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Abstract

Protein tyrosine kinase (PTK) is one of the major signaling enzymes in the process of cell signal transduction,
which catalyzes the transfer of ATP-γ-phosphate to the tyrosine residues of the substrate protein, making it
phosphorylation, regulating cell growth, differentiation, death and a series of physiological and biochemical
processes. Abnormal expression of PTK usually leads to cell proliferation disorders, and is closely related to
tumor invasion, metastasis and tumor angiogenesis. At present, a variety of PTKs have been used as targets in
the screening of anti-tumor drugs. Tyrosine kinase inhibitors (TKIs) compete with ATP for the ATP binding site
of PTK and reduce tyrosine kinase phosphorylation, thereby inhibiting cancer cell proliferation. TKI has made
great progress in the treatment of cancer, but the attendant acquired acquired resistance is still inevitable,
restricting the treatment of cancer. In this paper, we summarize the role of PTK in cancer, TKI treatment of
tumor pathways and TKI acquired resistance mechanisms, which provide some reference for further research
on TKI treatment of tumors.
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Background
Malignant tumors have always been a serious threat to
human life. Although the diagnostic and therapeutic
levels have improved, many kinds of tumor survival rates
have remained low. Anti-tumor research remains a chal-
lenging and significant field in the life sciences today. At
present, the commonly used anti-tumor drugs are cyto-
toxic drugs. Cytotoxic cancer drugs are usually of high
acute toxicity, which have the disadvantages of poor se-
lectivity, strong side effects and easy to produce drug re-
sistance [1]. In recent years, with the rapid progress of
life science research, signal transduction in tumor cells,
cell cycle regulation, induction of apoptosis, angiogen-
esis, the interaction of cells and extracellular matrix and
other basic processes are being gradually clarified [2]. In
addition, it is pointed out that these drugs may be very
specific to certain cellular targets (e.g. DNA, tubulin)
present in cancer as well as in normal cells. Using the

key enzymes of cell signal transduction pathway associ-
ated with tumor cell differentiation and proliferation as
drug screening targets, and developing high efficiency,
low toxicity and specificity of new anticancer drugs acting
on specific targets have become important direction of re-
search and development of antitumor drugs today [3].
Protein tyrosine kinase (PTK) is a class of proteins

with tyrosine kinase activity that catalyzes the transfer of
phosphate groups on ATP to the tyrosine residues of
many important proteins, making proteins phosphoryl-
ation, then transferring signal to regulate cell growth,
differentiation, death and a series of physiological and
biochemical processes [4]. PTK disorders can cause a
series of diseases in the body. Previous studies have
shown that more than 50% of the proto-oncogene and
oncogene products have PTK activities, their abnormal
expression will lead to cell proliferation regulation disor-
ders, causing tumorigenesis finally [5]. In addition, PTK
abnormal expression is also associated with tumor inva-
sion and metastasis, tumor neovascularization and
tumor chemotherapy resistance [6]. Therefore, PTK as a
target for drug research and development has become a
hot spot for anti-tumor drug research.
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By the end of the century, so-called targeted cancer
therapy with reduced side effects was made possible by
advances such as specific monoclonal antibodies that
bound to unique epitopes on the surface of cancerous
cells and by small molecules. International major re-
search institutions, pharmaceutical groups have attached
great importance to PTK as the target drug research,
such as selective tyrosine kinase inhibitors (TKI) that
affected specific molecular pathways up-regulated in cer-
tain cancers [1]. The pro-spective molecular profiling of
cancers to find such ‘driver’ abnormalities became feasi-
ble in clinical practice, allowing for routine genotype-
directed rather than empiric therapy. In 2001, the first
TKI drug imatinib was quickly approved by the FDA
and opened up new ideas for cancer treatment. Until
2018 or beyond, a total of more than 20 kinds of TKI
approved by the FDA [7–13], drug-related information
as listed in Table 1. These drugs have high selectivity,
high efficacy, low side effects, ease of preparation, and
have superiority in the treatment of chronic myeloid leu-
kemia(CML), non-small cell lung cancer(NSCLC), renal
cell carcinoma(RCC) than traditional cytotoxic antineo-
plastic agents [14], some have become the first-line drug
for the treatment of cancer.

Although TKI has made great strides in the treatment
of cancer, it still faces some challenges. Because even in
highly sensitive patients with TKI, tumor cells can al-
ways be self-adjusting, looking for a way out, to avoid
TKI target, acquired resistance and the progress of the
disease is still inevitable [15]. The median effective time
for TKI therapy was only 5 to 9 months [16]. With our
increased understanding of the spectrum of acquired
resistance to TKI, major changes in how we conduct
clinical research in this setting are now underway. In
order to fight against resistance to TKI, the investiga-
tors should further study the mechanisms of their re-
sistance and suggest a regimen that prevents or treats
their resistance.

PTK and tumor
PTK is only found in multicellular animals and is an
enzyme that activates and regulates cell proliferation
signaling pathways. According to its structure, it can be
divided into two categories: Receptor PTK (RTK) and
Non-receptor PTK (NRTK). These two types of PTK
can be further divided according to their structural
homology multiple enzymes. Analysis of human genome
data shows that there are 518 kinase genes in the human

Table 1 TKI launched on market

TKI Time to market Development company Target Application of disease

Imatinib 2001 Novartis Abl, PDGFR, SCFR CML, GIST

Gefitinib 2003 AstraZeneca EGFR NSCLC

Nilotinib 2004 Novartis Bcr-Abl, PDGFR CML

Sorafenib 2005 Bayer Raf, VEGFR, PDGER Advanced RCC

Sunitinib 2006 Pfizer PDGFR, VEGFR, GIST, Advanced RCC

Dasatinib 2006 Bristol-Myers Squibb Bcr-Abl, SRC, PDGFR CML

Lapatinib 2007 GlaxoSmithKline EGFR Breast cancer

Pazopanib 2009 GlaxoSmithKline VEGFR, PDGFR, FGFR Advanced RCC,STS,NSCLC

Crizotinib 2011 Pfizer ALK NSCLC

Ruxolitinib 2011 Novartis JAK1, JAK2 myelofibrosis

vandetanib 2011 AstraZeneca VEGFR, EGFR Advanced Thyroid cancer

Axitinib 2012 Pfizer VEGFR Advanced RCC

Bosutinib 2012 Wyeth Abl, SRC CML

Afatinib 2013 Boehringer Ingelheim EGFR NSCLC

Erlotinib 2013 Roche EGFR NSCLC

Ceritinib 2014 Novartis ALK NSCLC

Osimertinib 2015 AstraZeneca EGFR NSCLC

Lenvatinib 2015 Eisai VEGFR DTC

Alectinib 2015 Roche ALK NSCLC

Regorafenib 2017 Bayer VEGFR, EGFR HCC, CRC,GIST

Neratinib 2017 Puma HER2 Breast cancer

Brigatinib 2017 Ariad ALK NSCLC
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body, of which 90 have been identified PTK, including
RTK 58 species and NRTK 32 species [17].
RTK includes epidermal growth factor receptor (EGFR),

platelet-derived growth factor receptor (PDGFR), vascular
endothelial growth factor receptor (VEGFR) and insulin
receptor (InsR) family and so on. They usually have an
extracellular domain that binds to a specific ligand, a
transmembrane region, and an intracellular kinase domain
that selectively binds to and phosphorylates the substrate
[18]. RTK can bind to ligands and phosphorylate tyrosine
residues of target proteins and transmit information
through PI3K/AKT/mTOR; RAS/RAF/MEK/ERK; PLCγ/
PKC and other signaling pathways to activate a series of
biochemical reactions; or different information combined
to cause a comprehensive cellular response (such as cell
proliferation) (Fig. 1) [19]. Clinical studies in cancer have
shown that these receptors and their ligands are important
in many tumors, and many cancers have over-expressed
growth factors that cause excessive tyrosine phosphoryl-
ation signal into cells [20].
NRTKs generally have no extracellular structure. They

are usually coupled to the cell membrane or present in
the cytoplasm, including Abl kinase, Src kinase family
and so on [21, 22]. NRTK performs signal transduction
primarily through cytokine receptors, T-cell receptors
and other signaling pathways. T lymphocyte receptors, B
lymphocyte receptors, immunoglobulin receptors and so
on can recruit NRTK, and then through tyrosine phos-
phorylation to form signal transduction complex, and then
activate the downstream signal transduction, promote
cells proliferation, lead to the formation of tumors [23].

Overexpression of the PTK gene enhances the activity
of PTK and changes its downstream signaling pathways,
causing cell proliferation disorders and eventually leading
to tumor formation [5]; mutations in tumor tissue may
cause PTK to spontaneously activate in the absence of a
stimulus source or appear abnormal growth rate [24];
clinical studies have shown that PTK overexpression or
decreased expression can show the biological characteris-
tics of the tumor or predict the response to treatment and
survival [25].

EGFR family
The human EGFR gene is localized to the short arm of
chromosome 7 (7p12.3-pl2.1), which encodes a product
consisting of 1210 amino acids with a molecular weight
of about 170 kb. EGFR is a cell surface receptor and
plays a pivotal role in regulating survival and apoptosis
of epithelial cells and tumors of epithelial cell origin.
Overexpression of EGFR and its ligands is present in a
variety of epithelial tumor cells such as lung cancer,
breast cancer, bladder cancer, prostate cancer and squa-
mous cell carcinoma of the head and neck [26–29]. It is
a member of the ErbB family, a group of four receptor
tyrosine kinases sharing similarities in structures and
functions: ErbB1 (EGFR or HER1), ErbB2 (HER2), ErbB3
(HER3) andErbB4 (HER4). In breast cancer, overexpres-
sion of HER2 is found in approximately 10%–30% of pa-
tients and is associated with reduced survival [30]. In
addition, EGFR deletion can also be detected in malig-
nant gliomas, NSCLC, breast cancer, medulloblastoma
and ovarian cancer [31, 32]. The most common EGFR
deletion mutant is EGFR VIII. EGFR VIII lose ligand
binding region, but can activate tyrosine kinase itself,
stimulate the activation of downstream signaling path-
ways, and not dependent on its ligand binding region
[33]. EGFR overexpression and/or mutation through sig-
nal transduction lead to cell growth out of control and
malignancy in many tumors. In patients with high ex-
pression of EGFR, the degree of malignancy is high, the
recurrence interval is short, the recurrence rate is high,
the survival time of the patients is short [34].

VEGFR family
VEGFR family members include VEGFR1, VEGFR2 and
VEGFR3. The family of receptors has 7 immunoglobulin-
like domains in the extracellular domain and a hydrophilic
insert sequence in the intracellular tyrosine kinase region
[35]. In the malignant growth and metastasis of solid tu-
mors, neovascularization of the tumor plays a very im-
portant role, providing the necessary nutrients and oxygen
for the tumor growth [36]. VEGF plays an important role
in the proliferation, migration, and vascularization of
endothelial cells as the most powerful vascular penetrant
and endothelium-specific mitotic source [37]. There was a

Fig. 1 Cell signaling pathways induced by RTK. RTK can bind to
ligands and phosphorylate tyrosine residues of target proteins and
transmit information through PI3K/AKT/mTOR; RAS/RAF/MEK/ERK;
PLCγ/PKC and other signaling pathways to activate a series of
biochemical reactions; or different information combined to cause a
comprehensive cellular response, including cell proliferation, cell
migration and tumor formation
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significant positive correlation between the VEGFR ex-
pression level and the degree of vascularization and malig-
nancy of tumor tissue.
VEGF is mainly acting on high affinity of the recipient

VEGFR1 and VEGFR2 in the vascular endothelial cells
and play its biological role, both have different signal
transduction pathways [38, 39]. Among them, VEGFR2
is the most important in mediating the biological effect
of VEGF, which is closely related to cell chemotaxis, cell
division and act in recombination [40]. VEGFR1 has
stronger affinity binding to VEGF, and phosphorylation
is similar, but the effect of cell division is much smaller
[41]. VEGFR3 is highly expressed in the blood vessels of
the embryonic vessels, veins and lymphatic vessels, but
after the development of the fetus, VEGFR3 only in the
lymphoid endothelial cells. In a variety of tumor course,
VEGFR3 induced tumor lymph angiogenesis, promoting
tumor lymph node invasion and lymph node metastasis.
VEGFR3 plays an important role in aiding cellular viability
and blocking VEGFR3 signaling hinders this ability, which
may induce autophagy [42, 43].

PDGFR family
In addition to PDGFRα and PDGFRβ, members of the
PDGFR family also include the colonial stimulating
factor-1 receptor (CSF1R), the stem cell growth factor
receptor (SCGFR), FLK2/FLK3. The family of receptors
has 5 immunoglobulin-like domains in the extracellular
domain and a hydrophilic insert sequence in the intra-
cellular tyrosine kinase region [44]. PDGFR is mainly
present in fibroblasts, smooth muscle cells, but also ex-
pression in the kidney, testis and brain. PDGFR is closely
related to tumorigenesis [45]. In most glioblastomas,
autocrine loop of PDGF and its receptors is formed. This
loop is closely related to the occurrence and develop-
ment of tumor [46]. In addition, similar loops are also
present in melanoma, meningiomas, neuroendocrine tu-
mors, ovarian cancer, prostate cancer, lung cancer and
pancreatic cancer [47, 48].

InsR family
InsR family members include INSR, IGF1R and IRR three
members. IGF-I and IGF-II have the effect of promoting
proliferation and inhibiting apoptosis in breast cancer, cer-
vical cancer, colon cancer and lung cancer [49–51]. IGF1R
is overexpressed in breast cancer, cervical cancer, and have
a great impact on the pathological process of breast can-
cer [52]. In addition, IGF1R is associated with the metasta-
sis of melanoma at the end of the eye pigment, which is a
predictor of this type of tumor metastasis.

Src family
Src is an important member of NRTK, which plays a key
role in the regulation of many cells through the

extracellular ligand binding to the receptor and the cell
adhesion molecule activationin cell cycle specific stage
[53–56]. These include the RAS/RAF/MEK/ERK path-
ways; the PI3K/AKT/mTOR pathway; and the STAT3
pathway that regulates the expression of c-Myc and
Cyclin D1 (Fig. 2).It can affect cell adhesion, mobility,
proliferation and angiogenesis. Under normal circum-
stances, the activity site of Src kinase closed, its expres-
sion was inhibited. But under the action of exogenous or
endogenous carcinogenic factors, kinase hyperactivated,
cell proliferation and differentiation become uncon-
trolled and lead to tumorigenesis [56, 57].

Abl family
Abl family includes two members: c-Abl and Arg. Both
proteins can be localized in cytosol, cell membranes, and
the actin cytoskeleton. Additionally, c-Abl is also present
in the nucleus [58]. In normal cells, c-Abl contributes to
actin remodeling, cell adhesion and motility, DNA dam-
age response, and microbial pathogen response. Deregu-
lation and aberrant expression of c-Abl kinases has been
implicated in several types of cancer, such as breast can-
cer [59, 60], colon cancer [61], and NSCLC [62]. Phos-
porylated c-Abl activates oncogenic signaling pathways
by activation of ERK5, Rac/Jnk, and STAT 1/3 pathways
(Fig. 3). c-Abl is also known to be important for the gen-
esis of CML, where it forms the oncogenic fusion pro-
tein with Bcr after the translocation of a part of
chromosome 9 to chromosome 22 [63].

TKIs biology
TKI can compete ATP binding site of tyrosine kinase
with ATP, reduce tyrosine kinase phosphorylation,
thereby inhibiting cancer cell proliferation. It has the
characteristics of high selectivity, small adverse reaction

Fig. 2 Cell signaling pathways induced by Src kinases. Src kinases
regulate a broad spectrum of cellular events such as cell adhesion,
proliferation and mobility. These include the STAT3 pathway that
regulates the expression of c-Myc and Cyclin D1; the RAS/RAF/MEK/
ERK pathway; and the PI3K/AKT/mTOR pathway

Jiao et al. Molecular Cancer  (2018) 17:36 Page 4 of 12



and convenient oral administration [64]. According to
the main targets of different, these TKI can be divided
into EGFR inhibitors, VEGFR inhibitors, anaplastic
lymphoma kinase (ALK) inhibitors and Bcr-Abl inhibi-
tors. The anti-tumor mechanism of TKI can be achieved
by inhibiting the repair of tumor cells, blocking the cell
division in G1 phase, inducing and maintaining apop-
tosis, anti-angiogenesis and so on [65–67].

EGFR inhibitors
Gefitinib is a selective EGFR-TKI, which is usually
expressed in epithelial-derived solid tumors. Inhibition
of EGFR tyrosine kinase activity can prevent tumor
growth, metastasis and angiogenesis, and increase tumor
cell apoptosis [68, 69]. In vivo, gefitinib extensively
inhibited tumor growth of human tumor cell derived
lines in nude mice and increased the antitumor activity
of chemotherapy, radiotherapy and hormone therapy. It
has been shown in clinical trials that gefitinib has antitu-
mor responses to locally advanced or metastatic NSCLC
and can improve disease-related symptoms [8, 70].
Lapatinib is a reversible dual inhibitor of EGFR and

HER2. Lapatinib can inhibit both EGFR and HER2
tyrosine kinases [12, 71, 72]. Lapatinib inhibits MAPK
and PI3K signal transduction in EGFR and HER2 over-
expressing tumor cell lines [73, 74]. The response to
lapatinib was significantly associated with HER2 over-
expression, which inhibited phosphorylation of HER2,
RAF, AKT and ERK. Lapatinib has been approved by

the FDA in 2007 for the treatment of breast cancer,
NSCLC, head and neck cancer and gastric cancer [75].
Erlotinib can inhibit the phosphorylation of intracellu-

lar tyrosine kinases associated with EGFR, causing cell
growth arrest and/or cell death. This medicine is used
for third-line treatment of locally advanced or metastatic
NSCLC after a previous failure of at least one chemo-
therapy regimen [76], combined with gemcitabine for
first-line treatment of locally advanced unresectable or
metastatic pancreatic cancer [77, 78]. Erlotinib treatment
window is very narrow, the recommended dose close to
the maximum tolerated dose, more than the recom-
mended dosage may occur unacceptable serious adverse
reactions, such as breathing difficulties, cough, diarrhea,
rash and so on [79].

VEGFR inhibitors
Sorafenib can inhibit RAF-1, VGFR-2 and VGFR-3 and
other RTK activity [80]. It is the first anti-tumor drugs
targeting and inhibiting RAF kinase and VEGFR kinase
at the same time [81, 82]. It can directly inhibit the pro-
liferation of tumor cells by blocking the cell signaling
pathway mediated by RAF/MEK/ERK [83], but also
through the action of VEGFR to inhibit the formation of
angiogenesis and cut off the nutritional supply of tumor
cells to limit the tumor growth [84, 85]. The clinical
studies have shown that sorafenib can significantly pro-
long the progression-free survival of patients with kidney
cancer, its major adverse reactions are nausea, diarrhea,
rash and high blood pressure [86].
Sunitinib is a multi-target kinase inhibitor that targets

VEGFR, PDGFR-α, PDGFR-β, CSF-1R, and the like. It
is used to treat inoperable RCC [87] and imatinib-
resistant or intolerant gastrointestinal stromal tumors
(GIST) [88]. The drug is well tolerated in children with
recurrent/refractory gliomas or ependymomas, but spe-
cific monotherapy options need further investigation
and may be considered in combination with radiother-
apy and/or chemotherapy [89].

ALK inhibitor
ALK belongs to the insulin receptor superfamily. The
physiological function of ALK in the normal body is not
clear, the research suggests that it has a role for nervous
system function [90, 91]. Crizotinib is a multi-target
tyrosine kinase receptor inhibitor directed against ALK
and acts on hepatocyte growth factor receptor (HGFR)
in addition to ALK for the treatment of ALK-positive pa-
tients with locally advanced or metastatic NSCLC [92].
The study found that crizotinib also has a good anti-
tumor effect on patients with NSCLC rearranged gene
encoding proto-oncogene receptor (ROS1), the FDA ap-
proved in March 2016 its scope of application to
broaden to ROS1-positive NSCLC patients [93].

Fig. 3 Cell signaling pathways induced by Abl kinases. Phosporylated
Abl activates oncogenic signaling pathways by activation of ERK5;
Rac/Jnk, and STAT 1/3 pathways. These cascades are required for
cancer cell growth and transformation
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Ceritinib is an oral small-molecule tyrosine kinase in-
hibitor targeting ALK, IGF-1R, InsR and ROS1, with a
highly selective effect on ALK [94]. The main mechan-
ism of action of ceritinib is to inhibit the phosphoryl-
ation of ALK itself and ALK-mediated downstream
signal proteins, thereby inhibiting the proliferation of
ALK-positive cancer cells. It is clinically used to treat
ALK positive metastatic NSCLC or NSCLC that is exac-
erbated and intolerable to be treated with crizotinib [95].

Bcr-Abl kinase inhibitors
Imatinib has three main targets: various Abl, SCGFR
and PDGFR, the effect is to inhibit the target-mediated
cell events [96]. The molecular mechanism of imatinib is
as an ATP inhibitory inhibitor, blocking PTK phosphoryl-
ation, inhibiting Bcr-Abl expression, thereby preventing
cell proliferation and tumor formation [97, 98]. However,
Bcr-Abl products have multiple effect, a single pathway of
inhibition cannot completely eliminate the malignant pro-
liferation of tumor cells, so this product is only efficient
rather than special effects of anti-cancer drugs [99].
Bosutinib is a dual inhibitor of Abl and Src kinases

[100, 101]. Bosutinib has a high anti-proliferative activity,
can inhibit the proliferation and survival of CML cells
[102]. It can inhibit the activity of CML graft in vivo,
making K562 tumor transplant cells subsided in nude
mice. The inhibitory activity to Abl kinase is considered to
be the main reason for against the proliferation of chronic
myeloid leukemia cells [103, 104].

TKI acquired resistance
Most cancer patients can relieve disease after using TKI,
but acquired resistance remains a bottleneck in cancer
targeted therapy [105]. TKI has a variety of mechanisms
for drug resistance, the current researchers in the ac-
quired resistance mechanism and its treatment strategy
research has made great progress.

T790M mutation
T790M mutation is the first recognized acquired resist-
ance mechanism after the TKI treatment. T790M muta-
tion is due to EGFR gene 20 exon 790th codon missense
mutation, resulting in the product from threonine to
methionine [106]. 43%-50% of patients with NSCLC
who were resistant to gefitinib or erlotinib were positive
for T790M mutations [107]. The cause of resistance may
be methionine instead of threonine, a steric hindrance,
which affects the formation of hydrogen bonds between
tyrosine kinases and TKI, leading to the inability of TKI
to bind [108, 109]; Other studies have shown that
T790M mutation and EGFR-sensitive mutations results
in increased intracellular ATP affinity, whereas the
affinity for TKI is reduced, resulting in TKI acquired
resistance [110].

More and more studies further support the T790M
mutation is an important acquired resistance mechanism
in TKI therapy. T790M mutation will increase the tyro-
sine kinase activity, enhance tumorigenicity [111], but
this type of drug-resistant patients still shows the slow
progress of the disease trend. After immediate with-
drawal, the disease has the possibility of outbreak, and
targeted therapy is still effective after treatment interrup-
tion, which may be due to drug-resistant tumor cells still
exist in a certain proportion of cells sensitive to EGFR-
TKI, but the specific mechanism is not clear [112].
In recent years, EGFR irreversible inhibitors have given

new hope to patients with failed EGFR-TKI therapy.
These drugs act on the ATP binding site of EGFR, cova-
lently bind to the receptor kinase region, and simultan-
eously inhibit multiple members of the EGFR receptor
family [113]. Therefore, theoretically, it can still play an
inhibitory effect to the second mutation of T790M
EGFR, increase the efficacy and reduce the occurrence
of drug resistance [114].
Aftinib (BIBW2992) is a new generation of representa-

tive irreversible potent oral inhibitors that simultaneously
inhibit EGFR and HER2 targets [115]. BIBW2992 further
delays tumor progression by maintaining irreversible
binding to EGFR and HER2, maintaining longer activity,
suppressing transformation in isogenic cell-based assays,
inhibits survival of cancer cell lines and induces tumor re-
gression in xenograft and transgenic lung cancer models,
with superior activity over erlotinib [115, 116]. BIBW2992
can benefit clinical patients with refractory NSCLC.
Dacomitinib (PF299) is an oral small molecule that irre-

versibly inhibits EGFR, HER2 and HER4 tyrosine kinase
inhibitors. In vivo and in vitro experiments, it showed po-
tency of T790M mutations and EGFR20 exon insertion
mutations, which could overcome EGFR-TKI acquired re-
sistance by inhibition of T790M mutations.
Third generation EGFR TKIs are designed to target

EGFR TKI sensitizing mutations and the T790M resist-
ance mutation, thus inhibiting the growth of EGFR
T790M-positive tumors. By sparing wild-type EGFR,
these compounds are also anticipated to reduce the tox-
icities that have been associated with first- (e.g. gefitinib;
erlotinib) and second-generation (e.g. afatinib) EGFR
TKIs. Osimertinib (AZD9291, Tagrisso™), an orally ad-
ministered, third generation EGFR TKI, has been ap-
proved in numerous countries for using in patients with
T790M-positive advanced NSCLC [117]. Osimertinib
was approved by the FDA, whereas ASP8273 is currently
in clinical trials to evaluate the efficacy in patients with
T790M-positive EGFR-mutated NSCLC [118].

c-MET gene amplification
Human c-MET gene located in chromosome 7, the
coding product is a specific receptor for hepatocyte
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growth factor. MET occurred amplification, mutations
and overexpression in a variety of tumors [119, 120].
After combined with HGF, MET can activate RTK sys-
tem, promoting cell proliferation and differentiation, in-
ducing epithelial cell migration and inducing
angiogenesis. 20% of NSCLC patients with TKI resist-
ance are related to c-MET gene amplification, but its oc-
currence was not related to the presence of T790M
mutation [121]. In the presence of EGFR-TKI, c-MET
gene amplification activates ERBB3-PI3K signaling path-
way, directly activating EGFR downstream signaling
pathway, leading to NSCLC resistance to TKI. Studies
have shown that MET may be treatment targets after
TKI acquired drug [122].
With the discovery of c-MET gene amplification

mechanism, the combination of TKI has become an-
other new idea to overcome the resistance of EGFR-TKI
[123, 124]. MetMAb is a unique single-arm antibody
that blocks the MET receptor. It inhibits the binding of
HGF to the MET receptor and restores its sensitivity to
erlotinib [125].
ARQ197 is a novel selective TKI that stabilizes the

non-activated conformations of c-MET1 by non-ATP
competitive inhibition and inactivates c-MET [126]. In
vivo antitumor activity, the antitumor activity of ARQ197
combined with EGFR-TKI was found to be greater than
that of ARQ197 and EGFR-TKI mono therapy. At present,
ARQ-197 and erlotinib were combined to therapy ad-
vanced or metastatic non-small cell lung cancer in the
three stages of research [127, 128].

Loss of PTEN expression
The PTEN gene is another tumor suppressor gene that
is closely related to tumorigenesis and progression [129].
In the study of PC-9 cell lines resistant to gefitinib, p-
AKT in the cell line was significantly up-regulated and
the expression of PTEN was reduced. Thus, the expres-
sion of PTEN was absent and the tumor cells could find
independent on EGFR activation pathway, but effectively
activate the PI3K pathway, resulting in resistance to
EGFR-TKI treatment [130]. Immunohistochemical stain-
ing revealed that 93 NSCLC patients treated with gefi-
tinib had 19 deficient PTEN expression, but this had
nothing to do with the objective response rate, the pro-
gression of disease, and the overall survival time. This
also indicates that EGFR-TKI resistance resulting from
loss of PTEN expression is associated with structural
changes in EGFR downstream signaling [131].

IGF-1R-mediated EGFR downstream pathway activation
The IGF-1R is overexpressed in many tumors, making
the proto-oncogene transcription and translation, and
promoting tumor cell growth [132]. IGF-1R activates both
RAS/RAF/MAPK and PI3K signaling pathways [133]. In

the study of cell lines, IGF-1R leads to EGFR-TKI resist-
ance by regulating the metabolism, proliferation and
apoptosis of tumor cells and continuously activating
the PI3K-AKT signaling pathway. Studies have found
that inhibition of IGF-1R-mediated activation of
EGFR downstream pathway can prevent or delay the
emergence of drug-resistant after receiving Gefitinib
treatment [134, 135].
EGFR pathway downstream signaling molecule PIK3A

mutation or/and amplification make ERBB3-mediated
PI3K signal transduction pathway activation, PTEN gene
deletion or/and mutation can lead to AKT signal activa-
tion [136]. Finally, they make resistance to EGFR-TKI.
BKM120 is an oral PI3K inhibitor. Preclinical studies
have shown it has antitumor activity on malignant
tumor with PTEN mutation or/and deletion or PI3K
mutation or/and amplification [137, 138].
AKT pathway activation is commonly associated with

acquired resistance to EGFR-TKI treatment in NSCLC
harboring a diverse array of other, previously identified
resistance mechanisms. AKT activation is a convergent
feature of acquired EGFR tyrosine kinase inhibitor resist-
ance, across a spectrum of diverse, established upstream
resistance mechanisms. Studies have shown that AKT
inhibition, specifically, could moreuniformly enhance re-
sponse and survival in patients with high pAKT levels
who are at high risk for AKT-mediated resistance, as this
distinct approach has the unique potential to combat the
otherwise profound heterogeneity of molecular resist-
ance events that are present in EGFR-mutant NSCLC
patients with acquired EGFR-TKI resistance to improve
their outcomes [139, 140].

EML4-ALK fusion gene
Echinoderm microtubule associated protein-like 4-
anaplastic lymphoma kinase (EML4-ALK) fusion gene is
lung cancer-driven gene [141], EML4 and ALK two
genes located on human chromosome 2 p21 and p23,
intracellular ALK gene and with the N-terminal EML4
inverted fusion induces tyrosine kinase activity by stimu-
lating the PI3K/AKT/MAPK signaling pathway, resulting
in the proliferation and differentiation of tumor cells
and the inhibition of apoptosis [142]. EML4-ALK fusion
gene accounts for 3% to 7% of NSCLC, mostly in non-
smoking, young female patients with adenocarcinoma
[143]. For the EML4-ALK fusion gene, many highly ef-
fective ALK-TKIs have emerged clinically, including the
second generation of ceritinib, Brigatinib and the third
generation of Loratinib.

Amplification of ALK fusion gene copy number
Amplification of ALK fusion gene copy number is one
of the possible mechanisms of crizotinib resistance. In
one study, extensive amplification of the ALK fusion
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gene was detected in 18 patients with lung adenocarcin-
oma resistant to crizotinib and in acquired drug resistant
cell lines with H3122 (including EML4-ALK mutant 1)
[144]. ALK signaling pathway is often retained when the
ALK fusion gene has a second mutation or increased
copy number in the kinase domain and plays a role in
tumor survival and drug resistance. Therefore, the use of
more effective second- and third-generation ALK inhibi-
tors may be able to overcome the secondary resistance
problems caused by these mechanisms.

Activation of signal bypass
ALK belongs to the tyrosine kinase, and its downstream
signaling pathways mainly include PI3K/AKT/mTOR,
RAS/MEK/ERK and JAK3/STAT3, these signals are re-
lated to cell survival and proliferation, crizotinib through
its specificity apoptosis was induced by inhibiting the ex-
pression of downstream signal of EML4-ALK [145].
When the signal is activated bypasses, the signal trans-
duces around the original target of the inhibitor and ac-
tivates downstream signals through the signal bypasses,
leaving crizotinib not sufficient to suppress tumor growth,
leading to drug resistance. These ALK-independent mech-
anisms of resistance include activation of EGFR, KIT, IGF-
1R and other signaling pathways.

Epithelial mesenchymal transformation
The epithelial mesenchymal transformation (EMT) re-
fers to the transformation of epithelial cells into intersti-
tial cells. Through EMT, the epithelial cells lose the
polarity of the cells, lose the epithelial phenotype such
as the connection with the basement membrane, obtain
higher interstitial phenotypes such as migration and in-
vasion, anti-apoptosis and degradation of the extracellu-
lar matrix capacity [146, 147]. EMT is an important
biological process in which epithelial cell-derived malig-
nant cells acquire the ability to migrate and invade. In
recent years, a number of studies have shown EMT is
related to tumor stem cell formation, drug resistance
and tumor metastasis.

Other possible resistance mechanisms
BRAF gene encoding BRAF protein is the molecular iso-
mer of RAF protein, locates downstream of EGFR sig-
naling pathway. It activated MAPK, promoted cell
proliferation and differentiation through the interaction
with RAS [148–150]. There were about 3% of BRSC
gene mutations in NSCLC patients. It has been reported
that BRAF gene mutation is one of the resistance mech-
anisms of EGFR monoclonal antibody in the treatment
of colorectal cancer [151]. It has also been reported that
mTOR is associated with EGFR resistance, blocking
mTOR pathway can interfere with tumor growth [152].
In addition, TKI acquired resistance is also associated

with increased VEGF levels, and VEGFR/EGFR dual
pathway inhibitors have been shown to have a good
therapeutic effect in EGFR-TKI-resistant patients [153].

Conclusions
The mechanism of tumor drug resistance is complicated,
and the new emerging mechanism remains to be further
studied. On one hand, tumor has a multi-drug resistance
mechanism or a escape pathway, combined treatment is
possible to block the signal path. In clinical practice, we
often need combined application of a number of differ-
ent drugs to affect the tumor growth [154]. On the other
hand, gene therapy technology can inhibit the expression
of drug resistance gene mRNA, with a broad clinical ap-
plication prospects [155, 156]. As the researchers on the
tumor resistance mechanism continuously deepening
and related treatment technology continuously develop,
human can improve the effect of clinical chemotherapy, re-
verse the resistance of cancer. The potential to truly trans-
form some types of metastatic oncogene-addicted cancers
into chronic diseases may now lie within our reach.
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