
Since the 1950s, we have been living in the
“silicon world,” with silicon as the foun-
dation of the electronics era. At the begin-
ning of the 21st century, the electronics
industry is still dominated by silicon and is
likely to remain so for at least another
decade. No other semiconducting material
can compete with silicon in terms of low
defect densities, long minority carrier life-
times, perfection of the semiconductor/
dielectric interface, or doping control. Other
materials—for example, GaAs and its 
alloys—only fill niche applications such as
light-emission, where silicon is at a disad-
vantage due to its indirect bandgap. An
indirect bandgap allows for the recombi-
nation of electrons and holes only with the
participation of a phonon, a four-particle
process that is inherently less likely than the
three-particle process possible in a direct-
bandgap semiconductor.

This situation could soon change in high-
voltage switching and high-frequency power
devices. The new material that can replace
well-established silicon is hexagonal silicon
carbide, a related semiconductor, which is
the focus of this issue of MRS Bulletin. 
SiC technology is clearly not nearly as 
mature as that of silicon, and it is still more
expensive than silicon, but its inherently
superior properties, such as high break-
down field and thermal conductivity, 
provide a strong driving force for its de-
velopment and implementation. Materials
advances have reduced defect densities and
improved the interface properties of SiC,
and improvements in design and processing

are bringing it to the fore as a serious com-
petitor in electronics applications. For more
background on SiC technology, see the ar-
ticle by Dhar in this issue.

Silicon carbide was also the theme of the
March 1997 issue of MRS Bulletin, eight years
ago. At that time, the only commercially
available SiC products were conducting
wafers (with diameters of up to 1 3/8 in.)
and blue light-emitting diodes (LEDs).
These were, however, the last days of SiC-
based LEDs. They were replaced by more
efficient devices based on direct-bandgap
GaN and other Group III nitrides. Surpris-
ingly, however, the explosive growth of the
nitride LED market and full-color displays
had a positive impact on the development
of silicon carbide technology. Single-crystal
SiC wafers formed an ideal template for
nitride epitaxy due to good lattice match
and higher thermal conductivity than any
other available wafer material, and a stable,
sizeable market for silicon carbide wafers
was created. This provided support and
incentive for the continued development of
silicon carbide growth technology. Today,
there are six companies—Cree Inc., II–VI
Inc., Intrinsic Semiconductor, Dow Corn-
ing Compound Semiconductor Solutions,
SiCrystal AG, Sixon, and Norstel AB—
based in the United States, Europe, and
Japan that offer single-crystal SiC substrates.
The recent production standard—namely,
2-in.-diameter wafers—is being replaced
by 3-in.-diameter wafers, with 100-mm-
diameter wafers (4-in.-diameter) in devel-
opment. Volume production has lowered

the cost of a wafer unit area by a factor of 3,
compared with 1997 ($1,400 for a 1 3/8 in.
wafer in 1997 versus $2,400 for a 3-in.-
diameter wafer today).

Although much improved, the quality of
silicon carbide materials remains an active
area of research and development. In 1997,
the predominant material concern was the
so-called micropipe defect (Figure 1), which
seemed unique to silicon carbide grown
by physical vapor transport. Micropipes
are tubular voids with diameters between
0.1 �m and 1.0 �m that can extend through
the entire SiC crystal. Since then, several
different nucleation mechanisms for micro-
pipes have been identified, such as nuclea-
tion on second-phase inclusions in SiC
crystals1 and coalescence of elementary
screw dislocations.2 As the result, the micro-
pipe densities have been reduced signifi-
cantly. They still represent a yield issue for
large-area devices, but do not constitute a
fundamental, insurmountable problem.

Besides micropipes, considerable effort
has been focused in the last three years on
basal-plane dislocations. These defects are
responsible for the degradation of SiC bi-
polar devices, most notably high-voltage pin
diodes3 (see the articles by Chow and by Ha
and Bergman in this issue). A typical dis-
location density in commercial crystals is
in the 103–104 cm�2 range, but an exciting
breakthrough in material quality was an-
nounced just several months ago. Aresearch
group at Toyota Central R&D Laboratories
and DENSO Corp. reported the growth of
SiC boules (2-in.-diameter by 1-in.-thick
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Figure 1. Atomic force microscopy
image of a micropipe defect intersecting
the SiC growth surface.The step height
in this image is 1.5 nm and corresponds
to one unit cell of 6H-SiC.The black area
in the middle of the image is an open
core of a superscrew dislocation with a
Burgers vector of 7c (where c is the
lattice constant along the [0001] axis).
Courtesy of G.S. Rohrer.
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bulk crystal) with exceptionally low defect
densities using a novel “repeated a-face”
approach.4 This method takes advantage
of the tendency of extended defects in
hexagonal silicon carbide to propagate only
along specific crystallographic directions. A
sequence of growth experiments using seeds
cut along the direction, followed by
growth along the perpendicular [0001] axis,
tends to lower defect densities. Two-inch-
diameter wafers had total defect densities in
the low hundreds per square centimeter,
1–2 orders of magnitude lower than pre-
viously reported. This development could
lead to the growth of dislocation-free SiC
crystals and epilayers, a distinction reserved
only to silicon so far. “Dislocation-free” has
been used to refer to crystals with disloca-
tion densities below 1/cm2; the lowest dis-
location density reported for SiC is 75/cm2.

Another important accomplishment in
bulk growth is the availability of high-
resistivity substrates for low-loss, high-
frequency devices (see the article by
Sumakeris et al. in this issue). The original
approach to fabricating such material was
intentional compensation of shallow
residual impurities (with electron binding
energies on the order of kT at room tem-
perature) by deep electron levels induced
by vanadium doping.5 This approach reli-
ably produced crystals with the Fermi
level pinned by deep vanadium levels far
from the conduction- and valence-band
edges. However, a high density of vana-
dium centers resulted in the trapping of
electrons in the substrate and a gradual 
reduction of the transconductance during
operation of SiC metal semiconductor field-
effect transistors (MESFETs). Such drift of
the rf performance is known as current
collapse.6

An alternative approach was the devel-
opment of high-purity material, which re-
lies on compensation due to deep levels
associated with native point defects.7 One
of the most attractive characteristics of sili-
con carbide is the high breakdown field
(3.5 MV/cm, six times higher than that of
silicon; see Table I) due to its strong bonds
and large bandgap. This, together with the
availability of low-defect-density material,
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makes silicon carbide ideally suited for
next-generation high-voltage switching
devices (discussed by Zhao and by Chow in
this issue). The first such device, namely,
the Schottky diode, became commercially
available in 2001. These devices, rated for
300–1200 V, are competing with silicon pin
diodes for applications in power supplies
of such ubiquitous products as personal
computers and industrial electric motor
controls.

SiC-based diodes are still significantly
more expensive than their silicon counter-
parts, but they offer one considerable ad-
vantage: better energy efficiency. Every time
the voltage reverses sign, the injected mi-
nority carriers in a silicon bipolar diode
cause the current to flow until they are
eliminated by recombination. This “current
overshoot” is a major part of efficiency loss.
Enter silicon carbide: the much higher en-
ergy barrier in SiC Schottky structures makes
it possible to replace the Si bipolar device
with a SiC unipolar metal–semiconductor
junction. Since there is no minority carrier
injection, the current overshoot is elimi-
nated, and the switching losses are reduced
by about an order of magnitude. At times
of abundant cheap energy, this would not be
a major consideration, but in the era of the
Kyoto Protocol and the impact of green-
house gas on the planet’s climate, it repre-
sents a definite advantage.

For blocking voltages in excess of about
3 kV, the Schottky diode ON-state resistance
becomes prohibitively high, and for such
applications, the SiC pin diode appears to
be the rectifier of choice. The already men-
tioned high breakdown field of SiC allows
one to make these devices with blocking
layers having one-sixth of the thickness of
their silicon counterpart with the same
nominal blocking voltage. This results in
much lower ON-state losses and increased
energy efficiency. The more advanced high-
voltage switching devices currently under
development include metal oxide semi-
conductor field-effect transistors (MOSFETs)
and insulated gate bipolar transistors
(IGBTs).

MOSFET structures could enter the com-
mercial market as soon as 2006. They em-

ploy a native thermally grown oxide layer as
the gate insulator, using the same approach
that has been successfully used in silicon
technology. In the SiC case, however, the
making of a perfect SiO2/semiconductor
interface is more difficult than in the case
of SiO2/Si. For one, silicon carbide has two
types of atoms and, therefore, two types of
potential dangling bonds: carbon and sili-
con. Second, since the bandgap in the 4H
polytype* of SiC is 3.2 eV and about three
times that of silicon, the states associated
with dangling bonds are more likely to in-
duce levels located within the bandgap.
The interface charge associated with dangl-
ing bonds contributes to the scattering of
electrons and low electron mobilities in
MOSFETs. A recent breakthrough in post-
oxidation nitrous oxide annealing reduced
the interface charge density to an acceptable
level.8 A detailed discussion of SiC/SiO2
interfaces is presented in the article by
Dhar et al. in this issue.

Another intriguing intrinsic property of
silicon carbide is its high saturated electron
velocity (vsat). This parameter corresponds
to the velocity of electrons traveling through
the material in the high electric fields that
are encountered in field-effect transistors.
It is used to determine the material figure
of merit for high-frequency power devices
(Table I), as it controls the gain in FETs. It
is quite apparent that silicon carbide has sig-
nificant potential in this field as well. The
possible applications range from commer-
cial base stations for cell phones to military
S-band radar. It is worth noting that as
early as 1996, Westinghouse Electric/CBS
demonstrated high-definition TV broadcast-
ing using a solid-state SiC-based transmitter.
Cree Inc. has developed and is marketing
a range of MESFETs. These devices offer
lower loss, higher input and output imped-
ances that are easier to match to antenna
impedances, and higher power densities
than standard Si- or GaAs-based compo-
nents. In terms of frequencies, SiC will
likely be used for intermediate-frequency
applications, while GaN will work better
in high-frequency situations.

In summary, silicon carbide electronics
appears to be on the verge of wide com-
mercial production. The material issues are
being resolved, multiple device structures
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Table I: Comparison of Material Properties and Figures of Merit for High-Voltage

Switching and High-Frequency Devices.

Property Silicon GaAs 4H-SiC GaN

Bandgap (eV) 1.1 1.43 3.2 3.4
Breakdown field (MV/cm) 0.6 0.65 3.5 3.5
Saturated electron velocity (�107 cm/s) 1 1 2 1.5
Bulk electron mobility (cm2/V s) 1400 8000 800 900
Combined figure of merit 1 10 136 153

(normalized to Si)

* Silicon carbide can crystallize in many different
forms, called polytypes, corresponding to differ-
ent stacking sequences of closely packed planes
of atoms. The most commonly used forms of SiC
are 4H-SiC and 6H-SiC, having four or six Si-C
bilayers in the unit cell, respectively. These are
intermediate structures between purely a hexago-
nal form called 2H and a cubic form called 3C.
The 4H polytype of SiC is strongly preferred for
silicon carbide electronic devices due to its higher
electron mobility compared with 6H-SiC.
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are gaining increasing acceptance in the
marketplace, and additional new applica-
tions such as high-temperature electronics
are waiting to be developed.
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