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Underwater Acoustic Sensor Networks (UASNs) are an important technical means to explore the ocean realm. However, most
UASNs rely on hardware infrastructures with poor flexibility and versatility. The systems typically deploy in a redundant
manner, which not only leads to waste but also causes serious signal interference due to multiple noises in designated
underwater regions. Software-Defined Networking (SDN) is a novel network paradigm, which provides an innovative
approach to improve flexibility and reduce development risks greatly. Although SDN and UASNs are hot topics, there are
currently few studies built on both. In this paper, we provide a comprehensive review on the advances in software-defined
UASNs. First, we briefly present the background, and then we review the progress of the Software-Defined Radio (SDR),
Cognitive Radio (CR), and SDN. Next, we introduce the current issues and potential research areas. Finally, we conclude
the paper and present discussions. Based on this work, we hope to inspire more active studies and take a further step on
software-defined UASNs with high performances.

1. Introduction

The Earth is a water-rich planet with 71% of its surface cov-
ered by oceans, which are the largest ecosystems determining
the survival and development of humanity. With the increas-
ing requirements of resources, developing and utilizing
oceans have become hot topics.

In traditional underwater systems, devices are usually
deployed in fixed regions [1] which can be salvaged later.
Such devices are bulky, and their deployments are generally
implemented by ships, gliders, and AUVs (Autonomous
Underwater Vehicles) or robots. After being placed, data
can be acquired and stored. Then, data recovery and analysis
are performed later based on salvaging the systems manually.
They are off-line systems [2] despite that the real-time
requirements are relatively high; this is because reliability
and feasibility cannot satisfactorily be achieved.

With the advances in techniques, online systems based
on sensor networks can be achieved. Underwater Acoustic

Sensor Networks (UASNs) are composed of nodes with
acoustic communication and computation capabilities. It is
known that an UASN is a real-time system [3]. Once
deployed, an ad hoc network is formed automatically and
related technologies are employed, such as location, synchro-
nization, clustering algorithms, and routing protocols.

UASNs are a multidisciplinary integration of computer,
marine, electronics, underwater acoustic communication,
and other technologies. They have broad application pros-
pects in ocean data acquisition, environmental monitoring,
earthquake and tsunami monitoring, auxiliary navigation,
robotics [4], and AUV control. Compared to the traditional
systems, UASNs have the advantages of a simple infrastruc-
ture and low cost, and they have gained great attention all
over the world.

UASNs are deployed in shallow oceans where the envi-
ronments are time varying. Studies demonstrate that RF
(Radio Frequency) can be propagated at a very low fre-
quency (30Hz-300Hz) [5] for a long distance with a large
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antenna array and extremely high transmission power in
oceans. Optical communication [6] is also strongly affected
by scattering, together with the high-precision alignment
of a narrow-band laser beam. In contrast, acoustic com-
munication is more suitable.

The frequency of UASNs is commonly at 10-40 kHz [7].
Unlike Wireless Sensor Networks (WSNs) deployed on land,
there are many problems in UASNs, including excessively
high path loss [8], severe multipath effects [9], Doppler
spread [10], limited bandwidth [11], and extremely fast chan-
nel variation. The traditional UASNs greatly rely on hard-
ware infrastructure. It is necessary to preset the
corresponding protocols and applications in nodes before
being deployed. All nodes are charged by batteries. Once a
battery is exhausted, a node will fail.

Compared with WSNs, the costs of manufacturing and
deployment are quite expensive in UASNs. Taking into
consideration the deployment environments and the prac-
tical applications, they are typically arranged in redundant
manners. For example, an application that lasts for three
months generally requires about 300 sensors. To ensure
reliability, the service duration is estimated 2-3 times,
and more than 600-900 nodes are deployed [12]. In
general, UASNs will still survive until being completely
abandoned, which is of enormous waste. Due to the differ-
ent data formats, protocols, and service constraints in
varied applications, it is difficult for an UASN to be reused
for other services in the identical underwater region,
which apparently results in the repeated deployment
[13]. Furthermore, limited acoustic channels are shared
by a large number of marine mammals, sensor nodes,
and sonar devices. Thus, it is a key issue to implement a
flexible UASN architecture on the basis of avoiding waste
and signal interference.

In recent years, the development of Software-Defined
Networking (SDN) has received extensive attention from
industry and academia. SDN is an emerging networking
paradigm that can hopefully change the limitations of
current network infrastructures [14]. It represents an
innovative architecture, which is used to abstract devices
and applications and then manages networks by control-
lers. SDN implements the separation of the data plane
and the control plane [15] and builds a programmable
hardware infrastructure through an open standardized
interface and uses controllers to define the behavior and
operation of networks. OpenFlow [16] is a popular com-
munication protocol of SDN, by which controllers add,
delete, or modify the entries of a flow table [17] to
switches. The switches forward packets according to the
flow table [18].

Kreutz et al. [19] offer a comprehensive survey of SDN
covering its context, rationale, main concepts, distinctive
features, and future challenges. Haque and Abu-Ghazaleh
[20] evaluate the use of SDN in four classes of popular
wireless networks: cellular, sensor, mesh, and home
networks. The authors classify the different advantages
that can be obtained by using SDN across this range of net-
works. Kobo et al. [21] present a comprehensive survey on
the emerging Software-Defined Wireless Sensor (SDWSN)

and give potential importance to SDN in addressing
WSN’s inherent challenges. Duan et al. [22] provide a
review of SDWSN and analyze the current integrated
scheme in several aspects, such as in architecture, network
topology, routing protocol, node scheduling and energy
conservation, data transmission, and load balancing, as
well as in network security.

With the rapid progress of network technology,
SDN-based UASNs gradually appear. Luo et al. [23] provide
a comprehensive review of novel software-defined tech-
niques and paradigms towards realizing next-generation
UASNs, such as the Software-Defined Radio (SDR), Cogni-
tive Acoustic Radio (CAR), Network Function Virtualization
(NFV), SDN, Internet of Underwater Things (IoUTs), and
sensor cloud.

Studies show that SDN provides innovative solutions
to UASNs [24]. In SDN, an underwater node is designed
as a switch and the sink node (a surface buoy or float)
as a controller. Based on the general protocol and service
interface, centralized management can be implemented.
In theory, the nondifferentiated services [25] can be real-
ized based on SDN. It solves the redundancy of repeated
deployment and maximizes the applications. To propel
the progress of UASNs further, an SDN which is robust
[26], flexible [27], adaptive, able to utilize energy and
resources efficiently, and easy to manage and evolve has
been proposed recently.

Nevertheless, there are some difficulties in SDN for
underwater acoustic sensor networks. Although SDN of
wired networks and terrestrial wireless networks provide
valuable experience, there are still major gaps in the
SDN of UASNs.

First, RF is generally used in terrestrial cable/wireless
networks. The signal propagation velocity is 3 0 × 108 m/s

[28] and that of the acoustic is about 1500m/s [29]. The
acoustic communication underwater will bring out other
problems such as a large delay and noise interference. Sec-
ond, an UASN is an ad hoc network composed of multiple
nodes [30] powered by batteries. To extend the survival
time of the system, a switching mechanism for the node
state (active, sleep) is usually considered. Furthermore,
some nodes may fail, due to the exhaustion of the energy
source. Therefore, the topology of UASNs is time varying,
and energy conservation and topology control are taken as
the primary causes [31]. Third, the underwater conditions
are harsh, and the acoustic signal is easily subjected to inter-
ference from the natural environment (such as marine ani-
mal communication and ocean currents) and other artificial
acoustic systems [32]. Fourth, the traditional terrestrial wir-
ed/wireless network based on SDN is usually reckoned as
the three-layer structure of “controller-switch-host” [33].
On the other hand, in SDN-based underwater acoustic sen-
sor networks, a two-tier structure of “controller-switch”
[34] is realized, and the number of switches to be processed
is relatively more. As a result, the system bottleneck can be
resolved by deploying multiple controllers.

Although many studies in different areas of UASNs and
SDN have been presented, there are relatively few works built
on the combination of the two [35]. To the best of our
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knowledge, it is the second paper to review SDN-based
underwater acoustic networks except the study of Reference
[23] currently. However, we attempt to conduct an
in-depth investigation from another perspective. The main
contribution of this paper involves the following parts.

Firstly, we introduce the preliminaries and background
of UASNs and SDN briefly. Secondly, we provide a com-
prehensive review on the progress of software-defined
underwater acoustic sensor networks, which contain a
Software-Defined Radio (SDR), Cognitive Radio (CR),
and SDN. Thirdly, we offer the current issues and poten-
tial research areas for SDN-based UASNs. Finally, we
present discussions for future research.

Based on this work, we hope to inspire more active stud-
ies and take a further step towards realizing software-defined
UASNs with high performances.

The layout of the paper is outlined as follows: Section 2
introduces the preliminaries and background. Section 3
describes the progress on software-defined underwater
acoustic sensor networks. Section 4 depicts current issues
and potential research areas. Section 5 concludes the paper.

2. Preliminaries and Background

2.1. Underwater Acoustic Sensor Networks. In 1998, Argo, a
global ocean observation project led by the US was launched,
in which a profile float was deployed every 300 km crossing
over the oceans. As of Nov. 19, 2018, the total number of
buoys was 3,959 [36]. It is a large, worldwide, ocean observa-
tion system applied to measure temperature, salinity, and
currents in the oceans up to the depth of two kilometers, to
help humans cope with climate change and improve disaster
prevention and resilience. In 2000, more than 30 countries
joined in the project. Currently, Argo has become the stan-
dard of developing other ocean observation systems. China
joined Argo in 2001, and as of Sept. of 2018, 430 profile floats
[37] had been deployed in the Pacific and Indian oceans and
the Mediterranean Sea, and more than 38,000 temperature
and salinity profiles had been acquired cumulatively,
accounting for approximately 11% of Argo.

Seaweb [38] is another UASN conducted by the US Naval
Research Bureau and the Air-Sea Battle System Center. It is a
battery-charged system and designed for coastal Antisubma-
rine Warfare (ASW) sensor networks such as DADS
(Deployable Autonomous Distributed System) [39], also
used to implement offshore-based sensor systems like Kelp
and Hydra.

WHOI (Woods Hole Institute of Oceanography) [40],
established in 1930, is a well-known institution in the field
of marine and related Underwater Acoustic Communication
(UAC) science. The works of UAC mainly focus on the
WHOI Acoustic Communications Group (ACG) [41] and
the Ocean Acoustics and Signals Lab (OASL) [42]. ACG
has developed a powerful acoustic modem, which was named
Micromodem. It offers a complete solution for analyzing and
modeling underwater channels. OASL focuses on studies in
areas such as sound propagation modeling in shallow seas
and underwater signal processing. It has led and completed
some representative marine experiments, such as SW06

[43] and ASIAEx 2001 [44], which provided important sup-
port for the subsequent development of UASNs.

As an internationally renowned conference, OCEANS
[45] is annually held by the IEEE Oceanic Engineering Soci-
ety [46] and the Marine Technology Society (MTS) [47], in
which the topic of underwater communication and the latest
relevant works are announced. In 2006, WUWNET (Work-
shop on Under Water Networks) [48] was established in
the international conference of ACM MobiCom [49], by
which the recent progress of UASNs had been paid close
attention to and significant achievements had been
accomplished.

UbiNet [50] and UASN Laboratories [51] led by Profes-
sor J. H. Cui [52] developed a series of simulation platforms,
hardware, and software. The National Science Foundation
(NSF) of the US has also provided substantial funding for
UASN projects in recent years, and a number of representa-
tive works have emerged.

The WiNES [53] of the Laboratory of Northeastern
University has achieved breakthrough works in underwater
networks. The internet-based architecture of UASNs is
designed, and a network protocol stack based on IP com-
patibility is developed. At present, SEANet G2 [54], a
mobile high-rate platform of UASNs based on IP compat-
ibility is completed.

In addition, some studies of UASNs have also been
achieved at the University of Washington, the University of
California, Los Angeles, and Texas A&M University. Mean-
while, the University of Rome and the University of Padova
in Italy have strong capabilities for designing network simu-
lators and testbeds for UASNs and have implemented several
well-known simulators, such as SUNSET [55], DESERT [56],
and WOSS [57].

2.2. Software-Defined Networks. SDN is a novel network par-
adigm, which originated from the Clean Slate project of Stan-
ford University. McKeown et al. released OpenFlow [58] in
2008, and the SDN concept was proposed in the conference
of INFOCOM, 2009. SDN separates the forwarding hardware
from control decisions [59], which greatly simplifies network
management and realizes innovation and evolution.

Both ForCES [60, 61] and OpenFlow [62, 63] are
well-known SDN frameworks, which separate the control
plane from the data plane and standardize the exchange of
information. OpenFlow is proposed to standardize the com-
munication between the switches and controllers in
SDN-based systems [64]. The Open Network Foundation
(ONF) [65] is just an industry-driven organization created
by network operators, service providers, and suppliers to pro-
mote SDN. ONF established the Optical Transport Working
Group (OTWG) [66] in 2013, which defined the OpenFlow
standard for Optical Transport Networks (OTNs) [67]. Aca-
demically, the Open Networking Research Center (ONRC)
[68] focuses on the architecture design of SDN. Furthermore,
IETF, IRTF, and other organizations carry out some SDN
standardization works.

Hot topics of SDN are in terrestrial wired networks
and wireless networks [69]. Nowadays, B4 [70] is the most
important commercial system of Google in the world. It is
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built on OpenFlow, and the operations indicate that the
link utilization increases from 30% to 70% on average,
sometimes even reaching 100%. Meanwhile, other
SDN-based networks are also in line with full swing
around the world. Large-scale networks often need to
ensure strict security and reliable QoS [71, 72]. These
requirements can be satisfied based on SDN, and many
other functions such as NAT [73], firewall [74], load bal-
ancing [75], and ACL [76] can be implemented.

Currently, Data Centers (DCs) have increased at an
alarming rate. According to the statistics, DCs do not
always run at their peak power despite that all the nodes
are active, which is a great waste due to the huge energy
consumption. Studies have proven that the energy con-
sumption of DCs can be reduced based on SDN. Heller
et al. [77] proposed an energy-saving mechanism for
DCs. In this method, the minimum number of nodes that
satisfy the current traffic is activated by SDN, while the
other nodes are set to the sleeping mode. In this way,
energy consumption can be controlled between 25 and
62% under different traffic models.

The infrastructure of wireless networks, such as cellu-
lar networks and WiFi, is constructed with the advances
of SDN. In the OpenRoads [78] project, an SDN-based
wireless network is proposed, which is backward compati-
ble and can be shared with different providers and
OpenFlow-based devices. In [79], an Odin-based SDN
programming method for WLAN (Wireless Local Area
Networks) is presented. Access Points (APs) are abstracted
as controllers, in order to separate the association status
from the physical APs and enable mobility management
and load balancing without changing clients. Open Radio
[80] is devoted to designing a programmable wireless data
plane based on SDN. It provides flexibility at the PHY and
MAC layers and meets strict performance requirements
simultaneously. In [81], the network architecture of circuit
switching and packet switching based on wavelength selec-
tion is implemented by OpenFlow and a control plane
based on OpenFlow is proposed in [82] for OTNs.

Additionally, a number of SDN-based SOHO (Small
Office Home Office) networks have been mentioned.
Mortier et al. [83] designed a home network that provides
services to customers based on SDN while offering a single
controller. Mehdi et al. [84] implemented an Anomaly
Detection System (ADS) in SDN-based home networks,
which provides more accurate identification capabilities
for malicious activity detection than systems deployed in
ISPs (Internet Service Providers).

3. Progress on Software-Defined Underwater
Acoustic Sensor Networks

At present, studies of software-defined underwater acous-
tic sensor networks have been concentrated in the
following fields.

3.1. Underwater Acoustic Sensor Networks Based on
Software-Defined Radio. The key idea of a Software-Defined
Radio (SDR) is to construct an open, standardized, modular,

general-purpose hardware platform with various functions,
such as the frequency control, modulation and demodula-
tion, encryption, and changing protocols based on a wireless
communication system with flexibility. SDR is a multiband,
multimode radio with a dynamic capability defined through
software covering all layers of the OSI model [85]. It provides
reliability in a fast time-varying environment. Therefore,
UASNs based on SDR have attracted a great deal of attention.

Demirors et al. [86] designed an SDR-based architecture
for underwater acoustic communication and constructed a
prototype of a software-defined modem. The results demon-
strate that the effective recognition of the spectrum is
achieved. Sheikh et al. [87] developed an open-source acous-
tic modem (named Coralcon) based on SDR to build a
system of underwater IoT (Internet of Things) [88]. Wolff
et al. [89] proposed an underwater acoustic FH-FSK system
based on the Goertzel algorithm and SDR. Potter et al. [90]
implemented a Software-Defined Open Architecture Modem
(SDOAM), which combines numerous protocols to work
jointly according to the OSI model. Abbas et al. [91] devel-
oped a system named UPPER (Underwater Platform to Pro-
mote Experimental Research) and designed an underwater
acoustic modem based on the SDR-GNU Radio [92]. Exper-
iments demonstrate that the development cost is greatly
reduced, and the flexibility is improved.

Al-Halafi et al. [93] designed a communication system
using PSK (Phase Shift Keying) and QAM (Quadrature
Amplitude Modulation), then constructed a transmitter
based on SDR and realized video streaming communica-
tions for short distances on underwater optical links.
Torres et al. [94] used SDR to design an acoustic network
platform which has strong adaptability and flexibility,
making it easy to implement related protocols of PHY
and MAC layers in underwater networks. Li and Huang
[95] designed a software-based radio-acoustic modem
(named SDA) and deployed it in Qiandao Lake of China
to verify its performance.

In summary, SDR offers an important foundation for
subsequent studies of UASNs. Nevertheless, SDR mainly
concentrates on the PHY and MAC layers, and there
are still several defects. On one hand, the SDR-based
infrastructure relies heavily on physical devices and
requires high-performance underwater nodes. With the
increase of applications, the execution efficiency of sys-
tems will be greatly reduced, and it will lead to the rapid
exhaustion of energy, which is fatal for UASNs. On the
other hand, the implementation of SDR will increase
the development costs for the chip selection. In a word,
SDR cannot achieve all the technologies of SDN for
underwater acoustic sensor networks.

3.2. Underwater Acoustic Sensor Networks Based on Cognitive
Radio. Cognitive Radio (CR) is defined as an intelligent
software-defined radio that senses the environments for
detecting available channels and accordingly changes its
transmitter or receiver parameters such as operating
frequency, bandwidth, modulation, and transmitting power
[96]. CR realizes a highly reliable communication and
increases the utilization of spectrum resources. The core of
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CR is DSA (Dynamic Spectrum Allocation) [97] and spec-
trum sharing [98] through spectrum sensing [99] and intelli-
gent learning.

Alfahham and Berekovic [100] revealed that CR is the
most promising technology to resolve the spectrum
resources and prolong the survival time of WSNs. How-
ever, there is a serious defect in the huge energy consump-
tion. Kaschel and Toledo [101] introduced the cooperative
and noncooperative sensing technologies in CR-based sen-
sor networks and make a classification of the relevant
spectrum management methods in detail. Luo et al. [102]
proposed a CR-based underwater acoustic network named
UCAN, and simulations show that the performance of
UASNs is improved greatly through the cooperation of
PHY and MAC layers.

Based on the Wigner-Ville transform and CR, Biagi et al.
[103] presented a method to extract the time and frequency
characteristics of underwater acoustic channels. Thus, signals
and interference can be distinguished and the maximum
access probability can be reached. Wang et al. [104] proposed
a FO-based (Frequency Offset) estimation algorithm for
cognitive underwater acoustic systems through exponential
modulation. Simulation shows that the algorithm offers reli-
able performance within the expected estimation range.
Ghafoor et al. [105] presented a spectrum-aware routing
algorithm based on OFDM and CR for UASNs and per-
formed spectrum sensing through an energy detector. Exper-
iments demonstrate that the date rate increases as nodes
increase, and the delay is smaller.

Li et al. [106] designed a cognitive transmission scheme
named DAD-Tx (Dolphin-Aware Data Transmission) in
which a probabilistic method is used to capture the stochastic
features of dolphin communication and describes it mathe-
matically. DAD-Tx is designed to maximize the end-to-end
throughput based on the constraints of dolphin perception
and wireless acoustic transmission. Results show that it
greatly improves the spectrum performance of UASNs.

Luo et al. [107] developed a MAC protocol for a dis-
tributed acoustic cognitive network, namely DCC-MAC.
In this protocol, nodes dynamically adjust and allocate
bandwidth according to the traffic. Results demonstrate
that DCC-MAC greatly reduces the collision probability
between control messages and has advantages in through-
put and energy efficiency. Yan et al. [108] provided a solu-
tion to the joint relay selection and power allocation in a
cognitive acoustic network. Results show that the feedback
mechanism based on limited bits improves the perfor-
mance of the system significantly.

All in all, CR is a mature technology in terms of spec-
trum sensing and resource management for underwater
acoustic systems. Nonetheless, studies on hardware algo-
rithms of CR are relatively scarce [109]. Therefore, the
design of the hardware algorithm is crucial. In addition,
the front-end noise should be as small as possible, not to
influence the performance of spectrum sensing. Neverthe-
less, it is hard to solve these issues for the terrestrial
WSNs, let alone for UASNs. In conclusion, there are still
significant challenges in the implementation of CR in
underwater acoustic sensor networks.

3.3. Underwater Acoustic Sensor Networks Based on SDN.
Compared to SDR and CR, SDN is less studied in
UASNs. Akyildiz et al. [110] defined the basic architec-
ture of underwater acoustic sensor networks based on
SDN, which is named SoftWater, where the main
advantages of SDN and the relevant challenges are pre-
sented. Fan et al. [111] designed an SDN-based archi-
tecture in which an acoustic system is used in the
control plane for long distances and an optical system
is used in the data plane for short distances. However,
the implementation of the communication mechanism
has significant obstacles.

Fan et al. [112] designed an SDN-based AUV system and
implemented a test bed on WaterCom [113], in which the
performance of the slotted FAMA [114] and UW-ALOHA
[115] is tested and compared. Ghafoor and Koo [116] consid-
ered the natural and artificial acoustic systems as the two Pri-
mary Users (PUs) of UASNs and designed an SDN-based
architecture in which buoys are treated as the Main Control-
lers (MCs) to maintain the global view of the network. The
AUVs act as Local Controllers (LCs), which are set to move
in a fixed range, and they communicate directly with MCs.
Underwater nodes within the motion trajectory of AUVs
are set as gateways; these nodes collect data from all their
neighbors, then store and transmit data to a LC. All nodes
update their status periodically. All LCs share their localized
views with a MC, so that a global view can be established.
Experiments prove that it has benefits in terms of
end-to-end delay, data delivery rate, and overhead.

Lal et al. [117] designed a system model that incorpo-
rates SDN for the security of UASNs, considering the
deployment and functional issues. Torres et al. [118] pro-
posed security countermeasures to reduce the risk of secu-
rity attacks and discuss routing configuration, node
trajectory optimization, and node buffer management for
SDN-based UASNs.

Recently, we offered an SDN-based architecture [119]
for UASNs and implemented the hardware of underwater
nodes based on OpenFlow. We proposed a multiuser
detection algorithm [120] based on convex optimization.
The results show that the algorithm is suitable for the
MC-CDMA (Multi-Carrier Code-Division Multiple
Access) systems of UASNs. Considering that single con-
trollers in large-scale UASNs will cause the bottleneck,
we present an SDN-based framework with multiple con-
trollers [121]. Results reveal that the performance of
UASNs can be greatly improved.

In summary, studies on SDN-based UASNs have not
formed a complete knowledge system. Some works only give
the definition of SDN, but they do not give overall solutions.
Therefore, it is imperative to carry on comprehensive studies
based on SDN.

4. Current Issues and Potential Research
Areas for SDN-Based UASNs

In this section, the following current issues and potential
research areas of UASNs are presented.
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4.1. Inherent Flaws of Underwater Acoustic Sensor Networks

(1) In a traditional UASN, no trade-off can be formed
between the repeated deployment of multiservice
requirements and the redundant deployment
guaranteeing reliability.

Taking into account the issues of nodes (such as perfor-
mance and energy), only few services can be offered in an
UASN of normal conditions. Therefore, multiple systems
are deployed in the same region for different applications,
which will lead to the repeated deployment.

The redundant deployment is another important techni-
cal means to ensure the reliability of UASNs. Nevertheless,
the coexistence of multiple systems will lead to serious signal
interference [122] in a designated underwater region. SDN
implements flexible applications, solves the repeated deploy-
ment, reduces waste and saves costs.

(2) In traditional UASNs, multiservice multiplexing
technologies are difficult to achieve.

Although the cost of manufacturing and deploying
UASNs is expensive, it is impossible to deploy a huge amount
of services in a system, due to the limitations of energy and
performance. Moreover, there is a great randomness in actual
applications, and even if multiple systems can be integrated,
there are extreme deficiencies in the function division and
scheduling. That is, service multiplexing and resource alloca-
tion strategies have not been considered based on the tradi-
tional networks. However, software-defined NFV (Network
Function Virtualization) [123, 124] leverages network virtua-
lization and logically centralized intelligence to minimize the
service-providing cost and maximize the utilization of net-
work resource. Based on NVF, it is feasible to make reason-
able service multiplexing and resource allocation in UASNs.

(3) As disposable systems, UASNs cannot be salvaged
and recycled after being deployed. Therefore, the
development risk cannot be solved.

For an UASN, it must undergo a large number of testing
before being deployed. Once the functional and performance
defects are found, it should be timely corrected beforehand. If
defects are discovered after being deployed, there is no
opportunity to handle them, which will leads to serious con-
sequences. It is necessary to ensure that the design of the sys-
tem is absolutely perfect before being deployed. Nevertheless,
it is impossible to do this at all. Therefore, modifications after
the system is deployed are an important topic on UASNs,
which can be treated based on SDN conveniently.

(4) As an interdisciplinary technology, the research
directions of UASNs are extremely wide. Neverthe-
less, they lack a complete knowledge system, and
there are big gaps between the theoretical studies
and practical works.

UASNs are emerging multidisciplinary technologies
related to ad hoc networks [125, 126]. The interests of

distinctive research directions are very different. For exam-
ple, more considerations (like clustering, location, and syn-
chronization) based on ad hoc networks are given to the
deployment of UASNs. The studies based on sensor networks
mainly focus on the design of devices, such as the underwater
nodes, sensors, buoys or floats [127], and anchors. In addi-
tion, it also includes the design of pressure-resistant water-
proof batteries [128]. In the acoustic communication
science, it chiefly involves the communication techniques,
such as MIMO [129–131], cooperative communication
[132–134], and cross-layer optimization [135, 136], while
marine science pays more attention to the modeling of
underwater channels.

In academic terms, various works have greatly pro-
moted the development of UASNs. Due to the failure to
form a complete knowledge system, there will be situations
where, when a problem is solved, more serious issues will
be generated. For instance, an algorithm is used to reduce
BER (Bit Error Rate) but this greatly increases the compu-
tational complexity, resulting in a significant reduction in
the survival time of UASNs. In a sense, these studies alone
have no strong research significance. Therefore, it is
expected to make a trade-off among multiple indicators
based on SDN for UASNs.

(5) Due to the diversity and extensiveness of applica-
tions, it has not formed a unified standard in UASNs,
and the interconnectivity is weak. Poor interactivity
causes the technical blockade.

For now, the deployment of large-scale underwater
acoustic sensor networks is relatively rare. It is well known
that Argo should be the largest project in the world. How-
ever, various technologies of UASNs are not concerned with
Argo. In addition, there is often a huge gap between UASNs
and the wired sensor networks with underwater drag cables.
Currently, surveillance systems [137] can be found in coastal
waters, such as submarine exploration and marine biological
monitoring, while each system is isolated with others and the
interoperability is very weak.

Considering the deployment cost and environment,
UASNs have been tested gradually in different regions, such
as water tanks, pools, lakes, rivers, and oceans. Actually,
UASNs suffer serious signal interference from environmental
noise and artificial acoustic systems. In addition, channels in
distinct regions are quite different and there will be a great
impact on the actual applications due to the time-varying
environmental factors, like temperature, salinity, pH, depth,
and pressure. Nonetheless, no standards have been estab-
lished for these impacts. Fortunately, WUWNet is preparing
to establish international standards and solutions for UASNs.
It is expected to ease the technical blockade and accelerate
development efforts.

With the rapid progress of simulation and emulation
techniques, combining the disclosed ocean dataset (such as
Ocean Observatories Initiative project) [138] becomes an
important breakthrough tool for UASNs. Furthermore, with
the advance of IoT (the Internet of Things), the underwater
IoT systems [139] based on IPv6 should be a new direction.
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However, it seems that an all-IP architecture has not yet been
realized in underwater acoustic sensor networks.

4.2. Key Issues for SDN-Based Underwater Acoustic Sensor
Networks. As an industrial network, an UASN mostly
ensures availability, but there are some defects in perfor-
mance, service quality, and security. We can see that SDN
is only a conceptual prototype for underwater acoustic sensor
networks. It is not widely implemented based on the follow-
ing issues.

4.2.1. Design of the Architecture by Software Processing for
SDN-Based UASNs. A reasonable infrastructure support is
the foundation of UASNs. Currently, various works are pre-
sented for software-defined networks. Nevertheless, there is
no uniform standard, and chips that are purely SDN sup-
ported are rare. Several so-called SDN devices or chips only
encapsulate part of the software-defined functions on the
original systems and are of poor flexibility.

Underwater nodes are usually developed by dedicated
SCM (Single-Chip Microcomputer) systems. Due to the
redundant deployment, many issues (like development cost,
energy conservation, and performance) must be carefully
considered. It means that traditional UASNs which support
SDN are extremely limited.

The SDN flow table based on ASIC is usually limited
to the KB level [140]; thus, the reliable isolation of multi-
services cannot be implemented for UASNs of large scales.
In addition, it is difficult to overlay more service identifi-
cations and additional functionalities on the existing flow
tables. Although the NPU (Network Processing Unit)
[141] has high flexibility, the bandwidth is restricted.
Therefore, the concurrent processing of a large-scale flow
table cannot be supported.

The query efficiency of flow can be improved based on
the architecture of FPGA + TCAM [142, 143]. Nevertheless,
the energy consumption is extremely high and considerable
hardware resources are occupied at the same time, which will
increase the design difficulty of board levels in UASNs.

In a word, hardware architecture (ASICs, NPUs, FPGAs,
and others) is not ideal for SDN support, and it has no advan-
tages in terms of energy conservation and development cost.
Therefore, the design of architecture based on software pro-
cessing is an important solution for SDN-based UASNs.

4.2.2. The Reasonable Assessment of Isolation Items for
Implementing SDN-Based UASNs. In order to realize multi-
plexing technology, NVF is used to implement the integra-
tion of various applications in SDN-based underwater
acoustic sensor networks. It is a technique that isolates net-
work traffic from nodes, ports, and other physical elements.
Thus, multiple virtual networks can be formed, indepen-
dently deployed, and managed on a shared system. To form
reliable virtual networks, the isolation items (data, CPU,
bandwidth, and flow table) must be fully evaluated. Nonethe-
less, it is difficult to satisfy all isolation items simultaneously
on the performance-constrained UASNs. Therefore, it is
important to make a reasonable assessment of the isolation
items, which can quickly adapt to the deployment and load

changes of the physical networks, and offer a stable response
to meet the requirements. It is another fundamental issue.

4.2.3. A Reasonable Load-Balancing Technique for
SDN-Based UASNs. Generally, a single-sink (single control-
ler) architecture is usually used in UASNs. For a small-scale
underwater network, a single controller can indeed under-
take management tasks and reduce overhead. Nevertheless,
there are plenty of nodes in large-scale UASNs. If a single
controller shoulders the centralized management, the follow-
ing problems will be encountered.

Firstly, all flow is forwarded to a single controller. In a
large-scale UASN, the flow of a controller will increase rap-
idly as nodes increase. Therefore, a single controller will be
the bottleneck of the system. Secondly, since the network is
extremely extensive, the underwater nodes far from the con-
troller cannot get the feedback in time. It is a fundamental
issue for data exchange and synchronization. Thirdly, when
the controller fails or is attacked, all nodes will lose connec-
tion. It will result in paralyzing the system. Therefore, a mul-
ticontroller architecture is a better choice.

Controllers on the ocean surface implement uniform
deployment based on buoys or floats, cruise ships, or other
equipment, while underwater nodes carry out a random
deployment. Therefore, the number of nodes managed by
each controller is different, and the load of each controller
will be greatly uneven. The load-balancing mechanism
among controls becomes the focus. Unfortunately, there is
no standard for the horizontal deployment of controllers
[144]; thus, the data consistency and East-West interface
(the interface between controllers) [145] for communication
between controllers have not yet been resolved. All in all,
implementing a reasonable load-balancing technique [146]
is the third key issue for SDN-based underwater acoustic
sensor networks.

5. Conclusion

Compared with WSNs, underwater acoustic sensor networks
are relatively closed. The systems do not realize full IP man-
agement in common, and based on the industrial infrastruc-
ture, it only guarantees usability and performance, but QoS,
security, reliability, flexibility cannot be fully guaranteed.
UASNs rely heavily on the hardware infrastructure and have
poor flexibility. Redundant deployment is an important mea-
sure to ensure the reliability of systems. However, no
trade-off can be formed between the redundant deployment
and the repeated deployment. Furthermore, the repeated
deployment is a huge waste, due to the high costs of UASNs.
Based on SDN, an innovative network architecture focused
on applications can be designed, and OpenFlow is used to
construct multiple virtual networks and build the manage-
ment of all-IP systems. Nevertheless, a single controller
may cause serious network bottlenecks for a large-scale
UASN. Therefore, a multicontroller architecture is a better
choice for SDN-based underwater sensor acoustic networks.

In this paper, advances in software-defined UASNs
were presented. First, we introduced the preliminaries
and background. Then, we presented the progress of
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software-defined UASNs, which included SDR, CR, and
SDN. Next, we proposed the current issues and potential
research areas. The review showed that both UASNs and
SDN are hot topics, and they have been transferred from
theoretical studies into actual engineering applications.
Studies also proved that there is an improvement in the
flexibility, realization of multiple service reuse, and great
reduction in the development risk based on SDN. None-
theless, designing an architecture based on software pro-
cessing, making a reasonable assessment of isolation
items, and proposing a flexible load-balancing mechanism
were the most urgent tasks. Based on this work, it is
hoped that important theoretical and technical support
for SDN-based UASNs of high performance can be
provided.
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