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Preface

Neuronal inclusions comprised of the microtubule-associated protein tau are found in a number of

neurodegenerative diseases, commonly known as tauopathies. In Alzheimer's disease, the most

prevalent tauopathy, misfolded tau is probably a key pathological agent. The recent failure of Aβ-

targeted therapeutics in Phase III clinical trials suggests that it is timely and prudent to consider

alternative drug discovery strategies for Alzheimer's disease. Here we focus on those directed at

reducing misfolded tau and compensating for the loss of normal tau function.

Introduction

The brains of patients with Alzheimer's disease (AD) and a number of other central nervous

system disorders, such as frontotemporal dementia, Pick's disease, corticobasal degeneration

and progressive supranuclear palsy, contain inclusions comprised of the microtubule-

associated protein tau1,2. This shared pathological feature has resulted in these various

neurodegenerative diseases being called “tauopathies”, although there are clear distinctions in

the phenotypic manifestations of these disorders. The insoluble tau deposits found in the brains

of patients with tauopathies are comprised of fibrils and are typically found within the cell

bodies and dendrites of neurons3, where they are referred to as neurofibrillary tangles (NFTs)

and neuropil threads (Figure 1). The occurrence of fibrillar tau inclusions in tauopathies

suggests that they play a critical role in the observed clinical symptomology and pathology.

This hypothesis is supported by correlations of NFT density and cognitive decline in AD4-6.

However, no tau mutations have been identified in AD, whereas inherited early-onset AD can

result from mutations in the amyloid precursor protein (APP) or presenilins that lead to

increased synthesis of the amyloid β (Aβ) peptide found within the hallmark senile plaques of

AD brain7,8. These genetic data led to an Aβ-centric view of AD that, while still prevalent,

was tempered by the later discovery that FTD with Parkinsonism linked to chromosome 17

(FTDP-17) resulted from tau gene mutations9,10. Because FTDP-17 patients have AD-like tau

deposits in their brains11, it seems reasonable to surmise that this common tau pathology causes

disease in AD and other tauopathies, albeit in the absence of tau gene mutations. In the case

of AD, there is thus compelling evidence to implicate both Aβ and tau as disease-causing

agents. Although the linkage between these two molecules in AD is not fully understood, the

prevailing viewpoint is that misfolded Aβ species initiate cellular events that result in later tau

aggregation12.
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Tau stabilizes microtubules (MTs) within cells13,14 and is particularly enriched in neurons15,

where MTs serve as the “tracks” upon which cellular cargo is transported in axons (Figure 2).

Humans express six tau isoforms that result from alternative splicing of exons 2, 3 and 1016,

17, and the absence or presence of exon 10 leads to tau species that contain either three (3-R)

or four (4-R) carboxyl-terminal microtubule (MT)-binding repeats (Figure 3). Not surprisingly,

4-R tau isoforms bind MTs with greater avidity than 3-R forms18, and there is approximately

equimolar 4-R and 3-R tau in normal individuals. Interestingly, a significant proportion of the

known tau mutations in FTLD-17 affect exon 10 splicing (Figure 3), leading to an increase in

the 4-R/3-R ratio2,9,10 and suggesting that over-stabilization of MTs results in disease. An

alternative explanation is that 4-R tau more readily forms aggregates that contribute to

disease19. The remaining FTLD-17 tau mutations result in missense mutations within the

coding region of the gene (Figure 3)2,9,10, and studies show that some of these amino acid

changes decrease the ability of tau to bind MTs20-22 and/or increase the propensity of tau to

form insoluble fibrils in vitro23-25.

The causes of tau aggregation in sporadic tauopathies are not fully understood. One post-

translational modification that seems to alter the properties of tau in ways that resemble

FTLD-17 mutations is hyperphosphorylation, which occurs in all tauopathies26,26,27. Tau is

normally phosphorylated at multiple serine (ser) and threonine (thr) residues28, and

hyperphosphorylation (Figure 3) reduces MT binding29-32,32 and may enhance

aggregation31,33,34. Therefore, it is possible that changes in protein kinase and/or phosphatase

activities could enhance tau phosphorylation with consequent loss-of-function (LOF) and/or

gain-of-function (GOF) toxicities. Additional post-translational modifications may also

contribute to tau dysfunction. For example, tau undergoes a specific type of ser/thr O-

glycosylation and these modifications can reduce the extent of tau phosphorylation35,36. Thus,

a decrease in tau O-glycosylation could result in increased hyperphosphorylation. Tau can also

be tyrosine phosphorylated37, sumoylated and nitrated38, although it is not fully understood

what effects these modifications have on tau. Another post-translational event that may

facilitate tau aggregation is proteolytic cleavage, as it appears that both calpain39 and

caspases40 can act on tau to produce fragments that may have an increased propensity to

aggregate. Finally, it is known that tau fibrillization in vitro requires the presence of anionic

co-factors such as heparin, RNA or negatively-charged lipids41,42, and it is possible that

changes in the intracellular content of one or more such molecules may facilitate tau deposition

in tauopathies.

The knowledge gained from the FTDP-17 mutations and an increased understanding of how

the post-translational modifications of tau affect its function has led to a growing interest in

developing therapeutics that target pathological tau. Most tau-directed drug discovery

programmes are in early research stages and are not nearly as advanced as Aβ-focused AD

programmes. However, recent notable failures in pivotal clinical trials with agents such as

tramiprosate43 and flurbiprofen44, which were aimed at reducing Aβ burden in the brains of

AD patients, underline the need to pursue other therapeutic approaches including those that

reduce pathological tau. It is thus timely to review recent advancements in tau-based drug

discovery efforts and the relative merits of these strategies.

Compensating for Tau LOF

Evidence that tau mutations and hyperphosphorylation can affect MT binding suggests that

impairment of MT function and axonal transport contributes to neurodegeneration in AD and

related tauopathies (Figure 2). A reduction of the stabilized MT marker, acetyl-tubulin, has

been observed in NFT-containing neurons within the brain of patients with AD45 and after tau

deposition in a rat hippocampal slice model46. Importantly, a reduction in MT density and fast

axonal transport (FAT) has been observed in a transgenic mouse model that develops
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hyperphosphorylated tau inclusions in neurons of the cortex, brainstem and spinal cord47.

Finally, in patients with AD a reduced MT density was observed in pyramidal neurons relative

to age-matched controls, although the change appeared to be unrelated to the presence of

NFTs48.

It should be noted that there are data which contradict the viewpoint that tau LOF contributes

to neurodegeneration. For example, FAT was not affected in tau knockout mice49, and human

APP transgenic mice that were crossed with tau-deficient mice showed improved cognitive

performance relative to the APP mice expressing normal amounts of tau50. However,

constitutive gene knockout can lead to compensatory changes during development and it has

been reported that tau knockout mice have elevated expression of the MT-associated protein

1a (MAP1a)51. Moreover, tau knockout mice are not normal as they develop cognitive as well

as motor deficits with age, and primary hippocampal neurons from these animals show delayed

axonal extension52,53. Inducible tau knockout mice have not yet been evaluated; these animals

may provide a better measure of the significance of tau.

The hypothesis that tau LOF contributes to neuronal dysfunction has been further tested by

treating tau transgenic mice that display MT and motor deficits with the MT-stabilizing

drug, paclitaxel (Table 1)47,54. After three months of drug treatment, the mice showed a

significant improvement of FAT and MT density relative to vehicle-treated animals.

Furthermore, there was a marked improvement in motor function in the paclitaxel-treated mice.

Because paclitaxel does not readily cross the blood-brain barrier (BBB), the observed drug-

induced changes presumably resulted from paclitaxel uptake at peripheral neuromuscular

junctions with subsequent retrograde transport to spinal motor neurons. These results

demonstrate that tau LOF can be compensated for by small molecule drugs, and that MT-

stabilizing agents that readily cross the BBB might lead to similar improvements in tauopathy

brains. Recently, the octapeptide NAP, which crosses the BBB, was found to promote MT

assembly55. Intranasal NAP administration for three months to 9-month old transgenic mice

that develop Aβ and tau deposits resulted in a reduction of tau phosphorylation as well as a

lowering of Aβ levels56. Furthermore, in older transgenic mice that had developed moderate

pathology, NAP treatment reduced tau phosphorylation, although Aβ levels were

unaffected57. The mechanism whereby NAP alters tau phosphorylation and Aβ levels in young

transgenic mice is unclear, as it is not evident that stabilization of MTs would lead to these

changes. Nonetheless, these data are intriguing and support the concept that drug-induced

stabilization of MTs could be beneficial in tauopathies.

A challenge when attempting to treat AD and related tauopathies with MT-stabilizing

compounds is identifying molecules that readily reach the brain. Although intranasal

administration of NAP seemed to result in effective brain levels, many of the more traditional

MT-stabilizing agents, including the taxanes, have relatively poor BBB penetration58. This is

due, at least in part, to many of the taxanes being substrates of the P-glycoprotein transporter

that actively pumps xenobiotics from the cells lining the BBB back into the blood59. Identifying

MT-stabilizing compounds with good brain penetration is important not only because this is

the site of pathology in human tauopathies, but also because compounds that readily pass the

BBB will achieve efficacious brain concentrations at relatively lower plasma drug levels.

Keeping peripheral levels of MT-stabilizing drugs as low as possible is important as these

compounds are potent anti-mitotic agents that can have significant side-effects. Based on the

absence of observable morbidities in the tau transgenic mice that showed motor improvements

upon paclitaxel treatment54, there is hope that relatively low brain concentrations of MT-

stabilizing drugs will be required to stabilize neuronal MTs in tauopathies. Further analysis of

MT-stabilizing compounds to identify those that can gain access to the brain, followed by

testing in animal models of tauopathy, will provide further information on the relative efficacy

and safety of this approach.
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Inhibition of Tau hyperphosphorylation

Challenges associated with reducing Tau phosphorylation

Normal tau is phosphorylated on a number of residues and the extent of this phosphorylation

is increased dramatically in the brain of patients with AD60,61. Although ~40 ser/thr tau

phosphorylation sites have been described62, only a small number of hyperphosphorylation

sites are well-characterized (Figure 3); most of them flank the MT-binding domains, although

ser262 and ser356 reside within these regions. Phosphorylation at ser262, thr231 and ser235

was found to reduce tau binding to MTs63, and phosphorylation or pseudophosphorylation

of a number of sites has been demonstrated to enhance tau fibrillization31,33,64 although

phosphorylation at ser214 and ser262 may prevent tau aggregation65. Because

hyperphosphorylation could lead to tau LOF or GOF, identifying inhibitors of the appropriate

kinases has considerable therapeutic appeal.

Kinase inhibitors are being actively pursued in the pharmaceutical industry for a number of

clinical applications, particularly for the treatment of cancers. Nonetheless, there are significant

challenges to the development of tau kinase inhibitors. Because current kinase inhibitors are

generally directed to the common ATP binding site shared by all members of this family,

achieving kinase selectivity has proven to be difficult66. Furthermore, inhibiting tau

hyperphosphorylation requires an understanding of the specific enzymes involved in these

modifications. A large number of kinases have been shown to be capable of phosphorylating

tau in vitro, including proline-directed kinases such as extracellular signal-related kinase 2

(ERK2), glycogen synthase kinase-3 (GSK-3) and cyclin-dependent kinase 5 (cdk5), as well

as the non-proline-directed enzymes casein kinase 1 (CK1), protein kinase A (PKA), and

microtubule affinity-regulating kinase (MARK)62,67,68. However, uncertainty remains about

which of these is most important to tau hyperphosphorylation in human disease.

There is substantial support for CDK5 and GSK-3 being relevant kinases in tauopathies. GSK-3

exists in two highly homologous α and β isoforms, but because the reagents used in many

studies do not differentiate between these two species their relative contributions are unclear.

GSK-3 co-localizes with NFTs69, although there doesn't seem to be an up-regulation of GSK-3

activity in AD brain70. Overexpression of GSK-3β in transgenic mice has been reported to

increase tau hyperphosphorylation and to cause behavioural deficits71,72. CDK5 activity73 and

the levels of the CDK5 activator p35/p2574 have been reported to be up-regulated in the brain

of patients with AD Like GSK-3, CDK5 has also been demonstrated to be associated with

nascent NFTs75-77. In addition, co-expression of p25 and mutant human tau in mice led to the

formation of NFTs with resulting neurodegeneration78. Interestingly, both CDK579 and GSK-3

have been implicated in the upregulation of Aβ synthesis, with inhibition of GSK-3α and

GSK-3β reported to decrease Aβ levels80-82. Also, there seems to be a link between CDK5

and GSK-3β activity, as inhibition of CDK5 in mice overexpressing p25 led to an increase of

tau phosphorylation by GSK-3β83. This implies that inhibition of CDK-5 may not lead to a

desired reduction of tau hyperphosphorylation. Among the candidate non-proline directed tau

kinases, MARK may arguably be the most relevant. MARK phosphorylates multiple MT-

associated proteins in addition to tau and cells that overexpress this kinase show increased tau

phosphorylation84. MARK is localized to tau tangles in the AD brain85 and overexpression of

the MARK orthologue Par-1 in flies co-expressing human tau resulted in increased tau

phosphorylation and enhanced neurotoxicity86.

A further challenge in developing tau kinase inhibitors, in addition to the issues mentioned

above, is the possibility of target related side-effects as most kinases regulate several cellular

processes. GSK-3 is perhaps best known for its involvement in glycogen metabolism and as a

drug target for metabolic disease87. CDK5 is essential for survival in mice and has a key role

in neuronal development88. Similarly, MARK is involved in axonal transport and neurite
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growth89,90. Although kinase inhibitors have been used successfully in oncology, it remains

to be determined whether these molecules can be safely administered on a chronic basis for

the treatment of tauopathies. Notwithstanding these concerns, a number of research groups

have developed inhibitors of the key kinases implicated in tau phosphorylation. The details on

the many classes of compounds that have been identified to date have been reviewed in

references67,91. A small number of tau kinase inhibitors (Table 1) have progressed to efficacy

testing in tau-based animal models (Box 1), and these data are briefly discussed here as they

provide important information about the merits of this approach. In fact, the development of

several transgenic mouse lines that overexpress tau with FTDP-17 mutations92 has provided

important research tools for compound evaluation. These mice typically show an age-

dependent formation of intraneuronal hyperphosphorylated tau inclusions that mimic many

aspects of the NFTs observed in human tauopathies, including neuritic pathology and axonal

degeneration.

Analysis of Tau phosphorylation inhibitors in animal models

Most in vivo efficacy studies of tau kinase inhibitors have examined the effects of GSK-3

inhibition. Administration of the GSK-3 inhibitor LiCl for ~one month to transgenic mice that

overexpress mutant human tau resulted in a decrease of tau phosphorylation and a reduction

of insoluble tau93,94. LiCl has effects on other enzymes besides GSK-3, but it has been shown

that treatment with the relatively specific GSK-3 inhibitor AR-A014418 (Table 1) leads to a

reduction of insoluble tau within these transgenic mice that is comparable to that observed with

LiCl. A four-month LiCl treatment of young transgenic mice that express the shortest human

tau isoform led to a reduction of tau pathology and behavioural improvement95. Interestingly,

although decreased tau phosphorylation was observed during the initial month of dosing in

these mice, this effect was not seen by the end of the dosing regimen95. Thus, the attenuated

tau pathology in the LiCl-treated mice may have resulted from the transient inhibition of GSK-3

and/or from an increase in tau ubiquitination that was observed in these animals. More recently,

LiCl was administered to transgenic mice that overexpress both mutant human tau and

GSK-3β, and which develop age-dependent tau hyperphosphorylation accompanied by NFT

formation. Treatment of pre-symptomatic animals with LiCl for 7.5 months prevented tau

hyperphosphorylation and the onset of tau pathology, whereas administration of LiCl to mice

with existing tau pathology resulted in a reduction of tau phosphorylation although NFTs

persisted96. A comparable effect was observed when tetracycline-controlled GSK-3β
expression was down-regulated in these older mice, suggesting that the effects of LiCl were

specifically due to inhibition of GSK-3β96. Finally, LiCl has been administered to 15-month

old transgenic mice that develop Aβ plaques and tau tangles in their brain97. Daily LiCl

treatment for one month led to reduced tau phosphorylation without affecting Aβ plaque

burden. However, the drug treatment did not rescue memory deficits within these animals.

Although studies of LiCl in human AD subjects are sparse, a recent 10-week clinical trial of

LiCl in 71 mild AD patients did not show clinical or biomarker efficacy98.

Although many in vivo studies of tau kinase inhibition have used LiCl, a few additional small

molecule kinase inhibitors have been evaluated for efficacy. The non-specific kinase inhibitor

SRN-003-556 (Table 1), which affects CDK5, GSK-3 and ERK2, was evaluated in mice that

overexpress mutant human tau99. The compound was shown to significantly delay the

development of motor deficits and decrease the amount of soluble hyperphosphorylated tau

after nine weeks of dosing. However, no reduction in NFTs was observed, leading the authors

to speculate that the negative effects of tau may have resulted from diffusible multimers. More

recently, a large number of GSK-3 inhibitors were investigated in 12-day old rats that have

elevated tau phosphorylation relative to adult animals100. Both LiCl and CHIR98104 were

found to reduce tau phosphorylation in the cortex and hippocampus, whereas alsterpaullone

and SB216763 (Table 1) were only effective in the hippocampus.
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Finally, it should be noted that another potential approach to modifying tau phosphorylation

is through manipulation of tau O-linked glycosylation101. Certain ser/thr residues of tau are

post-translationally modified through the addition of β-N-acetylglucosamine (O-GlcNac), and

the levels of tau phosphorylation and O-GlcNac have been demonstrated to be reciprocally

regulated such that increased tau O-GlcNac results in decreased phosphorylation35,36. The

cleavage of O-GlcNac from tau is mediated by the enzyme O-GlcNacase, and a recent study

has demonstrated that acute administration of an inhibitor of this enzyme, thiamet-G (Table

1), to normal rats caused an apparent reduction of tau phosphorylation at ser396, thr231 and

ser404102. Thus, it may be possible to modulate tau phosphorylation through inhibition of O-

GlcNacase, although it should be noted that the single in vivo study with the O-GlcNacase

inhibitor thiamet-G was conducted with normal rats that do not have hyperphosphorylated tau.

As many intracellular proteins undergo O-GlcNac modification, the potential side-effects of

chronic inhibition of O-GlcNacase will have to be carefully examined.

Inhibition of Tau assembly into oligomers and fibrils

As mentioned above, the conversion of soluble tau into oligomeric and fibrillar species could

result in tau GOF and LOF toxicities. Thus, inhibiting tau assembly into multimeric structures

might prevent the formation of toxic species and increase the levels of monomeric tau, which

could contribute to MT stabilization. Although blocking protein–protein binding with small

molecule drugs is generally believed to be difficult due to the large surface areas involved in

such interactions, there is now growing evidence that tau multimerization can be disrupted with

low molecular weight compounds (Table 2). These studies have been greatly facilitated by the

discovery that tau can be induced to form well-defined fibrils in vitro in the presence of certain

anionic co-factors, such as heparin or negatively-charged lipids42,103. Moreover, the formation

of these tau fibrils can be readily monitored with fluorescent dyes that recognize the cross-β-

fibril structure that is common of all amyloid fibrils (see Box 2). Although the tau fibrils formed

in vitro bear verisimilitude to the PHFs observed in the brains of patients with AD, other

tauopathies such as progressive supranuclear palsy are characterized by straight tau

filaments2. Thus it remains to be determined whether a compound that blocks tau fibrillization

in vitro will affect all types of tau fibrils.

The first compound reported to inhibit tau–tau interactions was the dye methylene blue (Table

2), which was also shown to alter the structure of existing paired helical filaments (PHFs)

isolated from the brain104. This molecule is now in clinical testing for AD and Phase II data

presented at the 2008 International Conference on AD suggest that this compound had a

positive treatment effect105, although larger Phase III studies are required to prove efficacy.

Another dye-like molecule, N744, has also been identified as an inhibitor of full-length tau

fibrillization and like methylene blue this compound could disaggregate existing

filaments106. However, at higher concentrations N744 forms aggregates that were found to

increase tau assembly107.

A number of laboratories have screened compound libraries (Box 2) with the goal of identifying

inhibitors of tau fibrillization (see Table 1 for examples). For example, the Mandelkow

laboratory completed high-throughput screening (HTS) of ~200,000 compounds in an assay

in which fibrillization of a 3-R tau fragment was evaluated by thioflavine S (ThS)

fluorescence108. This led to the identification of a number of anthraquinone inhibitors of tau

fibril formation, including daunorubicin and adriamycin. These compounds also caused

disaggregation of pre-formed tau fibrils if concentrations were increased above those required

to prevent fibrillization, indicating that it is possible to find compounds that can both block the

formation of tau fibrils and dissolve existing aggregates. Furthermore, it was demonstrated that

an anthraquinone analogue could reduce the formation of tau inclusions in N2a neuroblastoma

cells that overexpress a 4-R human tau fragment. A number of N-phenylamine tau fibrillization
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inhibitors identified from this screen were later shown to also be active in the N2a cell

model109. This group subsequently developed a pharmacophore model from the active

compounds identified after HTS110, resulting in the identification of a phenylthiazolyl-

hydrazide (PTH) series of compounds that prevented tau fibrillization as well as aggregation

in the N2a cellular model111. Finally, a rhodanine series of tau fibril inhibitors was

identified112 by this team that disaggregated pre-formed tau fibrils and prevented tau aggregate

formation in the N2a cells.

Other researchers have also screened compound collections to identify inhibitors of tau fibril

assembly. Phenothiazines, porphyrins and polyphenols have been reported to block tau

fibrillization as determined by ThT fluorescence and electron microscopic analysis of reaction

products113. Another screen of ~51,000 compounds to identify inhibitors of heparin-induced

fibrillization of a human 4-R tau fragment114 identified several active compounds, including

previously described anthraquinones, phenothiazines, porphyrins and sulfonated dyes. In

addition, novel benzofuran, pyrimidotriazine and quinoxaline inhibitors were discovered.

Secondary analyses revealed that many of the compounds were inactive when dithiothreitol

(DTT) was omitted from the tau assembly reaction, possibly because these compounds form

peroxides in the presence of DTT that alter tau interaction. Among the compounds with less

activity in the absence of DTT were the anthraquinones, benzofurans, porphyrins,

pyrimidotriazines and sulfonated dyes, raising questions about the ultimate suitability of these

molecules for use in vivo. The quinoxaline compounds did not depend on DTT for inhibition

of tau fibril formation, and a bioinformatic analysis of the screening library revealed that only

two of ~200 compounds containing a quinoxaline core structure were active in the tau assay.

Both of these molecules contained a 2,3-di(furan-2yl) functionality that might be critical for

activity. More recently, >290,000 compounds were screened at six concentrations with tau

fibrillization monitored using fluorescence polarization (FP) and ThT fluorescence (Box 2). A

total of 285 compounds showed complete dose-dependent inhibition of tau assembly, and a

unique set of aminothienopyridazine inhibitors were identified that have drug-like physical-

chemical attributes115.

In summary, several distinct classes of small molecule compounds have been identified that

prevent tau fibrillization (Table 2) and some of these have also been shown to disaggregate

pre-formed fibrils or block tau aggregate formation in cells. Many of the existing examples of

tau assembly inhibitors have chemical or biological properties that will probably make them

unsuitable for use in vivo, and at least some may act through the generation of reactive species

or via covalent modification that increase the potential for off-target side-effects. Moreover, it

is possible that certain of the described tau fibrillization inhibitors may form colloidal structures

that have been shown to result in non-specific inhibition of amyloid polymerization116.

Nonetheless, continued efforts in this area are likely to yield compounds that will be suitable

for analysis in mouse models of tauopathy, which will be crucial in determining whether the

strategy of inhibiting tau fibril formation has therapeutic merit. In particular, it will be important

to show that tau assembly inhibitors can have the desired effect of reducing tau accumulations

at doses that are safe. Many of the described compounds seem to require nearly equimolar

concentrations relative to tau to block fibril formation in vitro, which might suggest that high

concentrations would be required in the brain to achieve efficacy. However, it has been

estimated that >99% of tau is bound to MTs117, and thus the free tau concentrations might be

<20 nM in neurons based on an estimate of 2 μM total tau118. Under these circumstances,

achieving equimolar drug concentrations should be achievable with reasonable doses.

Another factor to consider in the evaluation of tau assembly inhibitors is that there has been

very little characterization of the tau species that accumulate in the presence of these

compounds. Preferred compounds are likely to be those that prevent the initial stages of tau–

tau interaction, so that they lead to an increase of tau monomers and not uncharacterized
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intermediate multimeric structures which could conceivably have biological activity119. Thus,

an understanding of the tau species that are formed in the presence of assembly inhibitors will

be important in interpreting results from studies conducted in animal models of tauopathy.

Enhancing intracellular Tau degradation

There are two major pathways by which cells can degrade misfolded cytosolic proteins. The

first is the ubiquitin-proteasome system (UPS) in which proteins are modified with ubiquitin

tags and subsequently degraded by the proteasome complex120. This requires the threading of

the targeted protein into a narrow opening formed by the proteasome, thereby excluding

oligomers and larger aggregates from catabolism by this route. Larger multimeric protein

structures are thus primarily degraded through macroautophagy, which requires

encapsulation by an autophagosome and subsequent fusion with a hydrolase-containing

lysosome121. There is evidence that both of these systems may be affected in the AD

brain122-126, and although normal tau has not been shown to use these systems there are reports

which suggest that hyperphosphorylated and misfolded tau can undergo degradation through

both of these pathways. Accordingly, it is possible that upregulation of one or both of these

catabolic systems may lead to a reduction of pathological tau in AD and other tauopathies.

The involvement of the UPS in the degradation of phosphorylated tau has been demonstrated

through the use of inhibitors of the 90 kD heat shock protein (Hsp90). Hsp90 acts as a molecular

chaperone that combines with other proteins to form a complex that assists in the refolding of

denatured proteins in an ATP-dependent process. If the ATPase function of Hsp90 is inhibited

with molecules such as geldanamycin, the composition of the refolding complexes can change

such that proteins which were once stabilized by Hsp90 are targeted for degradation by the

proteasome (see 127,128 for greater detail). Inhibitors of Hsp90 have been extensively studied

as possible cancer therapies as it appears that many oncogenic proteins are stabilized through

interactions with Hsp90. Several Hsp90 inhibitors reduced the levels of tau phosphorylated at

proline-directed kinase sites Ser202/Thr205 and Ser396/Ser404 in cells overexpressing

mutated human tau129. Moreover, tau with an altered conformation that is recognized by a

specific antibody was found to be decreased in cells treated with Hsp90 inhibitors. Two studies

have shown that treating transgenic mice that express human tau with BBB-permeable Hsp90

inhibitors (Table 1) — EC102 for seven days, or PU24FCl for one month — reduced the amount

of hyperphosphorylated tau in the brain127,130.

Interestingly, EC102 was found to displace biotin-labeled geldanamycin from Hsp90

complexes within human AD cortical brain homogenates at 1000-fold lower concentration than

from homogenates derived from control cortex or non-affected AD cerebellum127. This

observation is in keeping with the discovery that the Hsp90 inhibitor 17-

asllylaminogeldanamycin has 100-fold higher binding affinity for Hsp90 derived from tumour

cells than from normal cells131. These data suggest that there is a preferential binding of Hsp90

inhibitors to complexes that are associated with misfolded proteins, and imply that Hsp90

inhibitors can be used clinically at doses that will leave other Hsp90–client protein interactions

intact.

Although Hsp90 inhibitors seem to hold promise for reducing phosphorylated and misfolded

monomeric tau through the UPS, it is unlikely that this pathway would affect larger tau

oligomers and fibrils. However, the autophagic clearance system has been implicated in the

removal of aggregate-prone proteins, including those involved in neurodegenerative

disease121,132. Macroautophagy can be induced with the drug rapamycin, and it has been

demonstrated that treatment of flies which express wild-type or mutated tau with this compound

results in a reduction of insoluble tau and associated toxicity 133. Recently, it was found that

clearance of tau was slowed in human tau-expressing neuroblastoma cells that were treated
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with the lysosomotropic agents NH4Cl or chloroquine 134. Furthermore, the addition of the

autophagy inhibitor, 3-methyladenine, led to enhanced tau accumulation and aggregation
134. There is thus growing evidence that aggregated tau can be degraded by autophagy and that

an up-regulation of the autophagy-lysosomal system with drugs like rapamycin might be a

potential strategy for the treatment of tauopathies. Unfortunately, rapamycin affects the mTOR

signalling network and has pleiotropic effects, including immunosuppression, that complicate

its use. In this regard, inhibition of an mTOR-independent target, inositol monophosphatase,

with LiCl has been shown to cause an upregulation of autophagy and an increased clearance

α-synuclein, which forms intracellular inclusions in Parkinson's disease135. As previously

discussed, many studies have been conducted with LiCl in tauopathy models in which changes

in aggregated tau levels were attributed to inhibition of GSK-3. It is possible that LiCl might

have also induced autophagy in these models, and it will be important to further study whether

inositol monophosphatase inhibition affects tau aggregates in cell-based models and tau

transgenic mice.

Conclusions

There clearly is growing interest in tau-focused drug discovery for AD and other tauopathies,

and this has resulted in significant recent advancements in this area. Indeed, a number of small

molecules have been identified that target tau-mediated neuropathology and neurodegeneration

(Figure 4). These include compounds that inhibit tau multimerization, decrease tau

phosphorylation through inhibition of kinases or O-GlcNacase, enhance tau degradation or

compensate for tau LOF through stabilization of MTs. However, only a handful of tau kinase

inhibitors, Hsp90 inhibitors and MT stabilizing agents have undergone proof-of-principle

testing in established transgenic mouse models of tauopathy. Moreover, the only tau-directed

drugs that have progressed to human clinical testing are methylene blue, LiCl and NAP. It is

hoped that many additional compounds that target tau pathology will soon be examined for

efficacy in vivo, as such studies are important in further validating the use of tau-based

therapeutic approaches.

As tau-directed therapies move toward clinical testing in AD and other tauopathies, they will

face many of the same difficulties that are presently being encountered in trials of Aβ-targeted

drugs. Foremost among these is the challenge of demonstrating clinical efficacy in a population

that is likely to have substantial existing neurodegeneration. Efforts are underway to improve

early AD diagnosis and to identify those with prodromal disease, as such patients should be

more responsive to disease-modifying treatments. However, conducting clinical trials at an

early disease stage presents other difficulties, including the possibility of having to follow

patient response for longer time periods. This challenge might be mitigated by the identification

of informative efficacy biomarkers for AD and related tauopathies. Although there is

considerable uncertainty about the relative roles of Aβ and tau in AD, the greater correlation

of memory impairment with NFTs than with Aβ-containing senile plaques suggests that tau

pathology is temporally more proximal to the neurodegenerative events that result in dementia

than are Aβ aggregates. If true, it may be easier to demonstrate clinical efficacy in AD with

tau-directed drugs than with those targeting Aβ. It is thus very important that there be continued

advancement of tau drug discovery programmes so that candidates are identified for future

clinical assessment.

Box 1. Transgenic mouse models of tauopathy

The assessment of compounds directed to potential tauopathy drug targets has been greatly

facilitated by the development of transgenic mice that develop tau neuropathology as they

age (reviewed in 1,92). In general, mice that have been genetically altered to overexpress

human tau containing one or more mutations found in patients with frontotemporal dementia

Brunden et al. Page 9

Nat Rev Drug Discov. Author manuscript; available in PMC 2010 April 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



with Parkinsonism linked to chromosome 17 (FTDP-17) develop central nervous system

inclusions comprised of hyperphosphorylated human tau. These intraneuronal aggregates

resemble those observed in tauopathies, and many tau transgenic mice also show profound

neuron loss. The regional expression profile of tau in these transgenic mice depends on the

promoter that is used to drive tau expression, and thus certain transgenic lines show

neuropathology that is largely restricted to the forebrain, whereas other lines have more

broadly disseminated tau expression and pathology. Recently, transgenic mice have been

developed in which mutated human tau expression can be regulated through the use of a

repressible promoter 136, thereby facilitating studies examining the effects of temporal tau

expression.

Box 2. Description of high-throughput screens used to identify Tau

fibrillization inhibitors

Full-length tau or certain tau fragments can be induced to form fibrils that closely resemble

those isolated from diseased brains. Tau monomers have a highly disorganized structure

and will not spontaneously assemble into fibrils unless an anionic co-factor such as heparin

or arachidonic acid is included in the incubation mixture. When one of these anionic species

is added to a tau preparation and incubated at 37°C, a time-dependent increase in fibril

content is observed that can be detected with dyes such as Thioflavine S or T (ThT), which

emit a characteristic fluorescence signal upon binding to cross-β-fibril structures (see figure)
137. A alternative detection method involves mixing a small amount of fluorescently-labeled

tau into the fibrillization assay115. The fluorescent tau is incorporated in growing tau

multimers, which slows the rotational freedom of the fluorescent probe and causes an

increase in fluorescence polarization (FP) (depicted below). Whereas ThT will only bind

tau fibrils, the FP method allows for the detection of both non-fibrillar and fibrillar

multimeric tau species and the FP and ThT readouts can be performed in the same reaction.

Combining both of these methods in one assay can help to distinguish compounds that

inhibit the earliest stages of tau assembly (resulting in a diminution of both FP and ThT

fluorescence) from those that primarily affect fibril growth (leading to diminished ThT

fluorescence but relatively unchanged FP). Tau fibrillization assays of this type have been

miniaturized so that fibrils can be reproducibly formed in 384- or 1536-well plates, thereby

allowing large compound libraries to be screened for molecules that inhibit tau fibril

formation.
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Online bits:

At a Glance

- A number of neurodegenerative diseases of the brain are characterized by the

presence of inclusions within neurons that are comprised of aggregated fibrils of

hyperphosphorylated tau protein. These various disorders, which include

Alzheimer's disease (AD), Pick's disease, progressive supranuclear palsy,

corticobasal degeneration and certain frontotemporal dementias, are broadly

referred to as tauopathies.
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- Tau is normally a soluble protein that stabilizes microtubules (MTs) within cells

and is particularly enriched in neurons, where MTs serve as the “tracks” upon

which cellular cargo is transported in axonal projections. The formation of

insoluble tau aggregates could cause neurodegeneration through the formation of

toxic tau species, or through a loss of tau function due to its hyperphosphorylation

and sequestration in inclusions.

- Tau mutations have been shown to cause frontotemporal dementia with

Parkinsonism linked to chromosome 17 (FTDP-17), but tau mutations have not

been identified in other tauopathies, including AD. The causes of tau aggregation

in these sporadic tauopathies are not fully understood, although tau

hyperphosphorylation might be important as it decreases tau binding to MTs and

increases tau fibrillization.

- There is a growing interest in developing therapeutics that target pathological tau,

particularly for the treatment of AD. Most tau-directed drug discovery programmes

are in early research stages and are not as advanced as programmes that aim to

decrease levels of the amyloid β peptides which form senile plaques in the AD

brain.

- A number of approaches are being pursued for the treatment of tauopathies,

including the development of brain-penetrant compounds that can 1) stabilize MTs

and thus compensate for tau loss-of-function; 2) reduce tau hyperphosphorylation;

3) inhibit tau assembly into oligomers and fibrils; or 4) enhance tau intracellular

degradative pathways.

- As tau-directed therapies move toward clinical testing in AD and other tauopathies,

they will face many of the difficulties that are presently being encountered in trials

of Aβ-targeted AD drugs. These include drug safety and the challenge of

demonstrating clinical efficacy in a population that is likely to have existing

neurodegeneration.
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Glossary

Dendrites, a branched extension of a neuron that interacts with adjacent cells and transmits

electrical impulses.; Fast Axonal Transport, a mechanism whereby intracellular organelles are

transported along microtubules at a rate of ~400 mm/day.; Microtubule-stabilizing drug,

typically molecules, such as paclitaxel or epothilones, that were identified from natural

products and which bind with high affinity to microtubules, thereby affecting microtubule

dynamics. Compounds of this type have been used for the treatment of cancer because they

affect mitotic spindles and induce death in rapidly dividing cells.; Pseudophosphorylation, the

effects of serine (ser) or threonine (thr) phosphorylation can be mimicked in part by substitution

of the phosphorylated ser/thr residues within a protein with aspartic acid or glutamic acid

residues. These amino acids, like phosphorylated ser or thr, carry a negative charge at

physiological pH.; Cross-β-Fibril, a fibril composed of repeating units enriched in β-sheets that

align parallel to the fibril axis with their β-strands perpendicular to this axis.; Macroautophagy,

a process whereby a double-membrane structure encapsulates cytosolic material and later fuses

with lysosomes, resulting in degradation of the sequestered matter.; Lysosomotropic Agent, a

molecule that enters the lysosomes and alters its function, often by increasing the pH of this

normally acidic organelle.; Prodromal Disease, the earliest phase of a developing condition or

disease..
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Figure 1. Tau pathology in AD and related tauopathies

At autopsy, the brains of patients with Alzheimer's disease or related tauopathies show

abundant neurofibrillary tangles (NFTs) and neuropil threads that are comprised of

pathological tau. These tau deposits can be visualized by treating brain slices with certain silver

stains or by immunostaining with antibodies that recognize tau (as shown in A, with darkly-

stained NFTs and dense tau neuropil threads that yield a nearly uniform brown staining in a

hippocampal section of an Alzheimer's disease brain). A schematic representation of NFTs and

neuropil threads within a neuron is shown in B, with an example of tau fibrils that resemble

those found in NFTs depicted in the associated inset.

Brunden et al. Page 21

Nat Rev Drug Discov. Author manuscript; available in PMC 2010 April 1.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 2. Tau in healthy neurons and in tauopathies

Tau facilitates microtubule (MT) stabilization within cells and it is particularly enriched in

neurons. MTs serve as “tracks” that are essential for normal trafficking of cellular cargo along

the lengthy axonal projections of neurons, and it is thought that tau function is compromised

in Alzheimer's disease and other tauopathies. This probably results both from tau

hyperphosphorylation, which reduces the binding of tau to MTs, and through the sequestration

of hyperphosphorylated tau into neurofibrillary tangles (NFTs) so that there is less tau to bind

MTs. The loss of tau function leads to MT instability and reduced axonal transport, which

could contribute to neuropathology.
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Figure 3. The Tau gene, known Parkinsonism linked to chromosome 17 (FTDP-17) mutations and
sites of hyperphosphorylation

Tau is a mult-exonic gene that undergoes alternative post-transcriptional splicing of exons 2

(orange), 3 (yellow) and 10 (green) to yield six isoforms in the brain. Exons 9-12 encode

microtubule (MT)-binding repeat domains and the exclusion or inclusion of exon 10 results in

tau with three (3-R) or four (4-R) MT-binding domains, respectively (black bars). Tau

mutations that result in FTDP-17 map primarily to exons 9-12 or to the intronic region between

exons 10 and 11, with the latter increasing the prevalence of exon 10-containing 4-R tau. There

are no reported tau mutations in Alzheimer's disease, but hyperphosphorylated tau inclusions

are formed that resemble those seen in FTDP-17. There are ~40 reported sites of tau

phosphorylation, and the major hyperphosphorylation sites91 are shown at the bottom of the

figure.
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Figure 4. Therapeutic strategies to reduce Tau-mediated neuropathology and neurodegeneration

A number of approaches are being pursued to reduce the consequences of pathological tau in

Alzheimer's disease and related tauopathies. It is believed that tau deposition into

neurofibrillary tangles (NFTs) results in a loss of normal tau stabilization of microtubules

(MTs) and/or the formation of toxic tau multimeric structures. A reduction of tau interaction

with MTs might be compensated for by small molecule MT-stabilizing agents. Tau

hyperphosphorylation reduces its binding to MTs and enhances its fibrillization, and inhibitors

of tau kinases might thus improve both MT function and reduce the formation of pathologic

tau multimers. Because tau O-glycosylation and phosphorylation seem to be reciprocally

regulated, inhibition of O-GlcNacase might be another approach to decreasing tau

hyperphosphorylation. Another potential strategy for increasing the amount of soluble tau

available for MT binding and for decreasing potentially toxic aggregates is to inhibit the

assembly of tau into larger multimeric structures or dissolve existing aggregates (tau assembly

inhibitors). Finally, it may be possible to increase the degradation of misfolded and aggregated

tau. Hsp90 inhibitors might increase proteasome-mediated clearance of misfolded and/or

hyperphosphorylated tau monomers, whereas enhancers of autophagy have the potential to

increase the removal of tau aggregates. For examples of compounds targeting these processes

please see table 1.
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Table 1

Compounds directed to potential tauopathy drug targets
Tau Kinase Inhibitors
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Tau Kinase Inhibitors

AR-A014418

CHIR98014
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Tau Kinase Inhibitors
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Tau Kinase Inhibitors

Alsterpaullone
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Tau Kinase Inhibitors

SB216763
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Table 2

Tau fibrillization inhibitors
Methylene Blue (Phenothiazines)

N774

Daunorubicin (Anthracyclines)

N-Phenylamines
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Phenylthiazolyl-hydrazides

Rhodanines

Exifone (Polyphenols)

Quinoxalines

Aminothienopyridazines
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