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Molecular similarity is a key concept in drug discovery. It is based on the assumption that

structurally similar molecules frequently have similar properties. Assessment of similarity

between small molecules has been highly effective in the discovery and development of

various drugs. Especially, two-dimensional (2D) similarity approaches have been quite

popular due to their simplicity, accuracy and efficiency. Recently, the focus has been

shifted toward the development of methods involving the representation and comparison

of three-dimensional (3D) conformation of small molecules. Among the 3D similarity

methods, evaluation of shape similarity is now gaining attention for its application not only

in virtual screening but also in molecular target prediction, drug repurposing and scaffold

hopping. A wide range of methods have been developed to describe molecular shape

and to determine the shape similarity between small molecules. The most widely used

methods include atom distance-based methods, surface-based approaches such as

spherical harmonics and 3D Zernike descriptors, atom-centered Gaussian overlay based

representations. Several of these methods demonstrated excellent virtual screening

performance not only retrospectively but also prospectively. In addition to methods

assessing the similarity between small molecules, shape similarity approaches have been

developed to compare shapes of protein structures and binding pockets. Additionally,

shape comparisons between atomic models and 3D density maps allowed the fitting

of atomic models into cryo-electron microscopy maps. This review aims to summarize

the methodological advances in shape similarity assessment highlighting advantages,

disadvantages and their application in drug discovery.

Keywords: molecular similarity, virtual screening, shape similarity, drug discovery, gaussian overlay, spherical

harmonics, 3D Zernike descriptors

INTRODUCTION

Molecular similarity is a key concept in drug discovery and has been routinely used in the discovery
and design of new molecules. It is based on the notion that two molecules often share similar
physical properties and biological function if they are structurally similar. This similarity principle
has been widely utilized in early phases of drug development to discover new molecules. Virtual
screening has been used to filter large databases of compounds to a smaller number based on
this similarity principle. Molecular similarity has been also employed to optimize the potency and
pharmacokinetic properties of lead compounds based on their structure–activity relationships.
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There are two components of molecular similarity analysis
(1) structural representations and (2) quantitative measurements
of similarity between two structural representations. Many
types of structural representations have been suggested to
measure the similarity between two molecules. These include
physiochemical properties, topological indices, molecular graphs,
pharmacophore features, molecular shapes, molecular fields
etc. Further, there are various methods to quantify the
similarity between two structural representations, e.g., Tanimoto
coefficient, Dice index, cosine coefficient, Euclidean distance,
Tversky index etc. Among these, Tanimoto coefficient (Rogers
and Tanimoto, 1960) is the most popular and widely used
similarity measure. Based on the structural representation,
molecular similarity approaches can be broadly classified into
2D or 3D similarity methods. The 2D similarity methods rely
only on the 2D structural information and are among the
fastest, efficient and most popular similarity search methods.
Moreover, they do not rely on structural alignments for
estimating the similarity between two molecules. These methods
include substructure search, fingerprint similarity search and
2D descriptor-based methods. However, most of these methods
are limited in their ability to enable scaffold hopping and
provide no structural and mechanistic insights. To deal with
the limitations associated with 2D similarity methods, several
approaches were developed that account for 3D conformations
of a molecule while performing similarity search. These methods
include pharmacophore modeling, shape similarity, molecular
field-based methods, 3D fingerprints among others. In recent
years, ligand 3D shape-based similarity analysis has become a
method of choice in increasing number of virtual screening
campaigns. Several successful applications of shape similarity to
discover new molecules have been published in the literature.
Themajor advantage with shape-based virtual screeningmethods
is that scaffold hopping can be conveniently accomplished and
scaffolds other than the query can be identified.

In this review, we will summarize the development and
application of various 3D shape similarity methods and will
comment on their utility in drug discovery. We will first outline
the classification and various types of 3D shape similarity
methods highlighting their advantages and disadvantages. Later,
we will describe various applications of 3D shape similarity
methods in drug discovery.

3D SHAPE SIMILARITY METHODS

The 3D shape has been widely recognized as a key determinant
for the activity of small molecules and other biomolecules
(Zauhar et al., 2003; Rush et al., 2005; Schnecke and Boström,
2006; Kortagere et al., 2009). The shape complementarity
between ligand and receptor is necessary for bringing the
receptor and ligand sufficiently close to each other so they
can form critical interactions necessary for binding. Two
molecules with similar shape are likely to fit the same binding
pocket and thereby exhibiting similar biological activity.
Shape comparison methods could be broadly classified as
(1) Alignment-free or non-superposition methods and (2)

Alignment or superposition-based methods. Both of these
methods have their own advantages and disadvantages.
Alignment-free methods are independent of the position and
orientations of molecules. As such, they are much faster and
could be used to screen large compound databases. Alignment-
based methods rely on finding the optimal superposition
between the compounds. Alignment-based methods are highly
effective in identifying shape similarities among the molecular
structures but they are computationally expensive. These
methods enable comparison of the surface properties such
as hydrophobicity and polarity. Visualization is one of the
advantages with the alignment-based methods and the similarity
between two molecules can be displayed. This information is
useful in the design of new molecules and to guide further
optimization. However, a subpar molecular alignment may
lead to errors in comparing two molecules. Apart from this
broad classification, shape similarity methods could be classified
based on the underlying representation of molecular shape. The
similarity between these shape representations is evaluated by
employing various similarity metrics. A schematic overview
of the similarity calculation between a query and database
molecules is given in Figure 1. In the following paragraphs, we
will outline commonly utilized shape representations with their
advantages and disadvantages. As this review is targeted toward
a broader readership, we will only provide an overview of the
methods. For algorithmic details and mathematics behind each
method, original publications may be referred.

Atomic Distance-Based Descriptors
These methods are based on the assumption that the shape of a
molecule can be described by the relative positions of its atoms.
The similarity between molecules can be then calculated by
comparing the corresponding distributions of atomic distances.
As these descriptors only require the computation of interatomic
distances in compounds, these methods are faster compared
to other shape comparison methodologies. Additionally, these
methods do not require the alignment between two molecules
for shape comparison. An overview of various atomic distance-
based methods is given in Table 1 highlighting their availability
as well as their advantages and disadvantages. One of the
earlier atomic distance-based shape comparison method was
based on atom triplet distances (Bemis and Kuntz, 1992).
This method considered each molecule as a collection of three
atom sub-molecules. The atom triplet triangle perimeters were
used to generate shape histograms which were then utilized
to compare the shape of molecules. This method however
has a few limitations. It is difficult to select bin size suitable
for all molecules. Each molecule typically generates 300–500
atom triplets and storing them require large space especially
when comparing a large database of molecules. To deal with
this limitation, another atom triplet based molecular shape
comparison method was developed where a 2,048 bits long single
condensed triplet shape signature was employed to represent
the entire set of triplets in each molecule (Nilakantan et al.,
1993). A signature of the query molecule is first compared with
the already stored signatures of database molecules. Then only
the compounds with adequately similar signatures are compared
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FIGURE 1 | A schematic overview of similarity calculation between a query and database molecules.

in detail by generating all triplets. Although this method was
efficient but there was a risk of missing similar compounds due
to the use of highly reduced signature representation. Another
group developed molecular descriptors based on atom triplet
triangles, angular information from surface point normal and
local curvature to facilitate shape comparisons (Good et al.,
1995). However, these descriptors have limited discriminating
power and require large disk space for storage.

Ultrafast shape recognition (USR) (Ballester and Richards,
2007a,b; Ballester, 2011) is possibly the most popular atomic

distance-based method developed to overcome alignment and
speed problems associated with shape similarity methods. This
method also uses the relative positions of atoms to describe the
shape of a molecule. The schematic overview of USR method is
given in Figure 2 along with an example of the shape similarity
evaluation. USR calculates the distribution of all atom distances
from four reference positions: the molecular centroid (ctd), the
closest atom to molecular centroid (cst), the farthest atom from
molecular centroid (fct) and the atom farthest away from fct
(ftf). Consecutively, the first three statistical moments (mean,
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TABLE 1 | Atomic distance based shape comparison methods.

Method Description Availability References

USR Extremely fast shape comparison method.

Webserver can screen about 55 million

conformers in 1 s. Different functional groups

and enantiomers not recognized.

A ligand-based virtual screening webserver,

USR-VS is available at http://usr.marseille.inserm.fr

Ballester and Richards, 2007a,b;

Ballester, 2011; Li et al., 2016

USR+MACCS Functional group information added to USR.

Enantiomers not recognized.

Available on request Cannon et al., 2008

CSR and USR:OptIso Chiral shape recognition. Optical isomerism

descriptors added to USR.

Developed by University of Oxford, UK. May be

available from Oxford Drug Design company

(https://www.oxforddrugdesign.com), Another

implementation USR:OptIso is available at https://

code.google.com/archive/p/usrchirality/

Armstrong et al., 2009; Zhou

et al., 2010

Electroshape Chiral shape recognition, include descriptor for

charge and lipophilicity.

Developed by University of Oxford, UK. May be

available from Oxford Drug Design company

(https://www.oxforddrugdesign.com), A similarity

search webserver including Electroshape

implementation is available at http://www.

swisssimilarity.ch

Armstrong et al., 2010, 2011;

Zoete et al., 2016

UFSRAT Pharmacophoric constraints by including

atom-type information.

Developed by University of Edinburgh. Server

available at http://opus.bch.ed.ac.uk/ufsrat/index.

php

Shave, 2010; Lim et al., 2011;

Shave et al., 2015

USRCAT Included CREDO atom-type information. A python implementation of the method using RDKit

toolkits is available from https://bitbucket.org/

aschreyer/usrcat

Schreyer and Blundell, 2009,

2012; Li et al., 2016

ACPC Method uses autocorrelation of partial charges.

High throughput virtual screening possible.

Cannot distinguish a molecule from its

enantiomer.

Developed by Laboratory for Structural

Bioinformatics, Centre for Biosystems Dynamics

Research, RIKEN and is available from http://www.

riken.jp/zhangiru/software.html.

Berenger et al., 2014

variance, and skewness of distribution) are calculated from each
of these distributions. Hence, each molecule has a vector of
twelve descriptors to describe its 3D shape. Finally, the similarity
between shapes of two molecules is calculated through an inverse
of the Manhattan distance of these 12 values:

Sqi =
1

1+ 1
12

∑12
l=1 |M

q

l
−Mi

l
|

where Mq and Mi are vectors of shape descriptors for
query and ith molecule, respectively. The performance of
USR was retrospectively compared with EigenSpectrum Shape
Fingerprints (EShape3D) where better mean enrichment for USR
was observed (Ballester et al., 2009). A retrospective comparison
with three state-of-the-art shape similarity methods: EShape3D,
shape signatures and ROCS revealed that USR is 1,546, 2,038, and
14,238 times faster than each one of them respectively (Ballester
and Richards, 2007a). A web implementation of USR (USR-
VS) is an extremely fast way of carrying out shape similarity
calculations (Li et al., 2016). USR-VS is capable of screening 55
million 3D conformers per second and can calculate similarity
scores for 94 million 3D conformers in about 2 s. This extremely
fast speed is achieved as the features for all 3D conformers are
preloaded into thememory.Moreover, themulti-threaded design
of the webserver and alignment-free nature of USR method
also contributed to such a high computational efficiency. A
hardware implementation of USR has been shown to achieve
two-fold speed gains over standard CPU based implementation

of USR (Morro et al., 2018). In this implementation, a computing
technique, Spiking Neural Networks, has been adapted utilizing
Field-Programmable Gate arrays to allow highly parallelized
implementation of USR. Prospective application of USR in the
identification of arylamine N-acetyltransferases, protein arginine
deiminase 4 (PAD4), falcipain 2, phosphatases of regenerating
liver (PRL-3), p53-MDM2 inhibitors and for phenotypic targets
such as colon cancer cell lines established the real-world
applicability of USR (Li et al., 2009; Ballester et al., 2010,
2012; Teo et al., 2013; Hoeger et al., 2014; Patil et al., 2014).
As USR is an ultrafast, purely shape-based similarity method,
several methods augmenting the original USR capabilities were
developed. These include a method where USR was combined
with MACCS key encoding the topological information of
small molecules (Cannon et al., 2008). To clearly distinguish
between enantiomers, methods complementing USR with optical
isomerism descriptors were developed (Armstrong et al., 2009;
Zhou et al., 2010). Electroshape, a USR variant appended partial
charge and atomic lipophilicity (alogP) as additional molecular
properties to account for electrostatics and lipophilicity along
with shape recognition (Armstrong et al., 2010, 2011). A web
implementation of Electroshape is available at SwissSimilarity
(Zoete et al., 2016). AutoCorrelation of Partial Charges (ACPC)
also utilized partial charges with atomic distances to measure
similarity between two molecules (Berenger et al., 2014). The
method uses an autocorrelation function and a point charge
model to encode all atoms of a molecule into two vectors that
are rotation translation invariant. Another implementation of
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FIGURE 2 | (A) An overview of USR shape representation. In USR approach, the shape of a molecule is described by the distribution of atomic distance to four

reference points. (B) An example of shape similarity calculation between two small molecules utilizing the USR approach.

USR method is Ultrafast Shape Recognition with Atom Types
(UFSRAT) which introduced pharmacophoric constraints to
USR by incorporating atom type information (Shave, 2010; Lim
et al., 2011; Shave et al., 2015). UFSRAT is capable of very
fast comparison of query molecule with small molecule libraries
from several major chemical vendors via its webserver (Table 1).
Application of UFSRATmethod in the discovery ofMDM2, PRL-
3, FK506-Binding Protein 12, kynurenine 3-monooxygenase and
11β-hydroxysteroid dehydrogenase type 1 (11βHSD1) inhibitors
demonstrated its utility in key areas of drug discovery such as
cancer, Alzheimer’s disease, inflammation and type-II diabetes.
(Hoeger et al., 2014; Houston et al., 2015; Shave et al., 2015, 2018).
Another similar implementation, USRCAT utilized CREDO
atom types to encode pharmacophoric information to USR
(Schreyer and Blundell, 2009, 2012). USRCAT not only retained
USR abilities to retrieve hits with low structural similarity but
also demonstrated improved performance over the original USR
implementation.

Atomic distance or descriptor-based methods are widely used
due to their ability to quickly compare the shapes of query
molecules with large small molecule libraries. A fast comparison
of a wide range of chemical space increases the chances of finding
novel hits. These methods are not only computationally efficient
but also have produced excellent hit rates as revealed from several
successful prospective studies against a wide range of molecular
and non-molecular targets. Moreover, they are also capable of
retrieving chemical scaffolds which are different from the query
molecule, thus allowing scaffold hopping. As atomic distance-
based shape similarity approaches are alignment-free, the visual
inspection of shape similarity may be sometimes challenging
especially for molecules which have low structural similarity.
Selection of the right query compound is a key component
of atomic distance-based shape similarity methods and their

performance depends on optimal query selection. Hit rate can
be improved by employing multiple queries and increasing
the diversity of selected hits. Moreover, clustering based on
shape similarity could be utilized to understand how different
chemotypes arrange in binding pockets and thereby generating
consensus queries (Pérez-Nueno et al., 2008; Pérez-Nueno and
Ritchie, 2011) to improve virtual screening performance and
reducing false positives.

Atom-Centered Gaussian-Based Shape
Similarity Methods
Among many methods of describing the molecular shape of
a molecule, hard sphere (Connolly, 1985; Masek et al., 1993)
and Gaussian sphere (Grant and Pickup, 1995; Grant et al.,
1996) are two most widely adopted models. Both of these
models describe the shape in terms of the volume of a molecule.
Two molecules will possess similar shape if they have similar
volume. Hard sphere model represents a molecule by a set
of merged spheres where each sphere serves as an atom with
its van der Waals radius. The volume of a molecule can be
calculated by a formula that describes the union of a number
of sets and their intersection. Although the analytical expression
of the volume and its derivatives is reported in the original
publication (Masek et al., 1993), it is not easy to implement as
the formulas become very complicated with increasing number
of intersections. Gaussian sphere model (Grant and Pickup, 1995,
1997; Grant et al., 1996) represents a molecule using a set of
overlapping Gaussian spheres and measures the integral volume
over all overlapping Gaussians. In this model, each intersection is
expressed as the integral of a set of overlapping atom-centered
Gaussian spheres and the volume of a molecule is described
based on the inclusion-exclusion principle. Analytical expression
for the volume calculation is given in the original publication
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which describes highly accurate volume calculation up to sixth
order intersections (Grant and Pickup, 1995). The authors also
proposed comparing shapes of two molecules by numerically
optimizing the overlap between two molecules (Grant et al.,
1996).

Several methods based on Gaussian overlays were developed
to measure the shape similarity between two molecules. An
overview of these methods is presented in Table 2. Among these,
Rapid Overlay of Chemical Structures (ROCS) is undoubtedly
the most widely used method that utilizes Gaussian functions
to measure the shape similarity between two molecules (Rush
et al., 2005; Hawkins et al., 2007). ROCS algorithm is based on
the original Gaussian overlay approach that finds and quantifies
themaximum volume overlap between twomolecules (Grant and
Pickup, 1995; Grant et al., 1996). An overview of ROCS shape
similarity calculation is given in Figure 3. However, to improve
the efficiency of volume overlap calculations, it incorporated
several modifications to the original implementation. ROCS
ignores hydrogens for the volume calculations and uses equal
radii for all heavy atoms. Furthermore, ROCS utilizes only the
first order terms of shape density function. ROCS employs
Tanimoto (Rogers and Tanimoto, 1960) and Tversky (Tversky,
1977) correlation coefficients as similarity metrics to calculate the
overlap between two molecules which are defined as:

Tanimotoa,b =
Oa,b

Oa + Ob − Oa,b

Tverskya,b =
Oa,b

Oa,b + αOa + βOb

where Oa,b is the volume overlap between molecules a and b, Oa

is the volume of molecule a and Ob is the volume of molecule b.
α and β are parameters for Tversky index. ROCS also considers
chemical complementarity by including the chemical features to
improve shape-based superposition. ROCS has been successfully
employed in various drug discovery campaigns such as in the
identification of small molecules inhibitors (Kumar et al., 2014b),
to scaffold hop from one chemical class to another (Kumar et al.,
2016), to rescore docking generated poses (Kumar and Zhang,
2016a) and to predict binding poses and ranking of inhibitors
(Kumar and Zhang, 2016b,c). ROCS can routinely perform
shape and chemical feature comparisons of about 600–800
conformers per second on a modern CPU. Although this speed
is reasonable for alignment-based shape similarity methods,
it takes several hours to screen a moderately sized virtual
screening library. To facilitate large scale shape comparison,
e.g., to screen large small molecule libraries within minutes,
FastROCS (https://www.eyesopen.com/molecular-modeling-
fastrocs), a GPU implementation of ROCS has been developed
that increased the shape comparison speed by about three
orders of magnitude over its CPU implementation. FastROCS
is capable of processing up to a million conformers per second
on a single NVIDIA Tesla K20 GPU (https://docs.eyesopen.
com/toolkits/python/fastrocstk/architecture.html). PAPER, an
open source GPU implementation of ROCS algorithm, also
demonstrated speed acceleration up to two orders of magnitude
on an NVIDIA GeForce GTX 280 GPU over its open source CPU

implementation on a Intel Xeon E5345 CPU (Haque and Pande,
2010). MolShaCS is another method that engages Gaussian
description of shape to evaluate molecular similarity between
two molecules (Vaz de Lima and Nascimento, 2013). In addition
to shape, MolShaCS utilizes Gaussian description of charge
distribution to optimize overlays and similarity computations
using Hodgkin’s index (Hodgkin and Richards, 1987; Good et al.,
1992). It was able to process 21 compounds per second, which
seems to be a quite impressive speed for computers of that time.
As Gaussian overlay based methods require precise alignment
for the calculation of shape similarity, several groups employed
approaches such as pharmacophore and field based methods to
generate initial alignment. SHAFTS (SHApe-FeaTure Similarity)
(Liu et al., 2011) adopted pharmacophoric point triplets and least
square fitting to generate initial alignment. A weighted sum of
pharmacophoric fit and volume overlap was then used to assess
shape similarities. Phase Shape (Sastry et al., 2011) also employed
the same concept of atom distribution triplets to generate
initial alignments which were then refined by maximizing the
volume overlap. Phase Shape is capable of performing shape
comparisons of about 500 conformers per second. Reminiscent
of Shape and Electrostatic Potential (ShaEP) (Vainio et al., 2009)
also resembles SHAFTS and Phase Shape as it utilizes a hybrid
approach that combined field-based methods with volumetric
methods to estimate molecular similarity. ShaEP borrowed a
graph matching algorithm to generate initial superposition.
Molecular graphs represented shape and electrostatic potential at
points close tomolecular surface. Themethod then optimized the
initial alignment by maximizing the volume overlap calculated
through Gaussian functions. Another similar method, SimG
(Cai et al., 2013), adopted downhill simplex method (Nelder and
Mead, 1965) to evaluate the similarity in shape and chemical
features of a molecule and a binding pocket or ligand. SimG
shape similarity method possessed advantage over other methods
described here in the sense that it is capable of performing shape
similarity evaluations between a ligand and a binding pocket.
SABRE method (Hamza et al., 2012, 2013) introduced two
modifications to the original Gaussian overlay based shape
similarity implementation. First, it utilized reduced chemical
structures by removing the functional group not present in query
to generate initial alignments. Reduced chemical structures
were subsequently replaced by full structures and the initial
alignments were refined by rigid-body translation and rotation
using steepest descent to produce shape density overlap with the
query. Secondly, to avoid bias for large sized ligands when using
Tanimoto similarity metric, a new scoring function Hamza–
Wei–Zhan (HWZ) score was developed. An extension to SABRE
method enabled its utility in chemogenomics area (Wei and
Hamza, 2014). Shapelets (Proschak et al., 2008) is unlike any
other Gaussian overlay based shape comparison method. It
describes the shape of a molecule by decomposing its surface
into discrete patches. This 3D graph representation can then be
used for either full or partial shape similarity evaluations.

In most Gaussian function based overlay methods shape
density of a molecule is described as the sum of shapes of
individual atoms which sometimes results in the overestimation
of the volume, for example, in molecules where some atoms
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TABLE 2 | An overview of commonly used Gaussian overlay based shape comparison methods.

Method Description Availability References

ROCS Fast Gaussian overlay based shape comparison. Widely

used shape based virtual screening tool. GPU version

also available.

Developed by OpenEye Scientific Software (https://www.

eyesopen.com). Commercial.

Rush et al., 2005;

Hawkins et al., 2007

PAPER Accelerates large scale virtual screening experiments.

Parallel implementation on NVIDIA GPUs.

Developed by Stanford University. Open source.

Available from SimTK at https://simtk.org/projects/paper

Haque and Pande, 2010

MolShaCS Uses Gaussian description of shape and charge.

Hodgkin like similarity metric. Molecules are considered

rigid.

Developed by University of Sao Paolo, Brazil. Open

source tool available at https://code.google.com/

archive/p/molshacs/downloads

Vaz de Lima and

Nascimento, 2013

SHAFTS It combines shape similarity with pharmacophoric

features. Employs a hybrid similarity metric combining

shape and chemical similarity. Suitable for large scale

virtual screening.

Developed by Shanghai Key Laboratory of New Drug

Design, East China University of Science & Technology,

Shanghai, China. Available for download from http://lilab.

ecust.edu.cn/home/resource.html

Liu et al., 2011

Phase Shape Uses atom triplets to generate initial alignments which

are refined by Gaussian overlay.

Developed by Schrodinger. (https://www.schrodinger.

com). Commercial.

Sastry et al., 2011

ShaEP Generate consensus shape pattern based on structural

features of known ligands.

Developed by Abo Akademi University, Finland. Free for

Academics. Available from the Abo Akademi University

at http://users.abo.fi/mivainio/shaep/index.php

Vainio et al., 2009

SimG Uses downhill simplex method to evaluate shape and

chemical similarity between two molecules. Comparison

of ligand and binding pocket shape or chemical similarity

is also possible.

Developed by Shanghai Key Laboratory of New Drug

Design, East China University of Science & Technology,

Shanghai, China. Available for download from http://lilab.

ecust.edu.cn/home/resource.html

Cai et al., 2013

SABRE Uses consensus shapes to generate initial alignments

which are later refined by rigid-body rotations and

translations.

Academic license is available on request Hamza et al., 2012, 2013

WEGA Uses a weighted Gaussian function to improve the

accuracy of first order approximation. A GPU

implementation (gWEGA) is also available for large scale

virtual screenings.

Developed by Research Center for Drug Discovery, Sun

Yat-sen University, China. Academic license is available

on request at http://www.rcdd.org.cn/home/program.

html.

Yan et al., 2013

FIGURE 3 | An overview of the shape similarity calculation by ROCS program.
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highly overlap with others in the vicinity. Weighted Gaussian
algorithm (WEGA) method (Yan et al., 2013) puts forward a
modification where a weight factor is introduced for every atom.
This weight factor reflects the crowdedness of an atom with its
neighbors. The shape density of a molecule is represented by
the linear combination of weighted atomic Gaussian functions.
Utilizing this modification, WEGA method demonstrated
improved shape similarity and virtual screening performance.
The speed of WEGA shape similarity calculations varies with
the size of query and database compounds. For an average
drug-like query, WEGA can process 1,000–1,500 conformations
per second (Yan et al., 2013). A GPU implementation of this
method (gWEGA) has also been developed that reported a
virtual screening speed increase by two orders of magnitude on
one NVIDIA Tesla C2050 GPU over its CPU implementation
on a quad-core Intel Xeon X3520 CPU (Yan et al., 2014).
Another WEGA derivative, HybridSim proposed a hybrid metric
combining 2D fingerprints with WEGA shape similarity and
demonstrated improved virtual screening performance over
standalone 2D fingerprint and shape similarity methods (Shang
et al., 2017).

Overall, atom-centered Gaussian-based shape similarity
methods present many advantages over other shape similarity
methods. Although not as fast as distance based methods, these
methods are fast enough for large scale virtual screenings.
The major advantage with atom-centered Gaussian-based shape
similarity methods is the visualization. The visualization of
shape similarity between two molecules is immensely helpful in
deriving the structure activity relationship for the optimization
and for scaffold hopping. A majority of these methods address
the problem of ligand flexibility by utilizing conformational
ensemble. However, in some cases it may not be trivial
to sample all possible conformations, e.g., natural products.
Moreover, several top performing conformational generation
methods face difficulty in modeling the correct conformation of
some molecules, e.g., macrocycles, peptidomimetics etc. Another
limitation with these methods is that their performance highly
depends upon the query molecule and choosing the right query is
a critical component of a shape-based virtual screening campaign
(Kirchmair et al., 2009). Despite these limitations, atom-centered
Gaussian overlay based methods are the most widely used
shape similarity methods. They have provided many successful
examples demonstrating their utility in various areas of drug
discovery which will be discussed later in this manuscript.

Surface Based 3D Shape Similarity
Comparison Methods
Molecular surface is another way of depicting the shape of
a molecule. Comparison of molecular surfaces based on their
shapes can reveal similarity in their physical and biological
properties. There are many ways to describe the surface of a
molecule. Precise definitions such as surface based on quantum
mechanical wave functions are not practical especially for large
molecules (Mezey, 2007). Surface definitions such as solvent-
accessible surface (Lee and Richards, 1971; Connolly, 1983) and
van der Waals surface are more practical and much easier to

calculate. Some studies employed alpha shapes (Edelsbrunner
et al., 1983; Edelsbrunner and Mücke, 1994; Edelsbrunner, 1995)
which is a coarse representation of Connolly surface (Connolly,
1983) to describe the shape of a molecule (Wilson et al., 2009).
Alpha shapes of a set of points “S” are generalization of convex
hull and utilize a parameter, α to describe the shape with varying
levels of details. For large α values, the alpha shape is equivalent
to convex hull and shape feature details such as concavities and
voids started to appear with decrease in α value. The alpha shape
method has been applied to represent and compare shapes of 3D
molecules (Wilson et al., 2009).

Shape signatures or shape histograms offer another
representation of molecular shape that can be used to explore
3D volume of a molecule confined by the solvent accessible
surface (Zauhar et al., 2003; Meek et al., 2006). Shape signatures
are probability distribution histograms borrowed from a
computer graphics technique, ray-tracing. In this method, a ray
is initiated within a molecule bound by its solvent accessible
surface. Propagation of a ray trace inside of the triangulated
solvent accessible surface is recorded as probability distribution
histograms. The histograms for query and any other molecule
can be easily compared using the following metrics:

L1D1 =
∑

i

|H1
i −H2

i |

L2D1 =
∑

i

∑

j

|H1
i,j −H2

i,j|

where 1D represents the probability distribution of ray-
trace lengths only while 2D represents ray-trace lengths
in combination with additional molecular property such as
electrostatic potential. Shape signature encodes shape, molecular
size and surface charge distribution of a molecule and can be
utilized to compare the histogram of a query molecule with
the pre-generated histograms of small molecule libraries. The
utility of shape signatures as a virtual screening approach has
been demonstrated in several studies (Nagarajan et al., 2005;
Wang et al., 2006; Hartman et al., 2009; Ai et al., 2014; Werner
et al., 2014). As shape signature based similarity comparisons
are fast and do not require the alignment of molecules, they are
capable of screening millions of molecules in a short time. In
addition to shape similarity, shape signatures also allow shape
complementarity comparisons against a receptor binding pocket.
Although shape similarity calculations with shape signature have
been effectively used in many inhibitor discovery efforts, the
high number of false positives is a concern especially for large
and complex queries. To cope with these drawbacks, a few
modifications to the original methods were reported. These
include fragment-based shape signature (FBSS) (Zauhar et al.,
2013) and inner distance shape signature (IDSS) (Liu et al., 2009,
2012). FBSS involves the generation and comparison of shape
signatures for fragments in the molecules. IDSS utilizes inner
distance which is the shortest path between landmark points
within the molecular shape. IDSS has been shown to be especially
useful in case of flexible molecules as it is insensitive to shape
deformation of flexible molecules.
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TABLE 3 | An overview and availability of a few surface-based shape comparison methods.

Method Description Availability References

SURFCOMP Molecular surface is divided into patches and

corresponding patches are identified using geometrically

invariant descriptors and physicochemical properties.

Available on request. Hofbauer et al., 2004

ParaFit Performs 3D superposition and surface property

comparison. Electronic surface properties are calculated

using ParaSurf program. Spherical harmonics expansion

coefficients of molecular surface are used.

Developed by CEPOS in silico Ltd. Commercial or

Academic license can be obtained at http://www.

ceposinsilico.de/

Mavridis et al., 2007

SHeMS Uses spherical harmonics description of shape. Weights

of spherical harmonics expansion coefficients are

optimized using a genetic algorithm.

Developed by Shanghai Key Laboratory of New Drug

Design, East China University of Science & Technology,

Shanghai, China. Obtained by contacting Prof. Honglin

Li at http://lilab.ecust.edu.cn/home/resource.html

Cai et al., 2012

HPCC Combined spherical harmonics shape comparison with

pharmacophoric features. Tanimoto similarity coefficients

for shape and chemical similarity are added to evaluate

similarity between two molecules.

Developed by Harmonic Pharma. May be available from

https://www.harmonicpharma.com/oncology/

Karaboga et al., 2013

3DZD Uses 3D Zernike descriptors which are extension of

spherical harmonics. Rotation translation invariant.

Developed by Kihara Bioinformatics laboratory at Purdue

University, USA. Several implementations of 3DZD are

available either as standalone program or web-server at

http://kiharalab.org/contact.php

Sael et al., 2008a,

Venkatraman et al.,

2009a

Several methods employed local surface shape similarity to
align and estimate the similarity between molecules. One such
method applied subgraph isomorphism to molecular surface
comparison (Cosgrove et al., 2000). In this method, molecular
surface was represented by patches of the same shape. Alignment
between two molecules was obtained by using a clique-detection
algorithm to obtain overlapping patches. Quadratic shape
descriptors (Goldman and Wipke, 2000) exploited a similar
concept where molecular surface was divided into a series of
patches. Each patch was represented by geometrically invariant
descriptors such as the normal, the shape index and the principle
curvatures which were then used to identify similar patches.
SURFCOMP (Hofbauer et al., 2004) further applied several filters
such as surrounding shape and physicochemical properties to
identify corresponding patches on surfaces of two molecules
(Table 3).

Spherical harmonics (SH) based representations which are
expansion of SH functions also allow quantitative description of
molecular shapes (Max and Getzoff, 1988). In this representation,
shapes are expressed as functions on a unit sphere. Each point
on a unit sphere surface is described by its spherical coordinates
(r,θ,φ) and setting f (θ,φ)= r,where r is a radial function encoding
the distance of surface points from a chosen origin. This function
can be determined by deriving an expansion of SH basis function
given by:

r (θ ,φ) =

L
∑

l=0

l
∑

m=−l

cl,mY
m
l (θ ,φ)

where Ym
l
(θ , φ) is the SH basis function for degree l and order

m. cl, m are coefficients of SH function. L is the chosen limit
to get desired resolution of the surface. The number of terms
in the function depends upon this limit as a value of L, which
yields (L+1)2 terms. In general, SH are not rotation translation
invariant as magnitude of cl, m change based on the rotation of

r (θ , φ). Hence, prior alignment is necessary before comparing
the shape of molecules. Efforts were also made to make SH
rotation translation invariant (Kazhdan et al., 2003; Mak et al.,
2008), however, thesemodifications increase the number of terms
thereby increasing the complexity of SH.

About two decades ago, it was shown that SH functions
could be applied to estimate the 3D molecular similarity between
two macromolecules (Ritchie and Kemp, 1999). Since then, it
has been successfully applied in virtual screening (Cai et al.,
2002; Mavridis et al., 2007), protein structure comparisons (Tao
et al., 2005; Gramada and Bourne, 2006), protein-ligand docking
(Ritchie and Kemp, 2000; Lin and Clark, 2005; Yamagishi et al.,
2006), binding pocket similarity comparison (Morris et al., 2005)
etc. Additionally, several groups utilized variations of SH to
compare the shapes of small molecules. The first implementation
of SH to compare shapes of small molecules opened the way for
many applications ranging from virtual screening to quantitative
structure-activity relationship (QSAR) model building (Lin and
Clark, 2005). SpotLight program utilizes SH to superpose and
classify small molecules (Mavridis et al., 2007). To enable
high throughput virtual screening, the vector interpretation
of SH coefficients was used to construct rotation translation
invariant fingerprints (RIFs) which were compared using a
distance score (Mavridis et al., 2007). In this method, rotational
invariance was gained by binning together the SH coefficients
of the same order. This method was later developed as ParaFit
(http://www.ceposinsilico.de) (Table 3). In another study, SH
based molecular surface was decomposed and the norm of
decomposition coefficients were used to describe the molecular
shape (Wang et al., 2011). Norms of decomposition coefficients
are partially rotation translation invariant enabling large scale
comparison. The performance of this method was retrospectively
demonstrated and was also prospectively applied in the discovery
of cyclooxygenase-1 and cyclooxygenase-2 inhibitors. SHeMS
method utilizes genetic algorithm to optimize the weights
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of SH expansion coefficients for a reference set (Cai et al.,
2012). Through optimization of weights, SHeMS demonstrated
improved performance over original SH implementation and
USR method. To facilitate measurement of similarity between
sets of compounds, many shape similarity methods were
complemented with physicochemical properties. Harmonic
pharma chemistry coefficient (HPCC) method combined SH
shape representation with pharmacophoric features (Karaboga
et al., 2013). In HPCC method, SH surfaces are discretized as
triangle meshes which are assigned pharmacophoric features.
Tanimoto similarity for both shape and pharmacophore features
is calculated separately between query and test molecules. A
combo score is finally calculated by adding Tanimoto scores
for shape and chemical overlay. HPCC method demonstrated
improved performance for the combo approach over utilizing the
shape alone.

In several studies, 3D-Zernike descriptors (3DZD) (Novotni
and Klein, 2003), which are the extension of SH were employed
to compare the shapes of molecules and cryoEM maps
(Figure 4 and Table 3). 3DZD differs from SH in terms of their
mathematical description. 3DZD can model molecular shape
precisely as compared to SH which can only model single valued
or star-shape surfaces. They are rotation translation invariant,
whereas SH depends on the orientation of the molecule.
Although rotation translation invariant SH descriptors have been
developed (Kazhdan et al., 2003), the number of terms are much
higher in SH descriptors. 3DZD is also suitable to represent other
properties on molecular surfaces such as hydrophobicity and
electrostatic potential (Sael et al., 2008a). In the drug discovery
area, 3DZD was initially applied to compare shapes of protein
molecules (Sael et al., 2008b; Figure 4A). Later, the concept was
extended to measuring shape similarity and small molecules
(Venkatraman et al., 2009a) and between binding pockets
(Kihara et al., 2009; Venkatraman et al., 2009b; Figures 4B,C).
In 3DZD method, 3D Zernike function is described as:

Zm
nl (r, θ ,φ) = Rnl(r)Y

m
l (θ ,φ)

where Ym
l
(θ , φ) is the SH basis function while Rnl(r) is the radial

function. Zernike moments are calculated using the following
equation:

Fmnl =
3

4π

∫

f (x)Zm
nl (x)dx

As Zernike moments are not rotationally invariant, so to make
them rotation translation invariant, they are expressed as norm
Fm
nl

which is known as 3DZD. Shape similarity between two
molecules based on 3DZD is compared using the following
metrics:

Euclidean distance =

√

√

√

√

n
∑

i=1

(Xi − Yi)
2
∈ [0,∞]

Pearson r =
n

∑

XiYi −
∑

Xi
∑

Yi
√

n
∑

Xi
2 − (

∑

Xi)
2
√

n
∑

Yi
2 − (

∑

Yi)
2
∈ [−1,1]

Manhattan distance =
1

1+
∑n

i=1|Xi−Yi|
N

∈ [0, 1]

Ligand 3D shape similarity comparison using 3DZD is fast and
rotation translation invariant. As no alignment step is required
for comparison, it can be utilized as a virtual screening tool to
filter a database of compounds based on shape similarity with a
query molecule.

Overall, surface-based shape similarity methods present
attractive options for comparing the shapes of small molecules
and macromolecules. They were quite successful in estimating
the global and local similarities between macromolecules.
However, most of these methods are still in infancy as far
as small molecule shape comparison is concerned. Several
reasons may have contributed to the lack of interest from
researchers in accepting these methods as small molecule shape
comparison tools. Surface-based methods such as SH and 3DZD
are mathematically complex and involve inclusion of many terms
to fully capture the shape of a molecule. Moreover, they are
slow in comparison to atomic distance-based shape description
and comparison methods while their accuracy in retrieving
compounds similar in shape to a query does not match Gaussian
overlay-based shape similarity methods. Further, while these
methods capture very well the global shape of a molecule, the
local shape similarity is not represented comprehensively which
is very critical in comparing the shapes of small molecules.
However, these methods present several new areas of shape
comparison such as comparing shape of ligands with that of
binding pockets which may be of immense utility for structure-
based design.

Other Shape Similarity Approaches
There are many other approaches of shape representation and
methods of similaritymeasurement in addition to these described
above. Another way of representing molecular shape is to use
molecular descriptors. Several shape-based descriptors have been
traditionally used to compare small molecules and develop QSAR
models. These descriptors mostly represent shape implicitly with
other properties such as size, symmetry and atom distribution.
These include Weighted Holistic Invariant Molecular (WHIM)
descriptors of shape (Gramatica, 2006), shape indices, descriptors
for moments of the distribution of molecular volume (Mansfield
et al., 2002). Most of molecular descriptors are alignment
independent, however, some such as moments of the distribution
of molecular volume require superposition of molecules.
Comparative Molecular-Field Analysis (CoMFA) (Cramer et al.,
1988) is a widely used technique to develop QSAR models and
understand SAR for a series of compounds. CoMFA compares
a set of molecules by placing them on a grid and calculating
potential energy fields. The differences and similarities between
molecules are then correlated with differences and similarities
in their biological activities. As CoMFA requires molecules to be
pre-aligned, the 3D shape similarity of molecules can be obtained
based on potential energy fields. A modification of CoMFA
approach, Comparative Molecular Moment Analysis (CoMMA)
calculates geometric moments from the center of mass, center
of charge and center of dipole of a molecule (Silverman and
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FIGURE 4 | Application of 3D Zernike descriptors in (A) protein protein similarity (B) small molecule similarity (C) protein ligand complementarity and (D) comparison

of cryoEM maps.

Platt, 1996). However, superposition of molecules is not required
in this approach. Shape of the molecules can also be inferred
from structural descriptors such as molecular quantum numbers
(MQNs) (Nguyen et al., 2009; van Deursen et al., 2010). The
MQN represents counts for 42 structural features such as atom,

ring and bond types, polar groups and topology. MQN system
has been used to effectively classify and visualize large libraries of
organic molecules such as ZINC, GDB, and PubChem.

Volumetric aligned molecular shapes (VAMS) method (Koes
and Camacho, 2014) uses data structures to represent and
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compare shapes of 3D molecules. It applies inclusive and
exclusive shape constraints to estimate the similarity in shapes
of 3D molecules. In VAMS method, the shape of a molecule
is represented by solvent-excluded volume calculated from its
heavy atoms using a water probe of radius 1.4 Å. Volume is
discretized on a grid of 0.5 Å resolution where each point on the
grid represents a Voxel or 3D pixel. An oct-tree data structure
is used to store voxelized volume. This method requires all the
shapes to be pre-aligned to a standard reference coordinates. The
conformations of the molecule are aligned using the moment
of inertia of heavy atoms. Voxelized shapes are compared using
Tanimoto similarity (Rogers and Tanimoto, 1960) where the ratio
of number of voxels common in two shapes and number of voxels
present in either of the shapes is measured. The performance
of VAMS method as a standalone virtual screening tool is not
better than many other shape similarity methods, e.g., ROCS,
however, VAMS is reasonably fast and could perform a million
shape comparisons in about 10 s. Hence, it may be used as a
pre-filtering tool for other shape similarity methods. Fragment
oriented molecular shape (FOMS) is the extension of VAMS
method, where shapes are aligned using fragments (Hain et al.,
2016).

APPLICATION OF SHAPE SIMILARITY
METHODS IN DRUG DISCOVERY

Application in Virtual Screening
Shape similarity attempts to quantify the resemblance between
two molecules utilizing several descriptions of molecular shape
as described previously. This approach has been successfully
utilized as a virtual screening tool to identify molecules
similar to a given query from the library of chemicals. Several
retrospective studies have been published demonstrating the
utility of shape based similarity methods over 2D and other 3D
similarity methods (Nagarajan et al., 2005; Renner and Schneider,
2006; Ballester et al., 2009; Giganti et al., 2010; Venkatraman
et al., 2010; Ballester, 2011; Hu et al., 2012, 2016). Several
studies also presented computational approaches to improve
the performance and efficiency of shape comparison methods.
One study recommended the selection of a suitable query and
incorporation of chemical information such as pharmacophoric
features of the query molecule to improve the performance of
shape-based virtual screening (Kirchmair et al., 2009). Another
study demonstrated that the application of a machine learning
method, Support Vector Machine (SVM), to shape comparisons
can significantly improve virtual screening efficiency (Sato et al.,
2012). The need of automation was further suggested specially to
carry out multiple query searches which ensure a diverse hit list
(Kalászi et al., 2014).

Apart from retrospective tests, many prospective applications
of shape similarity have been published in the literature. In
numerous studies, it was employed as the only virtual screening
approach to filter and prioritize compounds from a large library
to a number small enough for biological testing (Rush et al.,
2005; Boström et al., 2007; Freitas et al., 2008; Ballester et al.,
2010, 2012; Kumar et al., 2012; Vasudevan et al., 2012; Sun et al.,

2013; Hoeger et al., 2014; Patil et al., 2014; Temml et al., 2014;
Chen et al., 2016; Bassetto et al., 2017). Among these studies,
the shape based identification of a compound active on colon
cancer cell line is quite interesting (Patil et al., 2014). This study
employed USR to screen a database of approved drugs. The top
virtual screening hit displayed dose dependent inhibition of a
colon cancer cell line. This study not only repurposed a known
drug but also demonstrated the applicability of shape similarity
methods for phenotypic screens, e.g., anti-bacterial or anti-
fungal drug discovery where molecular target is often unknown.
This is especially important considering the fact that most
approved drugs come from phenotypic screens (Swinney and
Anthony, 2011). In other investigations, it was combined with
other ligand-based virtual screening methods or structure based
approaches such as molecular docking. Among ligand-based
approaches, shape similarity was frequently used in combination
with electrostatic similarity. As electrostatic comparison between
two small molecules requires precise alignment between them,
shape matching was first performed and then followed by the
electrostatic potential similarity calculations. This hierarchical
combination was utilized to discover a wide variety of binders
including enzyme inhibitors (Hevener et al., 2011), mRNA
binders (Kaoud et al., 2012), chemical probes (Naylor et al., 2009),
protein-protein interaction inhibitors (Boström et al., 2013),
SUMO activating enzyme 1 inhibitors (Kumar et al., 2016), and
Aurora kinase A inhibitors (Kong et al., 2018).

Although shape-based approaches demonstrated considerable
success in ligand-based virtual screening studies, the true
potential of the method was realized when it was combined
with structure based methods in a hierarchical manner or in a
parallel manner. To effectively use shape based virtual screening,
several groups employed hierarchical virtual screening (Kumar
and Zhang, 2015) where it was coupled with molecular docking.
As shape matching calculations are comparatively faster than
structure based virtual screening methods, it is generally used
during initials steps of a hierarchical virtual screening protocol.
This hierarchical combination of shape similarity with molecular
docking has been successfully employed in the discovery of type
II dehydroquinase inhibitors (Ballester et al., 2012) and that of
MDM2 inhibitors (Houston et al., 2015), 11β-hydroxysteroid
dehydrogenase 1 inhibitors (Xia et al., 2011), PPARγ partial
agonists (Vidović et al., 2011), inhibitors of chemokine receptor
5 (CCR5)-N terminus binding to gp120 protein (Acharya et al.,
2011), Grb7-based antitumor agents (Ambaye et al., 2013), fungal
trihydroxynaphthalene reductase inhibitors (Brunskole Švegelj
et al., 2011), non-steroidal FXR ligands (Fu et al., 2012; Wang
et al., 2015), novel SIRT3 scaffolds (Salo et al., 2013), protein
kinase CK2 inhibitors (Sun et al., 2013), SUMO conjugating
enzyme inhibitors (Kumar et al., 2014a), and chemokine
receptor type 4 inhibitors (Das et al., 2015). Combination of
shape similarity methods with structure-based methods such as
docking provide several advantages. Ultrafast shape comparison
methods such as USR can very quickly filter large libraries for
compounds that are similarly shaped as known inhibitors. Hence,
the time required for docking could be drastically reduced by
eliminating compounds that doesn’t fit in the binding pocket.
Moreover, in case of some proteins the inhibitor activity is driven
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by key moieties in compounds, e.g., metal binding groups in
case of metalloproteins, reactive functional groups in cysteine
proteases, hinge binding groups in kinases etc. In these scenarios,
docking will help in the prioritization of compounds based on
the interactions they make with the binding pocket. Sometimes
the difference in shape similarity scores for compounds is
very small and it is challenging to cherry pick for biological
assay. Here, docking of shape similarity hits could also help
in the prioritization of compounds for purchase or chemical
synthesis. However, the combination of shape similarity with
molecular docking is not always advantageous especially for
proteins with highly flexible binding pockets, multiple pocket
conformations or homology models where accurate docking is
challenging. A virtual screening scheme where USR hits were re-
ranked using Autodock-Vina score produced no active hits as
docking was performed in a quite different pocket conformation
(Hoeger et al., 2014). In another study, shape-based virtual
screening alone produced better hit rates than hierarchical
combination of shape similarity and docking methods (Ballester
et al., 2012). In numerous studies, shape similarity calculations
along with molecular docking were complemented with other
approaches such as 2D similarity search, pharmacophore
modeling, electrostatic potential matching, machine learning and
MM-PBSA method (Mochalkin et al., 2009; Alcaro et al., 2013;
Poongavanam and Kongsted, 2013; Wiggers et al., 2013; Hamza
et al., 2014a; Kumar et al., 2014b; Pala et al., 2014; Feng et al.,
2015; Corso et al., 2016; Mangiatordi et al., 2017; Xia et al., 2017).
The use of different virtual screening approaches in parallel has
been previously suggested as different methods tend to identify
different set of compounds and virtual screening hit rates could
be improved by employing them in parallel manner (Sheridan
and Kearsley, 2002). In parallel virtual screening, several methods
are run independently and the top hits from each method is
selected. Parallel combination of various ligand and structure
based methods with shape similarity approaches was found to
be productive especially in case of challenging targets (Swann
et al., 2011; Langdon et al., 2013; Hoeger et al., 2014). A parallel
virtual screening to identify inhibitors of PRL-3 employing
several ligand and structure-based methods against the same
screening library produced contrasting hit rates for different
approaches (Hoeger et al., 2014). Many prospective applications
suggest the utility of hierarchical or parallel combination of
shape similarity approaches with other ligand and structure-
based methods. However, no benchmark study demonstrating
their utility has been published. A systematic study will help
researchers to identify areas where the combination of several
approaches will be better than employing shape based virtual
screening methods alone.

One application of shape similarity methods is to hop from
one chemical scaffold to another in order to improve the
potency, selectivity, physicochemical properties and to create
novel intellectual property positions (Hu et al., 2017). Shape
similarity methods are capable of identifying several scaffolds
which are structurally different from the query compounds and
each scaffold may be pursued separately. Scaffold hopping is
highly effective in rescuing the problematic leads that cannot be
pursued further due to problems in selectivity, pharmacology and

pharmacokinetics. Both atomic distance-based and Gaussian-
overlay shape similarity methods can effectively perform scaffold
hopping as exemplified from several prospective studies. Among
the first prospective application of shape similarity based
methods in scaffold hopping, small molecule inhibitors of ZipA-
FtsZ protein-protein interaction were identified (Rush et al.,
2005). Some recent scaffold hopping applications include the
identification of inhibitors of arylamine N-acetyltransferases
(Ballester et al., 2010), type II dehydroquinase inhibitors
(Ballester et al., 2012) sumoylation enzymes (Kumar et al.,
2014b, 2016), anti-tubercular agents (Hamza et al., 2014b;
Wavhale et al., 2017), anti-tumor agents (Ge et al., 2014),
11βHSD1 inhibitors (Shave et al., 2015), leucine zipper kinase
inhibitors (Patel et al., 2015), kynurenine 3-monooxygenase
inhibitors (Shave et al., 2018), and partial agonist of inositol
trisphosphate receptor (Vasudevan et al., 2014). In addition
to prospective application, rigorous benchmarking of shape
similarity methods for their scaffold hopping capabilities is
important. However, systematic benchmarking is challenging
due to disagreement on the definition of scaffold. In one
retrospective study, the scaffold hopping potential of atomic
distance-based shape similarity method USRCAT has been
demonstrated utilizing DUD-E dataset (Schreyer and Blundell,
2012). For the tested benchmark dataset, USRCAT was capable
of identifying structurally dissimilar active hits that could not be
retrieved by utilizing topological similarities. Shape similarity was
also used to repurpose existing drugs for previously unknown
activity (Vasudevan et al., 2012). Another application is in silico
target fishing or the identification of protein targets of orphan
chemical compounds. In one recent research, the target of anti-
fungal macrocycle amidinoureas was identified following a shape
similarity screening (Maccari et al., 2017). The representative
structure from a series of macrocycle amidinoureas was used as
a query to obtain most similar crystallographic ligand from all
solved crystal structures. A prioritized list of targets based on
similarity score and subsequent docking and enzymatic assay
revealed Trichoderma viride chitinase as target of this class of
compounds. Along the same line, retrospective studies showed
that the combination of molecular shape and chemical structure
similarity can reliably achieve biological target prediction
(Abdulhameed et al., 2012; Gfeller et al., 2013). Additionally,
shape similarity comparison based on spherical harmonics
surface representation has been demonstrated that it can be
used to predict drug promiscuity (Perez-Nueno et al., 2011).
Furthermore, shape similarity comparisons could also be used to
predict subtype selectivity of ligands (Kuang et al., 2016).

One important application of shape similarity methods in
drug discovery is the clustering of known inhibitors of a protein
target. As the performance of most shape-based methods highly
depend on the selection of right query for the virtual screening
(Kirchmair et al., 2009), special attention was paid toward the
development of methods dealing with this problem. It has
been reported that clustering of known inhibitors based on
their shapes could help the identification of optimal query for
virtual screening (Pérez-Nueno and Ritchie, 2011). Clustering
of spherical harmonics-based consensus shapes assisted in the
identification of ligands that bind to different regions in the
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binding pocket of some protein targets such as CCR5 (Pérez-
Nueno et al., 2008). Further, the clustering of molecular shapes
also helped in the identification of promiscuous protein targets
and ligands (Pérez-Nueno and Ritchie, 2011). Selection and
use of high quality compound libraries is an important aspect
of high throughput screening (HTS). However, testing a large
number of compounds is not economically viable. In silico,
mostly 2D similarity based, methods are commonly employed
to generate a subset or focused set for HTS (Huggins et al.,
2011; Dandapani et al., 2012). The limitation with 2D similarity
methods is that they ignore inherent property such as the
shape of a molecule. Use of shape-based clustering of large
compound libraries for creating quality HTS library present
several advantages. Clustering of molecular libraries based on
atomic distance-based methods such as USR can achieve similar
or significantly better computational efficiency as 2D fingerprint-
based methods. Moreover, it will ensure maximum diversity with
less number of compounds in HTS library.

Apart from employing ligand 3D shape similarity as a virtual
screening method, several groups adopted it to improve the
performance of other virtual screening methods. Molecular
docking is one such method widely used in drug discovery.
Although there has been significant progress in the development
of molecular docking methods, challenges still remain both in
sampling and scoring of binding poses within protein binding
pockets. In the last few years, several methods were developed
that utilized ligand 3D shape similarity to improve both sampling
and scoring performance of molecular docking. The shape
overlap with known crystallographic ligands for the target
protein was utilized to guide ligand conformational sampling
toward critical regions of protein binding site (Wu and Vieth,
2004). Other methods used shape similarity based alignment for
the selection of reliable poses among many docking generated
poses (Fukunishi and Nakamura, 2008, 2012; Anighoro and
Bajorath, 2016; Kumar and Zhang, 2016a). Ligand 3D shape
similarity was also a key component of many pose prediction
methods where shape similarity with existing ligand bound
crystal structures was utilized to predict binding poses of
unknown ligands (Kelley et al., 2015; Huang et al., 2016; Kumar
and Zhang, 2016b,c). Several of these methods demonstrated
excellent retrospective and prospective performance. Moreover,
shape similarity also facilitated the improvement in scoring
and rank-ordering performance of a docking method. Several
methods have reported improved virtual screening performance
of a docking method when shape overlap with crystallographic
ligands was employed to select the best binding pose of ligands
in a screening library (Roy et al., 2015; Anighoro and Bajorath,
2016). Consideration of protein flexibility inmolecular docking is
a challenging problem and several methods have been developed
to tackle it (B-Rao et al., 2009). Among these, receptor ensemble
basedmethods demonstrated reasonable performance (Bottegoni
et al., 2011) where the receptor ensemble is selected either
from many crystallographic structures or from those generated
by in silico methods such as molecular dynamics simulation.
It has been shown previously that the selection of receptor
ensemble based on binding pocket shape similarity is an
effective way of considering receptor flexibility in molecular

docking (Osguthorpe et al., 2012). Further, onemethod suggested
utilizing a single suitable receptor for each ligand in a screening
library instead of docking all compounds to multiple receptor
structures (Kumar and Zhang, 2018). It was also shown that
single suitable receptor selection based on ligand 3D shape
similarity is superior to 2D similarity based selection.

Applications in Protein Structure
Comparison
Evaluation of structural similarity between protein structures
has many applications including but not limited to classification
of protein structures, evolutionary relationship between
protein structures, identification of templates for homology
modeling, functional annotation, protein-protein interactions
etc. Conventional methods for protein structure comparison
are based on the alignment of protein atoms or residues.
These methods require extensive rotational and translational
sampling thereby limiting their utility for large scale protein
structure comparisons. Several methods have been developed
that utilize shape similarity to detect global or local similarity
between protein structures. Classification of these methods
also follows the previously described classification including
Gaussian overlay based methods, surface-based methods using
spherical harmonic descriptors, 3D Zernike descriptors etc.
Among these, surface-based methods were developed previously
to measure similarity between protein structures. Only later
they were applied to the small molecule area. Several methods
of protein structure comparison employed SH to represent
shapes of protein structures (Tao et al., 2005; Gramada and
Bourne, 2006; Konarev et al., 2016). Like SH, 3D Zernike
based moments are also suitable to compare shapes of protein
structures (Sael et al., 2008b; Figure 4A). Not only they were
suitable to estimate the similarity between two proteins but
also their rotation-translation invariant nature allows fast
real-time search of similar proteins in structural databases
such as PDB (La et al., 2009; Kihara et al., 2011; Xiong et al.,
2014). A Gaussian mixture model based protein shape similarity
method (Kawabata, 2008) also allows large scale comparisons
of proteins with data from PDB and EMDB. This method has
been implemented as Omokage search in PDB Japan (Suzuki
et al., 2016; Kinjo et al., 2017). The server compares global
shapes of proteins and results are obtained reasonably fast
within 1min after submission of a query. Large scale comparison
of protein structures based on shape is useful in functional
annotation, selection of templates for comparative modeling
etc. An application of shape comparison method to protein
classification has also been reported (Daras et al., 2006).

One important application of shapematching is the evaluation
of similarity between protein binding pockets. This field is
especially interesting as sequence and structural alignments are
often not useful when comparing binding pockets of proteins
with different folds. As protein binding pockets are much
more conserved than protein structures (Gao and Skolnick,
2013), a reliable comparison between protein binding pockets
is crucial for predicting protein functions, polypharmacology
of ligands and for drug repurposing. Numerous methods based
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on distinct structural representations as described previously
were developed in the last decade. One such method employed
spherical harmonics to represent and compare the shapes of
protein binding pockets (Morris et al., 2005). This method
was later extended to compare the shape of protein binding
pockets with that of binding ligands (Kahraman et al., 2007).
PocketMatch compares two binding pockets based on the
sorted list of distances that captured chemical nature and 3D
shape of the binding pocket (Yeturu and Chandra, 2008).
Another method based on property-encoded shape distributions
(PESD) combines the concept of shape distributions with the
chemical environment of the binding pocket surface to effectively
capture binding pocket similarities (Das et al., 2009). Pocket-
Surfer utilizes pseudo-Zernike descriptors and 3D Zernike
descriptors to represent and compare properties and 3D shapes
of binding pockets (Chikhi et al., 2010). An extension of this
method, Patch-Surfer searches local similarity by representing a
binding pocket as amalgamation of segmented surface patches
which are described by properties such as shape, electrostatic
potential, concaveness and hydrophobicity (Sael and Kihara,
2012). Similarity between protein cavities was also measured by
representing the pockets by pharmacophoric grid points and
aligning them by optimizing their volume overlap (Desaphy et al.,
2012).

Concept of pocket similarity was also extended to
complementarity between binding pockets and ligands.
This gave rise to a new virtual screening methodology based on
shape complementarity between binding pockets and ligands.
PL-Patch-Surfer2 program evaluates the compatibility between
ligand and binding pocket by measuring the complementarity
between ligand surface and local surface patches in the binding
pocket (Shin et al., 2016a,b; Figure 4C). The program utilizes
3DZD to represent molecular shape while physicochemical
properties are also mapped onto the surface. The method
was evaluated on benchmark datasets and revealed better
performance than two docking programs. Spherical harmonics
expansion coefficients have also been employed in the
approximation and comparison of binding pockets and
ligand surfaces (Cai et al., 2002). The complementarity was
demonstrated utilizing 35 protein-ligand complexes. Elekit
adopted shape and electrostatic complementarity concept
to discover small molecule inhibitors of protein-protein
interactions (Voet et al., 2013). Elekit assesses the similarity
between small molecules and protein ligands of a receptor protein
based on the electrostatic potential values stored on a 3D grid.

Applications in Fitting of Atomic Models
Into Cryo-Electron Microscopy Maps
Recent developments in cryo-electron microscopy (cryo-EM)
has helped researchers to overcome resolution barrier and
provide structural and mechanistic insights into structures of
difficult proteins and large protein assemblies. Most of these
improvements came from the advances in sample preparation,
electron detector technologies, improved microscope and
computational data processing. Computational methods played
an important part in particle picking, particle reconstruction,

building and fitting of structures into cryo-EM maps. In recent
years, several methods were developed to improve building,
fitting and refinement of protein structures in cryo-EM maps
(Esquivel-Rodríguez and Kihara, 2013). Among these methods,
a few methods employed shape similarity to fit atomic structures
of protein subunits into the cryo-EM maps of multi-subunit
proteins. Onemethod, GaussianMixture macromolecule FITting
(gmfit), utilizes Gaussian mixture models (GMM) to represent
the shape of cryo-EMmaps and atomicmodels (Kawabata, 2008).
GMMs are probability distribution functions obtained by joining
many 3D Gaussian functions. Initially, both the cryo-EM map
and atomic models are first converted into GMM followed by
the fitting of a single subunit GMM into the GMM of protein
complex using random and gradient based local search. Finally,
the fit between atomic models and cryo-EM map is obtained
based on the position and orientation of GMM. This method
is reasonably fast and can fit multiple subunits with reasonable
accuracy. PDB Japan (https://pdbj.org) has implemented this
method in its EM navigator utility to provide shape based
structural similarity search against protein databases (Kinjo et al.,
2017). Another method adopted a surface-based approach where
3DZD was used to represent and compare isosurface derived
from low resolution cryo-EM maps of protein structures (Sael
and Kihara, 2010; Figure 4D). It was demonstrated that 3DZD
can distinguish proteins of different folds even at low resolution
of 15 Å. A web-based platform for comparing cryo-EM maps
was also developed by the same group (Esquivel-Rodríguez et al.,
2015; Han et al., 2017). A similar method utilized 3D Zernike
moments to search a database of protein structures for matching
protein structures to a cryo-EMmap (Yin and Dokholyan, 2011).
EMLZerD method also utilized 3DZD to fit multiple structures
in a cryo-EM map (Esquivel-Rodríguez and Kihara, 2012). The
method generates hundreds of putative configurations of subunit
arrangement using a protein-protein docking method. These
configurations were later compared with a cryo-EM map using
3DZD and Euclidean distance. The biggest advantage of 3D
Zernike moments methods is that they are rotation translation
invariant and no computational expensive step of rigid body
or flexible structural alignment is required. Moreover, these
methods enable screening of proteins from structural databases
such as PDB to find out models that can fit into a cryo-EM map.

CONCLUSION AND FUTURE DIRECTIONS

3D shape similarity methods have contributed immensely to
the overall acceptance of the computational virtual screening
methods in drug discovery. Most shape similarity methods
for shape comparison of small molecules and macromolecules
took inspiration from the approaches developed to compare
the shapes of 3D objects in computational geometry field.
Several approaches were developed ranging from extremely
fast atom distance-based methods to comparatively slower
mathematically complex methods such as SH and 3DZD.
Among all the 3D shape comparison methods, atomic distance-
based and Gaussian overlay-based methods are the most
widely used. These approaches possess several advantages over
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surface-based methods. Atomic distance-based methods present
an extremely fast way of quickly comparing the shapes of
small molecules. This has facilitated the screening of very
large libraries of millions of compounds within a few seconds.
Moreover, screening large libraries increased the probability
of finding novel chemical scaffolds. Furthermore, as most of
these methods depend on shape rather than the underlying
chemical structure, scaffold hopping can be conveniently
achieved. Another possible application of these fast shape
similarity evaluation methods would be the clustering of large
chemical space to generate quality shape diverse HTS screening
libraries. Although Gaussian overlay-based methods are slower
than atomic-distance based methods, they are fast enough to
allow high throughput virtual screening. GPU implementations
of these methods is not very difficult as exemplified by the
development of several GPU compatible programs such as
FastROCS, PAPER, gWEGA etc. resulting in further increase
in the processing speeds. Another advantage with Gaussian-
based methods is that they allow visualization as they require
alignment of molecules prior to shape similarity calculations.
Visualization is helpful in understanding the features responsible
for biological activity and critical for the optimization of
a molecule especially for the molecules with low structural
similarity with query compound. However, a suboptimal
alignment can lead to errors in volume overlap calculations
and thereby affecting similarity scores and visualization. As
alignment is the key component of Gaussian overlay methods,
efforts should be focused toward improvingmolecular alignment.
Some of these methods employ chemical features to refine
global overlays. As alignment is global optimization problem,
molecular alignment could also be improved by employing
fast local optimization methods. Both atomic distance-based
and Gaussian overlay-based shape similarity methods handle
ligand flexibility by employing the conformational ensemble.
The performance thus indirectly depends upon conformation

generation methods. Current state-of-the-art conformation
generation methods still struggle to generate near-native
conformations of ligands such as peptidomimetics, macrocycles
etc. Development of novel conformation generation approaches
utilizing knowledge from experimental databases such as CSD
and PDB will steer improvement in performance of shape-
based virtual screening approaches. Surface based methods
such as SH expansion coefficients and 3DZD are suitable for
comparing macromolecules and atomic models with electron
density maps, however, comparatively less efforts have been
made toward utilizing them in small molecule area. One
advantage with surface-based methods is that the protein ligand
complementarity search is possible by comparing enclosed
shapes of binding pockets and ligands. This will be handy in
cases where ligand-based virtual screening methods could not
be used due to the lack of active compounds. Finally, shape-
based similarity could be used in combination with other ligand
and structure-based approaches either in hierarchical or parallel
manner to improve hit rate especially for difficult targets.
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Vidović, D., Busby, S. A., Griffin, P. R., and Schürer, S. C. (2011). A
combined ligand- and structure-based virtual screening protocol identifies
submicromolar PPARγ Partial Agonists. ChemMedChem 6, 94–103.
doi: 10.1002/cmdc.201000428

Voet, A., Berenger, F., and Zhang, K. Y. (2013). Electrostatic similarities between
protein and small molecule ligands facilitate the design of protein-protein
interaction inhibitors. PLoS ONE 8:e75762. doi: 10.1371/journal.pone.0075762

Wang, C. Y., Ai, N., Arora, S., Erenrich, E., Nagarajan, K., Zauhar, R., et al.
(2006). Identification of previously unrecognized antiestrogenic chemicals
using a novel virtual screening approach. Chem. Res. Toxicol. 19, 1595–1601.
doi: 10.1021/tx060218k

Wang, L., Si, P., Sheng, Y., Chen, Y., Wan, P., Shen, X., et al. (2015). Discovery
of new non-steroidal farnesoid X receptor modulators through 3D shape
similarity search and structure-based virtual screening. Chem. Biol. Drug Des.
85, 481–487. doi: 10.1111/cbdd.12432

Wang, Q., Birod, K., Angioni, C., Grösch, S., Geppert, T., Schneider,
P., et al. (2011). Spherical harmonics coefficients for ligand-based
virtual screening of cyclooxygenase inhibitors. PLoS ONE 6:e21554.
doi: 10.1371/journal.pone.0021554

Wavhale, R. D., Martis, E. A. F., Ambre, P. K., Wan, B., Franzblau, S. G., and Iyer,
K. R. (2017). Discovery of new leads against Mycobacterium tuberculosis using
scaffold hopping and shape based similarity. Biorg. Med. Chem. 25, 4835–4844.
doi: 10.1016/j.bmc.2017.07.034

Wei, N. N., and Hamza, A. (2014). SABRE: ligand/structure-based virtual
screening approach using consensus molecular-shape pattern recognition. J.
Chem. Inf. Model. 54, 338–346. doi: 10.1021/ci4005496

Werner, M. M., Li, Z., and Zauhar, R. J. (2014). Computer-aided identification
of novel 3,5-substituted rhodanine derivatives with activity against
Staphylococcus aureus DNA gyrase. Bioorg. Med. Chem. 22, 2176–2187.
doi: 10.1016/j.bmc.2014.02.020

Wiggers, H. J., Rocha, J. R., Fernandes, W. B., Sesti-Costa, R., Carneiro, Z. A.,
Cheleski, J., et al. (2013). Non-peptidic cruzain inhibitors with trypanocidal
activity discovered by virtual screening and in vitro assay. PLoS Negl. Trop. Dis.
7:e2370. doi: 10.1371/journal.pntd.0002370

Wilson, J. A., Bender, A., Kaya, T., and Clemons, P. A. (2009). Alpha
shapes applied to molecular shape characterization exhibit novel properties

compared to established shape descriptors. J. Chem. Inf. Model. 49, 2231–2241.
doi: 10.1021/ci900190z

Wu, G., and Vieth, M. (2004). SDOCKER: a method utilizing existing x-
ray structures to improve docking accuracy. J. Med. Chem. 47, 3142–3148.
doi: 10.1021/jm040015y

Xia, G., Xue, M., Liu, L., Yu, J., Liu, H., Li, P., et al. (2011). Potent and novel 11β-
HSD1 inhibitors identified from shape and docking based virtual screening.
Bioorg. Med. Chem. Lett. 21, 5739–5744. doi: 10.1016/j.bmcl.2011.08.019

Xia, J., Feng, B., Shao, Q., Yuan, Y., Wang, X., Chen, N., et al. (2017). Virtual
screening against phosphoglycerate kinase 1 in quest of novel apoptosis
inhibitors.Molecules 22:E1029. doi: 10.3390/molecules22061029

Xiong, Y., Esquivel-Rodriguez, J., Sael, L., and Kihara, D. (2014). “3D-SURFER 2.0:
web platform for real-time search and characterization of protein surfaces,” in
Protein Structure Prediction, ed D. Kihara (New York, NY: Springer), 105–117.

Yamagishi, M. E., Martins, N. F., Neshich, G., Cai, W., Shao, X., Beautrait, A., et al.
(2006). A fast surface-matching procedure for protein–ligand docking. J. Mol.

Model. 12, 965–972. doi: 10.1007/s00894-006-0109-z
Yan, X., Li, J., Gu, Q., and Xu, J. (2014). gWEGA: GPU-accelerated WEGA

for molecular superposition and shape comparison. J. Comput. Chem. 35,
1122–1130. doi: 10.1002/jcc.23603

Yan, X., Li, J., Liu, Z., Zheng, M., Ge, H., and Xu, J. (2013). Enhancing molecular
shape comparison by weighted gaussian functions. J. Chem. Inf. Model. 53,
1967–1978. doi: 10.1021/ci300601q

Yeturu, K., and Chandra, N. (2008). PocketMatch: a new algorithm to
compare binding sites in protein structures. BMC Bioinformatics 9:543.
doi: 10.1186/1471-2105-9-543

Yin, S., and Dokholyan, N. V. (2011). Fingerprint-based structure retrieval using
electron density. Proteins 79, 1002–1009. doi: 10.1002/prot.22941

Zauhar, R. J., Gianti, E., andWelsh,W. J. (2013). Fragment-based Shape Signatures:
a new tool for virtual screening and drug discovery. J. Comput. Aided Mol. Des.
27, 1009–1036. doi: 10.1007/s10822-013-9698-7

Zauhar, R. J., Moyna, G., Tian, L., Li, Z., andWelsh, W. J. (2003). Shape signatures:
a new approach to computer-aided ligand- and receptor-based drug design. J.
Med. Chem. 46, 5674–5690. doi: 10.1021/jm030242k

Zhou, T., Lafleur, K., and Caflisch, A. (2010). Complementing ultrafast shape
recognition with an optical isomerism descriptor. J. Mol. Graph. Model. 29,
443–449. doi: 10.1016/j.jmgm.2010.08.007

Zoete, V., Daina, A., Bovigny, C., and Michielin, O. (2016). SwissSimilarity: a web
tool for low to ultra high throughput ligand-based virtual screening. J. Chem.

Inf. Model. 56, 1399–1404. doi: 10.1021/acs.jcim.6b00174

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The reviewer XL and handling Editor declared their shared affiliation.

Copyright © 2018 Kumar and Zhang. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Chemistry | www.frontiersin.org 21 July 2018 | Volume 6 | Article 315

https://doi.org/10.1002/cbic.201402440
https://doi.org/10.1016/j.ejmech.2012.11.013
https://doi.org/10.1186/1758-2946-1-19
https://doi.org/10.1021/ci100263p
https://doi.org/10.1007/s12013-009-9051-x
https://doi.org/10.1002/cmdc.201000428
https://doi.org/10.1371/journal.pone.0075762
https://doi.org/10.1021/tx060218k
https://doi.org/10.1111/cbdd.12432
https://doi.org/10.1371/journal.pone.0021554
https://doi.org/10.1016/j.bmc.2017.07.034
https://doi.org/10.1021/ci4005496
https://doi.org/10.1016/j.bmc.2014.02.020
https://doi.org/10.1371/journal.pntd.0002370
https://doi.org/10.1021/ci900190z
https://doi.org/10.1021/jm040015y
https://doi.org/10.1016/j.bmcl.2011.08.019
https://doi.org/10.3390/molecules22061029
https://doi.org/10.1007/s00894-006-0109-z
https://doi.org/10.1002/jcc.23603
https://doi.org/10.1021/ci300601q
https://doi.org/10.1186/1471-2105-9-543
https://doi.org/10.1002/prot.22941
https://doi.org/10.1007/s10822-013-9698-7
https://doi.org/10.1021/jm030242k
https://doi.org/10.1016/j.jmgm.2010.08.007
https://doi.org/10.1021/acs.jcim.6b00174
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles

	Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery
	Introduction
	3D Shape Similarity Methods
	Atomic Distance-Based Descriptors
	Atom-Centered Gaussian-Based Shape Similarity Methods
	Surface Based 3D Shape Similarity Comparison Methods
	Other Shape Similarity Approaches

	Application of shape similarity methods in drug discovery
	Application in Virtual Screening
	Applications in Protein Structure Comparison
	Applications in Fitting of Atomic Models Into Cryo-Electron Microscopy Maps

	Conclusion and Future Directions
	Author Contributions
	Acknowledgments
	References


