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The multicommodity-flow problem arises in a wide variety of
important applications. Many communications, logistics, manu-
facturing, and transportation problems can be formulated as
large multicommodity-flow problems. During the last few years
researchers have made steady advances in solving extremely
large multicommodity-flow problems. This improvement has
been due both to algorithmic and to hardware advances. At
present the primal simplex method using the basis-partitioning
approach gives excellent solution times even on modest hard-
ware. These results imply that we can now efficiently solve the
extremely large multicommodity-flow models found in indus-
try. The extreme-point solution can also be quickly reoptimized
to meet the additional requirements often imposed upon the
continuous solution. Currently practitioners are using EMNET,
a primal basis-partitioning algorithm, to solve extremely large
logistics problems with more than 600,000 constraints and
7,000,000 variables in the food industry.

Many large-scale models are formu-
lated as multicommodity-flow

problems. “This model arises in a wide va-
riety of application settings in communica-

tions, logistics, manufacturing, and trans-
portation as well as in such problem
domains as urban housing and food grain
export-import” [Ahuja, Magnanti, and
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Orlin 1993]. Researchers usually describe
the distribution-management model when
they present the classical multicommodity
problem. This model describes a separate
network flow for each product (commod-
ity). Side constraints are added to the
model that limit the total amount of flow
between certain origin-destination pairs. In
real-world models, these joint capacitation
constraints describe inventory-storage,
loading-dock, or truck (train) limitations.
Practitioners are building and solving for-
mulations of ever-increasing size and com-
plexity that capture economics of scale and
coordination among plants and distribution
centers. As models have increased in size
and complexity, the cost of computation
has dropped to a point where it is now fea-
sible to solve very large multicommodity-
flow problems on hardware of modest cost.
Surveys of the application of multicom-
modity-flow problems have been published
by Assad [1978], Kennington [1978], and
Tomlin [1966]. In the food industry, practi-
tioners now routinely solve extremely large
multicommodity-flow problems with more
than 600,000 constraints and 7,000,000 vari-
ables using an enhanced version of EM-
NET [McBride 1985], a basis-partitioning
simplex algorithm. These are huge multi-
time-period logistics models with postop-
timization required for sole sourcing.

The multicommodity-flow problem is
usually presented as having the following
form:
min cx
x$0

(1)Nx 4 b

Ax # d

where the objective function, cx, is to
minimize costs, the network constraints,

Nx 4 b, ensure that supply, demand, and
shipping-route requirements are satisfied,
and Ax # d are the joint capacitation
constraints.

When product substitutions are not per-
mitted, the network part of the problem
decomposes into K disjoint networks. N
then has the form

N1

N2

N 4 K (2)
N3 4K11

NK

there being K commodities. Ni is the net-
work for the ith commodity.

Researchers have studied four different
approaches to determine the best way to
solve the multicommodity-flow problem.
Schultz and Meyer [1991], Zenios and
Pinar [1992], and Zenios, Pinar, and
Dembo [1995] use decomposition tech-
niques. Carolan et al. [1990], Lustig and
Rothberg [1996], Marsten et al. [1990], and
Schultz and Meyer [1991] use interior-
point algorithms to solve the
multicommodity-flow problem. Schultz
and Meyer [1991] use both decomposition
and interior-point methods. Another ap-
proach is to use the solution of the net-
work part of the problem to hot-start the
simplex method; McBride and Mamer
[1997] give computational results. The
fourth approach is to use the simplex
method with a partitioned basis. Initial
work on the efficient implementation of
primal partitioning techniques includes
that of Barr et al. [1987], Chen and Saigal
[1977], Glover and Klingman [1981],
Graves and McBride [1974, 1976], and
McBride [1973, 1978a, 1978b, 1980, 1985].
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In many of these works, the word factoriza-
tion is used instead of partitioning. Work
specialized to the multicommodity-flow
problem includes that of Ali et al. [1980],
Castro and Nabona [1996], Farvolden et al.
[1993], Kennington [1977], Jones et al.
[1993], Mamer and McBride [1997],
McBride [1996], and McBride and Mamer
[1995, 1997 (work done in 1991–1993)]. I
will review the computational results of
some of these researchers and highlight
how they have used vectorization, multi-
ple processors, and new faster single pro-
cessors. I will also review how each has
done on solving PDS-20, the one common
problem many of these researchers have
solved.

I have been able to make reasonable
comparison of solution approaches be-
cause of the availability of the KEN and
PDS problem sets. Many of the above re-
searchers have included results using
problems selected from the KEN and PDS
problem sets. KEN-11, KEN-13, and KEN-
18 are randomly generated test problems
using the code MNETGN by Ali and
Kennington, and they are available from
the NETLIB library. The PDS test problems
are created using a generator obtained
from Robert Meyer. Meyer obtained the
generator from the CINCMAC analysis
group of the Military Airlift Command
(MAC), now called the Airlift Mobility
Command (AMC), at Scott Air Force Base.
The patient-distribution system (PDS)
model is a logistics model designed to
help make decisions about how well MAC
(AMC) can evacuate patients from Europe.
PDS-D denotes a problem that models a
scenario lasting D days, for integers De

[1,85]. The PDS problems are

multicommodity-flow problems that be-
come quite large and more difficult to
solve as D becomes larger. PDS-02, PDS-
06, PDS-10, and PDS-20 are available from
the NETLIB library. Table 1 shows a com-
plete description of the problems.
Decomposition Methods

The smooth-penalty-function algorithm
proposed by Zenios, Pinar, and Dembo
[1995] uses a linear-quadratic (LQR) func-
tion to eliminate the side constraints and
produce a differentiable problem. Next
simplical decomposition is used to decom-
pose the problem into a set of linear prob-
lems, one for each commodity.

This algorithm is very suitable for the
vector architecture of the Cray Y-MP.
Zenios, Pinar, and Dembo [1995] solved
PDS-05 in 93.10 seconds with vectorization
and 352.98 seconds without. They ob-
tained performance improvements in the
range 1.92–3.76 by using vectorization.
Zenios and Pinar [1992] gives the PDS-30
solution time. They appear to use the
same algorithm in both papers. On the
CRAY Y-MP, PDS-20 took 1,946 seconds
with one processor and 740 seconds with
eight processors. They obtained approxi-
mately five digits of accuracy in their com-
puter runs.

Schultz and Meyer [1991] created a bar-
rier function by placing the side con-
straints in the objective function. They
then used a generalization of the Frank-
Wolfe method to linearize the objective
function, which decomposes it into an in-
dependent problem for each commodity
using the structure of (2). Even though the
functions are different, there is some simi-
larity with the work of Zenios and Pinar
[1992] and Zenios, Pinar, and Dembo
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Problem
Number
of Nodes

Number
of Side
Constraints

Total
Number of
Constraints

Total Number
of Variables

Number of
Commodities

KEN-11 14,641 53 14,694 21,346 121
KEN-13 28,561 71 28,632 42,659 169
KEN-18 104,976 151 154,127 154,699 324
PDS-01 1,386 87 1,473 3,816 11
PDS-02 2,772 181 2,953 7,716 11
PDS-03 4,290 303 4,593 12,590 11
PDS-05 7,546 553 8,099 24,192 11
PDS-06 9,185 696 9,881 29,351 11
PDS-10 15,389 1,169 16,558 49,932 11
PDS-20 31,427 2,447 33,874 108,175 11
PDS-30 46,453 3,491 49,944 158,489 11
PDS-40 62,172 4,672 66,844 217,531 11
PDS-50 77,341 5,719 83,060 275,814 11
PDS-60 92,653 6,778 99,431 336,421 11
PDS-70 107,250 7,694 114,944 390,005 11
PDS-80 120,879 8,302 129,181 434,580 11
PDS-85 127,556 8,557 136,113 455,488 11

Table 1: Research test set of problems.

[1995]. They used a Sequent computer
with 20 processors. During the solution
process, they assigned each of the 11 com-
modities to a separate processor to reduce
solution time. They stopped the algorithm
after 50 iterations, which resulted in sub-
optimal solutions for the larger PDS prob-
lems. PDS-20 took 3,043 seconds on the Se-
quent computer. They obtained three
digits of accuracy in the objective function
for problems PDS-30, PDS-40, and PDS-50
and two digits of accuracy in problems
PDS-60 and PDS-70. This is significant
since the optimal objective-function value
has 11 digits to the left of the decimal
point. These results clearly show the slow
convergence of decomposition methods.
Interior Point Methods

Lustig and Rothberg [1996] have ob-
tained the best interior-point solution time
for PDS-20 by using the parallel version of

the CPLEX barrier algorithm running on a
Silicon Graphics Power Challenge with 16
processors. They included PDS-20 in their
set of test problems because of its large
size. Their computation times for PDS-20
are 2,404 seconds for one, 794 seconds for
four, 501 seconds for eight, and 409 sec-
onds for 16 processors. Each of the R8000
processors is considered about equal to
one CRAY Y-MP processor. On the Power
Challenge, each processor has a four
Mbyte cache. To get these excellent results,
Lustig and Rothberg organized computa-
tions very carefully so that the caches had
high hit rates.

Previous interior-point solution times
for solving the KEN and PDS problems in-
clude work done by Carolan et al. [1990]
and Marsten et al. [1990]. Marsten et al.
obtained these results using OB1 on a
CRAY Y-MP with one processor using the



McBRIDE

INTERFACES 28:2 36

CRAY’s vectorization capabilities. OB1
took 15,972 seconds to solve PDS-20.
Carolan et al. obtained these results using
the KORBX computer. The KORBX had 14
processors with eight used for computa-
tion. The other six processors were used
for editing and data manipulation. Each of
the eight computation processors had its
own vectorization capability. PDS-20 took
63,720 seconds on the KORBX system.
Simplex Method with Advanced Basis

Some have thought that just using the
advanced-network-starting basis in the
regular simplex method would suffice to
get good solution times. Without the ad-
vanced start, KEN-11 took 450 seconds,
while with the advanced start, it took 27
seconds to be solved to optimality. The ad-
vanced start can make a big difference but
the extremely large size of the LU factori-
zation for the larger multicommodity-flow
problems soon has a very debilitating in-
fluence upon the effectiveness of the sim-
plex method. PDS-20 took 4,324 seconds
using OSL with the advanced-network
start on an IBM mainframe. The solution
times greatly increase as the total number
of constraints increases as seen in the solu-
tion times of KEN-18 and PDS-30. PDS-30
ran for three and one half days on the
mainframe (getting only a limited use of a
CPU) for a total of 45,069 seconds
[McBride and Mamer 1997].
The Basis-Partitioning Method

In the basis-partitioning method, the
simplex basis is partitioned so that the
working explicit inverse is of a dimension
at most equal to the number of side con-
straints. This much smaller inverse is
maintained as the simplex method is
executed.

The normal solution approach in this
method can be described in two steps:
(1) Drop the side constraints and solve the
resulting network problems by
commodity;
(2) Solve the full problem using the net-
work solution as part of an advanced basis
using the partitioned basis.

There have been a number of implemen-
tations of this basis partitioning scheme
[Barr, Farhangian, and Kennington 1987;
Chen and Saigal 1977; Glover and
Klingman 1981; and McBride 1978a, 1978b,
1980, 1985.].

Even using the partitioned basis does
not guarantee good solution times on ex-
tremely large multicommodity-flow prob-
lems. The advanced starting basis may not
be good enough to considerably reduce
the number of pivots when in step 2,
which has the more computationally in-
tensive pivots. The dimension of the work-
ing inverse may still be very large, requir-
ing a substantial amount of computation
per pivot. The pricing strategy used may
need to be specialized for this class of
problems to further reduce the number of
pivots. The work required to update the
duals for the network constraints on each
pivot may be substantial. PDS-85 has
127,556 network duals. Not every network
dual changes on each pivot, but in the
usual implementations of the simplex
method, the solver must determine on
each pivot which ones change and update
them. When one deals with these issues
properly, one obtains extremely good solu-
tion times using modest hardware. In the
appendix, I discuss enhancements made to
EMNET [McBride 1985] in more detail.

After enhancements to the basic-
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partitioning-simplex approach, the solu-
tion time for PDS-20 is 49 seconds on a
machine with a 500 MHZ Alpha processor.
Conclusions

It appears that currently the basis-
partitioning implementation of the sim-
plex method is a good way to solve
multicommodity-flow problems. This is
true for PDS-1 to PDS-85 and also for all
of the KEN problems. Super computers
with multiple processors, vectorization ca-
pabilities, and large amounts of RAM are
not needed for the basis-partitioning ap-
proach (Table 2). I obtained these results
with a Carrera Cobra Alpha AXP 21164
EV-56 at 500 MHZ with 128 megabytes of
RAM. These modest hardware require-
ments will permit companies to efficiently

solve extremely large multicommodity-
flow problems on workstations already in
their possession.

The solution times for EMNET (Table 2)
show a near-linear increase in solution
times from PDS-30 to PDS-85. This is very
promising since it implies that we can
now consider industry-size problems. My
experience confirms this. For one food
company, problem sizes have increased to
more than 600,000 constraints and
7,000,000 arcs. The EMNET solution times
for the initial continuous LP for these
huge problems is less than that needed to
solve PDS-80. It seems that many times
real industrial problems are easier to solve
than the larger PDS problems.

Most multicommodity logistics prob-

Problem

Results
from
Pinar
and
Zenios
[1992]

Results
from
Pinar
and
Zenios
[1990]

Results
from
Marsten
et al.
[1990]

Results
from
Schultz
and
Meyer
[1991]

Results
from
Carolan
et al.
[1990]

Results
from
McBride
and
Mamer
[1997]

Results
from
Lustig
and
Rothberg
[1996]

Results
with
Enhanced
EMNET

Ken-11 16 23 396 27 1.73
Ken-13 138 67 1,242 573 10.32
Ken-18 680 15,840 12,764 46.81
PDS-01 1.86 64 .20
PDS-02 11 129 148 .26
PDS-03 19 218 .48
PDS-05 93 23 403 1.64
PDS-06 295 524 1,692 2.54
PDS-10 408 96 1,521 999 11,880 475 6.70
PDS-20 1,946 740 15,972 3,043 63,720 4,324 409 49
PDS-30 7,504 2,566 6,480 45,069 162
PDS-40 10,440 428
PDS-50 19,800 647
PDS-60 24,900 963
PDS-70 33,840 1,152
PDS-80 1,582
PDS-85 1,678

Table 2: Known results (times in seconds).
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lems solved in practice require additional
postprocessing of the raw continuous solu-
tion to eliminate small truckloads and to
consolidate orders. This includes the diffi-
cult sole-sourcing requirement. The
extreme-point solution obtained using the
basis-partitioning approach can be used
for efficient postprocessing. While the
interior-point approach can take better ad-
vantage of multiple processors, it is less
efficient when doing postprocessing.
Postprocessing capabilities have been
added to EMNET for the extremely large
logistics model I discussed in the previous
paragraph to eliminate small truckloads
and consolidate products in orders. The
company solves the six-week model five
days a week for planning purposes. It uses
one of the model solutions for the actual
shipment of its products for the next
week. I have added postprocessing capa-
bilities to EMNET to sole source a large
multicommodity logistics problem for a
different customer in the food industry.
Unfortunately, for proprietary reasons, I
cannot say more about these extensions of
EMNET for these commercial applications.
The sole-sourcing requirements of these
two businesses are quite different, but the
extreme-point solutions I obtained using
the basis-partitioning approach make this
postprocessing much easier to do.
APPENDIX

The heart of the basis-partitioning im-
plementation of the simplex method is the
partitioned basis. The basis is partitioned
into a network part and a nonnetwork
part. The basic network part is further par-
titioned into a network basis (nonsingular
square submatrix) G1 and the remaining
part G2. Partitioning the basic part of A to
conform to the [G1, G2] partition yields

[A1, A2]. The full basis partition is as
follows:

G G1 2B 4 3 4A A1 2

and the partitioned basis inverse is given
by

11 11 11 11 11(I ` G G H A )G 1G G H1 2 1 1 1 211B 4 11 11 113 41H A G H1 1

where
11H 4 A 1 A G G . (3)2 1 1 2

The duals are computed according to
the standard formula cBB11 which, when
partitioned as above, yields

11 11w 4 (c 1 c G G )H , (4)2 2 1 1 2
11w 4 (c 1 w A )G , (5)1 1 2 1 1

where the cost vector c 4 [c1, c2] has been
partitioned in a fashion conformable to G1

and G2. The w2 values in (4) are the dual
variables for the side constraints and the w1

values in (5) are the dual variables for the
constraints corresponding to the nodes in
the network. H11, G1, and the original
problem data are used to execute the sim-
plex method. Here the dimension of the
working inverse, H11, or H in (3) is equal
to the number of side constraints.

I will describe the key features and en-
hancements made to the EMNET [McBride
1985]. These enhancements enable EMNET
to achieve the computational results re-
ported here for solving multicommodity-
flow problems.
Improving the Advanced Starting Basis

McBride and Mamer [1997] developed a
primal allocation decomposition heuristic
to move the network solution closer to the
optimal solution and to satisfaction of the
side constraints. After the network solu-
tion is obtained, it checks all of the side
constraints for violation. It proportionally
assigns the positive variables in the vio-
lated side constraints new upper bounds
so that if each variable were reduced in
value to its new upper bound, the con-
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straints would be satisfied. It enforces the
new upper bounds by using higher objec-
tive costs imposed using an implicit im-
plementation of piecewise separable con-
vex costs. It reoptimizes the network
problem(s). As it imposes the new upper
bounds, some variables that were previ-
ously zero take on positive values. It
makes a new proportional assignment of
upper bounds again across all positive
variables and again reoptimizes the net-
work problem(s). The process is continued
until there is no further improvement in
the total infeasibleness of the side con-
straints. It cuts the infeasibility of the side
constraints roughly in half on each itera-
tion for the PDS problems.
Reducing the Size of the Working
Inverse, H!1

McBride [1996] introduces a heuristic
that controls the dimension of H11 so that
it is very close to the number of binding
side constraints. This resulted in a 45-per-
cent reduction in solution times for PDS-
50 and PDS-60 and a 44-percent reduction
for PDS-70 and PDS-80. It reduced the so-
lution time for PDS-85 by 48 percent. The
basic idea of the heuristic is to just include
the side constraints in H11 when they are
violated or are very close to being vio-
lated; otherwise they are ignored. Each
time the working basis, H11, is refactored,
the side constraints are checked to see if
any additional ones should be included in
H11. About 24 percent of the side con-
straints are binding for PDS-80 and PDS-
85 at optimality. For the smaller PDS prob-
lems, a slightly larger percentage of the
side constraints are binding.
Computing Duals w1 on Demand

The duals in w1, the dual variables cor-
responding to the network constraints, are
computed on demand during pricing.
Usually only a small percentage of the w1

duals are needed during a typical pricing
step. A careful study of Equation (5)
shows that the first time during the pric-

ing step of a pivot that a particular dual is
needed one can just proceed up the tree
until one encounters a node that already
has its dual computed for the pivot or a
root node. Then one can proceed back
down the back-path computing only the
duals on the back-path. One also com-
putes the (c1 1 w2A1) values in (5) as
needed. When EMNET [McBride 1985]
was originally developed, I observed a
great reduction in solution times when I
added this feature.
Using Decomposition for Pricing

One can reduce the number of more
computationally intensive pivots that re-
quire the use of H11 with a good pricing
strategy. The pivots taken in improving
the advanced starting basis are made us-
ing the very efficient network technology.
When we relax the complicating con-
straints, Ax # b, by placing them in the
objective function with the dual variables
w2, we create the Lagrangian subproblem.
Researchers usually use this Lagrangian
subproblem to compute lower bounds for
problem (1). Mamer and McBride [1997]
show that one can use the solution to the
Lagrangian subproblem for guidance in
pricing. When N has the structure shown
in (2), then the Lagrangian subproblem de-
composes into the K smaller subproblems
p1(w2), . . . pk(w2). One would proceed by
solving p1(w2) and placing the first few en-
tering variables during the solution pro-
cess (to ensure and to speed up conver-
gence) and the positive variables in the
solution in a candidate queue for pricing.
Then one would price the variables in the
candidate queue and pivot until no further
improvement can be made. Move to the
next subproblem p2(w1) and repeat the
same process. Proceed cycling through the
subproblems until optimality. This ap-
proach has a resemblance to the classical
decomposition methods. A restricted ver-
sion of the original problem (1) is the mas-
ter problem and the solution of the La-
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grangian subproblem provides pricing
guidance rather than a new variable to the
master problem. Mamer and McBride
[1997] show a reduction in solution times
of nearly 50 percent for PDS-70, PDS-80,
and PDS-85. The number of step 2 pivots
in PDS-85 with this pricing strategy is re-
duced by more than two thirds. I have ob-
tained similar reductions in solution times
for several other proprietary problems.
Using an Efficient Implementation of LU
Factorization for H!1

The efficient implementation of LU fac-
torization of H11 [McBride and Mamer
1995] gives EMNET a fast, stable, and effi-
cient representation of H11.
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Editor’s Note: The company mentioned
in this paper wishes to remain anony-
mous. However, personnel at the company
including the responsible manager have
confirmed to me the veracity of the claims
of usage and impact in this paper.


