (Horwich and Lyon 2007). For instance,
Reyes (2011) argued that a controlling and
hierarchical approach to restoration led to a poor
restoration outcome following a chemical spill in
Spain, while an inclusive and heterarchical
approach led to successful restoration in Costa
Rica. Restoration outcomes will likely be im-
proved when power relations are overtly recog-
nized and discussed and multiple perspectives of
restoration, nature and people’s role in both are
dealt with respectfully (Egan et al. 2011).

Effectively combining ecological and social
considerations likely requires a coupled socio-
ecological systems (SES) framework approach,
which recognizes complex interactions between
people and ecological entities and processes
(Peralta et al. 2014). Socio-ecological systems
are the epitome of complex adaptive systems
(sensu Levin 1998) and generally consist of a
resource system, resource units, users and
governance systems (Ostrom 2009). Qualitative
investigations of SES have been conducted (e.g.,
case studies in Turner II et al. 2003) though less
commonly in a restoration context. Restoration is
arguably more likely to be successful if capacity

in, and overlap among, the social, technological
and ecological spheres is enhanced (Jacobs et al.
2013). Using American chestnut (Castanea denta-
ta) as an example, Jacobs et al. (2013) demon-
strated how technological advances in blight
resistance potentially allow C. dentata’s successful
reintroduction. However, this would only be
possible with an adequate understanding of the
contemporary ecology of eastern North Ameri-
can forests which are substantially changed from
when the chestnut was extirpated (McEwan et al.
2011). Jacobs et al. (2013) note the critical need for
a deeper understanding of societal influences
(including governmental policy and regulation,
collaborative networks and cultural or economic
valuation) when setting and achieving realistic
restoration goals, particularly around genetic
modification. In their qualitative analysis, resto-
ration of American chestnut to eastern North
American forests will only be successful (i.e., C.
dentata will once again be present) if social as
well as technological and ecological aspects are
taken into account (Jacobs et al. 2013).

Quantitative evaluations of coupled SES, espe-
cially in a restoration context, are even rarer (e.g.,
Jellinek et al. 2014). However, the ability to
quantitatively describe these systems will likely
lead to better evaluation of broader policy
options and potential leverage points to improve
restoration outcomes, especially as situations
begin to lie outside the range of previous
experience (Cooke et al. 2009, Hobbs et al. 2011,
Rounsevell et al. 2012). For instance, Watkinson
et al. (2000) showed that an interaction between
an ecological variable (field weed population)
and social variable (attitude to GM crops) was
crucial to the ecological outcome (bird popula-
tion dynamics) in agricultural landscapes. Simu-
lation models and game theory (Buckley and
Holl 2011) may be useful tools to understand
complex SES and the effects of management
interventions. Agent based modeling offers an
especially useful way forward as it has the
capacity to represent people, their behavior, and
decision making processes in coupled models.
Moreover, it is appealing for validation purposes
due to a one-to-one mapping between virtual
and real-world entities as opposed to the
‘average’ characterization of people in top-down
equation based models (Rounsevell et al. 2012). It
may be possible to use a trait-based approach to
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support the expansion of such models beyond
case studies, while there is also a need to
represent institutional agents in SES models. A
key challenge in this approach is the identifica-
tion of actors who drive SES changes in the real
world and the mapping of such actors onto
agents in the models (Rounsevell et al. 2012).

Restoration is an inherently human enterprise,
and as its scale of application broadens, more
and more stakeholders will need to be included
in planning and implementation. With increased
participation, comes the challenge of reaching
consensus over goals and prioritization of effort.
Coupled socio-ecological systems analysis, both
qualitative and quantitative, will likely aid in
achieving restoration outcomes that are signifi-
cant and meaningful for nature and for people,
but it is not without its challenges, both
technological and conceptual.

CHALLENGES AND OPPORTUNITIES FOR

RESTORATION ECOLOGY

Clearly, there is a solid conceptual foundation
from which restoration ecology can continue to
build. Conceptual development, technological
advances, and insights from other disciplines
appear to be better equipping ecological restora-
tion to tackle simultaneous environmental chang-
es. However, a number of intersecting challenges
and opportunities remain for the coming de-
cades.

Goals, priorities and human involvement
for restoration

An ongoing debate surrounds realistic and
socially acceptable goals for restoration across
scales and in a rapidly changing environment
(Woodworth 2013, Hobbs et al. 2014, Murcia et
al. 2014). Understanding people’s perceptions of
nature and how they value it, both historical and
modern versions, will help to inform this debate
(Clayton and Myers 2009). The involvement of
people provides a challenge of its own: how does
one engage a globally ‘urban’ population which
has become more decoupled from nature to
become involved to do this? Allied questions
focus on how to prioritize restoration activities,
and determining what interventions should be
carried out where in multifunctional landscapes
(Hobbs et al. 2011). Successful resolution of these

issues will likely require inclusive and participa-
tory approaches, and the involvement of philos-
ophers, economists, social scientists, landscape
planners and the broader community. Frame-
works such as anthromes may provide a means
to aid decision making and prioritization at the
global scale (Martin et al. 2014). Opportunities
also exist for using simulation models to analyze
cost-effective prioritization of restoration at the
landscape scale (e.g., Torrubia et al. 2014).

Addressing context dependency
Understanding context dependency will

strengthen the science of ecology (Belovsky et
al. 2004) but it remains, according to some, the
biggest challenge facing ecologists (Tylianakis et
al. 2008). Developing a global evidence base to
understand when different interventions work
where, and why, would be a useful future avenue
to pursue (Sutherland et al. 2004, Pullin and
Knight 2009). Furthermore, it would be useful to
consider how restoration ecologists can be
involved in the design and implementation of
large restoration projects, while at the same time
encouraging more practitioners to explore the
adoption of experimental approaches when
conducting practical restoration activities. While
this is largely classical adaptive management,
there remain few examples of where this has
been effectively implemented. Context depen-
dency may even determine when the scientific
method can directly aid ecological restoration, or
when beneficial effects appear indirectly
through, for example, increased prestige and
visibility of projects (Cabin 2007).

A complementary area of research is to
understand which ecological concepts are most
useful to achieving restoration goals in different
environmental and socio-economic contexts. Ca-
pability now exists for carrying out synthetic
analyses of context dependencies in restoration
outcomes using open access data and techniques
such as meta-analysis. However, interchange of
information between restoration practitioners
and the academic field of restoration ecology, as
well as comparability of measures of restoration
outcomes, remains an important challenge
(Young et al. 2005). Advances in digital technol-
ogy, including speed and capacity of databases,
allows for the sharing and analysis of informa-
tion in ways not previously encountered, while
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novel analytical methods to transfer results to
data-poor systems are being developed (e.g.,
Lester et al. 2014). These endeavors may be
further aided by developing globally distributed
experiments (Borer et al. 2014), along gradients
of management action and environmental fac-
tors, and through support of developing cyber-
infrastructure (Michener et al. 2012). Ultimately,
embracing complexity and context dependency
in restoration activities may lead to more
successful restoration as ecological principles
are adopted, tested and adapted (Eviner and
Hawkes 2008).

Maintaining evolutionary potential
Maintaining evolutionary potential in frag-

mented landscapes is a common ultimate goal
of restoration (Mijangos et al. 2015) and this may
be aided by offsite preservation of seeds in vaults
(Holsinger 1995), and the application of contro-
versial new techniques such as de-extinction
(Sherkow and Greely 2013). However, the use
of seed vaults, while maintaining the legacy of
biodiversity, should not de-emphasize the im-
portance of in situ adaptation that can occur in a
changing environment (Schoen and Brown 2001,
Leger 2008). The technique of de-extinction, and
allied ideas around genetic modification, trans-
location and taxon substitution, raise serious
ethical concerns (Minteer 2014) that will likely
only be addressed through public debate.

Inter-disciplinary socio-ecological research
with improved links to policy

It is increasingly important for restoration
ecologists to become more aware of, and adept
in applying, social science methods and concep-
tual frameworks; in essence, both ecologists and
social scientists need to understand each other
better (Cooke et al. 2009, St John et al. 2014,
Buizer et al. 2015). This understanding may be
best achieved through training young researchers
in both social and ecological approaches rather
than bringing teams of disciplinary focused
researchers together that often speak very differ-
ent languages (St John et al. 2014). It will also
likely require a greater variety of techniques than
are currently utilized to quantify human values
and cultural ecosystem services, and greater
emphasis on assessing the credibility of integrat-
ed models (Cooke et al. 2009). For example, a

recent study used scenarios to understand the
role of governance in achieving large-scale
restoration in the agricultural landscape of the
Tasmanian Midlands of Australia. The study
helped to clarify the roles and responsibilities of
landowners, government and other stakeholders,
and to identify the types of restoration initiatives
and political support likely to result in successful
outcomes for biodiversity conservation (Mitchell
et al. 2014).

Restoration ecologists also have the opportu-
nity to become more involved in policy debates
and development (Jorgensen et al. 2014). It is
argued that integrating their research with policy,
as well as tackling the challenges and opportu-
nities of public outreach at the interface of
ecology and society (Groffman et al. 2010), will
improve restoration outcomes. For instance,
Jorgensen et al. (2014) showed only three out of
58 articles in restoration-related journals that
referred to climate change or global warming in
the abstract identified specific policies relevant to
their research results. In two of the three cases,
the lead author was not a restoration ecologist.
They argue that more explicit reference to
policies and terminology recognizable to policy
makers might enhance impact of restoration
ecology on decision making processes (Jorgensen
et al. 2014).

CONCLUDING REMARKS: MEETING THE

ENVIRONMENTAL CHALLENGES OF THE

COMING DECADES

In the 100 years since the founding of the
Ecological Society of America (ESA), ecological
concepts have been developed, refined, recycled
and sometimes discarded. Restoration ecology,
and its practice ecological restoration, provides
an arena to further test established and emerging
ecological theories. We reviewed how composi-
tional and functional restoration goals, across
scales, may be reached through the application of
ecological understanding. An understanding of
which concepts are most usefully applied where,
and when, is a critical research priority. Impor-
tantly, we showed how the restoration enterprise
will be unlikely to succeed without considering
the human dimension. The need for interdisci-
plinary approaches and the integration of the
social sphere and values-based perspectives with
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‘objective’ science remains a challenge for meet-
ing restoration targets. Now, as the ESA looks to
its next century, this integration is of paramount
importance, as the scale of the environmental
challenges facing humanity becomes ever more
apparent.
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