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Abstract The structural elucidation of small molecules
using mass spectrometry plays an important role in modern
life sciences and bioanalytical approaches. This review
covers different soft and hard ionization techniques and
figures of merit for modern mass spectrometers, such as
mass resolving power, mass accuracy, isotopic abundance
accuracy, accurate mass multiple-stage MS(n) capability,
as well as hybrid mass spectrometric and orthogonal
chromatographic approaches. The latter part discusses
mass spectral data handling strategies, which includes
background and noise subtraction, adduct formation and
detection, charge state determination, accurate mass
measurements, elemental composition determinations,
and complex data-dependent setups with ion maps and
ion trees. The importance of mass spectral library search
algorithms for tandem mass spectra and multiple-stage
MS(n) mass spectra as well as mass spectral tree libraries
that combine multiple-stage mass spectra are outlined.
The successive chapter discusses mass spectral fragmen-
tation pathways, biotransformation reactions and drug
metabolism studies, the mass spectral simulation and
generation of in silico mass spectra, expert systems for
mass spectral interpretation, and the use of computational
chemistry to explain gas-phase phenomena. A single
chapter discusses data handling for hyphenated approaches

including mass spectral deconvolution for clean mass spectra,
cheminformatics approaches and structure retention relation-
ships, and retention index predictions for gas and liquid
chromatography. The last section reviews the current state of
electronic data sharing of mass spectra and discusses the
importance of software development for the advancement of
structure elucidation of small molecules.
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Introduction

Mass spectrometry is a standard technique for the analytical
investigation of molecules and complex mixtures. It is
important in determining the elemental composition of a
molecule and in gaining partial structural insights using
mass spectral fragmentations. The final structure confirma-
tion of an unknown organic compound is always performed
with a set of independent methods such as one- (1D) and
two-dimensional (2D) nuclear magnetic resonance spec-
troscopy (NMR) or infrared spectroscopy and X-ray
crystallography and other spectroscopic methods. The term
structure elucidation usually refers to full de novo structure
identification, and it results in a complete molecular
connection table with correct stereochemical assignments.
Such an identification process without any assumptions or
pre-knowledge is commonly the domain of nuclear mag-
netic resonance spectroscopy. The term dereplication often
refers to the rediscovery of known natural products by
means of mass spectral library search or the interpretation
of known mass spectral fragmentations.
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Scope of this review

This review investigates theoretical and experimental
structure elucidation techniques using mass spectrometry
for organic molecules with a molecular mass less than
2,000 Da. The review covers newer techniques within the
last 10–15 years; if none were available, then older material
was included. Hyphenated separation techniques (gas
chromatography coupled to mass spectrometry (GC-MS)
and liquid chromatography coupled to mass spectrometry
(LC-MS)) are covered due to the close relationship of those
techniques with mass spectrometry. Detailed proteomics
and peptide sequencing strategies along with the structure
elucidation of large biomolecules, such as RNA, DNA, and
oligosaccharides/glycans, are outside the scope of this
review. The term “small molecules,” used throughout this
review, thus refers to all small molecules excluding
peptides. Approaches for inorganic mass spectrometry as
well as elemental and organometallic analysis are only
sparsely covered.

Mass spectral instrumentation and ionization

techniques

The history of commercial mass spectrometry instrumentation
covers more than 40 years. Brunnee covers the principles of
common mass analyzers in a vibrant 1987 review [1]. Gelpi
discusses over 130 different mass spectrometers built since
1965 in a series of two reviews [2, 3]. Only one totally new
mass spectrometer type, the Orbitrap analyzer [4, 5], has
been developed lately. Nevertheless, many new hybrid
approaches, among them ion mobility coupled to time-of-
flight (TOF) mass spectrometers have been introduced to the
market recently. A series of ionization techniques and figures
of merit for mass spectrometers will be discussed in the
proceeding paragraphs.

Soft and hard ionization techniques

Electron ionization (EI) at 70 eV is historically seen as the
oldest ionization technique for small-molecule investigations.
Because of the selected constant ionization energy, this
technique results in consistent and fragment-rich mass
spectra. These mass spectra can be easily used for a mass
spectral library search. Electron ionization is commonly used
for GC-MS setups. A major disadvantage of mass spectra
obtained under EI conditions is the low abundant or missing
molecular ion. An abundant molecular ion however is needed
for the calculation of elemental compositions. Chemical
ionization (CI) is a soft ionization technique mostly used in
GC-MS setups to obtain molecular ion information [6, 7].
Supersonic molecular beam interfaces provide the ability to

obtain fragment rich electron ionization spectra together with
abundant molecular ions [8].

The introduction of electrospray ionization (ESI) [9, 10]
was a major breakthrough for the analysis of intact and
large biomolecules. ESI is now the ionization method of
choice for LC-MS in many laboratories worldwide [11].
Additionally, nanoelectrospray (nanoESI) [12] and chip-
based nanoelectrospray ionization have been advanced
during recent years [13–18]. The infusion of nanoliters of
solvents using nanoESI allows for sustained analysis over
long sample times with a minimum of sample material and
increased sensitivity. These long infusions times are needed
for structural identifications from data-dependent MSn

fragmentations obtained by ion trap mass spectrometers.
The use of a new spray nozzle for each injection prevents
cross-contaminations (see Fig. 1) especially when multiple
compounds are infused from 396 well plates. Recently,
multi-nanoelectrospray emitters (nanoESI) have been de-
veloped, which may further enhance ion production and
increase the dynamic range (see Fig. 2) [19, 20].

Atmospheric pressure chemical ionization (APCI) [21–
24], atmospheric pressure photoionization (APPI) [25–28],
and matrix-assisted laser desorption/ionization (MALDI)
[29–31] are matured soft ionization techniques. Field
desorption and field ionization are also soft ionization
techniques, and both produce abundant molecular ions with
few fragment ions [32–34]. Direct analysis in real time
(DART) [35] is an ambient ionization technique [36] and
allows for the real time analysis of the sample. The DART
source has been widely used in “open access/walk-up”
laboratories together with robotic sample handling [37].
Techniques for sampling molecules from surfaces have
been extensively reviewed as well [38]. Secondary ion
mass spectrometry (SIMS) and MALDI are used for mass
spectrometric imaging [39], a new and exciting technology
to gain spatial and structural insights from tissues and
organs [40–42]. Several new surface-based ionization

Fig. 1 Chip-based nanoelectrospray allows for sensitive and
contamination-free mass spectral infusions (photo by Tobias Kind/
FiehnLab)
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techniques including desorption electrospray ionization
[43], desorption ionization on silicon, and nanostructure-
initiator mass spectrometry [44] have been developed
recently.

Multi-mode or simultaneous ion sources [45–48], as well
as the pulsed and parallel use of different ionization
techniques [49–52], are helpful to shorten analysis time
and to obtain structural information from a wide range of
different substance classes [53–55] (see Fig. 3). Although
simultaneous positive and negative polarity switching is
available within many ion source designs, the commercial-
ization of dual- or multi-mode ion sources applying different
ionization techniques is a more recent development [56–58].

Figures of merit of mass spectrometers

Mass spectrometers are typically designed for specific
analytical aims: ion trap mass spectrometers as versatile
instruments, quadrupole mass spectrometers as general
work horses, triple quadrupole mass spectrometers as very
sensitive instruments for targeted analysis, and Fourier
transform instruments for measurements requiring high
resolving power and high mass accuracy [59]. In addition

to their technical and instrumental design, mass spectrometers
can be classified using specific figures of merit [60, 61] (see
Table 1). These figures of merit are combinations of
hardware, software, and customer experience indicators.

High mass resolving power is needed to resolve over-
lapping interferences by mass spectrometry only [62–64]
(see Fig. 4). Up to one million resolving power can be
achieved routinely with current commercially available
Fourier transform ion cyclotron resonance (FT-ICR-MS)
instruments [65]. A series of “world records” achieved by
FT-ICR-MS [66] has been recorded. Hybrid instruments
especially allow for the acquisition of high-resolution
tandem mass spectra [67, 68] used for natural product
structure elucidation. One drawback of FT-ICR-MS and
Orbitrap instruments is the higher cycle time to acquire
high-resolution broad band mass spectra [69]. At one
million resolving power (FT-ICR-MS), a single scan can
take up to 2 s or longer. New high-field Orbitrap analyzers
can now reach resolving power in excess of 350,000 at
m/z 524 (full width at half maximum) [70]. Modern TOF
and Q-TOF instrument are routinely capable of higher than
10,000 mass resolving power with the latest instruments
reaching up to 40,000 resolving power [71]. When coupled
to ultra performance liquid chromatography and comprehen-
sive two-dimensional GC×GC [72–74], the data acquisition
rate (scan speed) and duty cycle of the mass selective
detector are very important. The chromatographic peak
width can be around 2–5 s or lower, and there needs to be
enough time to perform additional data-dependent tandem
mass spectra (MS/MS) or MSn scans [75, 76]. Several new
TOF and hybrid quadrupole-TOF and iontrap-TOF mass
analyzers have been introduced into the market to obtain
accurate masses at the MSn level at a very high data
acquisition rate [77, 78]. Additionally, new generation
benchtop electrospray ionization time-of-flight analyzers
can reach sub-ppm mass accuracy under routine conditions
[79]. High mass accuracy together with high isotopic
abundance accuracy is generally important to obtain only
few molecular formula candidates from an accurate mass
measurement [80, 81]. For structure elucidation purposes,
the ability to perform multiple-stage MSn experiments is the
most important feature to obtain additional structural
information from small molecules [82, 83]. The ability to
obtain tandem mass spectra under positive and negative
ionization in a single run [84] can speed up the identification
process of unknown chemicals [85–87]. Low machine
maintenance and high robustness of the instrument operating
under different temperatures and humidity ranges in high-
throughput manner are additional important aspects. The
software as one of the cornerstones for successful compound
identification is just as important as the instrument itself.
Fast software bug fixes, uncomplicated software updates,
easy-to-use graphical user interfaces, and responsive soft-

Fig. 3 Coverage of molecule classes with different ionization methods
(reproduced with permission from Oxford University Press [55])

Fig. 2 Nanoelectrospray emitter array for enhanced sensitivity of
electrospray ionization mass spectrometry (reproduced with permis-
sion from Keqi Tang and Richard D. Smith/Pacific Northwest
National Laboratory)
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ware support are sometimes more important than certain
instrument parameters. Documented software interfaces that
allow programmers to access certain software functions and
the support of open mass spectral exchange formats
(netCDF, mzXML, and mzData) are equally important and
discussed later in the article.

Tandem mass spectrometers and modes of operation

Ion trapping instruments such as quadrupole ion traps and
FT-ICR mass spectrometers can be used to create tandem
mass spectra, and multiple-stage MSn experiments can be

performed without instrument modification or couplings of
different mass analyzers [88]. Other hybrid instrument
types are discussed in Ref. [2, 3]. Orthogonal or hybrid
mass spectrometers are favorable for structural elucidation
because they either increase the total peak resolution or
they introduce another separation dimension that can be
used either to trigger or acquire additional mass spectro-
metric information [89, 90]. The different modes of
operation, which include precursor ion scans, product ion
scans, neutral loss scans and selected reaction monitoring,
are discussed in De Hoffmann [91]. The MS/MS and MSn

scans are usually triggered via data-dependent setups.
Multiple precursor ions can be manually selected or the
software can acquire tandem mass spectra when a certain
peak abundance or signal/noise ratio is exceeded. For
example, electrospray ionization with ion mobility mass
spectrometry coupled to time-of-flight mass spectrometry
(ESI-IMMS-TOF-MS) was used for metabolic profiling of
Escherichia coli metabolites [92], phospholipid [93], and
drug analysis [94].

Ion activation modes

Collision-induced dissociation (CID), or collisionally acti-
vated dissociation, is the most common technique to obtain
tandem mass spectra. Precursor ion stability and internal
energy under CID have been previously discussed [95]. A
series of new fragmentation modes are aimed at improved
protein and peptide identification rates by creating more
specific fragmentations. These modes include electron capture
dissociation (ECD) [96–98], electron transfer dissociation
[99–101], and infrared multiphoton dissociation [102]. They
are not fully exploited yet for small-molecule applications
outside proteomics.

Fig. 4 The importance of mass resolving power showing a high-
resolution FT-ICR-MS spectrum with lower resolution Q-TOF mass
spectrum. Only the high-resolution instrument can resolve peaks with
0.0112 Da difference (reproduced with the permission from Ref. [63])

Number Figures of merit Example ranges (multiple instruments)

1 Mass resolving power 1000–1,000,000 (at m/z 400)

2 Mass accuracy 0.1–1,000 ppm

3 Isotopic abundance accuracy 3–20%

4 Linear dynamic range 100–1,000,000,000

5 Scan speed 1–50,000 u/s

6 Mass range >100,000 u

7 Abundance sensitivity 100–1,000,000,000

7 Accurate mass MSn capability MS/MS or multiple-stage MSn

8 Ionizer compatibility Pulsed or continuous

9 Positive/negative polarity switching Fast switching within run

10 Robustness, maintenance, ease of use Just chillin in the lab/get the hell out of here

11 Instrument and software cost 50,000–1,000,000 US$

12 Size/weight/utility Benchtop or room size

13 Software updates with active support Customer involved or customer ignored

14 Open-data exchange formats supported netCDF, mzXML, ASCII

Table 1 Important figures
of merit for modern mass
spectrometric systems
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Two-dimensional, three-dimensional, hybrid,
and orthogonal chromatographic approaches

Multiple dimension setups are possible on the chromato-
graphic and mass spectrometric sides. On the chroma-
tography side, the usual aim is directed at increasing the
peak resolution, which therefore provides a better
separation of overlapping compound peaks. The peak
capacity can be increased by using different selective
chromatographic phases in a two-dimensional or multi-
column setup. These approaches are known for liquid
chromatography and prominently used for protein iden-
tification by coupling an ion exchange column together
with a reversed phase column, which coined the term
multidimensional protein identification technology [103].
The difference between simple two-dimensional connec-
tions such as GC-GC compared with truly orthogonal
approaches such as comprehensive two-dimensional GC
(GC×GC) [104] lies in the fact that a modulator is used to
accumulate parts of the sample from the first column and
pulse the sample to the second shorter column with a
different polarity of the stationary phase [105]. The
detector must be a fast scanning detector with a high
acquisition rate and an example of this is a time-of-flight
mass analyzer. Sampling rates are usually between 100
and 200 spectra per second for GC×GC-TOF-MS [106]
instruments. The resulting mass spectra have a very high
signal to noise ratio and therefore represent cleaner mass
spectra and give better mass spectral library search scores
[107]. Miniaturization and the introduction of chip-based
liquid chromatography [108] play a major role in high-
throughput methods.

Mass spectral data handling

The following section discusses basic steps that have to be
performed to obtain clean and background free mass spectra.
Charge state deconvolution, accurate mass measurements,
and software algorithms for elemental composition calcula-
tions are reviewed. Certain hardware specific setups are
discussed when required.

Background and noise subtraction

Automatic background and noise subtraction are standard
techniques to obtain clean and interference free mass
spectra. The Biller–Biemann algorithm [109] or similar
algorithms by Dromey et al. [110] have been in use for
more than 30 years. It is generally advisable to perform
blank or solvent runs to obtain possible noise or contam-
ination data. These infusion mass spectra or complete LC-
MS and GC-MS runs must be subtracted from the real

sample data [111–113]. Most modern mass spectrometry
software tools have inbuilt algorithms to perform these
tasks. Many of the mentioned algorithms have been
developed for EI (70 eV) mass spectra. Several approaches
have been introduced with the CODA algorithm of Windig
et al. [114] for ESI and LC-MS data, and similar methods
have been applied in drug discovery studies [115–117].
A ore detailed discussion about automated approaches
is covered in the mass spectral deconvolution and
biotransformation sections.

Adduct formation and detection

Ionization techniques such as CI, MALDI, ESI, or APCI
show not only single adduct ions but also sets of multiple
adducts [118, 119]. The process of adduct formation can be
studied using heuristic and computational methods [120,
121]. Solvent and buffer constitution, pKa, pH, substance
proton donor and acceptor properties, and gas-phase
acidities influence the formation of adducts [122, 123].
Different adducts also can result in different fragmentation
pathways [124]. The correct adduct ion must be detected in
order to obtain the accurate mass of the neutral molecule.
One possible solution is to increase the concentration of
specific ions in the liquid phase [125] to obtain preferably
those adducts. When analyzing lipids, lithium is used as
modifier [126] to obtain characteristic [M+Li]+ ions. An
extended list of common electrospray adducts, including
[M+H]+, [M+NH4]

+ [M+Na]+ and [M−H]−, has been
prepared [127]. In case of MALDI, metal cation adducts
[M+Na]+ and [M+K]+ are often observed [29, 128].
Software tools such as CAMERA [129] and IntelliXtract
[130], and tools for infusion spectra [131] can help detect
adduct ions in mass spectra automatically. Currently, no
software exists that can predict adduct probabilities based
on a given compound structure for a specified ionization
mode (CI, ESI, APCI, and APPI).

Charge state deconvolution

Charge state determinations play an important role in
proteomics [132, 133] but are less frequently required in
small-molecule investigations [132]. Many small organic
molecules are usually singly charged. Certain molecule
classes, such as cardiolipins, may occur as singly and
doubly charged ions. The occurrence of multiply or doubly
charged ions can be influenced by buffer concentration,
analytes concentration, amount of organic modifier, or
flow rate [134, 135]. Open-source software tools, such
as Decon2LS [136], exist (see Fig. 5), which can
automatically determine charge states. Most vendor mass
spectrometry software has charge state determinations
included.

Advances in structure elucidation of small molecules 27



Accurate mass measurements

Accurate masses and isotope abundances are reported in an
IUPAC report [137]. The statistical evaluation of measured
mass accuracies should include the proper terminology and
basic statistic tests [138]. An intercomparison study from
45 laboratories [139] showed that FT-MS and magnetic
sector field instruments in peak matching mode routinely
achieved less than 1 ppm mass accuracy. Quadrupole-TOF,
TOF, and magnetic sector field instruments in magnet scan
mode achieved between 5 and 10 ppm. Newer publications
reported that time-of-flight instruments can reach around
1 ppm [140] or even sub-ppm [79] mass accuracies.
Orbitrap technology in hybrid mode can routinely reach
sub-ppm mass accuracy and in non-hybrid mode less than
2 ppm [141]. The importance of the inclusion/exclusion of
the electron mass during accurate mass measurements was
discussed in Ref. [142], and the impact on LC/TOF-MS
mass accuracy was further outlined in Ref. [143]. A mass
error of up to 3 ppm was reported if the electron mass is not
included in calculations. The mass error introduced by this
calculational error can be as high as 5 ppm at 100m/z
(see Fig. 6). The red line marks 300 ppb, which can be
obtained from broadband FT-ICR-MS experiments. The
current accurate electron mass is reported as: m(e−)=
0.00054857990924 u [144]. A recent approach used the
ubiquitous presence of background ions to correct for small
mass errors, and this was also used for accurate peak
alignment and internal mass calibration [145]. The reported
mass error on a LTQ-Orbitrap dropped from ±1–2 ppm to

an absolute median error of 0.21 ppm. Another research
article discussed a computational method to adjust for mass
errors outside the lock mass range and intensity and
reported error improvements from 20 down to 1 ppm
[146]. The process of selected ion monitoring (SIM)
stitching was investigated [147, 148]. The authors concluded
that an average mass error of 0.18 ppm could be obtained
routinely on a high-resolution FT-ICR mass spectrometer. If
instruments are uncalibrated or out of tune, then an
automated post-calibration routine [149] can be used to
remove systematic precursor mass errors. The authors’
reason that in case of sample overload, the automatic gain
control system (AGC) is not able to control the optimal
number of ions to inject into the Orbitrap cell, which finally
results in space charge effects causing noticeable systematic
mass errors.

Fig. 5 Charge state deconvolution with the freely available software Decon2LS (reproduced with permission from Ref. [136])

Fig. 6 A mass error of up to 5 ppm is the penalty if the electron mass is
not accurately included in accurate mass calculations. The lower red line

marks 0.3 ppm mass accuracy, which can be reached by FT-ICR-MS
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Higher mass accuracy on unit mass resolution instru-
ments can be obtained using post-processing peak shaping
algorithms as implemented in the MassWorks software
(Cerno Biosciences) [150, 151]. These algorithms use an
internal calibrant that is later used for post-calibration of
mass accuracy errors. Unit resolution mass spectrometers
(inaccurate mass spectrometers) can be converted into
accurate mass spectrometers as long as mass spectral data
are obtained in profile mode, which is required to perform
the spectral peak shape correction. If data are obtained in
centroid mode or stick mode, then no such post-correction
can be performed. A correction for spectral accuracy can
also be performed with high-resolution data [152]. Artificial
neural network calibration [153] in conjunction with AGC
and better peak centroiding can improve the mass accuracy
on FT-MS instruments to reach 100 ppb for certain
experiments [154].

Several unit mass resolution instruments, including ion
traps and triple quadrupole instruments [155], allow a
hardware-based high-resolution or an ultra-zoom scan
[156]. This zoom scan can be used for accurate mass
measurements or better charge state assignments. The
resolving power usually can be increased by one order of
magnitude, or from 1,000 resolving power to 10,000
resolving power. However the m/z scan range is usually
very limited, and the duty cycle is high for enhanced
resolution scans.

Isotope abundance measurements and isotopic pattern
calculations

The isotopic abundances of common monoisotopic (F, Na, P,
and I) or polyisotopic (H, C, N, O, S, Cl, and Br) elements are
listed [137]. Isotopic abundances are measured and have
been utilized in mass spectrometric measurements since the
beginning of mass spectrometry [157]. The most sensitive
and accurate method for isotopic abundance measurements is
accelerator mass spectrometry [158], and this method is used
for age determination, forensics, and food monitoring [159].
Its precision is around 0.05% for the measurement of the
13C/12C ratio [160] requiring total combustion of the sample.
The availability of commodity mass spectrometers delivering
isotopic abundance errors less than ±5% was utilized for LC-
MS-based screening approaches [161–164] and environmen-
tal screening applications [165–167].

To filter or match elemental compositions according to
their experimental isotopic abundances, the high- or low-
resolution isotopic envelopes of molecular formulas must
be calculated. Several algorithms have been proposed to
calculate the isotopic fine structures and allow the modeling
of Gaussian peak shapes according to the selected resolving
power of the instrument. Several of the algorithms
implement either polynomial-based methods or Fourier

transform-based methods (IsoDalton, MWTWIN, Mercury,
IsotopeCalculator, IsoPro, emass/qmass, libmercury++,
ISOMABS, and Decon2Ls) [168–171]. Isotopic abundances
from tandem mass spectra and multiple-stage MSn can yield
additional information that can help during the structure
elucidation process [172–174].

Elemental composition determination

The determination of the molecular formula or elemental
composition requires a clean mass spectrum with no
interfering noise or coeluting compounds. A process for
elemental composition determination from electrospray
data was described in Ref. [175]. The algorithm includes
a decision making step for proton and alkali metal adducts,
automated determination of charge states and overlapping
peaks, and an isotopic pattern matching. It was validated
with 220 pharmaceutical compounds and yielded a success
rate of 90%. Isotope-enriched metabolites can be investigated
using a method that includes spectral correlation methods
along with mass accuracy and isotope ratio filters [176].
Another software discusses the use of isotopic abundance
ratios to confirm or reject NIST mass spectral library search
results [177]. A series of papers discusses the process
of isotopic pattern matching for elemental formula determi-
nation in environmental chemistry [165–167], metabolic
profiling experiments [178, 179], and geochemistry [180,
181]. The freely available software SIRIUS (Sum formula
Identification by Ranking Isotope patterns Using mass
Spectrometry) [182] has a user-friendly graphical interface
and can be used on LINUX, MAC, and Windows platforms.
The newer implementation “SIRIUS Starburst” also includes
features such as peak intensity, number of hetero atoms in
the molecular formula, neutral losses, and tandem mass
spectral information [183].

The Seven Golden Rules [81] are a set of heuristic rules
for elemental composition calculations, including the Senior
and Lewis rules, element ratio rules, and an isotopic
abundance matching filter. The rules were developed with
a set of 68,237 existing elemental compositions and
validated with 6,000 molecular formulae by means of an
internal database of 432,968 existing elemental composi-
tions. The freely available software was used to calculate the
molecular formula space (elements CHNSOP; <2,000 u)
covering more than two billion elemental compositions, and
it was deduced that only 623 million elemental compositions
are highly probable (see Fig. 7).

The influence of spectral accuracy of molecular ions on
elemental composition calculations was investigated on a
high-resolution mass spectrometer [184]. The automated
correction of isotope pattern abundance errors using peak
shaping and correction algorithms resulted in better
identification rates of the molecular formulas. An algorithm
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for isotopic pattern calculation that includes stable isotope
markers (13C and 15N labeled) was developed [185].
Recently, an approach was developed that uses elemental
formula calculations with database lookup and a subsequent
in silico generation of CID mass spectra from the obtained
isomer structures [186]. The obtained in silico tandem mass
spectra (calculated by MassFrontier) were then compared
with experimental CID spectra. This approach combined
with additional filter constraints and possible MSn fragmen-
tation information can be used for compound annotations
(compound dereplication), provided that the structure is
known in compound databases. Other prerequisites such as
proper validation of the in silico prediction algorithms and
use of larger datasets will be discussed in a later chapter.

Algorithms for formula calculation from high-resolution
MS/MS data

If the mass spectrometer is capable of obtaining accurate mass
multistage product ions (MSn), then this information should
be utilized during the elemental composition determination.
The possible elemental formulae for single peaks should be
shown, and the algorithm should analyze if the elemental
composition of the product ion could be combined to
generate feasible elemental compositions of the complete
molecule. Bruker (Billerica, MA, USA) developed the
SmartFormula three-dimensional (3D) algorithm [187] that
includes this information by using a recursive algorithm to
exclude unfeasible molecular formulae from lower mass
fragments (see Fig. 8). Tandem mass spectra obtained under
EI can be used together with isotope abundance analysis to
obtain correct elemental compositions [174]. Polynomial
expansion algorithms to calculate the isotope patterns for
precursor ion, neutral loss, and MSn product ion tandem
mass spectra have been discussed in Ramaley and Herrera,
and Rockwood et al. [173, 188].

Another approach used accurate masses from MS/MS
product ions during the investigation of fragmentation
processes of some natural products [189, 190]. Sirius

Starburst [183] is a freely available software that combines
MS/MS fragment and element ratio information with
elemental composition determinations. A useful hardware-
based approach [191], the acquisition of exact masses at
high and low ionization energy MSE, can lead to more
accurate elemental formula determinations.

Complex data-dependent setups including ion maps
and ion trees

Data-dependent acquisition methods are used in most of
today’s tandem mass spectrometers [87, 192–197]. The
mass spectrometry software triggers MS/MS or MSn

product ion scans based on specific events. The trigger
can be set on specific events such as the highest abundant
peaks, manually selected masses, specific neutral losses, or
specific isotopic pattern [197].

Specific data-dependent setups such as total molecule
ion maps (see Fig. 9) are very powerful features for
molecule fragmentation studies. The process to create ion
maps has been known since more than 20 years [198];
however, it has not reached its full potential, mainly due to
missing data handling options. Ion maps contain product
ion mass spectra over the mass range of all precursor ions
from 20 Da increasingly up to the molecular mass of the
compound [199]. These ion maps can be obtained by a
longer direct infusion process with autosamplers or better
by nanoESI using Nanomate (Advion Inc.) robotic injec-
tions to allow long-enough scan times. The method should
not be confused with spatial ion maps obtained from
secondary ion mass spectrometry TOF-SIMS [200] or mass
spectrometric imaging or ion maps that refer to retention
time–m/z visualizations (LC-MS ion maps) [201]. The total
ion map is a function of precursor m/z value versus product
ion m/z value and intensity, and it can be represented in
two- or three-dimensional space. The applications range
from the investigation of single molecules to obtain deeper
structural insights [202] to the investigation of complex
petroleum mixtures [203] and natural compounds.

An even more powerful method to investigate mass
spectral fragmentations and fragmentation pathways of
molecules are ion tree experiments [204–208] (see
Fig. 10). A data-dependent ion tree contains multiple MS2

to MSn product ion spectra from a single molecule and
represents the ultimate mass spectral fingerprint of a
molecule. The methodology has been available for many
years, and in principle, any mass analyzer capable of MSn

fragmentation can make use of it. The technology is very
attractive because it can be performed with inexpensive ion
trap systems (tandem-in-time) using direct infusion experi-
ments. Different ionization voltages and adduct-dependent
fragmentations, as well as the use of high-resolution
measurements and accurate mass MSn spectra from hybrid

Fig. 7 The molecular formula space below 2,000 Da (elements
CHNSOP) covers more than eight billion elemental compositions and
can be reduced to 600 million highly probable molecular formulas
using the Seven Golden Rules [81]
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instruments, can reveal additional fragmentation pathways.
However, these complex multidimensional setups were
rarely used in the past due to data handling and software
issues. Application examples include fragment studies of
polyphenols [196], lipids [209–213], glycans [214], and
carbohydrates [215].

Mass spectral library search

Mass spectral library search is the first step in any mass
spectral interpretation and therefore will be discussed in
deeper detail. Mass spectral search can be performed with
unit mass and high-resolution mass spectra of all stages

Fig. 9 A total ion map of tandem mass spectra from cobalamin (vitamin B12) created by a linear ion trap mass spectrometer and visualized by the
Thermo Xcalibur software. For all precursor ions in the mass range between m/z 300 and 1,376, one MS/MS spectrum was acquired

Fig. 8 Fragmentation pathway
of paclitaxel and sum formulae
for fragments from MS/MS and
MS3 experiments calculated
with the SmartFormula3D
algorithm (reproduced with
permission from Ilmari Krebs,
Bruker Daltonik GmbH,
Bremen [187])
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(MS to MSn). The aim of a library search is either to obtain
a correct structure hit of compounds already in the library
or to obtain partial structural insights from compounds that
nearly match. For that purpose, an experimental mass
spectrum is searched against a large collection of already
recorded mass spectra that are stored in a database. A
general review of mass spectral libraries [55] and mass
spectral search algorithms [216, 217] has been written.

MS and MS/MS and MSn libraries and search algorithms

Search algorithms for electron ionization spectra were
developed first [218], and these include the INCOS
algorithm, probability-based matching (PBM) [216], and
dot-product algorithm [217]. The size of publicly and
commercially available MS/MS libraries is small compared
with electron ionization libraries (Wiley and NIST) that
cover several hundred thousand electron ionization mass
spectra. Currently, the NIST08 MS/MS collection is a large
commercially available database with 14,802 MS/MS
spectra from 5,308 precursor ions. There are a variety of
commercial libraries that have been generated for certain
instrument types and settings. The publicly available

Massbank [219, 220] and ReSpect database (RIKEN)
[221–223] are databases currently covering 24,772 mass
spectra and tandem mass spectra from 13,200 compounds.
An electrospray tandem mass spectrometry library (ESI-MS/
MS) for forensic applications covered 5,600 spectra of 1,253
compounds acquired at different ionization voltages using a
hybrid tandem mass spectrometer coupled to a linear ion trap
[224]. Smaller but specialized libraries are in use for
toxicological screening and drug analysis [225, 226]. An
in-house library of MS/MS spectra from 1,200 natural
products with the majority of entries having [M+H]+ adducts
and 95% of those compounds being able to ionize in positive
mode was investigated in Ref. [227]. Tandem mass spectra
are not as reproducible as electron ionization spectra when
obtained from different instruments. However, the creation
of reproducible and transferable MS/MS spectral libraries for
use on multiple instrument types [228] is possible [229, 230].
A fragmentation energy index was proposed for LC-MS
[231] to normalize collision energies and create reproducible
spectra comparable to 70-eV electron ionization spectra.
Another study compared tandem mass spectra obtained from
quadrupole–quadrupole–time of flight, quadrupole–quadru-
pole–linear ion trap, quadrupole–quadrupole–quadrupole,

Fig. 10 An automatic data-dependent ion tree experiment with multiple-stage MSn spectra of selected precursor ions of reserpine acquired on a
linear ion trap mass spectrometer. The information rich ion tree represents the ultimate mass spectral fingerprint of a molecule
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and linear ion trap–Fourier transform ion cyclotron reso-
nance mass spectrometer and came to the conclusion that
platform independent MS/MS spectra can be obtained with
multiple fragmentation voltage settings [232–234].

Search algorithms for MS/MS spectra of small molecules
can use similar approaches as used for EI mass spectra [55,
235]. Peptide mass spectra usually show specific fragmenta-
tions, and a series of specialized search algorithms were
developed for these purposes [236, 237]. MS/MS spectra can
be searched according to spectral similarity [238], probability
match (PBM) [216, 239], or dot-product algorithm search
[217]. If the MS/MS spectra were obtained in data-dependent
mode and precursor mass information is available, this
precursor mass can be used as a powerful first filter for all
subsequent MS/MS matches [240, 241]. The precursor m/z
search window can be selected according to the experimen-
tally mass accuracy of the instrument. Well-calibrated unit
mass resolution instruments can reach a mass accuracy of
±0.5 Da (or better with post-calibration methods). In this
case, a precursor search window of ±0.5 Da can be set for
MS/MS search. The subsequent MS/MS match uses a
product ion window search tolerance that is slightly higher
due to possible hydrogen shifts. Well-established dot
product, PBM, and reverse search algorithms are used to
match the filtered MS/MS spectra. The accuracy, recall,
precision, true, and false discovery rate of the selected
algorithm and all other statistical parameters are best
obtained from test sets with known spectra and decoy mass
spectral datasets as seen from the proteomics community
[242–245]. The freely available NIST Mass Spectral Search
Program contains efficient algorithms to search accurate
mass tandem mass spectra, including m/z precursor and
product ion filtering. Moreover, NIST MS Search can handle
and search molecular structures together with their associated
mass spectra, which is an obligatory prerequisite for any
advanced library search program.

Mass spectral trees combine multiple-stage mass spectra

Ion traps and hybrid mass spectrometers can be used to
create multiple-stage mass spectra (MSn) by consecutively
fragmenting precursor and all product ions. Usually, the
abundance of the obtained product ions decreases, which
sets a practical limit at MS6 to MS10. Furthermore, there
must be enough time for trapping, or a direct infusion
experiment has to be performed to generate enough ions.
The feasibility of using MSn data for the investigation of
drugs [246], monosaccharides [247], oligosaccharides
[248–250], and other molecules has been shown. The use
of multistage mass spectral libraries together with precursor
ion fingerprinting for structure elucidation purposes has
been investigated in Sheldon et al. [205]. The authors show
that similar building blocks will have similar product ion

mass spectra, and therefore, the utilization of MSn spectra
of all stages can aid in structure elucidation of the core
molecule structures. For example, if a set of molecules
would have different substitutions or side chains, then an
accurate mass precursor search could not identify these
molecules. If the side chain is cleaved off or lost in a
dissociation step, then the remaining core molecules would
generate similar product ion spectra and therefore could be
matched among this set of similar compounds. The
representation of a spectral tree (see Fig. 11) of compound
mass spectra and their associated structures was obtained
from MassFrontier (HighChem Ltd).

Mass spectral interpretation

Many of the developments in mass spectral interpretation are
deeply rooted in the era of electron ionization mass
spectrometry from the 1970s and 1980s. Hence, mass spectral
fragmentation interpretation rules are best developed for EI
mass spectrometry. The red book entitled “Interpretation of
mass spectra” written by Turecek and McLafferty [251], the
book entitled “Introduction to Mass Spectrometry” by
Watson and Sparkman [252], and “Understanding mass
spectra: a basic approach” by Smith [253] are standard
sources for mass spectrometrists investigating electron
ionization spectra. These books contain very detailed
explanations of reactions and fragmentation pathways,
including rearrangement reactions, homolytic or heterolytic
bond cleavages, hydrogen rearrangements, electron shifts,
resonance reactions, and aromatic stabilizations. Any de
novo interpretation without any pre-knowledge is still
challenging, if not totally impossible, due to the high
molecular diversity and many similar compound structures.

The even electron rule states that usually neutral
molecule fragmentations are observed from molecular ions,
but radical loss can also occur in case of aromatic and
nitroaromatic compounds [254, 255]. Under positive
electrospray (ESI), most fragment ions were reported even
electron, whereas the formation of odd electron under EI
was significantly higher [256]. The Stevenson rule states
that ions with low ionization energy are more stable and
will gain high peak abundance in the mass spectrum. The
nitrogen rule should in principle only be used for unit
resolution mass spectra because high-resolution and high-
accuracy mass spectrometry can always calculate the
correct number of nitrogen atoms. The Rings Plus Double

Bonds Equivalent (RDBE) should not be used with
elements that allow multiple valence counts (such as
phosphorus and sulfur) [257] as otherwise only possible
RDBE ranges can be obtained instead of unique solutions.
Mass spectral visualization techniques such as van Krevelen

or Kendrick plots, and spectral mappings using dimension
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reduction methods with principal component analysis [258]
are helpful for the investigation of unresolved and complex
organic matter (petroleum, coal, sediments, and fulvic
acids) [259, 260].

Electron ionization and chemical ionization mass
spectrometry

Electron ionization at 70 eV is a very hard ionization resulting
in very complex rearrangements and fragmentations [261].
The EI mass spectra itself are very reproducible, which is
important for a mass spectral library search. The ions in the
gas phase have no “memory” where they originate from.
That renders the structural interpretation of full scan EI mass
spectra very complex. Electron ionization MS/MS with
accurate masses may ease that problem [262]. Several book
chapters discuss most important aspects of CI [6, 263]. One
interesting aspect of chemical ionization is that multiple
ionization gases with different proton acidities can be used,

which results in different molecular ions for correct
molecular ion and elemental composition determination.
Although most GC-MS instruments are capable of
performing CI analysis, the use of chemical ionization GC-
MS is not common anymore. One reason may be the non-
existence of chemical ionization mass spectral libraries and
the lower sensitivity during chemical ionization GC-MS
measurements. Nevertheless, chemical ionization GC-MS
remains an attractive technique for structural identifications
due to the capability of obtaining abundant molecular ions.

Electrospray and atmospheric pressure chemical ionization

The study of the fragmentation behavior of compounds under
electrospray conditions (ESI) [11, 264] is an important topic
due to the wide availability of LC-MS devices with ESI
interfaces. Using high-resolution CID data, compound
substructures were ranked using a systematic bond discon-
nection approach [265]. In a similar approach for the

Fig. 11 A spectral tree diagram from MassFrontier representing multiple-stage MSn spectra, in-source CID spectra or zoom spectra. Any stage
can be searched and is logically connected with different product ion spectra (reproduced with permission from Robert Mistrik/HighChem Ltd)
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structural investigation of MS/MS product ion spectra, the
authors of a freely available software used a brute-force ab
initio combinatorial approach to generated possible fragment
ions [266, 267], and they concluded that it is “a non-trivial
task to accomplish.” Currently, only MassFrontier contains a
large fragmentation reaction library as discussed in the
section below. Different voltage settings should be selected
for complete coverage of fragmentations. Automatic solu-
tions such as CID voltage ramping exist [268] for obtaining
maximum fragmentation patterns. A lookup table of com-
mon neutral losses during CID fragmentation has also been
published [269], and typical fragmentations for atmospheric
pressure ionization are discussed in Ref. [270].

Determination of stereochemistry using mass spectrometry

The determination of stereochemical (absolute) configura-
tion usually requires a separation technique such as GC,
CE, or LC with chiral columns. ESI-MS was used to
determine the binding affinities of ion-molecule reactions
by performing CID experiments of host–guest complexes
[271]. It is possible to determine the chirality of molecules
without preseparation using chiral selector agents and ESI-
MS/MS [272]. Additionally, traveling wave ion mobility
spectrometry can be used to determine stereochemistry. The
book titled “Applications of Mass Spectrometry to Organic
Stereochemistry” [273] discusses practical approaches for
stereochemical investigations of molecules.

Determination of 3D conformations using mass
spectrometry

Although conformational changes of small molecules can
be monitored using mass spectrometry, this approach was
usually applied to high molecular weight compounds such
as peptides and proteins [274] with the requirement of high
resolving power. Mainly, protein folding and dynamics
[275] have been studied in recent years. It has been reported
that small-molecule mass spectra show differences depending
on the 3D conformation of the molecule [276]. The
determination of the conformational changes of small
molecules is possible using ion mobility mass spectrometers
or hybrids thereof. This approach requires the experimental
determination of cross sections from known molecules and
the use of such data for theoretical models [276, 277].

Biotransformation reactions and drug metabolism studies
with mass spectrometry

Biotransformation and drug metabolism studies play a
crucial role in all analytical studies targeted at drug design
for phase I and phase II metabolites [278]. The tools and
approaches discussed in this section are aimed to identify or

predict in vivo metabolites from cytochrome P450 (CYP)
enzymes and guide through preclinical drug metabolism
and pharmacokinetics, and absorption, distribution, metab-
olism, and excretion/Tox studies. More than 50 CYPs are
known in humans, and CYP1A2, CYP2C9, CYP2C19,
CYP2D6, CYP3A4, and CYP3A5 enzymes metabolize
90% of drugs [279]. In pharmacokinetics and metabolism
studies, the pathway of one single drug and all related
enzymatically transformed metabolites are investigated.
Levsen et al. [280] discuss the utilization of tandem mass
spectrometry for the investigation of phase II metabolites.
In recent years, software expert algorithms for metabolite
predictions have been developed, and this includes tools
such as DEREK, Catabol, LHASA, MetaboGen, METEOR,
and MetabolExpert [281–284]. The software works along
known metabolic transformation rules and performs an in
silico prediction of possible metabolites. Those metabolite
structures can be identified later either by mass accurate
mass shifts or by tandem mass spectrometry [285]. Special-
ized mass spectrometry centric software from vendors
such as Metabolite ID (AB Sciex), Metabolynx (Waters),
Metworks (Thermo), MassHunter/Metabolite ID (Agilent),
and MetaboliteTools (Bruker) mostly use a combination of
accurate mass, neutral loss, and biotransformation rules with
associated accurate masses for metabolite identification.

Iontrap and triple quadrupole mass spectrometers can
be used to monitor and identify common neutral losses
(including methylation, acetylation, and glucuronidation).
Tables with common biotransformations, and lists of
metabolic changes and their accurate masses can be
found in Ref. [286] and Ref. [287] (see Table 2). With the
broader availability of accurate mass spectrometers, the
mass defect filter rule [288–291] could be applied. Using
the nominal mass shift and a mass defect window with
several milliDalton (mDa) widths, the matrix influence
can be separated from the analytes of interest. A recent
report discussed the integration of structure-based me-
tabolism prediction with predicted and experimental MS/
MS data [292]. The information from precursor and
product ion spectra can be used to find common
biotransformations from possible regioisomers [293]. The
approaches presented here can also be used during
pesticide screening, biotechnology, and bioengineering
studies with enzymatic reaction systems and metabolic
profiling studies.

The availability of hybrid triple quadrupole mass spec-
trometers with linear ion traps (QTRAP) allows the sensitive
detection of metabolites using multiple reaction monitoring
(MRM) and a subsequent MS/MS (product ion) scan for
metabolite identification or annotation [194, 195, 294]. A
newly developed software (LightSight and ABI/Sciex) [295–
297] can automatically create MRM or multiple ion
monitoring transitions. This software approach, called
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predictive MRM, allows for a very sensitive analysis and
detection of new metabolites [298].

Isotope labeling studies

Stable isotopic labeling studies [193, 299] and hydrogen/
deuterium exchange reactions [300–302] are commonly
applied in drug metabolism studies. Proteomics approaches
use labeling studies for the quantification of peptides and
proteins [303–305] as well as mass defect isotopomer
studies [306, 307]. In vivo labeling with stable isotopes can
be applied for metabolism studies in plants [308, 309],
isotopomer-based flux balance analysis [310–315], and
structural elucidation of unknown compounds [197, 316–

319]. The use of deuterated mobile phases (D2O) or post-
column infusion of D2O has been popular over the last
several years for metabolite identification studies [320–322].

Determination of impurities and contaminants

The elucidation of impurities is a reoccurring event during
daily lab work. Contaminants can be avoided either by
experience or better quality control sets of all reagents and
solvents used. For GC-MS, LC-MS, and CE-MS, this
includes the purchase of solvents and reagents in batch to
obtain consistent quality and the use of quality check
monitoring procedures. These chromatograms or mass
spectra (solvent blanks or reagent blanks) need to be stored

Metabolic reaction Mass change (Da) Molecular formula change

Phase I: CYP, FMO

Hydroxylation +15.9949 +O

Dihydroxylation +31.9898 +O2

N/S-oxidation +15.9949 +O

Epoxidation +15.9949 +O

Demethylation −14.0157 –CH2

Desethylation −28.0312 –C2H4

Oxidative displacement of chlorine −17.9662 –Cl+OH

Oxidative displacement of fluorine −1.9957 –F+OH

Phase I: reductases (e.g., CYP)

Nitro reduction −29.9742 +H2–O2

Reductive displacement of fluorine −17.9906 –F+H

Phase I: dehydrogenases (ADH, ALDH),
aldoketoreductases (e.g., ALK)

Dehydrogenation (oxidation) −2.0157 –H2

Hydrogenation (reduction) +2.0157 +H2

Phase I: other enzymes (not easily assignable)

Dehydration −18.0106 –H2O

Reductive displacement of chlorine −33.9611 –Cl+H

Decarboxylation −43.9898 –CO2

Loss of nitro group −44.9851 –NO2+H

Alcohol to carboxylic acid +13.9792 –2H+O

Ketone formation +13.9792 –2H+O

Hydration +18.0106 +H2O

Methyl to carboxylic acid +29.9741 –2H+O2

Phase II

Glucuronide conjugation +176.0321 +C6H8O6

Sulfate conjugation +79.9568 +SO3

Methylation +14.0157 +CH2

Acetylation +42.0106 +C2H2O

Glycine conjugation +57.0215 +C2H3NO

Taurine conjugation +107.0041 +C2H5NO2S

Glutathione conjugation +305.0682 +C10H15N3O6S

Cysteine conjugation +119.0041 +C3H5NO2S

N-Acetylcysteine conjugation +161.0147 +C5H7NO3S

Table 2 Selected biotransforma-
tions for in vivo drug
metabolism studies detectable by
accurate mass spectrometry
(reproduced from [282] with
permission of Future Science
Ltd)
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long term to monitor impurities over month and years.
Existing collections of fragments and ions can help during
the investigation of such contaminations. Certain detergents
and buffer components (Triton X) are excellently ionized in
ESI mode and result in large abundant peaks that suppress
the signal of other ions. A comprehensive review [323]
discusses mostly ESI and MALDI interferences and
contains a large EXCEL sheet in the supplementary data
section that covers around 800 potential interferences and
contaminant ions in positive and negative mode electro-
spray mode. Additionally, it also contains 40 repetitive
fragments such as sodium formate clusters (NaHCO2) and
lists multiple adducts, losses, and possible replacements. A
constant batch-wise monitoring of the purity of solvents
and derivatization agents is important along with the
removal of artifacts from datasets for GC-MS [324]. The
hot injector in GC-MS can act as a small chemical reactor,
and this could introduce a series of breakdown products
that can lead to false analysis conclusions [325]. Many
volatile compounds, among them pesticides and insecti-
cides (DDT), easily decompose in a hot injector [326].
Using a GC cold injection system with a near zero degree
Celsius injection temperature to avoid the breakdown of
chemicals and an automatic liner exchange (ALEX, Gerstel
Inc.) to avoid carryover can increase the level of confidence
in compound identification of complex samples [327]. A
chip-based nanoelectrospray system (NanoMate, Advion
Inc.) can be used to avoid cross-contaminations. For each
sample, a new ESI nozzle is used during direct infusion
mass spectrometry experiments.

Mass spectral fragmentation reaction databases

Mass spectral fragmentation reaction databases contain
chemical reactions and fragmentation mechanisms from
mass spectral investigations. These are organic reactions
proposals drawn by mass spectrometrists in order to explain
specific fragments or mass spectral abundances. If applied
to new molecules or mass spectra, they can speed up the
elucidation process by using existing knowledge. Until
recently, no structure searchable mass spectral fragmentation
library existed. Currently, only MassFrontier (HighChem
Ltd.) contains a large fragmentation library of 30,936
fragmentation schemes with 129,229 reactions and 151,762
associated structures. Direct molecule search, substructure
search, similarity search, and name search can be performed,
and all associated meta-data are electronically searchable. The
database was manually curated from several thousand
publications (see Fig. 12, reproduced with permission of
HighChem Ltd.) and can be used to develop in silico
fragmentation predictions as discussed in the next chapter.

The current practice of dissemination of chemical
fragmentation reactions on paper publications (PDF) is not

keeping up with existing technological possibilities. It is
impractical to search compound structures and reaction
data from paper publications. Also, many data centric
approaches, including the development of novel fragmen-
tation algorithms, are actively hindered. Chemical reaction
and fragmentation data should be submitted in electronic,
machine-readable exchange formats to journals or external
repositories. Currently, no such repository for mass spectral
reaction data exists.

Mass spectral simulation and generation of in silico mass
spectra

Chemical compound databases currently cover more than
50 million chemical structures; however, only around one
million mass spectra (including duplicates) from known
compounds exist. This gap could be filled by computer
generation of mass spectra from large compound structure
databases. An in silico algorithm has to predict accurate
mass fragments and their abundances. Such an in silico
generation of theoretical mass spectra could be useful
because experimentally obtained mass spectra can then be
matched against large in silico mass spectral databases.
Several mass spectral simulation algorithms have been
published in the literature. Many of those programs,
however, were never made commercially or publicly avail-
able, which therefore prevents any possible independent
scientific validation. The main problem of most algorithms
is to simulate or calculate peak abundances or peak intensities
[328] that reflect experimentally measured peak abundances
[329–331]. This problem has not been solved for the vast
majority of small molecules under different ionization modes.
The success rate of any algorithm has to be determined by a
validation study using unknown molecules and a library
match of the in silico generated spectra against the experi-
mental spectra. Furthermore, the structural diversity and the
number of compounds have to be high to avoid overfitting.

Successful cases of in silico generation are known for
molecules with certain structural scaffolds and consistent
fragmentation patterns. That includes lipids (see Fig. 13),
oligosaccharides [332], glycans [333], and peptides [334].
For example, compound libraries from combinatorial syn-
thesis show common neutral mass losses when studied under
electrospray conditions [335]. Another study used neural
networks to simulate 70-eV electron ionization mass spectra
of alkanes [336]. MASSIS/MASSIMO was a rule-based
spectral simulation system for electron ionization spectra that
included McLafferty rearrangements, retro-Diels-Alder
reaction, neutral loss, and oxygen migration [337–339].
Another method was developed for the prediction presence
of carboxylic acids using low-energy CID spectra and CO2
(44 Da) loss in MS/MS product ions [340]. The publicly
available MetFrag algorithm [341] compares in silico mass
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spectra, obtained by a bond dissociation approach, with
experimental mass spectra and assigns a score to all results.
A validation study [342] compared the success rate of
three commercial programs (MOLGEN-MSF (University
Bayreuth), MS Fragmenter (Advanced Chemistry Devel-
opment Inc.) [343, 344], and Mass Frontier (HighChem
Ltd.)) and came to the conclusion that the simulation of

mass spectral fragmentations of electron ionization spectra
is still far from daily practical usability.

Expert systems for mass spectral interpretation

Computer-aided interpretation of mass spectra started in the
1960s [345, 346] when the first commercial computers

Fig. 12 A mass spectral fragmentation pathway database containing
30,936 fragmentation mechanisms. The mass spectrometry community
never enthusiastically endorsed digital data sharing. Therefore, most of

the spectra and reaction data had to be captured from old paper
publications (reproduced with permission from Robert Mistrik/High-
Chem Ltd)

Fig. 13 An experimental
phospholipid spectrum and
computer generated MS/MS
spectrum. Mass spectral libraries
of theoretical in silico spectra
can be generated from large
structure databases (source:
Tobias Kind/FiehnLab)
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were available. The DENDRAL project pioneered approaches
with the aim of predicting isomer structures frommass spectra
using self-learning or artificial intelligence algorithms [347].
There are several software tools that can assist during
interpretation of mass spectra, including Automated Mass
Spectral Deconvolution and Identification System (AMDIS),
MassFrontier, ACD/MS Manager, MASSLib [348], and the
freely available NIST MS Interpreter as part of the NIST08
database search program. The NIST MS search program can
generate substructure information using a nearest-neighbor
approach [349] by searching unknown mass spectra against
a large reference database. The algorithm will generate a
good list and a bad list of substructures based on an actual
hit list. If there is no mass spectrum with similar features in
the database, then the algorithm fails. The tools AMDIS and
MOLGEN-MS [350, 351] integrate the Varmuza feature-
based classification approach [352–354]. Mass spectral
classifiers for neutral loss selection using Fisher ratio and
linear discriminant analysis and genetic algorithm partial
least squares discriminant analysis have been investigated to
distinguish alcohols and ethers [353]. A decision tree-based
prediction of substructures from mass spectral features
allowed the classification of unknown metabolites into
different compound classes [355]. For soft ionization
techniques (ESI, APCI), programs such as HighChem Mass
Frontier [87, 205, 227, 356–360] or ACD/MS Manager
[361] can help during data interpretation and fragmentation
prediction. Older software usually works well with unit
resolution data. New software should allow the handling of
accurate and high-resolution mass spectral data. There is
currently no software or “magic bullet” that combines mass
spectral knowledge and scientific intuition and is able to
present a correct compound structure from mass spectral data
only.

Use of computational chemistry to explain gas-phase
phenomena

There is a constant series of papers that use computational
chemistry to investigate gas-phase reactions or ionization
processes in regard to thermochemistry and kinetics [362].
In some cases, this approach can lead to a better
understanding of fragmentation pathways. The book titled
“Assigning structures to ions in mass spectrometry” covers
many small-molecule-related approaches regarding thermo-
chemistry, including potential energy curves, calculation of
heats of formation, and proton affinities [363]. Quantum
mechanical methods can also be used to determine bond
cleavage energies and bond dissociation energies [364], and
help to interpret adduct formation [365, 366]. Proton
affinities have been calculated with semiempirical methods
(AM1) [367] and density functional theories (DFT) on the
MP2 and B3LYP level [368, 369]. Investigation of CID

cross sections can be used to determine binding affinities of
cations and small molecules [370]. The kinetic method with
entropy correction can be used to calculate proton and
electron affinities [371, 372]. Ab initio and DFT calcu-
lations were used to elucidate the energetics of ECD [96]. A
recent paper discussed the application of DFT to understand
tandem mass spectrometric (MS/MS) fragmentation for
non-peptidic molecules [373]. The report from three
example molecules shows that protonation significantly
perturbs the electron density and affects ion formation and
subsequent bond fragmentation throughout the whole
molecule. The fragmentation pathways for phthalates
[374] were investigated using DFT. Even chirality detection
of molecules is possible by means of electrospray ioniza-
tion mass spectrometry and competitive binding analysis
[375]. Many of the applied quantum chemical methods
require a deep computational chemistry knowledge and can
make use of available software tools such as GAMESS,
GAUSSIAN, NWCHEM, or AMBER [376]. Moreover, just
recently released Intel Xeon (Nehalem) and AMD Opteron
(Magny-Cours) processor technology allows for the needed
computational speed on commodity desktop computers. The
performance of 200 GFlop/s (Giga floating point operations
per second; double-precision mode) is comparable with
speeds only reached by supercomputers 10 years ago. Both
the high software and hardware barrier have made compu-
tational interpretations of mass spectra interesting for
research, but they have not yet translated into easy to use
software tools for mass spectrometry practitioners.

Approaches for hyphenated techniques

(GC-MS and LC-MS)

Mass spectral deconvolution for clean mass spectra

Mass spectral deconvolution refers to the process of
creating background- and noise-free mass spectra from
GC-MS or LC-MS data. Traditionally, chromatographers
would use a simple chromatographic peak detection method
and would manually select a detected peak to obtain the
related mass spectrum. This manual process is error prone
and time consuming, and requires manual background
subtraction in front and in the back of the chromatographic
peak. With an automated deconvolution, routine peaks can
be detected under the baseline total ion chromatogram or
overlapping peaks can be resolved (see Fig. 14). Additionally,
if the chromatographic resolution is not sufficient, then the
process is also able to separate (deconvolute) overlapping
compound mass spectra. The automated deconvolution
process itself is now standard in many GC-MS investigations
[377] and is mostly known from the freely available AMDIS
[378]. The AMDIS process includes four sequential steps:
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(1) noise analysis, (2) component perception, (3) spectral
deconvolution, and (4) compound identification. AMDIS
was recently adapted to monitor air quality and identify toxic
gases on board of the International Space Station [379, 380].
Multiple other software solutions for the analysis of GC-MS
and LC-MS exist [381]. That includes LECO ChromaTOF,
SpectralWorks AnalyzerPro, Ion Signature Quantitative
Deconvolution Software, HighChem MassFrontier, and
TargetSearch [382]. The use of peak picking and peak
detection algorithms for LC-MS data [114, 383] is still an
active field of research due to high noise ratios, broader
chromatographic peaks, and mass spectra that show less
fragments than electron ionization spectra. The deconvolution
process itself usually performs best if it is optimized for a
specific scan rate; otherwise, false-positive and false-negative
peak detections may occur [384]. The detection of these
deconvolution errors [385, 386] is best solved by using
reference compound mixes with a known number of analytes
and a subsequent optimization process to detect the correct
number of compounds. Deconvoluted compound mass
spectra are subsequently submitted to a mass spectral
database search. If additional MS/MS spectra were extracted,
then a tandem mass spectral search can be performed.

Chromatographic heart cut, column switching,
and fractionation techniques

The fractionation of complex samples using liquid chroma-
tography is an often performed technical step to obtain pure
compounds or reduce the complexity of the sample. This

further allows 1D and 2D NMR investigations of complex
natural products [387]. Peaks can be frozen out using a
preparative fraction collector in conjunction with a low-
efficiency preparative packed GC column or higher film
thickness megabore traps for gas chromatography [388].
These applications are exemplified in biomarker research
[389], investigation of hydrocarbons [390, 391], and
entomology and pheromone studies [392, 393]. Using
column switching of hydrophilic interaction chromatography
(HILIC) and reversed-phase (RP) columns, complex samples
can be analyzed within one single run [394]. To increase the
chromatographic peak, capacity columns with different
polarity can be coupled together into a 2D-LC-MS setup.
Comprehensive two-dimensional liquid chromatography
(LC×LC) is currently in a developmental stage [395, 396].
The enrichment of samples using peak parking [397] or
fraction collection [398] is commonly used during natural
product investigations and drug research [399–402]. The
combination of liquid chromatography with solid phase
extraction and NMR has been applied for pharmaceutical
studies [403], drug discoveries [404], food investigations
[405, 406], and natural product research [407–410]. When
this technique is combined with mass spectrometric detectors
(LC-SPE-NMR-MS), an almost universal system for struc-
ture elucidation is created [411–414].

Cheminformatics meets mass spectrometry

Modern mass spectrometry centric approaches for structure
elucidation cannot be performed without proper molecular

Fig. 14 Peak picking and mass spectral deconvolution. The program can automatically detect peaks under the baseline (case A). Overlapping
(non-resolved) peaks can be detected, and clean mass spectra are extracted (case B) (source: Tobias Kind/FiehnLab created with MassFrontier)
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structure handling [415]. Many of the software tools for
structural elucidation (MassFrontier, ACD/MS Manager,
NIST MS Search, Sierra’s APEX) also have inbuilt structure
handling capabilities to either allow substructure analysis or
perform structure–spectra correlations. Many drug metabo-
lism studies also include computational chemistry approaches.
It is also important to investigate how many resonance
structures [416], tautomers [417–420], and stereoisomers
[421] can be generated from a given structure. For the
ionization processes [422], it is favorable to understand the
ionization behavior by calculating charges, electronegativ-
ities, and H-bond donor and acceptor counts. It is important
to calculate the distribution of microspecies and pKa values
[423] under different pH values in a given buffer system
[424] to estimate the retention behavior. Software tools such
as the Marvin Calculator Plugins (ChemAxon) [425] can
calculate all those compound properties, including all
possible tautomers and stereoisomers, with a single program.
Multiple candidate structures can be investigated using the
commercially available ChemAxon Instant-JChem program
or the open-source BioClipse software [426].

Structure retention relationships and retention index
predictions

The investigation and accurate prediction of the retention
behavior of a molecule are a major cornerstone for structure
elucidation using mass spectrometry. The theoretical pre-
dicted retention index or retention time can be used as a
powerful orthogonal filter for hyphenated chromatographic
techniques. If the elemental composition and possible
substructures can be detected from the mass spectrum, then
this information can be used within molecular isomer
generators (MOLGEN-MS, SMOG [427], and Assemble
[428]) to generate all structural isomers [429]. Those
molecular isomer generators usually work with the con-
straint of a molecular formula and a good list and bad list of
possible substructures. The retention index (RI) prediction
algorithm could then be used to predict the retention index
or retention time of these virtual compounds. Subsequently,
these theoretical RIs can be matched against the experimental
RI values, and all compounds outside a specific retention
index window can be removed as false candidates. These
prediction algorithms are very accurate for a small subset of
structures but lack wider substance coverage, or they cover a
broad range of structural classes but lack prediction accuracy.
A model with a good correlation coefficient may still exercise
bad prediction power. Additionally, the development datasets
for comprehensive solutions should have a minimum size of
500–1,000 compounds, which are best acquired under the
same conditions and the same instrumental setup. The
obtained quantitative structure retention relationship (QSRR)
models must be carefully validated with a large number of

external test set compounds to avoid overfitting [430]. It has
to be stated that published QSRR models without an existing
commercial or open software implementation are interesting
scientific exercises, but they are relatively useless for the
majority of practitioners because they cannot apply or use
these models.

Several QSRR models for gas and liquid chromatogra-
phy have been published and already reviewed in the recent
literature [431]. Kaliszan wrote a series of papers regarding
structure retention relationship models culminating in a
single comprehensive review [432]. Both reviews cover
several hundred scientific papers. Katritzky discussed the
use quantum chemical descriptors for QSRR calculations
[433]. HPLC retention indices were calculated from a set of
500 drug-like compounds, and molecular descriptors and
neural network machine learning were applied for the
prediction of the RI values [434, 435].

A large commercial database of Kovats GC retention
index values was released in 2005 [436]. Table 3 lists
selected GC column parameters from this database. As the
column types and film thicknesses cover a wide range of
possible parameters, retention indices also differ. Such
variations must be included during model development and
require careful statistical evaluation [437] because one
single compound can have a high variability in observed
experimental retention indices. A freely available software
for the prediction of Kovats retention indices (based on
alkanes) was released by NIST in 2007 [438]. The software
was developed with RI values from 35,000 compounds and
used a group contribution method of 85 different sub-
structures for polar and nonpolar column data. The median
error for polar columns was 65 RI units, which is not
accurate enough to determine single structures, but can be
used as a refinement filter for comprehensive structure
elucidation workflows. Several standard compounds in-
cluding keto-alkanes [439], alkylarylketones [440], or
1-nitroalkanes [441] were proposed as retention index
markers in the past. No universal or unified HPLC retention
index system for RP, normal phase, and HILIC has been
developed yet. These standard compounds should cover a
wide retention time range on a given LC phase, and they
should be easily ionizable with electrospray ionization,
non-toxic, non-reactive, inexpensive, commercially avail-
able, and outside of targeted profiling approaches. Synthetic
peptides could be amicable compound structures for HPLC
RI values [442].

Derivatization strategies for LC-MS and GC-MS

The detection of functional groups with the help of
selective derivatization [55] is one of the oldest wet-lab
techniques in chemistry. The book “A Handbook of
Derivatives for Mass Spectrometry” by Zaikin and Halket

Advances in structure elucidation of small molecules 41



comprehensively covers most derivatization reactions for
different ionization modes, and LC-MS- and GC-MS-based
mass spectrometric studies [443]. In the case of GC-MS,
the aim is to increase volatility of the compound and protect
reactive groups to avoid thermal breakdown or reactions
with the column material. For LC-MS studies, derivatiza-
tions are performed to improve ionization characteristics for
poorly ionizable compounds [444–447]. The obtained
products must be hydrolysis stable as for example in the
tert-butyldimethylchlorosilane products from a N-methyl-
N-[tert-butyldimethyl-silyl]trifluoroacetimide derivatization
[448]. Common fields of application are pesticide and
environmental screening [449–451], separation of complex
sugars as mono-, di-, and trisaccharides [452, 453],
enantiomer analysis [454], amino acid analysis [447, 455],
steroid and drug testing [456, 457], and metabolomic
profiling studies [458–460].

Use of structure databases for targeted compound
annotation

The availability of large public compound databases, such as
PubChem [461] and ChemSpider [462], or specialized drug
and metabolism databases, such as KEGG [463], HMDB
[464], ChEBI [465], DrugBank [466], MZedDB [467], and
the Chemical Lookup Service [468], allow for a web-based
search of molecular formulae or accurate masses [469].
DrugBank has a search interface allowing an accurate mass
search in positive or negative mode within the known human
metabolite pool, and the results are presented with possible
adducts and link to further database sources. This informa-
tion can include literature, chemical taxonomy data, or other
related information. If other molecular features are known
frommass spectral investigations, such as the number of polar
hydrogens from derivatization or H/D exchange experiments,
then these molecular properties can be used as additional
orthogonal filters. Additionally, theoretical retention indices
can be used to match experimental RI values and remove false
candidate hits. Multiple databases have advanced program-
ming interfaces (APIs) that allow a connection of standalone
programs with online databases without the need of down-
loading several gigabytes of the database itself.

Fields of applications—review of reviews

The use of mass spectrometric analysis in metabolomics has
been reviewed in [470–473]. A comprehensive review
covered the identification of known endogenous and exog-
enous metabolites by applying accurate mass, isotopic pattern
filter, retention indices, and mass spectral fragmentation in a
sequential filter cascade and combing the results with a
database search [474]. A wide range of LC-MS-based
methods including MRM-based approaches, precursor ion
scans, and radio-labeling were discussed [475]. Multistage
mass spectrometry approaches were used for the identifica-
tion of drugs, metabolites, toxins, and plant and animal
metabolites [124, 476–486] with their associated fragmenta-
tion pathways. The structural elucidation of flavanoids,
flavonoid glycosides [487–491], and drug metabolites [294,
318, 492–498] using multiple-stage tandem mass spectrom-
etry was reviewed in several papers. Natural product
investigations usually combine mass spectral information
with a de novo structure elucidation step using NMR [499–
502]. Lipid and phospholipid analysis [503–512] can be
performed with all ionization modes and types of mass
spectrometers including triple quadrupole, ion trap, and TOF
mass spectrometers. Structure elucidation of compounds
from environmental samples [118, 389, 450, 513–516] is
among the most complex cases of structure elucidation. The
use of capillary electrophoresis coupled to mass spectrometry
has been previously reviewed [517, 518].

Table 3 Statistics of selected column parameters of semipolar
stationary gas chromatographic phases obtained from the NIST05
retention index database

GC column parameters (semi-standard nonpolar) Count Percent

Column type

DB-5 11,688 42.34

HP-5 6,310 22.86

SE-54 2,242 8.12

BPX-5 1,377 4.98

DB-5MS 1,207 4.37

SE-52 1,131 4.09

HP-5MS 845 3.06

RTX-5 720 2.60

CP Sil 8 CB 516 1.86

SPB-5 468 1.69

Column length

30 m 18,445 66.83

25 m 2,490 9.02

50 m 2,478 8.97

60 m 2,339 8.47

Missing 554 2.00

15 m 347 1.25

20 m 245 0.88

Film thickness

0.25 μm 18,251 66.12

Missing 3,721 13.48

1 μm 1,593 5.77

0.5 μm 1,039 3.76

0.52 μm 454 1.64

0.33 μm 351 1.27

0.11 μm 281 1.01

Accurate retention index prediction algorithms must consider different
column types and film thicknesses
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Electronic data sharing of mass spectra

The future success of structure elucidation with mass
spectrometry will largely depend on the development of
new software algorithms. Similar to the success of the
bioinformatics [519] and the proteomics [520] communities,
which had open access to large genome associated data,
mass spectrometric data must be made publicly available to
enable long-term data reuse and allow data-driven research
[521, 522]. Multiple software database implementations are
currently in use or in development [523, 524], among them
SPECTRa [525], MeltDB [526], SetupX [527], MassBank
[219, 220], MMCD [528], METLIN [529, 530], GMD
[458], KNApSAcK [531], and PRIME [532]. Mass spectra
from a wide range of instrument types can be used in
machine learning approaches for mass spectral elucidation.
The future of mass spectral structure elucidation will depend
on a wide array of well-described, meta-data enhanced and
freely available resources. Not only high- and low-resolution
mass spectra but also their suggested fragmentation path-
ways can be electronically collected. Mass spectra and
associated molecular structure drawings need to be shared
in open exchange formats and global repositories. This will
create a new breed of scientists who only deal with mass
spectrometric data evaluation independent from access to
mass spectrometers just as in bioinformatics.

Unfortunately, there were never any data sharing policies
released by the mass spectrometric community itself. The
American Society for Mass Spectrometry, which is open to all
scientists worldwide and is the leading mass spectrometric
society worldwide, never actively pushed or developed data
sharing principles for the community. Driven by community
efforts, however, the proteomics community [533] and
several funding agencies, including the Welcome Trust
(UK), National Cancer Institute (NCI, USA), and National
Institutes of Health (NIH, USA), released the International
Summit on Proteomics Data Release and Sharing Policy
[534], which urges the rapid release of mass spectra, tandem
MS, and liquid chromatography MS into the public domain.
On the technical level [535], the data sharing problem can be
solved with large repositories such as the PeptideAtlas.org or
peer-to-peer (P2P) approaches as in the Tranche project
[536] at ProteomeCommons.org [537]. Open exchange
formats must be further developed that can store multidi-
mensional data. This can only be done with the support of
the mass spectrometry industry, which in recent years also
opened up parts of their proprietary programming interfaces
(APIs) to allow open-source programmers access to specific
data formats.

The Human Proteome Organisation was among the
leading organizations and supported the open mzData and
mzML formats [538], which was later joined to the
upcoming mzML format [539]. Different organizations,

such as the Institute for Systems Biology (mzXML,
PepXML, and ProtXML) and the Proteomics Standard
Initiative (mzData and PSIMI) started the development of
those standard formats and provided vendor specific
converters [537, 540, 541]. The continuous success of each
of those formats requires broad support for vendor specific
converter software and additional software that can visual-
ize and manipulate such exchange data. The netCDF [542]
and JCAMP-DX [543] format are widely supported within
the GC-MS community. Both formats suffer from non-
existing accurate mass and MSn implementations and the
lack of broader community development support within the
mass spectrometry community.

It has been shown from the crystal structure community,
that once data and exchange standards are established, no
human interaction is needed anymore to collect spectral
data [525]. The CrystalEye project (http://wwmm.ch.cam.
ac.uk/crystaleye/) shows that the aggregation of crystal
structures can be totally robotized using modern web
technologies. The only requirement is that the spectral data
must be available under open-data licenses (http://www.
opendefinition.org/) [544]. The public availability and open
mass spectral resources will allow commercial [545] as well
as governmental entities (NIST) [546] that are specialized
in collection of mass spectral data to focus on the expensive
curation of these data. The enhancement of these spectral
datasets with meta-information and compound structures
will add value to those collections and allow commercial
distribution due to market demands.

We have shown in a recent research publication regarding
the data sharing of compound, spectral, and meta-data [521]
that parsing bitmap data to obtain multidimensional high-
resolution mass spectral data is not keeping up with the
today’s technological possibilities. There is a tremendous
loss of information associated, and it is impossible to
investigate (enlarge or zoom) such bitmap or paper-based
mass spectra. During the spectral capturing process, many
peaks disappear because their associated accurate mass
values cannot be obtained (see Fig. 15). Additionally,
molecular structure data capturing is an error-prone process.
The scientific value of such open-access and open-data
shared mass spectral collections, their structures, and
associated reaction data, will outweigh initial hesitations as
learned from the genomics community.

Future software and hardware advances (opinion)

The success of structure elucidation using mass spectrometric
approaches depends not only on technical machine develop-
ments but also much more on the development of better
software algorithms. Particularly, software for working with
data output from multiple-stage mass spectrometry (MSn) or
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data from multiple orthogonal hybrids, including ion
mobility, is not yet fully developed. The large proteomics
software community with a very active bioinformatics
development branch could be a positive example for the
small-molecule community. In terms of software develop-
ment, there will be always a very innovative core of
commercial and open-source software developers that will
develop state-of-the-art software tools. For taxpayer-funded
research in universities and government-funded laboratories,
the direction should go towards open-source software or at
least towards freely or publicly available software with the
least restrictive software licenses to allow commercial and
non-commercial exploitation. Community efforts can solve
many of the complex software challenges, whereas consis-
tent software support, user help, and error fixing can be
obtained from commercial services. The publication and
discussion of approaches or programs that are not commer-
cially or publicly available should be avoided because claims
made within the publication cannot be independently
verified. One of the most important issues is the public
sharing of mass spectra and other spectral data from a wide
variety of mass spectrometers. This may ultimately lead to
an evolution of scientists and software developers that
specialized in software development for small-molecule
identification using mass spectrometry.

In terms of a technological process, it must be stated that
in principle, all technological prerequisites for advancement
in structure elucidation exist. The hyphenation of LC-MS
with NMR seems to be a fast lane towards successful
structure elucidation. Hybrid orthogonal approaches that
add an additional dimension to the chromatographic side
(GC×GC and LC×LC) or mass spectrometric part (ion
mobility coupled to time of flight) will particularly enable
the extraction of cleaner mass spectra from fully resolved
compounds. Increased resolving power, better mass and
isotopic abundance accuracy, and high data acquisition rate
will enable a faster structure elucidation process. Accurate
masses and high resolution for all multiple-stage mass
spectra (MSn) will subsequently allow the evolution of new
software tools as discussed in this article.

Conclusions

Structure elucidation using mass spectrometry is a challeng-
ing field of research with many success stories. Mass
spectrometry itself is seldom used for the de novo structure
elucidation of small molecules but serves as an important
building block together with NMR, IR, X-ray crystallography,
and other spectroscopic techniques. Together with hyphenated

Fig. 15 Capturing high-resolution mass spectral data from paper
publications is an error-prone process. The final machine readable
structure usually does not represent the original spectrum (hamburger-

to-cow algorithm). New digital data-sharing principles need to be set
in place (source: Tobias Kind/FiehnLab)
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chromatographic techniques, (GC and LC) mass spectrometry
serves as a powerful tool for the elucidation of drugs,
pesticides, metabolites, and complex chemical mixtures. Mass
spectrometry hardware is currently in a very advanced stage
with many technologies not fully exploited yet. More data
centric approaches have to be taken in the future. This
includes the electronic publishing of investigated structures
and their associated multiple-stage mass spectra with open-
data licenses. The ultimate success of structure elucidation of
small molecules lies in better software programs and the
development of sophisticated tools for data evaluation of
high-resolution and accurate mass multiple-stage (MSn) mass
spectral data.
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