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ABSTRACT

Accurate estimates for the fall speed of natural hydrometeors are vital if their evolution in clouds is to be

understood quantitatively. In this study, laboratory measurements of the terminal velocity yt for a variety of

ice particle models settling in viscous fluids, along with wind-tunnel and field measurements of ice particles

settling in air, have been analyzed and compared to commonmethods of computing yt from the literature. It is

observed that while these methods work well for a number of particle types, they fail for particles with open

geometries, specifically those particles for which the area ratio Ar is small (Ar is defined as the area of the

particle projected normal to the flow divided by the area of a circumscribing disc). In particular, the fall speeds

of stellar and dendritic crystals, needles, open bullet rosettes, and low-density aggregates are all over-

estimated. These particle types are important in many cloud types: aggregates in particular often dominate

snow precipitation at the ground and vertically pointing Doppler radar measurements.

Based on the laboratory data, a simple modification to previous computational methods is proposed, based

on the area ratio. This new method collapses the available drag data onto an approximately universal curve,

and the resulting errors in the computed fall speeds relative to the tank data are less than 25% in all cases.

Comparison with the (much more scattered) measurements of ice particles falling in air show strong support

for this new method, with the area ratio bias apparently eliminated.

1. Introduction

The sedimentation rates of ice crystals and snowflakes

remain poorly characterized at present. Analytical so-

lutions for the terminal velocity yt of natural ice particles

as they fall through the air have not been forthcoming

because of their nonspherical shape and the range of

flow regimes that they span. Empirical formulas based

on experimental data and approximate theory are there-

fore required to predict how fast an ice particle with a

given shape, size, and mass will fall. This is often achieved

using a relationship of the form

y
t
5 aDb, (1)

where D is the maximum dimension of the particle, and

the constants a and b have been measured for a variety

of particle habits at the ground (e.g., Locatelli and

Hobbs 1974). Such relationships are used to parame-

terize cloud, numerical weather prediction, and climate

models (e.g., Rutledge and Hobbs 1984; Wilson and

Ballard 1999). However, it is clear that these relation-

ships are specific to the ice particles for which they were

measured. This is illustrated in Fig. 1, which shows the

fall speed measured for aggregate snowflakes a few

millimeters in size falling from different clouds. In the

first dataset [dense aggregates of complex polycrystals

from Locatelli and Hobbs (1974)] the particles fell at

;1.2 m s21. In the second dataset [open aggregates of

dendritic crystals from Kajikawa (1982)], particles of the

same size were observed to sediment at only;0.4 m s21.

Although in both cases the particles were classified

as aggregates, there were obviously significant differ-

ences in the particle properties to have such different

fall speeds. It is therefore extremely desirable to ex-

plicitly factor the particle mass and shape into fall speed

calculations.
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This motivated Böhm (1989, 1992),1 Mitchell (1996),

Mitchell and Heymsfield (2005), and Khvorostyanov

and Curry (2002, 2005) to propose fall speed relation-

ships based not only onD but also on the particle’s mass

m and area A projected normal to the fall motion. It

seems intuitively sensible to expect the fall speed to

depend primarily on these three parameters; however,

there is a need to test these formulas and to understand

their strengths andweaknesses.Westbrook (2008) noted

that the latter four studies (from now on collectively

referred to as MHKC) overestimate the fall velocity of

sub-100-mm crystals, particularly when the particle geo-

metry is open.

In what follows we use a number of experimental

datasets in which the most important variables are mea-

sured rather than estimated to test the methods cited.

These datasets may be divided into two groups: 1) labo-

ratory tankmeasurement of the drag onmodel ice crystal

and aggregate shapes falling through viscous liquids and

2) observations of real ice particles falling through the

atmosphere. Both datasets have their advantages and

drawbacks. In the first group, the experimental errors

are very small (;10%) but a relatively small range of

idealized shapes is sampled. The data in the second

group are subject to much larger experimental errors

because of the challenge of measuring m, A, D, and

yt simultaneously in the field; however, the range of

particle properties is much broader, which therefore

gives us confidence that the conclusions drawn from the

tank experiment comparisons are generally applicable to

natural ice particles.

The article is organized as follows. In section 2 we re-

view the relevant drag parameters and theoretical back-

ground for spherical particles. The results of MHKC are

then tested against the data from groups 1 and 2, and their

relative strengths and weaknesses are identified. Having

identified a specific weakness in the MHKCmethods, we

propose a simple modification to the Re–X formula of

Mitchell (1996), which leads to much improved agree-

ment with the laboratory and observational data but is

equally straightforward to apply.

2. Background

Conventionally the drag on a falling particle is ex-

pressed in terms of a dimensionless drag coefficient Cd:

F
d
5

1

2
r
air
y2tAC

d
, (2)

where rair is the density of the air and Fd is the drag

force. In general,Cd is a function of theReynolds number

Re 5 rairytD/h, where h is the dynamic viscosity of the

air. For calculation of terminal velocities, the Davies or

Best numberX5CdRe2 is helpful, since Eq. (2) with the

drag force set equal to the weight of the particle mg,

where g is gravity, yields the result

X5
r
air

h2

2mgD2

A
. (3)

FIG. 1. Measured fall speed of aggregate snowflakes as a function of D composed of different

component crystal types (see text for details).

1 Böhm’s (1989, 1992) methods rely on the ice particle being

approximated by an equivalent spheroid that must be classed as

prolate or oblate. Since it is not possible to classifymany natural ice

particles (e.g., irregular polycrystals and aggregates) in this man-

ner, we have not applied Böhm’s equations in this study.
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In other words, X may be calculated from the known

properties of the ice particle (m,A,D) and the air (rair, h)

but does not depend on yt. The task then is to relateX to

Re (or equivalently Cd to Re), so that for a given ice

particle and environmental conditions X can be com-

puted directly, Re can be estimated fromX, and thus the

fall speed is known: yt 5 hRe/Drair.

a. Spherical particles

It is instructive to review the behavior of spherical

particles, since we may anticipate that the drag on non-

spherical ice particles is likely to take a similar form,

albeit with altered parameters (Mitchell 1996). Impor-

tantly, Abraham (1970) viewed the problem in terms of

an ‘‘assembly’’ of the particle plus an attached boundary

layer. The drag was then taken to be the inviscid (large

Re) drag on the complete assembly. It is well known

(Batchelor 1967) that the average depth of this bound-

ary layer is d 5 d0D/
ffiffiffiffiffiffiffi

Re
p

, where d0 is a dimensionless

coefficient. Hence, the effective area of the assembly is

increased by a factor (11 d/D)2 compared to the area of

the sphere, A 5 pD2/4, alone. This leads to a drag co-

efficient for the particle:

C
d
5C

0
11

d
0
ffiffiffiffiffiffiffi

Re
p

� �2

, (4)

whereC0 is the inviscid drag coefficient for the assembly

(assumed constant). The corresponding Re–X relation-

ship (Böhm 1989) is

Re5
d20
4

11
4
ffiffiffiffiffi

X
p

d20
ffiffiffiffiffiffi

C
0

p

 !1/2

� 1

2

4

3

5

2

. (5)

McDonald (1954) estimated d0 ’ 9.06 for water drops,

andAbraham (1970) finds that choosingC05 0.292 is an

excellent fit to the experimental data for smooth spheres

when Re , 104. Abraham also observed that Eq. (5) is

consistent with experimental data even for low Reynolds

numbers where the boundary layer concept breaks

down, as well as Stokes’ analytical solution in the limit

Re/ 0.

b. Nonspherical particles

For nonspherical particles a number of measurements

have been made of terminal velocity of model particles

in the laboratory and the natural particles in the field. From

these velocities and from measurements of m, A, D, rair,

and h, empirical Cd(Re)–Re(X) curves may be derived.

These measurements are described in more detail in the

next section. The purpose of theMHKC studies, and the

present work, is to modify Abraham’s method in order

to find a single equation that accurately describes all of

the available Cd(Re) data for different particle shapes.

3. Evaluation of MHKC methods

The method described by Mitchell (1996) is the most

widely cited and also the simplest. Essentially it is as-

sumed that a single Cd(Re) or Re(X) relationship is

sufficient to describe all natural ice particles. Equations

(4) and (5) are simply applied with altered coefficients:

C0 5 0.6, d0 5 5.83. To facilitate the discussion that

follows, we introduce the area ratio of the particle Ar,

which is the ratio of the particle’s projected areaA to the

area of a circumscribing circle, Ar 5 A/[(p/4)D2]. This

fraction varies between 0 and 1 depending on the par-

ticle shape. Note that in this paper we define D as the

maximum dimension of the particle’s projection normal

to the direction of fall (rather than maximum span in

three dimensions).

The Best number inserted into Eq. (5) is therefore

X5
r
air

h2

8mg

pA
r

. (6)

For numerical convenience Mitchell (1996) split the

continuous curve [Eq. (5)] into four approximately lin-

ear sections on a logRe–logX diagram, facilitating the

generation of yt–D power-law-type relationships of the

form given by Eq. (6). Khvorostyanov and Curry (2002)

took this approach one stage further by recasting Eq. (5)

as a power law with continuous variable coefficients.

Mitchell and Heymsfield (2005) introduced a turbu-

lent correction to increase the drag at very large Re.

Khvorostyanov and Curry (2005) used an alterna-

tive approach to introduce this extra turbulent drag.

Khvorostyanov and Curry’s (2005) curve is plotted as

a dashed line in Fig. 2 and over the range of Reynolds

numbers considered (1 , Re , 1000) it is essentially

indistinguishable from that of Mitchell (1996). Mitchell

andHeymsfield’s (2005) empirical correction has amore

significant effect and acts to increase the drag somewhat

as shown in Fig. 2 (dashed line). At Reynolds numbers

less than ;100 all three methods may be considered

identical.2

2 Khvorostyanov and Curry (2002) used Abraham’s values of C0

and d0 instead of the ones detailed above but changed them to

match Mitchell’s choice in their 2005 paper after comments by

Mitchell and Heymsfield (2005). For brevity, we have not consid-

ered their 2002 study in our comparison.
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a. Laboratory data: Model ice particles

In addition to the MHKC curves, Fig. 2 also shows

experimental data from a variety of tank experiments. It

is immediately apparent that there is a very large spread

in the drag coefficient for a given Re as the particle

shape is changed. The individual datasets are described

below.

List and Schemenauer (1971) have measured Cd(Re)

for a variety of planar ice crystal shapes up to Re ;100.

The ice crystal shapes used are illustrated in Fig. 3; all

the models were made of metal with an aspect ratio

(thickness divided by maximum span in the basal plane)

of 0.02 and were dropped in tanks of salt solutions or

glycerin and water mixtures. These data are shown in

Fig. 2a. Also plotted, in Fig. 2b, is the corresponding

error in the Reynolds number (and therefore also in yt)

if Re is calculated from Eq. (5) using the coefficients

fromMitchell (1996). These data show that thin circular

discs (Ar 5 1), hexagonal plates (Ar 5 0.83), and broad

branched crystals (Ar 5 0.74) are all well approximated

by Mitchell’s approach, with errors in the computed fall

speed of #20%. As the crystals become more tenuous

and complex in their projection, Mitchell’s curve is ob-

served to increasingly overestimate yt, the most extreme

case being the stellar crystal that had Ar 5 0.185: here

FIG. 2. Tank experiment data. (a) Comparison of experimental Re–X data (symbols) with

theoretical curve of Mitchell (1996; solid line), Mitchell and Heymsfield (2005; dashed line),

andKhvorostyanov andCurry (2005; dotted line). (b) Corresponding relative error in fall speed

for a given Re if Mitchell’s curve is assumed. (c) As in (b), but symbols are now replaced by

circles filled with different shades of gray, with darker shades symbolizing larger Ar (Ar 5 1 is

black and Ar 5 0 is white). Symbols in (a) and (b) are as follows. Planar types are filled: disc is

a circle, hexagonal plate is a diamond, broad-branch crystal is a right-pointing triangle, plate

with extensions is a down-pointing triangle, dendrite is a left-pointing triangle, and stellar is an

up-pointing triangle. Thick disc (aspect ratio 0.5) is a black pentagram. Cylinders with aspect

ratio: 10 is a plus sign, 5 is an asterisk, 2 is an ex, and 1 is a black filled square. Aggregates are

open: cross shape is a circle, H shape is a square, star shape is a hexagram, and chain is a

pentagram. See text for more details.
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errors in excess of 100% were found for Reynolds num-

bers ,10. Dendrites (Ar 5 0.28) also led to substantial

errors of 40%–80% depending on Re. The stellar with

end plates model with Ar 5 0.47 had much more modest

errors of 20%–35%. We note that List and Schemenauer

(1971) remarked on the large difference in drag coeffi-

cient between a solid disc and themore tenuous dendrites

and stellars. They suggested an empirical formula to de-

scribe all their models in terms of the drag on a disc, with

a correction factor based on Ar.

We note that Jayaweera (1972) suggested that the ter-

minal velocity of planar crystals could be approximated

by that of a circular disc of the same mass and thickness,

based on model tank experiments similar to those of List

and Schemenauer. In this case, the velocity of open stellar

crystals was measured to be only 25% lower than those of

circular discs. At first sight this seems at odds with the

rather strong dependence of Cd(Re) on area ratio re-

ported above. However, consider two models with equal

mass and thickness.ModelA is a discAr5 1 andmodel B

is a stellar Ar 5 0.2; both are measured to have similar

velocities. In this case, since m is proportional to A, the

two models must also have the same Cd because of Eq.

(4). So Cd is the same for a given velocity yt. ButD of the

stellar model is a factor of
ffiffiffi

5
p

larger than that of the disc:

this means that theReynolds number of the stellar crystal

Re 5 rairytD/h is larger by the same factor. In other

words, Cd is being measured at different Re for the dif-

ferent models, and therefore they do not follow the same

Cd(Re) curve. This is an important distinction to make. If

the mass and thickness of the planar crystal is known,

Jayaweera’s result is certainly a useful rule of thumb.

Jayaweera and Cottis (1969) and Kajikawa (1971)

have investigated the sedimentation of circular cylinders

in a similar manner to List and Schemenauer (1971).

There is some overlap between their data, and for sim-

plicity we show only the results from Jayaweera and

Cottis for cylinders of aspect ratio 1, 2, and 10. Kajikawa

(1971) reports additional results for aspect ratio5 5, and

these data are included in our analysis. Podzimek (1965)

has shown that the drag on hexagonal columns is very

similar to that on circular cylinders of the same aspect

ratio. The Re–X data are plotted in Fig. 2a and associ-

ated errors in Fig. 2b as before. The cylinders all fell

preferentially with their major (c) axis horizontal. We ob-

serve that for short columns (aspect ratio5 1, 2)Mitchell’s

formula performs well, with errors in the calculated fall

velocity less than 20%. For longer columns, with aspect

ratio 5 5 the errors are larger (30%–70%), while for

long needles errors in excess of 100% can be expected

for Reynolds numbers,20. Such crystals grow readily at

temperatures close to 258C, and accurate estimates of

their sedimentation velocity are likely to be important

for quantitative modeling of the Hallett–Mossop process

(Pruppacher and Klett 1997).

Aggregation is an important process in both cirrus and

deep precipitating frontal systems (Field and Heymsfield

2003; Pruppacher and Klett 1997), and indeed the ma-

jority of particles sampled in snowfall at the ground are

aggregates (Hobbs et al. 1974). However, these parti-

cles remain poorly characterized, and there is very little

quantitative data available. To the authors’ knowledge,

no systematic measurements of the drag on models of ice

crystal aggregates have been made. As an approximation

to ice aggregates, we have analyzed the data presented by

Tran-Cong et al. (2004), who connected spheres in vari-

ous configurations to produce simple aggregate particles

and measured their settling velocity in glycerin–water

mixtures. Seven spheres were used to make each of the

four aggregate configurations analyzed here (see Fig. 3).

Although these models are much simplified relative to

natural snowflakes, they would seem to be a logical first

test of any theory of aggregate fall speeds.

TheCd(Re) data and relative errors in fall speed when

Mitchell’s curve is assumed are plotted in Figs. 2a,b as

before (white filled symbols). We observe that the pre-

dicted fall speeds are too large relative to the experimental

data, by as much as 60% for the chainlike aggregate. Ge-

ometries similar to these have been observed in thunder-

storms (Stith et al. 2004; see also Connolly et al. 2005 and

references therein). The more complex aggregate ge-

ometries show that errors between 10% and 50% may

be expected, with larger errors at lower Re. Area ratios

for these particles were 0.55 for the star, 0.39 for the H

shape, 0.28 for the cross, and 0.14 for the linear chain.

Finally, we have replotted Fig. 2b, this time marking

each data point as a circle in Fig. 2c, where the shading

indicates the area ratio (black forAr5 1, white forAr5 0).

FIG. 3. Ice crystal models. (top) Aggregates of spheres measured

by Tran-Cong et al. (2004); (bottom) planar crystals used by List

and Schemenauer (1971).
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The stratification of data in this plot is revealing: errors

in yt are small for particles where Ar is close to 1; as Ar

becomes smaller the terminal velocity is increasingly

overestimated.

b. Measurements of ice crystals falling in air

We now make the same comparison using measure-

ments of ice particles falling in air. Drag coefficients, de-

rived fromEq. (1) for each of the particles in the following

data samples, are plotted as a function of Re in Fig. 4.

The fall velocities of single crystals have been mea-

sured for laboratory and naturally grown crystals. Prop-

erties of 511 various planar crystal habits in different

stages of rimingwere reported inHeymsfield andKajikawa

(1987). Maximum dimensions ranged from 250 mm to

6.5 mm; area ratios varied from 0.3 to 1. Takahashi and

Fukuta (1988) and Takahashi et al. (1991) measured m,

D, and A for 226 planar and columnar-type ice crystals

nucleated and grown for periods of up to 30 min at con-

stant temperature (between 238 and 2238C) while held

freely suspended in a vertical supercooled cloud tunnel,

while yt was determined from the airspeed. Maximum di-

mensions spanned the range from approximately 75 mmto

4 mm: many of the larger particles were rimed. Figure 4

shows the derived drag coefficients of these crystals: most

are higher than predicted by MHKC. Heymsfield and

Iaquinta (2000) reported on the properties and fall speeds

of 79 side planes, capped columns, and bullet rosettes

measured at the ground by M. Kajikawa. Maximum di-

mensions ranged from 400 mm to 2 mm.

Although the data in Fig. 4a show a broad scatter, we

can see that the drag measured for the side plane and

rosette crystals is significantly higher than predicted by

MHKC. These particles were among the most open in

the datasets shown here, with area ratios in the range

of 0.2–0.4, and we interpret this as evidence of the

FIG. 4. The Cd derived from measurements of ice particle yt, m, and A from the studies in

section 3b compared to the MHKC curves. (a) Pristine and lightly rimed particles; (b) heavily

rimed particles and graupel.
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oversensitivity of the MHKC approach to Ar observed

in the tank data comparison. (This can be observed in

better detail in Fig. 7, which shows the deviation relative

to Mitchell and Heymsfield’s drag curve.) The drag on

the pristine column and platelike crystals measured in

Takahashi’s experiments is also consistently higher than or

equal to that predicted by the MHKC curves. Kajikawa’s

planar crystal drag coefficients are quite scattered: these

data are largely clustered around the MHKC curve.

The data for aggregates are less comprehensive than

for single crystals. Kajikawa (1982) measured the fall

behavior and velocity of 188 early aggregates containing

2–6 component crystals, with sizes ranging between ap-

proximately 1 and 8 mm. We have digitized and traced

these particles and derived the particle area ratios using

Kajikawa’s high-quality photographs (e.g., Figs. 5a,b).

Maximum diameters ranged from 1 to 8 mm. These

particles had very open ‘‘fluffy’’ geometries, and area

ratios were in the range of 0.15–0.55. Like the rosette and

side plane data points, the drag coefficients of these par-

ticles are substantially higher than predicted byMHKCby

100% or more in a number of cases (Fig. 4a); again, we

argue that this is because of their low area ratios, and this

is further evidence for the oversensitivity of the MHKC

method to Ar observed in the tank data comparison.

Heymsfield et al. (2002) reported on the reanalysis

of data (yt, m, and Ar) for 185 aggregates measured

by Magono and Nakamura (1965). The particle sizes

ranged from 6 to 30 mm and the masses were measured

directly; X and Re could then be derived. We note that

Magono and Nakamura (1965) essentially estimated

the particle area ratio by eye, and this introduces some

FIG. 5. Examples of traced images of (a),(b) early aggregates, D 5 4.8, 4.6 mm, from the Kajikawa (1982) early

aggregate study, and (c),(d) a 0.9-mm graupel particle and a 4.7-mm aggregate from the Locatelli and Hobbs (1974)

collections.
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uncertainty into the estimated values of Cd. The drag co-

efficient of these very large aggregates is significantly higher

than that predicted byMitchell (1996). The correction term

used byMitchell and Heymsfield (2005) for aggregates was

developed based on this dataset, and it is therefore no

surprise that their curve is a rather better approximation for

these particles than that of Mitchell (1996).

The fall velocity of heavily rimed particles and graupel

has beenmeasured in a few studies. Locatelli andHobbs

(1974) reported on the fall speed and dimensions of

more than 400 particles—mostly heavily rimed crystals

and graupel but with some aggregates, at sizes ranging

from 500 mm to almost 1 cm. We digitized the original

photographs to find the maximum dimension and cross-

sectional areas of those particles: examples of these par-

ticles are shown in Figs. 5c,d. Heymsfield and Kajikawa

(1987) and Knight and Heymsfield (1983) reported on

the properties of 400 graupel particles, some exceeding

1 cm in diameter, which were collected at the ground

at temperatures near 08C. For both studies, a mean di-

ameter was derived, yielding approximately the correct

cross-sectional area but D and Ar were not measured. De-

rived Cd values are therefore accurate but Re might be

overestimated by a mean of approximately 20% if we

consider the ratio of the mean to maximum diameter from

the other studies. We find that the data approximately fol-

low Mitchell’s (1996) drag law for graupel (Fig. 4, red

curve). Note that if Mitchell and Heymsfield’s (2005) tur-

bulent correction for aggregates is applied to Knight and

Heymsfield’s very large graupel particles, the computed

drag is overestimated by approximately 50% (see Fig. 4b).

The drag coefficient measurements above suggest

a similar behavior to that observed in the tank experi-

ments. To investigate this in more detail we have plotted

the ratio of the predicted to the measured fall speed for

all of the particles as a function of both size and Ar

(shown in Figs. 6a–d). The comparison shows that on

average the predicted fall speed is well captured as

a function of size; however, this median ratio is weighted

by the distribution of particle shapes present in the data-

set.When plotted as a function of area ratio, a clear bias is

observed, with particle fall speeds that are too fast at low

Ar and too slow at highAr. This therefore adds weight to

the argument put forward in section 3a.

c. Discussion

Comparison of the MHKC methods with tank exper-

iments, wind tunnel data, and field measurements of

natural ice particles strongly suggests that the fall speed

of particles with low area ratios are overestimated, in

some cases by 100% or more; this effect appears to be

strongest at lowerRe (Fig. 7). Needles, dendrites, stellars,

and aggregates are key particle types that are affected by

this bias. Compact particles with high area ratios such as

rimed particles and graupel, on the other hand, appear

to be well captured by Mitchell’s (1996) curve. The cor-

rections at Re � 100 proposed by Khvorostyanov and

Curry (2005) and Mitchell and Heymsfield (2005) bring

the data more into line with the very large snowflakes

measured by Magono and Nakamura; however, the pre-

diction of yt for the early aggregates of Kajikawa is not

improved by this empirical correction, which does not

account for the observed variation inCd(Re) withAr. We

believe a modification of the MHKC approach is neces-

sary to capture this dependence.

4. A new approach

In this section, we propose a simple adjustment to

Mitchell’s (1996) formula, which leads to a much im-

proved agreement with the available data. Given that

the fall speed calculated by Mitchell’s method is ob-

served to be too sensitive to Ar, we consider a modified

drag coefficient of the form

C
d
*5 C

d
Ak

r (7)

and a corresponding modified Best number:

X*5
r
air

h2

8mg

pA1�k
r

. (8)

We then simply adjust the value of 0 # k # 1 until the

laboratory data points collapse onto a single curve (or fit

a single curve as closely as possible). After experimen-

tation usingEq. (7) we find that k5 0.5 provides optimum

agreement with the available data. This is illustrated in

Fig. 8; compare this to the spread of data points in Fig. 2.

Like Mitchell’s approach, our method requires knowl-

edge only ofm,A, andD and does not draw a distinction

between ‘‘prolate’’ and ‘‘oblate’’ particle types, nor does

it require knowledge of particle aspect ratios.

We have fitted a curve of the form given by Eq. (4) to

the renormalized data and estimate the fitting parame-

ters C0 5 0.35 and d0 5 8.0. Figure 8 shows this curve

alongside the experimental data. Also shown in the fig-

ure are the relative errors in the computed fall speed

when the new method is applied: in all cases this error is

25% or less. This is good evidence that our proposed

method has a realistic sensitivity to Ar.

The procedure for calculating yt using this new

method is as follows:

1) Given h, rair, m, Ar, and D, calculate the modified

Best number:
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FIG. 6. Comparison of yt of ice crystals falling in air with that predicted by Mitchell and Heymsfield (2005) and the

new computational method, plotted as a function of (a),(b)Ar and (c),(d)D. In each panel, mean values and standard

deviations are shown with points and bars, respectively; the median value for all data points is shown by horizontal

line. Few observations are for D . 2 cm; the abscissa is therefore truncated.
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X*5C
d
*Re2 5

r
air

h2

8mg

pA0.5
r

.

2) From this the Reynolds number is estimated:

Re5
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using C0 5 0.35 and d0 5 8.0.

3) Finally the fall speed is computed directly:

y
t
5

hRe

r
air
D

.

a. Comparison with ice crystals falling in air

In Fig. 6, we compare the terminal velocity measure-

ments described in section 3b to those calculated using

the new approach. The ratio of the predicted and mea-

sured terminal velocity is plotted as a function of area

ratio (Fig. 6a,b) and also as a function of size (Fig. 6c,d)

for the relationship given in Mitchell and Heymsfield

(2005) and the new relationships. There is substantial

scatter in all diagrams, and this probably reflects the

challenge of making accurate measurements of yt,m, A,

andD simultaneously in the field. In particular,A and yt
may even vary in time if the particles are not stable as

they fall; characterization of such behavior is particu-

larly difficult. However, Fig. 6 shows that on average

FIG. 7. Ratio of Cd derived from measurements to Cd derived from the Mitchell and

Heymsfield (2005) relationship for (a) pristine particles and (b) heavily rimed ice and graupel,

with color codes as given in Figs. 4a,b). Note the scale change between panels. Horizontal lines

denote specific errors in Cd.
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the newmethod gives a predicted yt that is very close to

that which is measured, and the ratio of the two does

not have any clear variation with eitherD orAr (unlike

MHKC). The scatter in the data when plotted as a

function of Ar is also slightly reduced, which may be

evidence that our method is effective at collapsing

the data for a range of shapes. These measurements

give us confidence that the method is likely to be quite

robust.

Graupel data from Heymsfield and Kajikawa (1987)

and Knight and Heymsfield (1983) did not include Ar

and only the mean diameter was reported, and for those

reasons graupel data are not plotted in Fig. 6. As a first

approximation we can assume that the area ratios of the

graupel are 0.8 (based on our analysis of other datasets).

With that assumption, the ratio of calculated to mea-

sured yt for the 333 Heymsfield and Kajikawa graupel

particles is a mean of 0.91 6 0.25; for the 37 Knight and

Heymsfield graupel particles it is 0.97 6 0.11.

b. Comparison with the Westbrook (2008) study

Most of the data analyzed here has Re . 1; however,

the smallest particles in clouds can fall in a purely viscous

regime. This was explored using theoretical arguments

and experimental data (from cold room experiments) by

Westbrook (2008). We now briefly investigate how the

new method proposed above compares to his results for

small (sub-100 mm) crystals.

For small Re our new method reduces to

y5
g

6ph

m

R
, (9)

where the ‘‘hydrodynamic radius’’ R controlling the

drag is

R 5 0.465DA0.5
r . (10)

For a simple sphere Ar 5 1 and our new method re-

produces the Stokes solution for a sphere to within 7%.

Westbrook (2008) estimated R for hexagonal plates,

branched crystals, and columns. A calculation was also

made for bullet rosettes; however, this was purely theo-

retical because of the lack of experimental data available.

In all cases R was closely related to the ‘‘capacitance’’ C,

a length scale characterizing the diffusion of momentum

from the crystal.

At lowRe crystals may be oriented quasi-randomly, and

we have calculated the fall velocity assuming both hori-

zontal and randomorientation. For all crystal types and for

both horizontal and random orientation we find that the

computed fall velocities using the new method are within

;30% of Westbrook’s (2008) data, giving us confidence

that our newmethodmay be applied even for Re, 1. The

reduced sensitivity of the computed drag force to Ar

compared to the MHKC approach seems to make the

estimates of yt much more reliable in this regime. More

experimental data for Re, 1 is highly desirable, however,

FIG. 8. Plots of (a) Cd* with k5 0.5 and (b) relative error in yt calculated using the newmethod.

Symbols are as in Fig. 2.
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particularly for more complex particles such as rosettes

and other polycrystals in the early stages of growth.

5. Summary and conclusions

We have analyzed laboratory tank, wind tunnel, and

field data to improve the representation of fall speeds of

ice particle spanning a range of shapes andRe, with sizes

from tens of microns to several centimeters, including

pristine ice crystals and their aggregates through to

heavily rimed particles and graupel. We find that pre-

vious analytic results used to estimate yt appreciably

underpredict the drag and overpredict the fall speed of

particles where Ar is appreciably smaller than unity.

Using the laboratory measurements to characterize the

effect of particle shape (specifically area ratio) onCd, we

have developed an approach that improves the repre-

sentation of the particle drag coefficients and terminal

velocities. This approach is believed to be accurate to

within 25%.

The new method collapses drag data for a wide range

of Ar onto an approximately universal curve and de-

viations in the calculated fall speed are ,625% com-

pared to the tank data. No classification into prolate and

oblate shapes is necessary [as is required for Böhm’s

(1989, 1992) methods], and the results work well for all

area ratios from very open early aggregates through to

rimed particles and graupel.

Figure 9 highlights the particle types forwhichMitchell’s

approach fails: open particles with low area ratios, falling

at low to intermediate Re. The figure shows the median

percentage error in yt calculated using Mitchell’s method

compared to Kajikawa’s planar crystals, rosettes and

side planes, and early aggregates falling in the range

Re’ 5–200. For particles with lower area ratios the error

in the computed yt increases steadily, and these errors are

significant: 60%–80% on average at Ar 5 0.2. When the

new method is applied, errors are within 30% for all Ar.

This is good evidence that our newmethod ismuchmore

realistic for particles with open geometries.

The new approach uses the same variables as Mitchell

(1996) and can therefore be applied in the sameway. It is

general and can be readily implemented in models. For

example, it can be combined with m(D) and A(D) re-

lationships from the literature (e.g., Table 1 in Mitchell

1996), or with the Ar(D) relationships as a function of

the normalized height within the cloud column devel-

oped by Heymsfield andMiloshevich (2003) to calculate

yt as a function of particle size and height within a cloud

layer.

It is interesting to consider the consequences of this

approach for aggregates. Westbrook et al. (2004) argued

that the exponent b in the mass–dimensional relation-

ship m 5 aDb is approximately 2.0 for snow aggregates,

and this is consistent with the findings of Brown and

Francis (1993), who showed that use of the coefficients

a 5 0.00294 and b 5 1.9 (cgs units) from the Locatelli

and Hobbs (1974) study for aggregates of radiating as-

semblages of plates, bullet rosettes, side planes, and col-

umns as applied to particle size distributions provided

FIG. 9. (left) Percentage error in yt calculated for Kajikawa’s single planar crystals (dark gray), bullet rosettes and

side planes (light gray), and early aggregates (black) using Mitchell’s (1996) method. (right) As at left, but using the

newmethod (see text). Data points represent median error overAr bins of width 0.1, except for the light gray point at

Ar 5 0.2 for which the bin width was 0.2. Error bars show 1 std dev. All bins contained at least 10 particles.
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a good match with ice water content measured at the

same time in cirrus clouds. Sampling through deep ice

clouds during the Tropical Rainfall Measuring Mission

(TRMM)Kwajalein field programyielded the relationship

between area ratio and diameter of Ar 5 0.29D20.18

(Heymsfield et al. 2002), and in deep cirrus layers Ar 5

0.18D20.17 (Heymsfield and Miloshevich 2003). Using the

new dependence of yt on Ar, we find that the exponent

b in the yt relationship [Eq. (1)] are 0.19 and 0.25, re-

spectively, when considered over sizes from 100 microns

to 1 cm and adjusted to a surface pressure of 1000 hPa.

These exponents conform well to those reported for

snowfall at the ground (e.g., see Brandes et al. 2008).

The exponent b ’ 0 when only large sizes above a few

millimeters are considered, and this is consistent with

the saturation of yt as a function of D observed in most

ground-based studies (Barthazy and Schefold 2006;

Brandes et al. 2008). A key question for modeling of the

aggregation process then is how rigidly the m(D) and

A(D) relationships are followed in a natural cloud. If

yt(D)’ constant, then aggregation becomes inefficient

because collisions are rare, as pointed out by Mitchell

and Heymsfield (2005). But in practice it may be that

the variability in m(D) and A(D) in the population is

sufficient to drive aggregation, even if the average fall

speed for the large particles does not vary with D

(Westbrook 2005). Better measurements and character-

ization of the distribution ofA(D) andm(D) are therefore

vital to understand aggregation in deep systems.
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Böhm,H. P., 1989: A general equation for the terminal fall speed of

solid hydrometeors. J. Atmos. Sci., 46, 2419–2427.

——, 1992: A general hydrodynamic theory for mixed-phase mi-

crophysics. I: Drag and fall speed of hydrometeors. Atmos.

Res., 27, 253–274.

Brandes, E. A., K. Ikeda, G. Thompson, andM. Schönhuber, 2008:

Aggregate terminal velocity/temperature relations. J. Appl.

Meteor. Climatol., 47, 2729–2736.

Brown, P. R. A., and P. N. Francis, 1993: Measurements of the

ice water content of cirrus using an evaporative technique.

J. Atmos. Oceanic Technol., 10, 579–590.

Connolly, P. R., C. P. R. Saunders, M. W. Gallagher, K. N. Bower,

M. J. Flynn, T.W. Choularton, J.Whiteway, andR. P. Lawson,

2005: Aircraft observations of the influence of electric fields on

the aggregation of ice crystals.Quart. J. Roy.Meteor. Soc., 131,

1695–1712.

Field, P. R., and A. J. Heymsfield, 2003: Aggregation and scaling of

ice crystal distributions. J. Atmos. Sci., 60, 544–560.

Heymsfield, A. J., and M. Kajikawa, 1987: An improved approach

to calculating terminal velocities of plate-like crystals and

graupel. J. Atmos. Sci., 44, 1088–1099.

——, and J. Iaquinta, 2000: Cirrus crystal terminal velocities.

J. Atmos. Sci., 57, 916–938.

——, and L.M.Miloshevich, 2003: Parameterizations for the cross-

sectional area and extinction of cirrus and stratiform ice cloud

particles. J. Atmos. Sci., 60, 936–956.

——, A. Bansemer, P. R. Field, S. L. Durden, J. Stith, J. E. Dye,

W. Hall, and T. Grainger, 2002: Observations and parameter-

izations of particle size distributions in deep tropical cirrus and

stratiform precipitating clouds: Results from in situ observa-

tions in TRMM field campaigns. J. Atmos. Sci., 59, 3457–3491.

Hobbs, P. V., S. Chang, and J. D. Locatelli, 1974: The dimensions

and aggregation of ice crystals in natural clouds. J. Geophys.

Res., 79, 2199–2206.

Jayaweera, K., 1972: An equivalent disc for calculating the ter-

minal velocities of plate-like ice crystals. J. Atmos. Sci., 29,

596–598.

——, and R. E. Cottis, 1969: Fall velocities of plate-like and co-

lumnar ice crystals. Quart. J. Roy. Meteor. Soc., 95, 703–709.

Kajikawa, M., 1971: A model experimental study on the falling

velocity of ice crystals. J. Meteor. Soc. Japan, 49, 367–375.

——, 1982: Observation of the falling motion of early snow flakes.

Part I: Relationship between the free-fall pattern and the

number and shape of component snow crystals. J. Meteor. Soc.

Japan, 60, 797–803.

Khvorostyanov, V. I., and J. A. Curry, 2002: Terminal velocities of

droplets and crystals: Power laws with continuous parameters

over the size spectrum. J. Atmos. Sci., 59, 1872–1884.

——, and ——, 2005: Fall velocities of hydrometeors in the at-

mosphere: Refinements to a continuous analytical power law.

J. Atmos. Sci., 62, 4343–4357.

Knight, N. C., and A. J. Heymsfield, 1983: Measurement and in-

terpretation of hailstone density and terminal velocity. J. At-

mos. Sci., 40, 1510–1516.

List, R., and R. S. Schemenauer, 1971: Free-fall behavior of planar

snow crystals, conical graupel and small hail. J. Atmos. Sci., 28,

110–115.

Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of

solid precipitation particles. J. Geophys. Res., 79, 2185–2197.

Magono, C., and T. Nakamura, 1965: Aerodynamic studies of

falling snowflakes. J. Meteor. Soc. Japan, 43, 139–143.

McDonald, J. E., 1954: The shape and aerodynamics of large

raindrops. J. Meteor., 11, 478–494.

AUGUST 2010 HEYMSF I ELD AND WESTBROOK 2481



Mitchell, D. L., 1996: Use of mass- and area-dimensional power

laws for determining precipitation particle terminal velocities.

J. Atmos. Sci., 53, 1710–1723.

——, and A. J. Heymsfield, 2005: Refinements in the treatment of

ice particle terminal velocities, highlighting aggregates. J. At-

mos. Sci., 62, 1637–1644.

Podzimek, J., 1965: Movement of ice particles in the atmosphere.

Proc. Int. Conf. on Cloud Physics, Tokyo, Japan, WMO,

224–230.

Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds

and Precipitation. 2nd ed. Kluwer, 954 pp.

Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and mi-

croscale structure and organization of clouds and precipitation

in midlatitude cyclones. XII: A diagnostic modeling study of

precipitation development in narrow cold-frontal rainbands.

J. Atmos. Sci., 41, 2949–2972.

Stith, J. L., J. A. Hagerty, A. J. Heymsfield, and C. A. Grainger,

2004: Microphysical characteristics of tropical updrafts in

clean conditions. J. Appl. Meteor., 43, 779–794.

Takahashi, T., and N. Fukuta, 1988: Supercooled cloud tunnel

studies on the growth of snow crystals between248 and2208C.

J. Meteor. Soc. Japan, 66, 841–855.

——, T. Endoh, andG.Wakahama, 1991: Vapor diffusional growth

of free-falling snow crystals between 238 and 2238C. J. Me-

teor. Soc. Japan, 69, 15–30.

Tran-Cong, S.,M.Gay, andE. E.Michaelides, 2004:Drag coefficients

of irregularly shaped particles. Powder Technol., 139, 21–32.

Westbrook, C. D., 2005: Universality in snowflake formation.

Ph.D. thesis, University of Warwick, 84 pp.

——, 2008: The fall speeds of sub-100mm ice crystals.Quart. J. Roy.

Meteor. Soc., 134, 1243–1251.

——, and Coauthors, 2004: A theory of growth by differential

sedimentation, with application to snowflake formation. Phys.

Rev. E, 70, 021403, doi:10.1103/PhysRevE.70.021403.

Wilson, D. R., and S. P. Ballard, 1999: A microphysically based

precipitation scheme for the UK Meteorological Office

Unified Model. Quart. J. Roy. Meteor. Soc., 125, 1607–

1636.

2482 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 67


