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Abstract

This paper reports the formulation and evaluation of a centralized extended Kalman filter designed for a novel navigation

system for underwater vehicles. The navigation system employs Doppler sonar, depth sensors, synchronous clocks, and

acoustic modems to achieve simultaneous acoustic communication and navigation. The use of a single moving reference

beacon eliminates the requirement for the underwater vehicle to remain in a bounded navigable area; the use of underwater

modems and synchronous clocks enables range measurements based on one-way time-of-flight information from acoustic

data-packet broadcasts. The acoustic data packets are broadcast from a single, moving reference beacon and can be

received simultaneously by multiple vehicles within acoustic range. We report results from a simulated deep-water survey

and real field data collected from an autonomous underwater vehicle survey in 4000 m of water on the southern Mid-

Atlantic Ridge with an independent long-baseline navigation system for ground truth.
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1. Introduction

This paper reports the formulation and experimental evalua-

tion of a centralized extended Kalman filter (CEKF), which

has access to both ship and vehicle sensor data, and is

designed to implement single-beacon one-way-travel-time

(OWTT) navigation for underwater vehicles. Single-beacon

OWTT navigation employs Doppler sonar, pressure depth

sensors, a gyrocompass, synchronous clocks, and acous-

tic modems to calculate range measurements based on

the one-way travel-times of acoustic data packets, thereby

enabling simultaneous acoustic communication and naviga-

tion. Our goal is to enable high-precision absolute naviga-

tion of underwater vehicles for missions with length scales

on the order of 1–100 km without requiring fixed naviga-

tion reference beacons. Available strap-down sensors such

as Doppler velocity logs (DVLs) and inertial measurement

units (IMUs) measure vehicle velocities and accelerations,

which can be integrated to estimate relative change in vehi-

cle position. Unaided IMU and DVL navigation methods

estimate local displacement with errors that are unbounded

over time; thus they require auxiliary navigation methods to

provide error correction and absolute georeferencing.

Traditional methods for achieving bounded-error nav-

igation such as ultra-short baseline navigation (USBL)

and tone-burst implementations of long baseline naviga-

tion (LBL) suffer from a lack of scalability because the rate

at which multiple vehicles can receive navigation updates

decreases linearly as the number of navigated vehicles in the

water increases (Hunt et al. 1974). In addition, conventional

LBL navigation requires external, fixed reference beacons

that limit the vehicle’s navigable range to 5–10 km from the

beacon network.

In contrast, OWTT navigation relies on ranges estimated

from time-of-flight information of acoustic data packets

between the vehicle and a reference beacon of known,

though not necessarily stationary, location (Eustice et al.

2006, 2007; Webster et al. 2009b). This method provides

both bounded-error position estimates and, with a moving

reference beacon, long-range capabilities (e.g. on the

order of 100 km) without the need for multiple, costly,

fixed beacons. OWTT navigation provides scalability as

well, allowing all vehicles within acoustic range to simul-

taneously use the same acoustic data packet broadcast,

independent of the number of vehicles. Figure 1 depicts
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Fig. 1. Acoustic data-packets broadcast from the ship can be

used for combined communication and navigation by multiple

underwater vehicles. Image credit: Paul Oberlander, WHOI.

a ship-based acoustic modem broadcasting acoustic data

packets to multiple underwater vehicles.

In the deep-water survey presented herein, the ship

and vehicle communicated acoustically via Woods Hole

Oceanographic Institution (WHOI) micro-modems using

32-byte binary acoustic data packets (Freitag et al. 2005).

The micro-modems support a synchronous navigation

mode in which the modem is configured to begin trans-

mission of acoustic data packets at the top of the second.

We encode the time of launch (TOL) along with informa-

tion about the sender’s geodetic location in the acoustic

data packet. The time of arrival (TOA) of the acoustic data

packet at the receiver, the decoded TOL and position infor-

mation in the acoustic data packet, and the sound velocity

profile of the local water column are used to estimate range.

Between range measurements, vehicle position is estimated

using depth, velocity, and attitude measurements.

Because the time-of-flight (TOF) measurement is based

on the difference between the sender’s time and the

receiver’s time, it is crucial that the clocks on the sender

and the receiver are synchronized to within an acceptable

tolerance throughout the dive. During the deep-water sur-

vey, the acoustic communications system, called Acomms,

provided subsea precision timing support as well as con-

trolling all acoustic communications. The Acomms system

has underwater acoustic modems; precision, synchronized

clocks on both the vehicle and the reference beacon (in

our case the ship); and custom stand-alone software nec-

essary to support both modem operations and the required

precision timing functionality (Webster et al. 2009a).

The goal of this work is to report a principled, general

approach to tracking correlation and time delays for

the purposes of OWTT navigation utilizing a centralized

delayed-state extended Kalman filter (EKF), and to evaluate

this method in the context of a two-node marine application

with experimental deep-water survey data. This approach

represents the uncertainty of the vehicle processes, the

navigation sensor observations, the state of both the vehicle

and the ship, as well as the correlation between vehicle and

ship states. Including both ship and vehicle states in the

state vector enables the algorithm to properly model range

measurements between the current vehicle state and an his-

toric ship state. This approach provides substantial benefits

in implementations where there is non-negligible mutual

correlation between the ship and the vehicle (Walls and

Eustice 2011). This approach also provides a framework

that can be extended to a fully decentralized, multi-vehicle

navigation algorithm, in which range measurements

between vehicles can be incorporated without causing

overconfident position estimates (Webster et al. 2010).

In the centralized implementation reported herein, the

algorithm requires concurrent access to both ship and vehi-

cle sensor data, which limits the centralized algorithm to

use in post-processing. Because the algorithm has access to

all sensor data, it will provide the best possible estimate of

vehicle position within the Kalman-filter framework, com-

pared to decentralized algorithms that rely on delayed or

incomplete sensor data to prevent overconfidence. Thus the

centralized implementation provides a benchmark for future

work on Kalman-filter-based decentralized single-beacon

navigation algorithms.

The remainder of this paper is organized as follows: Sec-

tion 2 describes previous work in the area of single-beacon

navigation based on range measurements. Section 3 reports

the mathematical framework for the CEKF for OWTT

navigation. Section 4 describes and reports results from

a simulated deep-water survey, while Section 5 describes

and reports results from the actual deep-water field trials.

Section 6 offers some concluding discussion.

2. Previous work

The majority of the prior literature in the area of single-

beacon navigation reports the results of numerical sim-

ulations of the algorithms proposed therein. Only a few

report experimental evaluations of the proposed algorithms,

and even fewer employ independent navigation methods to

evaluate quantitatively the accuracy of the proposed meth-

ods. Previous work in the area of single-beacon naviga-

tion is extensively reviewed in Webster (2010). This section

reviews some of the references most relevant to this paper.

The earliest formulation of underwater vehicle naviga-

tion using ranges from a single beacon that is known to the

authors is reported in Scherbatyuk (1995). This approach

employs least-squares to solve for the vehicle’s unknown

initial position and a constant-velocity unknown current;

additionally, a linear algebra-based observability analysis is

reported. More recent least-squares solutions are reported

in Hartsfield (2005) and LaPointe (2006), the former using
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ad hoc iterative techniques to estimate course, the latter

reporting a method for advancing multiple single-beacon

fixes along the vehicle’s estimated trackline to simulate a

multi-beacon fix.

Range-only localization methods used for estimating the

position of a target are addressed by Ristic et al. (2002)

and Song (1999). In Ristic et al. (2002) the authors com-

pute the theoretical Cramér–Rao lower bound and compare

it to the performance of a maximum-likelihood estima-

tor (MLE), an EKF, and a regularized particle filter dur-

ing field tests. In Song (1999) the author addresses the

observability of the target-tracker problem using the Fisher

information matrix and reports simulation results using an

EKF. In related work Alleyne (2000) implements the EKF

from Song (1999) and reports simulation results. The use

of EKFs for homing and single-beacon navigation, initial-

ized by least-squares, is reported in Baccou and Jouvencel

(2002, 2003) and Vaganay et al. (2000) for both simula-

tion and field trials. In Baccou and Jouvencel (2003) the

authors also report a simulated two-vehicle system using a

cascaded approach in which the second vehicle navigates

relative to the first vehicle using inter-vehicle range mea-

surements. Larsen (2000, 2001, 2002) report an error state

EKF for single-beacon navigation based on error models of

the vehicle’s inertial navigation system. The authors report

results using a combination of field and simulation data. A

method of navigation using synchronous acoustic beacons

and one-way travel times to calculate range-rate is discussed

in Singh et al. (2001).

The recently published work, Morice and Veres (2011),

report geometric bounding techniques and simulation

results for range-based underwater navigation. The work

reported in McPhail and Pebody (2009) is one of the

few to address range-based positioning in deep water and

reports both simulation and experimental results. This

work uses a ship-based ranging system to obtain an

accurate initial position for the vehicle. Once computed,

the position fix is acoustically broadcast to the vehicle

before the vehicle carries out its intended mission using

dead-reckoning.

Several different methods for addressing the observabil-

ity of single-beacon range-only navigation are reported in

the literature. Gadre (2007) and Gadre and Stilwell (2004,

2005a,b) report an observability analysis employing lim-

iting systems to assess uniform observability, and derive

sufficient conditions for the existence of an observer with

exponentially decaying estimation error for the cases of

both known and unknown ambient currents. The authors

report field results from their implementation of an EKF.

In related work, Lee et al. (2008) extend the EKF reported

in Gadre (2007) and Gadre and Stilwell (2004, 2005a,b)

to three-dimensional coordinates with simulation results.

A concise observability analysis in continuous time using

Lie derivatives to compute conditions for which the sys-

tem has local weak observability is reported in Ross

and Jouffroy (2005). In Jouffroy and Reger (2006) the

authors report an algebraic analysis showing local uni-

form observability based on signal estimation techniques,

though the lack of an estimation model disallows the com-

putation of an updated position in the absence of a new

measurement.

Bahr and Leonard (2006) and Bahr (2009) address coop-

erative localization of multiple underwater and surface

vehicles using vehicle-based EKFs. One-way travel times

are garnered from acoustically broadcast mean and covari-

ance estimates to perform range measurements from mul-

tiple references. Fallon et al. (2010) extend this work

to consider navigation in the context of a single ref-

erence beacon and compare the performance of a par-

ticle filter, a non-linear least-squares estimator, and an

EKF with experimental data. Similar to our work, the

authors of Fallon et al. (2010) rely on a single moving

georeferenced beacon to support the localization of mul-

tiple vehicles through asynchronous acoustic broadcasts.

The main difference between the algorithm used in Fal-

lon et al. (2010) and the algorithm presented herein, is

that Fallon et al. (2010) employ a vehicle-based EKF

and perform range measurement updates using the abso-

lute position and covariance broadcast from the reference

beacon. One of the benefits of this formulation is that

the algorithm is applicable in real time. However, exclud-

ing the reference beacon position from the state vec-

tor ignores the potential mutual correlation between the

reference beacon and the vehicle, making the algorithm

unsuitable for applications in which substantial correla-

tion is expected. Correlation is not a significant source

of error for deployments for which the algorithm pre-

sented in Fallon et al. (2010) is intended, where the

reference beacon has precise knowledge of its position

through access to GPS and there are no inter-vehicle

ranges. Interesting and useful scenarios do exists, though,

that would incur significant mutual correlation. Walls and

Eustice (2011) report a comparative experimental eval-

uation of three different approaches to distributed state

estimation for synchronous-clock one-way travel-time nav-

igation. The experimental evaluations reported in Walls

and Eustice (2011) show that, under some communica-

tion topologies, distributed implementations of the Kalman

filter that do not account for measurement correlation

can result in state estimates that differ significantly from

approaches in which measurement correlation is explic-

itly accounted for. In Bahr (2009), the work upon which

Fallon et al. (2010) is based, a multi-hypothesis strategy

is employed to avoid overconfidence by preventing mea-

surement data from being incorporated multiple times, but

this approach is cumbersome due to tracking the multiple

hypotheses.

The work reported in this paper extends the work

reported in Eustice et al. (2006) and Eustice et al. (2007),

which employ a maximum-likelihood estimator and report

the theory and shallow-water experimental results for

OWTT navigation.
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3. Centralized extended Kalman filter

An EKF is employed to fuse depth, gyrocompass, and

Doppler velocity measurements from the vehicle; position

and attitude measurements from the ship; and range mea-

surements between the vehicle and the ship. The CEKF

employed herein for single-beacon navigation estimates the

current and previous states of both the ship and the vehicle

and is applicable in post-processing of previously acquired

dive data. This section contains the details of our central-

ized implementation for OWTT navigation, summarized in

Algorithm 1. A description of the state vector is presented in

Section 3.1, details of the vehicle process model in Section

3.2, the ship process model in Section 3.3, process predic-

tion and augmentation in Section 3.4, and the measurement

models in Section 3.5. Appendix A contains a brief review

of the EKF.

Algorithm 1 CEKF with state augmentation

1: loop {perform prediction and measurement update}

2: calculate time step for prediction:

�t = min[time until top of the second; time until

next measurement; 0.1s (10 Hz pred.)]

3: if current time == top-of-second then

4: augment state vector with current state while per-

forming process prediction �t, equations (29),

(30)

5: else

6: perform process prediction �t without augment-

ing state vector, equations (26), (27)

7: end if

8: if ∃ measurements at new time step then

9: perform measurement update, equations (42), (43)

10: end if

11: end loop

3.1. State description

The complete state vector for this implementation of the

CEKF, denoted herein by the bold font x, consists of the

current vehicle estimate, xv, the current ship estimate, xs,

and a fixed-length queue of historic states representing the

ship and vehicle positions at the beginning of each second

(referred to as the top of the second) for the most recent n

seconds, denoted xv−i and xs−i for i ∈ [1, . . . , n]

x = [x⊤
v , x⊤

s , x⊤
v−1, x⊤

s−1, . . . , x⊤
v−n, x⊤

s−n]⊤. (1)

The current ship state contains the ship’s xy position,

heading, and the respective velocities

xs = [xs, ys, θs, ẋs, ẏs, θ̇s]
⊤. (2)

The current vehicle state contains pose and attitude, as well

as body-frame linear and angular velocities

xv = [s⊤, ϕ⊤, υ⊤, ω⊤]⊤ (3)

s =

⎡
⎣

x

y

z

⎤
⎦ , ϕ =

⎡
⎣

φ

θ

ψ

⎤
⎦ , υ =

⎡
⎣

u

v

w

⎤
⎦ , ω =

⎡
⎣

p

q

r

⎤
⎦

(4)

where s is the vehicle pose in the local frame, ϕ is the

vehicle attitude (Euler roll, pitch, and heading), υ is the

body-frame linear velocity, and ω is the body-frame angular

velocity.

The historic states contain full estimates of the vehicle’s

state and the ship’s state from previous time steps. Historic

states are necessary for causal processing of range mea-

surements because of the time required for an acoustic data

packet to propagate from the sender to the receiver. When

the acoustic modems are in synchronous navigation mode

all acoustic transmissions are initiated at the top of the sec-

ond. Thus, in order to ensure that the state vector contains

the appropriate historic states needed to model range mea-

surement updates, the CEKF maintains an estimate of the

state of the system at the top of the second for the previ-

ous n seconds. In practice n = 6 for this implementation,

which enables the algorithm to accommodate range mea-

surements with travel times of up to six seconds, which

is equivalent to approximately a 9-km-range measurement.

Note that while this framework allows range measurements

to be made every second, in practice, due to the limita-

tion of the acoustic channel (and hardware limitations on

the amount of time required to transmit the acoustic data

packets), range measurements are not typically made every

second.

3.2. Vehicle process model

The reported CEKF uses a constant-velocity process model

for the vehicle, which is defined as

ẋv =

⎡
⎢⎢⎣

0 0 R( ϕ) 0

0 0 0 J ( ϕ)

0 0 0 0

0 0 0 0

⎤
⎥⎥⎦ xv

︸ ︷︷ ︸
f ( xv( t) )

+

⎡
⎢⎢⎣

0 0

0 0

I 0

0 I

⎤
⎥⎥⎦

︸ ︷︷ ︸
Gv

wv (5)

where R( ϕ) is the transformation from body-frame to

local-level linear velocities, J ( ϕ) is the transformation

from body-frame angular velocities to Euler rates, and

wv ∼ N ( 0, Qv) is zero-mean Gaussian process noise in the

acceleration term. R( ϕ) and J ( ϕ) are found by solving

R( ϕ) = R⊤
ψR⊤

θ R⊤
φ (6)

where

Rψ =

⎡
⎣

cos ψ sin ψ 0

− sin ψ cos ψ 0

0 0 1

⎤
⎦ , Rθ =

⎡
⎣

cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ

⎤
⎦ ,

Rφ =

⎡
⎣

1 0 0

0 cos φ sin φ

0 − sin φ cos φ

⎤
⎦ (7)
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and

ω =

⎡
⎣

φ̇

0

0

⎤
⎦ + Rφ

⎡
⎣

0

θ̇

0

⎤
⎦ + RφRθ

⎡
⎣

0

0

ψ̇

⎤
⎦

=

⎡
⎣

1 0 − sin θ

0 cos φ sin φ cos θ

0 − sin φ cos φ cos θ

⎤
⎦

︸ ︷︷ ︸
J

−1

ϕ̇ (8)

J =

⎡
⎣

1 sin φ tan θ cos φ tan θ

0 cos φ − sin φ

0 sin φ sec θ cos φ sec θ

⎤
⎦ . (9)

Note that the vehicle process model does not include a con-

trol input term u( t) because we do not assume a dynamic

model for the vehicle. The use of a simple kinematic model

makes the algorithm trivially applicable to any vehicle.

We linearize the vehicle process model, equation (5),

about µv, our estimate of the vehicle state at time t, using

the Taylor series expansion

ẋv( t) = f ( µv) +Fv( xv( t) −µv)

+ HOT + Gvwv( t)
(10)

where

Fv =
∂f ( xv)

∂xv

∣∣∣∣
xv(t)=µv

(11)

and HOT denotes higher-order terms. Dropping the HOT

and rearranging we get

ẋv( t) ≈ Fvxv( t) + f ( µv) −Fvµv︸ ︷︷ ︸
uv( t)

+Gvwv( t) (12)

= Fvxv( t) +uv( t) +Gvwv( t) (13)

where f ( µv) − Fvµv is treated as a constant pseudo-input

term uv( t).

In order to discretize the linearized vehicle process model

we rewrite equation (13) as

ẋv( t) = Fvxv( t) + Bvuv( t) + Gvwv( t) (14)

where Bv = I . Assuming zero-order hold and using the

standard method (Bar-Shalom et al. 2001) to discretize over

a time step T we solve for Fvk
and Bvk

in the discrete form

of the process model

xvk+1
= Fvk

xvk
+ Bvk

uk + wvk
(15)

Fvk
= eFvT (16)

Bvk
=

∫ T

0

eFv(T−τ )Bvdτ

= eFvT

∫ T

0

e−Fvτ dτ . (17)

The discretized process noise wvk
has the form

wvk
=

∫ T

0

eFv(T−τ )Gvwv( τ ) dτ (18)

for which we can calculate the mean and variance

E
[
wvk

]
= E

[∫ T

0

eFv(T−τ )Gvwv( τ ) dτ

]
(19)

=

∫ T

0

eFv(T−τ )Gv✘✘✘✘✘✿0
E[wv( τ ) ]dτ

= 0

Qvk
= E

[
wvk

w⊤
vk

]
(20)

=

∫ T

0

eFv(T−τ )GvQvG⊤
v eF⊤

v (T−τ )dτ .

The details of the derivation of Qvk
are in Appendix B.

3.3. Ship process model

The reported CEKF uses a linear constant-velocity process

model for the ship, which is defined as

ẋs =

[
0 I

0 0

]

︸ ︷︷ ︸
Fs

xs +

[
0

I

]

︸ ︷︷ ︸
Gs

ws (21)

where ws ∼ N ( 0, Qs) is zero-mean Gaussian process noise

in the acceleration term, which is independent of the vehi-

cle process noise wv defined in equation (5). Because the

ship process model is already linear it does not require

linearization.

The ship process model, is discretized in the same fash-

ion as the vehicle process model

xsk+1
= Fsk

xsk
+ wsk

(22)

Fsk
= eFsT (23)

= I + FsT +
✚

✚
✚✚❃

0
1

2
F2

s T2 +
✚

✚
✚✚❃

0
1

3
F3

s T3 + . . .

=

[
I IT

0 I

]

where the higher-order terms are identically zero because of

the structure of Fs, resulting in a simple closed-form solu-

tion for Fsk
. Note that Bsk

= 0 because Bs = 0. The ship’s

discretized process noise

wsk
=

∫ T

0

eFs(T−τ )Gsws( τ ) dτ (24)

can also be shown to be zero-mean Gaussian using formu-

las (19) and (20), such that wsk
∼ N ( 0, Qsk

). Due to the

structure of Fsk
, the covariance matrix simplifies to

Qsk
=

[
1
3
T3 1

2
T2

1
2
T2 T

]
Qs. (25)
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3.4. Process prediction and augmentation

The complete state process prediction is written in terms of

the full state vector of the system defined in equation (1).

Combining the discrete-time linearized vehicle and ship

process models, equations (15) and (22), and substituting

them into the discrete-time linearized Kalman process pre-

diction equation (40), the complete state process prediction

becomes

µk+1|k =

⎡
⎢⎢⎢⎢⎢⎣

Fvk
0 0 · · · 0

0 Fsk
0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Fk

µk|k +

⎡
⎢⎢⎢⎢⎢⎣

Bvk
uk

0

0
...

0

⎤
⎥⎥⎥⎥⎥⎦

(26)

�k+1|k = Fk�k|kF⊤
k + Qk (27)

where µ and � are the mean and covariance, respectively,

of the estimate of the state x and

Qk =

⎡
⎢⎢⎢⎢⎢⎣

Qvk
0 0 · · · 0

0 Qsk
0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

. (28)

Note that the historic states do not change during this

process update.
A modified process prediction is necessary at the top of

the second when state augmentation is done in concert with
process prediction. During this modified prediction step, in
addition to predicting forward the current vehicle state, the
estimate of the current state (before the prediction) is aug-
mented to the state vector while simultaneously marginal-
izing out the oldest historic state (xv−n and xs−n) and Qk is
defined as before,

µk+1|k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Fvk
0 0 · · · 0 0 0

0 Fsk
0 · · · 0 0 0

I 0 0 · · · 0 0 0

0 I 0 · · · 0 0 0

0 0 I · · · 0 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

.

.

.

0 0 0 · · · I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
F̃k

µk|k +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bvk
uk

0

0

0

0

.

.

.

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

�k+1|k = F̃k�k|kF̃
⊤

k + Qk . (30)

3.5. Measurement models

The range measurement from the ship’s modem transducer

to the vehicle’s modem transducer is a non-linear func-

tion of the current vehicle state and an historic ship state.

For simplicity of notation, we assume here, without loss

of generality, that the transducers are located at the origin

of their respective local frames. In the actual implemen-

tation the offsets of the transducers from their respective

origins are taken into account, including the effect of the

ship’s pitch and roll on transducer position. Because ship

pitch and roll are not included in the state vector, we inter-

polate the ship’s pitch and roll at the time of launch of

the acoustic data packet using pitch and roll data from the

ship’s gyrocompass, and use that along with the transducer

offset to calculate the relative position of the ship’s trans-

ducer. The measurement equation for a range measurement

made from an acoustic data packet sent from the ship to the

vehicle is

zrng =

√
( xvxyz − xsxyz )

⊤ ( xvxyz − xsxyz ) + vrng (31)

where xsxyz is the ship pose at the time of launch, tTOL, of

the acoustic data packet and xvxyz is the vehicle pose at

the time of arrival, tTOA, of the acoustic data packet. We

assume zero-mean Gaussian measurement noise, vrng ∼

N ( 0, Rrng), which is in units of distance and represents

the imprecision in timing multiplied by the depth-averaged

sound velocity between the two transducers. The covariance

Rrng is assumed to be identical for all range measurements

and therefore does not have the time-dependent subscript k.

The validity of these assumptions for the the range mea-

surement error are addressed in more detail in Section 5.7.

We can rewrite equation (31) in terms of the state vector as

zrng = ( x⊤M⊤Mx)
1
2 +vrng (32)

where

M =
[

J v 0 · · · 0 J s 0 · · · 0
]

. (33)

In M , J v is defined to capture the pose information of

the vehicle, xv( tTOA), at the time of arrival of the acous-

tic broadcast and J s is defined to capture the pose infor-

mation of the ship, xs( tTOL), at the time of launch of the

acoustic broadcast. The Jacobian of the range measurement,

equation (32), at tk with respect to x is

H rngk
=

∂zrng( x)

∂x

∣∣∣∣
x=µk|k−1

= ( µ⊤
k|k−1M⊤Mµk|k−1)−

1
2 µ⊤

k|k−1M⊤M . (34)

This observation model also applies to range measurements

made from the vehicle to the ship by substituting the vehicle

pose at the time of launch and the ship pose at the time of

arrival.

Measurements from additional navigation sensors are

processed asynchronously using standard observation mod-

els (Eustice 2005). On the vehicle, the depth sensor provides

observations of the vehicle’s depth in the local-level coor-

dinate frame. The velocity sensor, a Doppler velocity log,

provides observations of the seafloor-relative velocity of

the vehicle in the sensor coordinate frame. The OCTANS
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gyrocompass provides observations of the vehicle’s local-

level attitude and body-frame angular rates. We assume

zero-mean, Gaussian noise for all of these sensor mea-

surements with standard deviations commensurate with the

specifications of the instrument manufacturers.

Onboard the ship, a GPS provides observations of the

position of the ship in the local-level coordinate frame. The

ship’s gyro provides observations of the ship’s attitude in

the local-level coordinate frame. We assume zero-mean,

Gaussian noise for these sensor measurements as well. GPS

measurements may be subject to correlation and drift as

a result of variations in the satellite constellation over the

course of the dive. The possible effects of this are addressed

in Section 5.7.

4. Simulation

For comparison purposes, this simulation is designed to

mimic the experimental setup of the deep-water survey pre-

sented in Section 5. In the simulated mission presented

here, the vehicle drives ten 700-m tracklines spaced 80 m

apart at a velocity of 0.35 m/s. The vehicle’s depth is con-

stant at 3800 m. The vehicle takes approximately 6 hours

to complete the survey, during which time the ship drives

around the vehicle’s survey area in a diamond pattern at 0.5

m/s, broadcasting acoustic data packets every 2.5 minutes.

4.1. Simulated sensors

We assume that the ship data comprises simulated sensor

data comparable to a differential global positioning system

(DGPS) receiver and a gyrocompass to measure heading.

The vehicle data comprises simulated sensor data compa-

rable to an OCTANS fiber-optic gyrocompass to measure

attitude and attitude rates; a Paroscientific pressure sensor

to measure depth; and an RDI Doppler velocity log (DVL)

to measure bottom-referenced velocities. Simulated range

measurements comparable to those from acoustic modems

are used to measure the range between the ship and the

vehicle. The simulated vehicle and ship navigation sensors,

their sampling frequencies, and the noise statistics for each

sensor are summarized in Table 1.

4.2. Simulation results

To investigate the effect of range measurements on the

CEKF’s estimate of the vehicle trajectory, the simulation

was run both with and without range measurements. In

both cases the vehicle position was initialized with the

same variance in x and y as the experimental data. Figure 2

shows the range-aided estimated vehicle trajectory (with

3-σ covariance ellipses) compared to the true vehicle tra-

jectory over the course of the simulated dive. The simulated

GPS-reported trajectory of the ship as it moves above the

vehicle survey area is also shown. The distribution of the

difference between the range-aided estimate of vehicle

(m
)

(m)

Fig. 2. In a simulated 6-hour, deep-water dive, the vehicle follows

a typical survey trajectory while the ship moves counter-clockwise

around a diamond-shaped trajectory, starting at the eastern-most

apex.
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Fig. 3. The distribution of the along-track and across-track com-

ponents of the estimated vehicle position error over the course of

the range-aided simulated dive.

position and the true vehicle position over the course of the

simulated dive can be seen in Figure 3.

The difference between the dead-reckoned vehicle trajec-

tory versus the range-aided vehicle trajectory is not easily

discernible on the scale of the x-y plot in Figure 2. Instead,

Figure 4 shows the error in both the dead-reckoned and the

range-aided vehicle trajectories compared to the true vehi-

cle trajectory, plotted against their respective 3-σ bounds.

The error between the trajectories and the true state stay

within their 3-σ bounds for all but a few points and the

range-aided trajectory clearly has smaller variance than

the dead-reckoned trajectory. We can also represent spatial

uncertainty in the filter by taking the determinant of the x-

y portion of the covariance matrix to find the equivalent of
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Table 1. Simulated navigation sensor sampling frequency and noise.

Sensor Frequency Noise

OCTANSa 3.0 Hz ψ , φ, θ : 0.5◦

r: 0.6◦/s

p, q: 0.4◦/s

Depth sensor 0.9 Hz 6 cm

DVL 3.0 Hz 1 cm/s

GPS 1.0 Hz 0.5 m

Gyrocompass 2.0 Hz 0.05◦

Modem every 2.5 min 3.3 m

aψ , θ , and φ are local-level heading, pitch, and roll, respectively; r, q, and p are body-frame angular velocities for heading, pitch, and roll.

(min)

(min)

(m
)

(m
)

Fig. 4. The error between the range-aided simulation and the

dead-reckoned simulation are shown compared to their associ-

ated 3-σ bounds. The state estimates of both remain inside their

respective 3-σ error bounds except for a few points and the range-

aided sigma bounds clearly shrink with time compared to the

dead-reckoned 3-σ bounds (as expected).

a volume of uncertainty with units m4. Plotting the fourth

root of this determinant gives us a representation of the

spatial uncertainty in meters. Figure 5 shows this spatial

uncertainty for both trajectories. As expected, the spatial

uncertainty in the dead-reckoned track increases mono-

tonically over time, while the range-aided trajectory has

bounded uncertainty as a result of the range measurements.

To investigate the consistency of the filter we looked at

the innovations of the sensor measurements. Figure 6 shows

histograms of the innovations of the simulated velocity

measurements from the DVL. The innovations of the DVL

measurements are zero-mean and Gaussian indicating a

consistent filter. Figure 7 shows the innovations of the

range measurements over time. All innovations are well

within the 3-σ innovation covariance bounds indicating

a consistent filter. These results are expected because the

filter employs the identical noise statistics used to create

the simulated noisy data.

(min)

(m
)

Fig. 5. The spatial uncertainty of the filter is represented here by

the fourth root of the determinant of the x-y portion of the covari-

ance matrix over the course of the dive. As expected, the spatial

uncertainty in the dead-reckoned track increases monotonically

over time, while the uncertainty in the range-aided trajectory is

bounded as a result of the range measurements.

5. Deep-water field trials

Sea trials were conducted by the authors and collaborators

during an expedition on the R/V Knorr, to the southern

Mid-Atlantic Ridge (SMAR) in January 2008. The goal of

the expedition was to test and evaluate engineering meth-

ods for locating and mapping new hydrothermal vents on

the SMAR.

5.1. Site description

The SMAR is a divergent boundary between the South

American Plate and the African Plate that is presently

spreading at about 2.5 cm per year. The survey site, shown

in Figure 8, is located near 04◦ S 12◦ W in a deep non-

transform discontinuity whose maximum depth exceeds

4000 m (German et al. 2008). Our operations were con-

ducted on a section of the SMAR to the north of the sites

where active hydrothermal vents were first discovered by

a combination of deep-tow and deep-submergence tech-

nologies culminating in photography by the autonomous

underwater vehicle (AUV) ABE (German et al. 2008), and

subsequently sampled by the remotely operated underwater

vehicle (ROV) Marum Quest (Haase et al. 2007).
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Fig. 6. The distribution of the innovations of the DVL velocity

measurements are zero mean and Gaussian as expected.

(m
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(min)

Fig. 7. The range measurement innovations from the simulated

dive are well contained within the 3-σ innovation covariance

bounds.

5.2. Experimental setup

The data presented in this paper were collected by the

Acomms system (Webster et al. 2009a) installed on the

AUV Puma (Singh et al. 2004), developed at WHOI, and

the R/V Knorr. Puma is a 5000-m-rated AUV equipped

with the following navigation sensors: a Paroscientific pres-

sure depth sensor, an OCTANS fiber-optic gyrocompass for

attitude and attitude rate measurements, and a 300-kHz RDI

Doppler velocity log (DVL) for velocity measurements.

The vehicle is equipped with a WHOI micro-modem (Fre-

itag et al. 2005) and an ITC-3013 transducer (ITC 2010)

for acoustic communications and range measurements. A

PPSBoard was installed on the vehicle for precision tim-

ing (Eustice et al. 2006, 2007). The PPSBoard uses a

low-power, temperature-compensated precision clock from

SeaScan Inc. to provide precise time-keeping. The SeaScan

clock has a maximum drift rate of approximately 1 ms

over 14 hrs, which equates to a 1.5 m error in range—an

acceptable error given the tolerances of the system. Prior

(a) (b)

(c)

Fig. 8. (a) R/V Knorr. (b) AUV Puma. (c) The survey site

is shown by the box near Ascension Island on the southern

Mid-Atlantic Ridge.

to each vehicle dive, the PPSBoard was synchronized to

coordinated universal time (UTC) via GPS.

The R/V Knorr is an 85-m-long oceanographic research

vessel operated by WHOI. The ship has two azimuthing

stern thrusters, a retractable azimuthing bow thruster, and

dynamic positioning (DP) capability enabling it to hold

station and maneuver in any direction (Woods Hole

Oceanographic Institution 2010). For the ship’s position

information we used the C-Nav 2000 Real-Time GIPSY

(RTG) GPS with a reported horizontal accuracy of 10 cm

(C&C Technologies 2010). An Applanix POS/MV-320 pro-

vided heading, pitch, and roll data with a reported accu-

racy of 0.02◦ (Applanix 2008). The ship was also equipped

with a WHOI micro-modem (Freitag et al. 2005) and an

ITC-3013 (ITC 2010) transducer for sending and receiving

acoustic data packets. Figure 8 shows the R/V Knorr, the

AUV Puma, and the survey area near Ascension Island.

On Puma Dive 03, the vehicle conducted a survey at 3800

m depth comprising 12 tracklines approximately 65 m apart

and 700 m long while maintaining an altitude of 200 m. The

vehicle spent approximately 8.6 hours at depth performing

the survey. While the vehicle carried out the survey mis-

sion, we repositioned the R/V Knorr above the survey site

in a diamond shaped pattern, holding station at each apex.

This was done to provide range measurements to the vehicle

from different locations for increased observability (Song

1999). During these field trials we used two-way acoustic

communication between the vehicle and the ship initiated

by the vehicle. Acoustic data packets were sent from the

vehicle to the ship and requested by the vehicle from the

ship every 30 seconds.

5.3. Vehicle position initialization

Because the EKF algorithm performs linearization along

the system trajectories, an initial state estimate too far from
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the actual state could cause the algorithm to be unstable.

In this implementation we initialized the CEKF with an

MLE of the vehicle state and covariance. For this imple-

mentation of the CEKF, the maximum-likelihood estima-

tion is performed over the entire data set as previously

reported in Eustice et al. (2007). For implementation as

an on-line algorithm, a real-time initialization would be

necessary, such as a small-batch MLE calculated over

the first few range measurements, a least mean-squares

method presented in McPhail and Pebody (2009), or the

hybrid particle-filter/EKF approach presented in Fallon et

al. (2010). In addition, algorithms that allow the vehicle

to navigate through the water column could potentially

be employed to lessen the uncertainty in vehicle position

accrued during the vehicle’s descent to the planned survey

depth (Stanway 2010).

5.4. Sensor alignment

The vehicle reference frame is defined to be coincident

with the Doppler frame. Small angular offsets between the

OCTANS and the Doppler are estimated in post-processing

using a batch solution described in Kinsey and Whitcomb

(2007). The offset—3.5◦ in heading, 3.24◦ in pitch, and

0.64◦ in roll—is accounted for as a mounting offset in the

OCTANS. A −1.5◦ mounting offset in pitch for the Doppler

is estimated based on the agreement between the vertical

velocity measurements of the Doppler and depth measure-

ments from the Paroscientific pressure depth sensor.

5.5. Experimental results

The integrity of the vertical acoustic telemetry channel var-

ied over the course of the dive. While the vehicle was

surveying near the bottom, a total of 342 acoustic data pack-

ets from which we could calculate range were successfully

received, all of them from the vehicle to the ship, for an

average of a one-way range measurement every 90 seconds.

To investigate the effect of range measurements on the

CEKF’s estimate, the filter was run both without range mea-

surements (dead-reckoning using only the vehicle-based

sensor data collected during the experiment) and with range

measurements (range-aided navigation). The resulting vehi-

cle trajectories, along with the LBL fixes and the ship’s

track, are shown in Figure 9.

To further enable a comparison of the effect of including

range measurements, Figure 10 shows the spatial uncer-

tainty of the filter. As expected the uncertainty of the

dead-reckoned trajectory increases over time, while the

uncertainty in the range-aided trajectory is smaller as a

result of the range measurements. The spikes in uncertainty

in both trajectories are the result of the DVL dropping out

for a number of measurements before being regained. With-

out velocity measurements, the spatial uncertainty rises

quickly due to process noise, but subsequently drops when

(m)

(m
)

Fig. 9. Two estimated vehicle trajectories are shown: the dashed

line is the dead-reckoned vehicle trajectory without range mea-

surements, the solid line is the range-aided vehicle trajectory with

3-σ covariance ellipses. The LBL fixes are shown as x’s and the

ship’s track is superimposed as a dotted line. The range-aided tra-

jectory more closely follows the LBL fixes, though there is some

systematic error between both trajectories and the LBL fixes.

the velocity measurements are resumed due to correlation

between position and velocity.

LBL fixes provide ground truth for the estimated vehicle

trajectory. Unfortunately LBL fixes were largely unavail-

able on tracklines where the vehicle was heading East, as

shown in Figure 9, most likely due to shadowing of the

transducer by the vehicle frame at this vehicle heading. A

histogram of the difference between the range-aided tra-

jectory and the LBL fixes, where available, is shown in

Figure 11. Table 2 shows the average difference between the

CEKF estimate and the LBL estimate of vehicle position

for the range-aided trajectory and the dead-reckoned tra-

jectory, respectively. The range-aided trajectory has smaller

errors and variances in most cases; however, the non-zero

mean suggests the presence of additional systematic errors

that are not accounted for in the reported sensor calibra-

tions. We believe that the difference is partly due to LBL

calibration, described in Section 5.6 below, and partly due

to unaccounted-for sensor offsets in the vehicle sensors.

We use innovations from the sensor measurements to test

the consistency of the CEKF. Histograms of the innovations

of the DVL velocity measurements are shown in Figure 12.

The distribution of all three of the velocity measurements

are approximately zero-mean, and the distribution of the

u and v velocity innovations both appear Gaussian. The w

velocity distribution is not Gaussian, indicating that there

may be a small mounting offset in the Doppler pitch, caus-

ing a discrepancy between the actual versus the measured

vertical velocity of the vehicle, or a mismatch between the

depth sensor and the vehicle’s vertical velocity.
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Table 2. Difference between CEKF estimated trajectories and LBL estimates.

Range-aided trajectory versus LBL estimates

Relative Absolute

Across-track Along-track North East

Mean (m) −18.4 18.8 −16.1 −29.2

Std (m) 24.3 16.8 10.3 18.5

Dead-reckoned trajectory versus LBL estimates

Relative Absolute

Across-track Along-track North East

Mean (m) −19.8 19.2 −16.2 −36.5

Std (m) 29.8 20.3 9.12 19.4

Fig. 10. As in Figure 5, the spatial uncertainty of the filter is rep-

resented by the fourth root of the determinant of the x-y portion of

the covariance matrix over the course of the dive. As expected, the

spatial uncertainty in the dead-reckoned track is unbounded over

time, while the range-aided trajectory has bounded uncertainty

as a result of the range measurements. The spikes in uncertainty

in both trajectories are the result of the DVL dropping out for a

number of measurements before being regained. Without veloc-

ity measurements, the uncertainty rises quickly due to process

noise, but subsequently drops when the velocity measurements are

resumed.

5.6. Errors in ground truth from long baseline

While submerged, the vehicle used range information in

the form of two-way travel times from three LBL beacons

to estimate its absolute position in real time (Hunt et

al. 1974). The position fixes from LBL also provide the

baseline for the OWTT navigation filter—we compared

the filter’s estimated vehicle position to the position fixes

from LBL as a measure of the algorithm’s accuracy. The

accuracy of the vehicle’s position estimates from LBL
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Fig. 11. The distribution of the along-track and across-track com-

ponents of the difference between the LBL fixes and the range-

aided estimate of vehicle position shows a systematic bias. The

mean and standard deviation for the components are given in the

plot titles.

ranges, however, is predicated on the accuracy to which

the position of the LBL beacons is known—uncertainty

in beacon location translates directly to uncertainty in the

vehicle’s position estimate in the radial direction from the

beacon. The LBL beacon survey on this expedition used the

standard procedure of collecting two-way travel times from

the ship to the individual beacons from 5–10 different ship

locations after each beacon reached the seafloor. The ship

locations are spaced approximately equally around a circle

with ∼1 km horizontal radius from each beacon’s ground

truth drop location. Beacon location is then estimated using

a least-squares algorithm after outliers have been manually

rejected. Table 3 shows the position of the three LBL

beacons relative to the vehicle’s survey site and the residual
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Table 3. LBL beacon location and accuracy of position estimate.

Beacon Approximate location RMS error

A 3 km west 1.8 m

B 3 km north 3.8 m

C 2.5 km east 3.7 m
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Histogram of RDI measurement innovations
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Fig. 12. The distribution of the innovations of the DVL velocity

measurements show that all are zero-mean and the u and v inno-

vations are Gaussian distributed as expected. The non-Gaussian

nature of the w velocity distribution may indicate a small mounting

offset in the pitch of the DVL instrument, causing a discrepancy

between the actual versus the measured vertical velocity.

root mean squared error of the estimated beacon position

from the LBL beacon survey.

5.7. Errors in acoustic range measurements

In the Kalman filter, both the process noise and the sen-

sor measurement noise are assumed to be zero-mean and

Gaussian. Non-zero-mean or non-Gaussian noise violates

this assumption and is a source of error in the filter’s

estimate. Vehicle-based navigation sensors, such as the

OCTANS gyrocompass, the Doppler velocity log, and the

pressure depth sensor, are commonly used and well char-

acterized, such that, when calibrated properly, they can be

modeled acceptably as having Gaussian noise. The excep-

tion is that mounting offsets, as noted in Section 5.4, can

cause bias in the sensor measurements if not properly

accounted for. In contrast, acoustic range measurements

are often not Gaussian distributed because of factors such

as ray-bending of the acoustic signal as it passes through

the water column and false range measurements caused by

acoustic multi-path.

(min)

(m
)

Fig. 13. The innovations in the range measurements over the

course of the survey show that until around a mission time of 700

minutes the range measurements are consistent with the 3-σ inno-

vation covariance (dashed lines), but exceed the 3-σ bounds near

the end of the survey.

Figures 13 and 14 show the innovations for the 342 range

measurements made during the vehicle’s survey plotted

both over time and in a histogram, respectively. Figure 13

shows that for the majority of the survey the range mea-

surements are consistent with the 3-σ innovation covariance

(dashed lines), but exceed the 3-σ bounds near the end of

the survey. Several factors could have caused errors in the

range measurements during this time. The group of range

measurements that exceed the positive 3-σ bound (mis-

sion time 749 to 766 min) were made while the ship was

at the western apex of its diamond pattern, moving west.

The group of range measurements that exceed the negative

3-σ bound (mission time 784 to 798 min) were made while

the ship was at the eastern apex of the diamond, moving

north. The respective location of the ship and the sign of

the innovation could indicate an error in estimated vehicle

position. In addition, because the modem was not rigidly

attached to the ship but lowered over the side on a cable, the

motion of the ship, and resulting movement in the modem

transducer, may have affected the fidelity of the range mea-

surements. In comparison to the experimental innovations,

the innovations of the range measurements for the simu-

lated dive are well contained within the 3-σ innovations

covariance bounds for the duration of the dive, as shown in

Figure 7.

Because the Kalman filter framework relies on the

assumption of Gaussian noise, we have assumed a large

standard deviation for the range measurement noise in the

filter model (3.3 m, see Table 1) to mitigate the non-

Gaussian nature of the measurement noise. We explore

several factors that could cause the non-Gaussian range

measurement noise.
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Fig. 14. The distribution of the range-measurement innovations

shows the range measurements are near zero-mean but not Gaus-

sian distributed.

Sound velocity estimation. In this implementation, the

CEKF uses a depth-weighted average sound velocity to cal-

culate the range from the travel time of the acoustic data

packets. The actual sound velocity profile, however, varies

over depth as shown in Figure 15. Refraction due to the

change in sound speed with depth can cause ray bending

in acoustic signals transmitted through the water column

(Urick 1983). As a result, the travel time of an acoustic

signal is not directly proportional to slant range and is

dependent on the distance and horizontal displacement

between the vehicle and the ship.

To quantify this error, we consider a range estimate

between the vehicle and the ship when the ship is at the

western-most apex of its diamond pattern and the vehicle is

at the far eastern edge of its survey, thus incorporating the

largest horizontal offset possible (1236 m). Calculating the

difference in the range estimate found using ray-bending

techniques (Schmidt 2009) versus the depth-weighted aver-

age sound velocity, we find that the model incurs an error in

the range estimate of the order of one meter. Ray-bending,

therefore, is not likely to be a substantial source of error

in this data set. In future work, adding a range-dependent

component for the range measurement noise model would

be appropriate, especially for shallow applications where

there is a larger relative horizontal offset and the distance

between the vehicle and the ship changes more significantly

throughout the dive.

Acoustic multi-path. Multi-path errors can cause large

errors in range measurements when the acoustic signal

bounces off the surface of the seafloor one or more times

before reaching the vehicle. If the vehicle and ship configu-

ration is static or changes slowly, then multi-path error can

show up repeatably, causing a multi-modal error distribu-

tion. Multi-path errors are typically worse in shallow-water

deployments where the angle of incidence between the

acoustic signal and the surface or the seafloor is very large.
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Fig. 15. Sound velocity profile computed from data from the

conductivity-temperature-depth (CTD) sensor on Puma.

In this deployment, because the vehicle was close to verti-

cal underneath the ship, we did not experience noticeable

problems from acoustic multi-path.

Ship GPS drift and correlation. Position measurements

from a GPS are subject to drift and correlation when the

satellite constellation changes position and geometry, and

when the satellites appear and disappear from the line

of sight. The horizontal dilution of precision (HDOP)

reported by the GPS sensor indicates the accuracy of the

current measurement based upon the geometry of the

satellites. HDOP is a scale factor for the GPS sensor’s

nominal accuracy, such that if σnom is the nominal standard

deviation of horizontal measurements provided by the

GPS sensor (as reported by the manufacturer), then the

actual standard deviation of the horizontal measurement

is HDOP×σnom (Hofman-Wellenhof et al. 1994). Thus

HDOP = 1 indicates ideal geometry and measurements that

are as accurate as possible for the sensor, and higher values

indicate worse performance. A histogram of the HDOP

values reported by the ship’s GPS over the course of the

dive is shown in Figure 16.

Given that the GPS used during this experiment has a

reported horizontal accuracy of less than 10 cm (C&C Tech-

nologies 2010), and 98% of the measurements have an

HDOP of 2 or less, we conclude that any drift or correla-

tion in the GPS data is not a significant source of error in

this data set.
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Fig. 16. The distribution of horizontal dilution of precision

(HDOP) reported by the GPS receiver on the ship, showing an

HDOP of 2 or less for 98% of the reported measurements for the

duration of the dive.

6. Discussion and conclusions

This paper reports the design and implementation of a

CEKF that estimates the position of a vehicle using vehicle-

based navigation sensors and range measurements between

the vehicle and a reference beacon based on the one-way

travel time of acoustic data packets. The filter is designed

for a moving reference beacon and a single vehicle but can

be extended trivially to incorporate any number of vehicles

and range measurements between them. The CEKF relies

on concurrent access to the sensor measurements and thus

is applicable in post-processing.

The goal of this work is to report and evaluate with exper-

imental deep-water survey data a new OWTT navigation

method utilizing a centralized delayed-state EKF. Simula-

tion and deep-water sea trials evaluating single-beacon one-

way-travel-time navigation implemented with a CEKF were

shown. Experimental results from the CEKF compared to

the ground truth absolute-navigation from LBL position

fixes show that the difference between the CEKF results and

LBL is commensurate with the errors we typically expect

from LBL. We conclude that single-beacon navigation is a

viable alternative to LBL navigation for deep-water appli-

cations where the ship or surface node can be moved around

the survey site to provide appropriate geometric constraints

on the vehicle’s position estimate. These results expand

upon those reported in Eustice et al. (2006) and Eustice

et al. (2007), which reported results from single-beacon

one-way-travel-time acoustic navigation in shallow water.

Future research in single-beacon navigation will focus

on the decentralized real-time implementation to support

simultaneous multi-vehicle navigation. The CEKF reported

herein will serve as the benchmark for future Kalman-filter-

based decentralized estimators.
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A. Review of EKF formulation

The EKF applies the general approach of the Kalman filter

(Kalman 1960) to non-linear plants by linearizing the plant

process and observation models along the trajectory of the

system. The formulation reported here is for a non-linear

plant with discrete observations (Gelb 1982). Consider the

general non-linear plant process and observation model

ẋ( t) = f ( x( t) , t) +G( t) w( t) +u( x( t) , t) (35)

zk = h( x( tk) ) +vk , k = 1, 2, . . . (36)

where x( t) is the state in continuous time, u( x( t) , t) is the

input, zk is the measurement at time step tk in discrete time,

and w( t) ∼ N ( 0, Q( t) ) and vk ∼ N ( 0, Rk) are indepen-

dent zero-mean Gaussian process noise and measurement

noise, respectively.

The CEKF reported herein employs a discrete-time lin-

earization of the process model, whose general form is

xk+1 = Fkxk + Bkuk + wk (37)

to recursively estimate the mean, µ, and covariance, �, of

the state vector x

µ = E [x] (38)

� = E
[
( x − µ) ( x − µ)⊤

]
, (39)

resulting in the general form of the process prediction

equations

µk+1|k = Fkµk|k + Bkuk (40)

�k+1|k = Fk�k|kF⊤
k + Qk (41)

where Fk is the discrete-time linear state transition matrix,

Bk is the discrete-time linear input matrix, Qk is the

discrete-time process noise covariance, uk is the piecewise-

constant input at time step tk , and we use ⊤ as the transpose

operator.

The measurement update equations for the EKF are

µk|k = µk|k−1 + Kk( zk − hk( µk|k−1)) (42)

�k|k = �k|k−1 − KkHk�k|k−1

= ( I − KkHk) �k|k−1 (43)

where Hk is the Jacobian of h at time step tk

Hk =
∂h( x( tk))

∂x( tk)

∣∣∣∣
x(tk )=µk|k−1

(44)

and Kk is the Kalman gain at time step tk , given by

Kk = �k|k−1H⊤
k ( Hk�k|k−1H⊤

k + Rk)−1 . (45)

B. Variance of discretized process noise

To calculate the variance of the discretized vehicle pro-
cess noise, equation (20), we make use of the facts that the
expected value can be brought inside the integral because
it is a linear operator and that the noise vector wv is
independent and identically distributed in time so that the

covariance E
[
wv( τ ) w⊤

v ( γ )
]

is zero except when γ = τ :

E
[
wvk

w⊤
vk

]
= E

[∫ T

0

eFv(T−τ )Gvwv( τ ) dτ

∫ T

0

(
eFv(T−γ )Gvwv( γ )

)⊤

dγ

]

= E

[∫ T

0

∫ T

0

eFv(T−τ )Gvwv( τ ) w⊤
v ( γ ) G⊤

v eF⊤
v (T−γ )dτdγ

]

=

∫ T

0

∫ T

0

eFv(T−τ )Gv E
[
wv( τ ) w⊤

v ( γ )
]

︸ ︷︷ ︸
Qvδ( τ − γ )

G⊤
v eF⊤

v (T−γ )dτdγ

=

∫ T

0

eFv(T−τ )GvQvG⊤
v eF⊤

v (T−τ )dτ .
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