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Abstract: Nature has proven to be a valuable resource in inspiring the development of novel tech-
nologies. The field of biomimetics emerged centuries ago as scientists sought to understand the
fundamental science behind the extraordinary properties of organisms in nature and applied the new
science to mimic a desired property using various materials. Through evolution, living organisms
have developed specialized surface coatings and chemistries with extraordinary properties such as
the superhydrophobicity, which has been exploited to maintain structural integrity and for survival
in harsh environments. The Lotus leaf is one of many examples which has inspired the fabrication of
superhydrophobic surfaces. In this review, the fundamental science, supported by rigorous deriva-
tions from a thermodynamic perspective, is presented to explain the origin of superhydrophobicity.
Based on theory, the interplay between surface morphology and chemistry is shown to influence
surface wetting properties of materials. Various fabrication techniques to create superhydrophobic
surfaces are also presented along with the corresponding advantages and/or disadvantages. Recent
advances in the characterization techniques used to quantify the superhydrophobicity of surfaces is
presented with respect to accuracy and sensitivity of the measurements. Challenges associated with
the fabrication and characterization of superhydrophobic surfaces are also discussed.

Keywords: biomimetics; contact angle; contact angle hysteresis; surface wettability; liquid friction;
Young’s equation

1. Introduction

The wetting of solid surfaces with various liquids is ubiquitous in our daily lives,
from water drops sliding down a window on a rainy day to beading up on a rose petal
or even completely bouncing off the wing of a butterfly. In nature, living organisms have
evolved intricate surface chemistries and morphologies resulting in superior properties [1]
required for survival. For example: some desert beetles use their structured fused wings to
collect water from wind-driven morning fog [2]; the wings of butterflies and dragonflies
are water-repellent, which allow them to survive in constant rainfall environments [3]; the
water repellency of water strider (Gerridae) legs allows the insect to walk on water [4]; and
emperor penguin (Aptenodytes forsteri) feathers trap air and provide insulation against the
harsh weather in Antarctica [5].

In several of these examples, the surface relies on superhydrophobicity and/or water
repellency (see Figure 1 [6–8]), i.e., surfaces with a static water contact angle (WCA), θ, of
more than 150◦ and a sliding angle (SA) of less than 10◦ [9,10]. Superhydrophobic (SH)
surfaces typically possess hierarchical micro- and nano-roughness and consist of low surface
(or interfacial) energy materials or coatings. Inspired by the novel properties imbued by SH
surfaces, researchers have proposed attractive applications of such surfaces in engineering
technologies. Some of these biomimetic applications are in oil–water separation [11,12],
corrosion and fouling resistance [13], anti-icing [14], drag reduction [15], self-cleaning [16,17],
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and antibacterial surfaces [18]. Over the years, there has been a growing interest in this field,
which is evidenced by the increasing number of publications on this subject as depicted
in Figure 2. Although the fabrication of SH surfaces can be traced back to 1907 in work
by Ollivier [19], the concept of superhydrophobicity did not gain significant attention until
this phenomenon was described in lotus leaves (Nelumbo nucifera) [20]. The fundamental
science behind superhydrophobicity is generally well understood, however, researchers are
still actively exploring novel fabrication techniques that are adaptable to metal, polymer, and
ceramic surfaces and that can also increase the durability of SH surfaces or coatings against
mechanical or chemical degradation [21–23]. Polymers have specifically played an important
role; SH surfaces have either been fabricated directly from inherently hydrophobic polymers
or polymers have been used to create SH coatings on various materials.

Figure 1. Images of various plants and animals showing their microscale and nanoscale structures:
(a) image of a Lotus leaf; (b) scanning electron microscopy (SEM) image of the upper side of a Lotus
leaf prepared by ‘glycerol substitution’ shows the hierarchical surface structure consisting of papillae,
wax clusters and wax tubules; (c) wax tubules on the upper leaf side [6]; (d) image of a Tokay Gecko;
(e) SEM image of a single seta; (f) SEM image of clusters of spatulae branching out the tip of a single
seta (Reprinted from [7] with permission from Elsevier); (g) image of a red rose; and (h,i) SEM images
of the surface of a red rose petal, showing a periodic array of micropapillae and nanofolds on each
papillae top (Reprinted with permission from [8]. Copyright {2008} American Chemical Society).

The main thrust of this review article is to provide a detailed understanding of the
origin of superhydrophobicity, from the derivation of critical equations from a thermody-
namic perspective to appreciating how surface chemistry and surface topography influence
the performance of SH surfaces. Section 3 provides an overview of recent, and the most
common, methods of fabricating SH surfaces along with their advantages and disadvan-
tages. Section 4 provides an overview of the various techniques used to characterize SH
surfaces. Based on these recent developments, we conclude with a summary of the main
limitations that impede the development and use of SH surfaces in practical applications.
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Figure 2. Plot showing the rising number of publications indicative of an increasing interest in the area
of superhydrophobicity. A keyword search of “superhydrophobic” was performed using the Web of
Science search engine. Meeting abstracts and proceedings papers were excluded from the search.

2. Surface Wetting and Water Repellency

A common method to quantify the wetting properties of surfaces is through contact
angle measurements in which a small drop of a liquid is placed on a surface and the extent
of wetting is quantified though the spreading of the drop. The Young’s equation [24] allows
one to relate the observed contact angle that the liquid makes with the surface to interfacial
energies within the system. A simple derivation of Young’s equation [24] can be obtained
by considering a force balance at the 3-phase contact line, as shown in Figure 3.

Figure 3. Schematic illustration of a liquid drop on a smooth solid surface surrounded by a vapor
phase. The interfacial energies associated with the 3 phases include solid–liquid, γSL, solid–vapor,
γSV , and liquid–vapor, γLV . The WCA, θ, is measured at the 3-phase contact line, P, from the
solid–liquid interface to the liquid–vapor interface within the liquid phase.

By considering the interfacial energies of each pair of phases, i.e., γSL, γSV , and γLV
as forces acting over the wetted perimeter (or contact line) P of a water drop on a smooth
solid surface (i.e., units of mN/m), a force balance yields Young’s equation,

γSV = γSL + γLV cos θ, (1)

where θ is the liquid contact angle, and γLV cos θ is the component of γLV resolved in the
horizontal direction.
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Young’s Equation (1) can also be derived by considering an energy balance in which a
system consisting of a liquid drop of fixed volume in contact with a smooth solid surface
surrounded by a vapor phase reaches equilibrium (i.e., the free energy G is a minimum) as
shown in Figure 4. The free energy, G, of the system is a summation of the surface energies
of the three interfaces,

G = γLV ALV + γSL ASL + γSV ASV (2)

where ALV , ASL and ASV are the surface areas of the liquid–vapor, solid–liquid, solid–vapor
interfaces, respectively. Assuming a sufficiently small drop volume whereby gravitational
distortions of the liquid–vapor interface can be neglected, ALV is equal to the area of a
spherical cap, i.e.,

ALV = 2πR2(1− cos θ), (3)

ASL = πX2 = πR2
(

1− cos2 θ
)

, (4)

and
ASV = AS,total − πR2

(
1− cos2 θ

)
(5)

where AS,total = ASV + ASL is the total solid surface area and remains constant within the
system. Substituting Equations (3)–(5) into Equation (2) yields

G = γLV2πR2(1− cos θ) + (γSL − γSV)πR2
(

1− cos2 θ
)
+ γSV AS,total (6)

Figure 4. Schematic illustration of a liquid drop on a smooth solid surface surrounded by a vapor
phase. The dashed box denotes the system. The liquid drop can either wet or de-wet the solid surface
(i.e., a change in θ and R) with the constraint of a fixed liquid drop volume. Equilibrium is achieved
when the free energy of the system is minimized.

To simplify the remainder of the derivation, we denote u = cos θ. Thus, rewriting
Equation (6) yields

G = γLV2πR2(1− u) + (γSL − γSV)πR2
(

1− u2
)
+ γSV AS,total (7)
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The volume, V, of the spherical liquid cap is given by

V =
πR3

3
(1− cos θ)2(2 + cos θ) → or V =

πR3

3
(1− u)2(2 + u) (8)

Expressing Equation (8) in terms of R yields

R3 =

(
3V
π

)
(1− u)−2(2 + u)−1 (9)

and therefore,

R2 =

(
3V
π

) 2
3
(1− u)−

4
3 (2 + u)−

2
3 (10)

Equilibrium is achieved when G is minimized with respect to u. Taking the derivative
of G with respect to u,

∂G
∂u

= −γLV2πR2 − (γSL − γSV)2πR2u +
[
γLV2π(1− u) + (γSL − γSV)π

(
1− u2

)]∂R2

∂u
(11)

Taking the derivative of Equation (10) and noting that V remains constant yields

∂R2

∂u

∣∣∣∣
V
=

(
3V
π

) 2
3
[

4
3
(1− u)−

7
3 (2 + u)−

2
3 − 2

3
(1− u)−

4
3 (2 + u)−

5
3

]
(12)

Rearranging Equation (12) yields

∂R2

∂u

∣∣∣∣
V
=

(
3V
π

) 2
3
(1− u)−

4
3 (2 + u)−

2
3

[
4
3
(1− u)−1 − 2

3
(2 + u)−1

]
(13)

After substituting for R2 (see Equation (10)) into Equation (13) and simplifying, we obtain

∂R2

∂u

∣∣∣∣
V
= R2

[
4
3
(1− u)−1 − 2

3
(2 + u)−1

]
= 2R2

[
(1 + u)

(1− u)(2 + u)

]
(14)

Substituting Equation (14) into Equation (11) and setting ∂G
∂u

∣∣∣
V
= 0 (i.e., G is a mini-

mum at equilibrium), yields

∂G
∂u

∣∣∣∣
V
= −2πR2(γLV + (γSL − γSV)u) +

2πR2(1 + u)(2γLV + (γSL − γSV)(1 + u))
(2 + u)

= 0 (15)

Simplifying Equation (15) and back substituting cos θ for u recovers Young’s equation,

γSV = γSL + γLV cos θ, (1)

When θ is between 10◦ and 90◦, a surface is considered to be hydrophilic; a value
between 90◦ and 150◦ indicates that the surface is hydrophobic. A surface is regarded
as superhydrophilic or superhydrophobic when θ is less than 10◦ or more than 150◦,
respectively. Using typical values for the interfacial energies associated with a water drop
on a smooth hydrophobic surface [25] (for e.g., a close packed monolayer of hydrocarbons
with CH3 terminal groups) in air at 22 ◦C, i.e., γSL = 50 mN/m, γSV = 18.5 mN/m, and
γLV = 72.5 mN/m, a WCA of 116◦ is obtained according to Young’s Equation (1). The
latter provides a rough estimate for the maximum water contact angle on a typical smooth,
homogeneous hydrophobic surface.

Real surfaces are not perfectly smooth, as idealized by Young’s Equation (1). For rough
surfaces, the Wenzel model or the Cassie–Baxter model can be used to predict the contact
angle of a droplet over the surface. According to Wenzel’s model [26], the water droplet
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penetrates the grooves of a rough surface and completely wets it (Figure 5a). The contact
angle of a rough homogeneous surface is given by Wenzel’s equation,

cos θw = r cos θ, (16)

where θw is the apparent Wenzel contact angle, θ is the static contact angle and r is the
roughness factor (which is >1) given by the ratio of the actual surface area to the geometric
surface area. The value of r is equal to 1 for perfectly smooth surfaces, in which case
Wenzel’s Equation (16) will be equivalent to Young’s Equation (1). For a rough hydrophilic
surface (i.e., θ < 90◦), θw < θ and θw > θ for a rough hydrophobic surface (i.e., θ > 90◦). Note
that for a contact angle θ = 90◦, according to Wenzel’s Equation (16), the roughness factor
does not influence the contact angle.

Figure 5. Schematic illustration of how the addition of roughness to a hydrophobic smooth surface can
lead to an increase in the static contact angle as predicted by the (A) Wenzel; and (B) Cassie–Baxter model.

The Wenzel model becomes inadequate in describing very rough or porous surfaces
since the absolute value of r cos θ may be greater than 1. In such instances, the Cassie–Baxter
model [27] is more applicable. In this model, wetting occurs on a porous heterogeneous
surface as shown in Figure 5B. The water droplet does not penetrate the grooves but rests
on the top of asperities thus maintaining air pockets between the solid phase and the liquid
phase. The apparent contact angle is given by

cos θCB = f1 cos θ1 + f2 cos θ2 (17)

where θCB is the apparent Cassie–Baxter contact angle, and f1, f2 and θ1, θ2 are the surfaces
fractions and contact angles of phases 1 (solid) and 2 (vapor), respectively. Since the
contact angle that a water drop makes with air, i.e., θ2, equals to 180◦ and since f1 + f2 = 1,
Equation (17) simplifies to

cos θCB = f1(cos θ1 + 1)− 1, (18)

For a perfectly smooth surface, f1 = 1 and θCB = θ1. However, f1 is typically less
than 1, thereby causing θCB > θ1 for either hydrophilic or hydrophobic surfaces. The lotus
leaf effect is a perfect example of the implementation of the Cassie–Baxter model.
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The three models explained above describe hydrophobicity for static conditions where
the surface is horizontal and at rest. The term ‘water repellency’, albeit used interchange-
ably with hydrophobicity, is more frequently used to describe non-static (or dynamic)
situations. A surface can be hydrophobic or superhydrophobic yet, when tilted at an angle,
a water droplet can remain adhered to the surface, i.e., does not slide. While static contact
angles are used to describe hydrophobicity (or hydrophilicity), the contact angle hysteresis
(CAH), which is the difference between the advancing and receding contact angle (i.e., θA
and θR), defines water repellency (see Figure 6). CAH is a widespread phenomenon which
is believed to originate from nonequilibrium interactions between a liquid and a solid [25].
Although its origin is not fully understood, it has been found to depend on several fac-
tors including the rate of movement of the 3-phase contact line, surface roughness, the
adsorption of reagents on the surface, the strength of adhesion of water and air molecules
to the solid surface [28], and the overturning of adsorbed molecules on the surface [29]. The
force, F, required to initiate the movement of a liquid drop over a titled solid surface [30] is
related to the CAH and given by

F = γLV Rk(cos θR − cos θA) (19)

where R is the radius of the drop and k is a numerical constant that depends on the shape
of the drop. This force is also equal to mg sin θsliding, i.e., the force component originating
from the mass, m, of the liquid drop due to gravity, g, that overcomes the opposing friction
force of the drop. Based on the above equation, as the CAH decreases, this critical line force
decreases. Therefore, effective water repellent surfaces have very low CAH values. The
term “superhydrophobicity” refers to a surface not only having very high WCA (i.e., greater
than 150◦) but also having a very low CAH which results in a low SA.

Figure 6. Schematic illustration of the dynamic (i.e., advancing and receding) contact angles resulting
from the motion of a water drop on a tilted surface. A larger contact angle hysteresis (i.e., difference
between θA and θR leads to requiring a larger tilt to initiate drop sliding.

3. Micro- and Nanofabrication Techniques to Create Superhydrophobic Surfaces

Over the last two decades, researchers have explored a variety of methods to generate
SH surfaces on various materials for a wide range of applications. SH surfaces are typically
fabricated in one of two ways: (i) creating roughness on an inherently hydrophobic surface;
or (ii) modifying a rough surface with a low surface energy coating. Most fabrication meth-
ods rely on a multi-step process while others require a single step. In multi-step methods,
micro/nanostructures are initially fabricated on the surface followed by modification of
the surface by coating or deposition techniques. Multi-step fabrication methods are usually
complicated, costly, environmentally hazardous, and inefficient [31]. On the other hand,



Biomimetics 2022, 7, 196 8 of 45

one step methods are generally fast and can easily be applied to large-scale industrial
manufacturing [32].

In this review paper, some of the main fabrication methods are discussed with particu-
lar emphasis on and brief description of techniques that have received the greatest interest.
This section first introduces coating and deposition techniques followed by chemical-based
techniques and finally ends with physical-based techniques. A summary of the advantages
and disadvantages of each of the fabrication techniques is also provided. In Figure 7, an
overview of different fabrication techniques of SH surfaces is provided categorized as
either physical or chemical techniques, or a combination. It is worth noting that in tech-
niques such as lithography and laser surface texturing, the dominant part of the process
is physical. However, coating techniques can be considered to be a combination of both
physical and chemical since chemical cross-linkers can be used to improve the durability of
the deposited films.

Figure 7. An overview of fabrication techniques of SH surfaces, categorized into physical (blue-color)
and chemical techniques (red-color).

3.1. Surface Coating and Deposition Techniques

Coating a surface with nano/microparticles is one of the most reliable techniques to
generate structures/roughness on surfaces. To make the coating stable, surface treatments
are required which create functional groups for the formation of strong covalent bonds
between the surface and the coating [33]. Physical deposition techniques like dip-, spray-,
and spin-coating are described below. These techniques are relative easy, cost-efficient, and
scalable, which make them good candidates for industrial applications [34].

3.1.1. Spin Coating

Using a spin-coater, a solution with low surface energy can be coated on the substrate.
Xu et al. [35]. used this technique to deposit a layer of epoxy resin on an aluminum
substrate thereby imbuing anti-corrosion properties. Dendritic micro/nano structures were
formed on a copper mesh, and then transferred to the coated aluminum surface. It was
then modified with stearic acid to reduce the surface energy (Figure 8). Due to the presence
of the organic epoxy coating and air gaps, the fabricated surface showed considerable
anti-corrosion performance compared to bare aluminum. The self-cleaning performance
and repellency of the surfaces against acids and bases showed promising results.
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Figure 8. (a–c) SEM images of a modified aluminum surface at various magnifications; and
(d) schematic illustration of the process involving spin-coating epoxy resin on aluminum (Reprinted
from [35] with permission from Elsevier).

Generally, spin-coating is not a single-step fabrication method, and a post treat-
ment step is needed to further lower the surface energy. Moon et al. [36] spin-coated a
polydimethylsiloxane-polyvinylidene fluoride (PDMS-PVDF) solution on stainless steel (SS),
and SiO2 powder was sprinkled using a mesh to coat the surface uniformly. The surface
was then cured at 160 ◦C, and the unreacted SiO2 was removed. Another surface was
prepared with no addition of PVDF to compare the characteristics. It was found that PVDF
improved the mechanical properties of the surface by providing nanostructures between
the mixture and SiO2 powder. Also, the presence of PVDF improved the icephobicity which
was ascribed to the formation of the non-polar α-phase crystals of PVDF on the surface of
SiO2 particles.

In another study, Cho et al. [37] reported spin-, dip-, or spray-coating of a hydrophobic
silica ormosil suspension and poly(methylhydroxysiloxane) (PMHOS) nanoparticles on a
substrate to increase the surface roughness. The surface was then chemically modified with
self-assembled monolayers (SAMs) of silane-based molecules (n-alkylsilane, phenylsilane
and fluorosilane) to further reduce the surface energy and make the surface superam-
phiphobic. The surface modified with fluorosilane showed the lowest energy. The contact
angles of water, ethylene glycol, and diiodomethane on the F-ormosil/PMHOS surface
were 174◦, 157◦, and 131◦, respectively.

3.1.2. Spray Coating

In the spray-coating technique, hydrophobic particles are dispersed in a solvent and
then sprayed on a substrate [15]. The solvent and the spraying distance are two of the
most important factors that affect the water repellency and robustness of the fabricated SH
surfaces [34]. The adhesion of the coating to the substrate is also critical [38]. Researchers
have used strong adhesives such as an epoxy resin, functionalized nanoparticles, and
polyurethane (PU) to enhance the adhesion. PDMS has also been used since it not only
enhances the adhesion, but also, because PDMS is inherently hydrophobic, such a coating
is favorable in reducing the surface energy [39–46].

Li et al. [44] spray-coated a fluorine-free suspension (epoxy resin, PDMS, and function-
alized SiO2 nanoparticles) onto various substrates, including Mg alloys, glass, filter paper,
copper foam, and sponge, to fabricate robust SH coatings (Figure 9a–l). Superhydrophobic
SiO2 nanoparticles formed mechanically stable micro-nanostructures due to the presence of
epoxy resin layer. The as-prepared composite exhibited durability against harsh conditions,
including boiling water, intense UV light exposure, and chemical corrosion. The WCA and
SA of the surface were 159.5◦ and 3.8◦, respectively. Zhang et al. [43] used spray coating
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of a mixture of micro-nano SiO2 particles, epoxy resin, and PDMS on various substrates
(including glass, filter paper, copper sheets, and polyethylene terephthalate (PET) films
(Figure 9m). The as-fabricated SH surfaces showed high chemical and mechanical durability
due to strong bonds between epoxy and PDMS [43].

Figure 9. SEM images of untreated of: (a) glass; (b) copper foam; (c) filter paper; (d) sponge;
(e–h) surface morphology of the corresponding epoxy resin+PDMS@SiO2-coated samples; and
(i–l) SEM images of the coated samples at higher magnification (Reprinted from [44] with permission
from Elsevier). (m) Schematic illustration of the spraying process (Reprinted with permission
from [43]. Copyright {2021} American Chemical Society).

Feng et al. [47] used spray coating to deposit polysiloxane-modified halloysite nan-
otubes (POS@HNTs) in a toluene suspension, with different ratios of silane and HNTs, on
various substrates and the as-fabricated surfaces showed high repellency towards various
liquids, including hydrochloric acid, aqueous sodium hydroxide, tea, and milk. It was
shown that by increasing the silane loading, although the transparency of the surface
decreased, the WCA increased. In another study, Zhou et al. [48] first spray-coated PDMS
(as the binding layer) and then a solution of silicone nanofilaments (NF) in toluene on a
pre-stretched substrate (a commercial cis-1,4-polyisoprene tape), followed by curing the
surface at 80 ◦C for 2 h, and fluorination by chemical vapor deposition (Figure 10). The NFs
formed dense re-entrant nano- and micro-scale structures that showed repellency against
water and oil (n-hexadecane) for at least one thousand stretch-release cycles, resulting in a
durable stretchable superamphiphobic surface.
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Figure 10. (a) Schematic illustration of the fabrication process of the nanofilament-structured and
stretchable superamphiphobic (NFSS) surface; (b) confocal 3D images of the NFSS surface. Scale
bar = 200 µm; (c) SEM images of the NFSS surface at various magnifications. Scale bar = 50 µm (top),
2 µm (bottom), and 500 nm (inset); and (d) schematic illustration of microstructures on the NFSS
after releasing the surface from the stretched state (Reproduced from [48] with permission from John
Wiley and Sons).

Specifically for oil–water separation technologies, it is desirable to have membranes
that are superhydrophobic yet superoleophilic [46,49]. Baig et al. [49] proposed spray
coating cerium (IV) oxide nanoparticles on microporous SS membranes which yielded a
WCA of about 150◦ and an oil contact angle close to 0◦. The surface showed a high oil–water
separation efficiency of about 99%. In addition, under exposure to UV light, the as-prepared
membrane exhibited fast photocatalytic degradation of hazardous environmental pollutants
such as organic dyes in the water phase.

3.1.3. Dip Coating

Self-cleaning (Figure 11F) [50], self-healing [51], anti-corrosion characteristics [52],
and oil–water separation [53] are some of the main properties achieved by using a dip-
coating technique. The dip-coating technique typically has five steps, including dipping,
start-up, deposition, drainage, and evaporation [21]. When the substrate is pulled out, the
speed can be controlled to dictate the thickness of the film [54]. Dip-coating is generally
not an environmentally friendly technique because of the chemicals used as the solvent.
However, some groups have proposed non-toxic solvents, for e.g., fluorine-free chemicals.
Esmaeili et al. [55] reported dip-coating substrates (glass and paper) in non-toxic molten
alkyl ketene dimer (AKD) for a few seconds and removing instantly. After solidification
of the AKD on the substrates at room temperature, some of the samples were wetted
by ethanol and dried in air. Further treatment with ethanol, and increased temperature
exposure and heating time resulted in more entangled irregular micro/nano structures,
leading to more air gaps and increased superhydrophobicity.
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Figure 11. (A,C) Pristine brass mesh; (B,D) brass mesh coated with SiO2-PDMS-PVDF under different
magnifications; (E) TEM images of the SiO2-PDMS-PVDF composite and a polymer coating around
the SiO2 nanoparticles (Reprinted from [32] with permission from Elsevier); and (F) self-cleaning
property of a SH glass surface modified with silica nanoparticles (Reprinted from [50] with permission
from Elsevier).

Sosa et al. [32] described a facile one-step scalable method to fabricate mechanically
and chemically stable SH coatings on metal meshes (Figure 11A–E) for oil–water separation.
The process consisted of coating inorganic hydrophilic SiO2 nanoparticles (to provide nano-
scale roughness) and two hydrophobic polymers (PDMS and PVDF) in toluene, followed
by curing at 200 ◦C for 2 h. The fabricated membranes provided a WCA of 158 ± 6◦,
SA of 3 ± 2◦, and a stable oil flux on the order of about 102 Lm−2s−1. Saline (Na+, Cl−)
solutions or hard water (Mg2+, Ca2+) did not change the morphology or wettability of the
membranes because the SiO2 nanoparticles were coated with PDMS, thereby preventing
contact between the aqueous solutions.

In conclusion, spin-, dip-, and spray-coating are simple and cost-efficient techniques
because of the relatively low temperature and pressure requirements, and therefore ideal
for large-scale industrial applications. They also provide high-quality, uniform films on
surfaces of various substrates (even complex ones) within a short time. However, the
fabricated surfaces are not always stable unless a cross-linking agent (like PDMS and
epoxy resin) is used. In some cases, the coatings can show long-term durability with self-
healing properties upon exposure to an external stimulus such as heat, sunlight, and pH
change [44,56–58]. One of the major drawbacks to the dip-coating technique is the amount
of solvent needed, causing considerable waste. Depending on the scale and compatibility
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of the substrate to the coating method, spray-coating can be easier and more efficient than
spin- or dip-coating [21,54,59–61]. Furthermore, using the spray-coating technique, if an
SH surface is damaged (for e.g., because of surface abrasion), it can be repaired by local
spraying of the coating solution.

3.2. Chemical Etching

Chemical etching is the most common type of etching method due to its simplic-
ity, scalability, and low cost. The technique generally involves immersing an alloy into
solutions such as HCl [62,63], MgCl2 [64], HNO3 [65], FeCl3 [66] followed by a modifica-
tion step using a fluoroalkylsilane [64,65,67,68]. The etching time, the components and
their concentrations in the solution can endow the substrate with different morphologies
(Figure 12). Guo et al. [64] fabricated a 7055 aluminum alloy with micro- and nano-
hierarchical structures. The substrate was ultrasonically cleaned and electropolished to
remove the oxide layer. Then, using a hydrothermal reactor at a temperature of 90 ◦C,
the substrate was immersed in a 0.7 g/L MgCl2 solution to create the hierarchical micro-
nanotextures. Due to the presence of chloride ions, Al3+ and H+ were formed at the interface
of liquid/surface, leading to the reaction Al3+ + 3H2O→ Al(OH)3 + 3H+ , thereby form-
ing a uniform Al(OH)3 coating. Subsequently, in order to reduce the surface energy of
the etched substrate, it was modified by immersion in a 1 vol.% perfluorooctyltriethoxysi-
lane/anhydrous alcohol solution for 10 min to achieve a WCA of 167.3◦ and a corrosion
inhibition efficiency of 99.67%.

Figure 12. (a) Schematic illustration of creating surface roughness by chemical etching of an Al
plate with an acidic solution of HCl, isopropanol and DI water; (b–f) the SEM images of hierarchical
structures on an Al surface after modification in (b) HCl solution (Reprinted from [67] with permission
from Elsevier); (c,d) FeCl3 solution (Reprinted with permission from [66]. Copyright {2021} American
Chemical Society); and (e,f) ammonia solution (Reprinted from [68] with permission from Elsevier).
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The drawback of this method is the use of acidic and toxic solutions that cause environ-
mental issues, especially on an industrial scale. In the modification stage, using a non-toxic
material including PDMS [62] and stearic acid [63], instead of fluorine based components is
recommended to lessen the environmental impact. Xu et al. [69] fabricated SH PDMS films
through chemical etching and thermal curing processes. First, nickel templates with micro-
pyramid arrays were chemically etched using nitric acid to increase the surface roughness and
create air gaps. Densely distributed protuberances and mastoids roughness were achieved on
the micro-pyramids, using 45% and 55% HNO3 solutions, respectively. Thereafter, PDMS
was poured on the etched surfaces and thermally cured at 120 ◦C for 6 min. After peeling
the cured PDMS from the templates, a WCA of 166.4◦ ± 0.5◦ and a SA of 9.6◦ ± 0.2◦ were
obtained on the PDMS film with mastoid textures on pyramids.

3.3. Sol–Gel Process

The sol–gel process is a wet-chemical technique that generally comprises of two steps.
The first step is the hydrolysis of nanoparticles such as SiO2 [70–73], TiO2 [74,75], ZnO [76,77],
in a solvent to produce a sol, followed by polycondensation reactions of the hydrolyzed
product to form a gel. Either in the condensation or the post-treatment step, particles
are usually modified by non-fluorinated silica based materials, for instance, PDMS [78],
1,1,1,3,3,3-hexamethyl disilazane (HMDS) [74], and tetraethyl orthosilicate (TEOS) [79,80].
The main aim of the condensation step is to maximize −Si–O–Si− bonds and minimize
Si–OH and Si–OR groups [81]. Using the sol–gel process, it is possible to combine multiple
particles to take the advantage of their properties simultaneously. For example, a coating
of SiO2/TiO2 composite shows photocatalytic properties due to the presence of TiO2 and
enhanced adhesion, durability, and hydrophobicity because of SiO2 particles [82].

SH coatings produced by this technique can be applied to various substrates (metal,
glass, wood, polymer, and fabric) by dip coating, spin coating, spray coating, or electrode-
position (Figure 13b). Zhu et al. [80] fabricated SH ferric oxide nanoparticles coated with
HMDS-modified silica particles via a one-pot sol–gel technique. Based on the modified
Stöber method [83], TEOS and HMDS were added to a mixture of Fe3O4 nanoparticles,
DI water, NH3·H2O, and ethanol, under sonication (Figure 13a). The modified Fe3O4
particles were added to a PDMS mixture to enhance the hydrophobicity and the adhesion
strength with the substrates. Using a simple spraying method, the SH particles were coated
on different fabrics to endow the substrates with durable water repellency. The coated
fabrics showed superhydrophobicity even after 200 abrasion cycles and had an oil/water
separation efficiency greater than 97%.

Xia et al. [23] reported a method to fabricate micro/nanostructured SiO2 (SH coating)
on a wood surface by a sol–gel process. CVD was used to modify the wood surface with a
low surface energy substance, 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (PFDS). The
presence of an unstable Si-Cl in the PFDS molecule, silanized the surface and favored the
production of the SH coating under mild conditions. The modified wood not only possessed
SH properties (WCA of 159◦ and SA of 6◦) but also had significantly enhanced physical
properties including thermal stability, acid and base resistance, and abrasion resistance.

The sol–gel technique has numerous advantages, including ease of manufacture and
controllable compositions [85], eco-friendliness and low toxicity to human health. It is a
convenient and versatile way to produce fine microstructures at low temperatures [84]. It is
also the most efficient way to produce crystalline or amorphous oxide coatings and complex
shapes with controllable surface properties without the use of specialized instruments [86].
However, a disadvantage of the sol–gel technique is that the thickness of the coating is
not easily controlled, and contractions can occur during processing [87]. Hu et al. [88]
discovered that when the substrate is a flexible polymer, the interfacial bonding between
the polymer and the inorganic particles via conventional sol–gel methods is usually poor,
making the coating highly susceptible to damage. To address this problem, cured silicone
rubber (SR) was swollen in advance using an aqueous solution of n-butylamine (sol–gel
catalyst) and was then immersed in a tetrabutyl titanate (TBT) solution to facilitate the
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sol–gel reaction. The precursor diffused into the SR and combined with the catalyst, leading
to the formation of TiO2 particles in the crosslinking network of the SR. The TiO2 particles
gradually grew and formed a texture with multiscale roughness on the SR surface. The
self-growth of the TiO2 particles in the crosslinking network of the SR ensured that the
TiO2 endowed the surface with mechanical durability [88].

Figure 13. (a) Schematic of the one-pot sol–gel fabrication method to obtain Fe3O4@SiO2/HMDS
particles (Reprinted with permission from [80]. Copyright {2020} American Chemical Society); and
(b) illustration of sol–gel process followed by other fabrication methods for coating [84].

3.4. Electrodeposition

Electrodeposition (ED) is a low-cost and scalable method in which an electric potential
is used for the reduction of metal ions and subsequent deposition on a substrate acting
as a cathode. It can be applied to various metals, including aluminum, magnesium, steel,
and copper. However, the process requires that the substrate is electrically conductive. The
main advantage of this method is the control of morphology by adjusting the choice of
the cathode and parameters such as the current density, voltage, electrolyte composition,
temperature, and pH [89,90]. For instance, by anodization of copper and Al, hydroxide
nanoneedles and cylindrical nanopores close-packed in a hexagonal shape can be ob-
tained, respectively [91]. Crystal modifiers including ethylenediamine dihydrochloride
(EDA.2HCl) [92] and ethylenediammonium dichloride (C2H10Cl2N2) [93] endow magne-
sium alloys and copper substrates with pinecone-like structures, respectively. In order
to reduce the surface energy of structured substrate, the latter can be modified either in
the ED step or in the post-treatment step. Stearic acid has been a common component for
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this modification as a non-toxic, biocompatible, and low surface energy saturated fatty
acid [94–96]. Liu et al. [95] fabricated a durable stearic acid/CeO2 SH coating on AZ31B
Mg, through electrodeposition and modification in a stearic acid solution. The as-prepared
surface displayed WCA of more than 158◦ and SA of less than 2◦.

To enhance the durability and stability of surfaces, other types of ED processes includ-
ing electrophoretic deposition (EPD) and electropolymerization (EP) have been studied. EP
involves the deposition of oxidized monomers on the substrate. Fradin et al. [97] fabricated
nanotubes on a gold plate through the EP process. The electrolyte contained tetrabutylammo-
nium perchlorate (Bu4NClO4), carbazole-based monomers (with various molecular structures),
and dichloromethane saturated with water (CH2Cl2 + H2O). They showed that the morphol-
ogy of sample a is not only a function of EP operational parameters but also highly dependent
on the water concentration in the electrolyte and the molecular structures of the monomers.

EPD involves the deposition of charged particles from a colloidal dispersion. The
deposition of particles on the surface can provide roughness and enhanced durability due
to the electrostatic interaction between the substrate and the coating. Since the uniformity
of the coating is essential for its stability, using nanoparticles [90] in a homogenous mixture
is recommended. Through the EPD process, an SH surface can be created in a single step
which is desirable for industrial production scales. Zhang et al. [98] fabricated a SH surface
through a one-step EPD process using dodecyltrimethoxysilane (DTMS) modified SiO2
nanoparticles and an acrylic-based resin adhesive (Figure 14). The role of resin was to act
as a cross-linker to enhance the interactions between the particles and the surface. For
further corrosion improvement, benzotriazole (BTA) was added to the electrolyte. When
the surface is damaged and corrosive compounds penetrate the substrate, changes in
pH activates the BTA inhibitors to slow down the corrosion reaction thereby generating
physical barriers to increase the lifetime of the surface.

Figure 14. Schematic illustration of the EPD process for the fabrication of SH-SiO2 (Route A) and SH-
SiO2@BTA (Route B) nanoparticle-based SH surfaces (Reprinted from [98] with permission from Elsevier).
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3.5. Chemical Vapor Deposition

In the chemical vapor deposition (CVD) method, a substrate is exposed to a gaseous
phase of volatile precursors which react to form a film or powder layer on the solid
substrate. Owing to the covalent bonds between the film and the substrate, the fabricated
SH surface is typically mechanically stable. It is a suitable technique for modifying and
growing nanomaterials with high specific surface ratios [87]. The thickness, uniformity, and
morphology of the film are influenced by the treatment temperature, pressure, gas flow,
and the deposition time. Generally, the temperature and deposition time are in the range
of 230 ◦C–450 ◦C and 30 min–16 h, respectively [99,100]. Since the CVD process generally
involves high operational temperatures, pressures and expensive instruments, the process
is not cost-efficient, and not practical for large-scale applications [87].

Hence, plasma enhanced CVD (PECVD) and photo-induced CVD (PICVD) have been
proposed as modified versions of the conventional CVD process to reduce the temperature
and pressure requirements. PECVD uses the energy of electrons to initiate the heteroge-
neous reactions producing active ions and radicals to deposit the coating under ambient
conditions [101]. Montes et al. [102] grew 3D micro and nanostructures of TiO2 on flat
or porous substrates via PECVD. In the first step, TiO2 nanofibers (as nucleation centers)
were deposited through PECVD at room temperature and under 100% oxygen plasma.
Figure 15a,b show SEM images of the cauliflower morphology obtained by the PECVD in
step 1. Thereafter, through a simple physical vapor deposition (PVD), H2-phthalocyanine
(H2Pc) nanowires (core) were created on the TiO2 layer (shell) to fabricate a core@shell
morphology with multiple scales. At this step, the morphology is a function of growth rate
(Figure 15c,d), substrate temperature, deposition time, and the size of nucleation sites. In
step 3, an organic and inorganic shell were deposited through another PECVD to achieve
the thickness of 200 nm, which was optimized by the deposition time. Finally, the coated
substrates were modified by fluorine-based grafting and PDMS respectively to endow
the substrates with superomniphobicity that can separate fluids based on their surface
tensions and phases. Given the use of plasma in PECVD, it is the most energy-intensive
technique among all CVD methods. However, such high energy can not only damage
fragile substrates [103] but also weaken cross-linking [104].

PICVD consists of the interaction between light radiation, precursors molecules, and
substrates either in the gas phase or on the substrate. Instead of thermal energy, absorbed
energy from excimer lamps enables the precursors molecules to break chemical bonds.
Like PECVD, PICVD involves ambient temperatures and mild pressures. Furthermore,
compared to other CVD methods, the deposition rate and cross-linking are sufficiently high
to meet industrial standards. Therefore, PICVD can be an efficient and promising technique
for large-scale applications [101].

Combining the CVD process with other fabrication techniques can have the added
benefits of reducing the required operating temperatures and also improving the durability
of a SH coating. Barthwal et al. [62] modified an etched and hydrothermally treated Al
surface via conventional CVD. PDMS was used as a cost-efficient, chemically resistant,
nontoxic, and low surface energy material to coat the top layer. The etched surface was
placed horizontally 5 cm above the PDMS stamp to be exposed to the PDMS at 230 ◦C.
After 10 min, the surface achieved superhydrophobicity with a 10-month durability.

Cheng et al. [105] described an enzyme-etching method followed by modification with
methyltrichlorosilane (MTCS) via thermal CVD at 70 ◦C to fabricate SH silk fabrics. The
silk fabrics transformed from superhydrophilic to SH after enzymatic treatment (through
the hydrolysis of the fabric via the enzyme) and MTCS modification (Figure 15e). This
transformation was ascribed to the increased roughness caused by enzyme-etching and low
surface energy of the methyl groups of MTCS. With optimized experimental conditions,
MTCS@enzyme-etched fabrics displayed a WCA of 156.7◦ and a SA of 8.5◦. This technique can
potentially be applied to a wide range of fabrics through the judicious choice of the enzyme.
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Figure 15. SEM images of (a) cellulose filter, and (b) SS membrane after the first PECVD to form TiO2

nanofibers as the nucleation layer (step 1); (c,d) Top view SEM images of H2Pc nanowires created on
TiO2 nucleation layer under the growth rate of <0.5 Ås−1 and >1.5 Ås−1, respectively. (Reproduced
from [102] with permission from John Wiley and Sons). (e) The enzyme etched fabric is silanized via
CVD to reduce the surface energy for oil/water separation application. (Reprinted from [105] with
permission from Elsevier).

3.6. Plasma Processing

Plasma processes encompass the various technologies in which plasma species (ions,
radicals, electrons, and excited molecules) are used to develop nanostructures on the
surface of substrates and reduce surface energy. There are two approaches to synthesize
SH surfaces by plasma treatments. The first is the top-down approach or plasma etching
which consists of etching or partially removing material from the surface of the substrate
by plasma species, followed by grafting with non-wetting radicals to lower the surface
energy [106]. Plasma etching results from the interactions between the plasma and the
surface of the substrate, using particles with high kinetic energy to knock out the atomic or
molecular species from the substrate.

An advantage of plasma etching is that it allows controlled and precise etching down
to the nanometer scale. In addition, plasma etching can produce high aspect ratio features.
Ko et al. [107] found that plasma-based selective etching can be used to fabricate SH
surfaces with high aspect ratio nanostructures. They proposed a one-step process to
fabricate hierarchically structured SH surfaces with tunable water adhesion by plasma-
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based selective ion etching supported by the dual scale etching mask. The metallic mesh
had microscale walls and nanoscale high-aspect-ratio structures with various gap distances
(Figure 16a–d). The hierarchical textured surface consisted of nanostructures in a large area
with a larger gap distance, however, the hybrid surface included nanostructures nested
in microscale walls with shorter gaps (Figure 16e,f). Superhydrophobicity was achieved
on both surfaces, but the adhesion force on the hierarchical surface was 10 times less than
the hybrid surface. The main disadvantages of plasma etching are low selectivity and high
equipment costs.

Figure 16. Schematic illustration of hybrid patterning process using dual scale metallic mesh;
(a) shadow zone with microscale structures, (b) nanoscale etching mask, (c,e) hybrid textures includ-
ing micro walls and nanostructures, and (d,f) hierarchical pillars consisting of low micro walls and
nanostructures with shorter gap distances. Scale bars in insets are 500 nm [107].

The second approach is the bottom-up technique called plasma enhanced chemical
vapor deposition (PECVD), which involves the growth of micro or nano structures on the
substrate (refer to Section 3.5).

3.7. Laser Surface Texturing

There are three main laser texturing techniques: Direct Laser Writing (DLW), Direct
Laser Interference Patterning (DLIP), and Laser-Induced Periodic Surface Structuring
(LIPSS) which generates structures within the scale of 10 to a few hundred micrometers,
1 to 10 µm, and less than 1 µm, respectively. Based on the size scale of the desired structures
the appropriate technique can be selected [108]. During laser surface texturing (LST) by
direct laser ablation, a laser beam is irradiated on the surface, resulting in the localized
evaporation (and loss) of the material and formation of specific surface textures, such as
grooves. DLIP uses coherent laser beams that interfere with each other, again resulting
in localized melting and transfer of material from regions with maximum interference
(i.e., highest laser intensity) to regions with minimum interference because of the surface
tension gradient generated. Various periodic patterns such as lines and dots can be formed
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by this technique [109]. During LIPSS, the material (including semi-conductors, metals,
and dielectrics) is exposed to one or multi-pulses of laser with energies higher than the
modification threshold. LIPSS involves interference of an incident laser radiation and the
waves scattered from the irradiated material of the surface [108,110]. In addition to periodic
structures formed by the laser, self-organized conical micro/nanostructures can be induced
by repetitive exposure of ultrafast laser pulses (mainly femtosecond) on the surface when
the laser fluence is equal to or higher than the ablation threshold [111–114].

LST can be used on a variety of substrates, including semiconductors, metals, poly-
mers, glasses and ceramics, making the technique suitable for a wide range of applications.
To fabricate SH surfaces, one-step laser processing [115], the combination of laser tech-
niques [116,117], and laser techniques followed by surface treatments [114,118,119] have
been explored by various researchers. Milles et al. [117] used DLW and DLIP, and a
combination of these two technologies to fabricate SH structures on aluminum surfaces
(Figure 17). The DLW and DLIP resulted in mesh-like and pillar-like structures, respectively.
After 16 days, the laser treated surfaces attained a SH state.

Figure 17. SEM images of (a) An original Al 2024 reference, (b) The mesh-like structure processed
with DLW, (c) The pillar-like DLIP structures with a spatial period of 7 µm (the arrow in the inset
indicates the line-like LIPSS), and (d) A hierarchical structure resulting from the combination of DLW
and DLIP (Reprinted from [117] with permission from Elsevier).

Different process parameters including scanning distance, laser fluence, pulse rep-
etition rate influence the size and quality of the resulting structures [112,115,120–122].
Lu et al. [123] investigated the effect of laser fluence (2.69–9.55 J/cm2) on fabricating dif-
ferent sizes of micro-cracks and microstructures on 316L SS substrates by UV nanosecond
laser texturing. It was shown that microcracks were created on the surface at laser flu-
ences lower than 8.14 J/cm2, and the cracks became deeper by increasing the laser fluence.
However, at laser fluences higher than 8.14 J/cm, brain-like microstructures were formed,
creating air-gaps resulting in superhydrophobicity (Figure 18). A scanning interval of
30.0 µm and laser fluence of 8.14 J/cm2 showed the best superhydrophobicity with WCA
of 160 ± 5◦ and the SA of 3 ± 0.5◦ and self-cleaning properties. The corrosion resistance of
the fabricated SH surface was 88 times superior compared to bare 316L SS. Du et al. [122]
studied the effect of laser power intensity and pulse overlap on the wettability of polyimide
surfaces fabricated through UV laser direct texturing. It was found that at constant pulse
overlaps, increasing the laser power intensity caused an increase in the WCA. At low power
intensities (<5.5 × 105 W/cm2), increasing pulse overlaps transformed the hydrophilic
surface to a SH surface. However, at higher power intensities, increasing the pulse overlaps
resulted in superhydrophilicity.
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Figure 18. SEM images of laser textured surface at scanning speed of 20 mm/s with different fluence
(a) 2.69 J/cm2 (b) 3.96 J/cm2 (c) 6.28 J/cm2 (d) 8.14 J/cm2 (e) 9.55 J/cm2, (a2–e2) are magnified SEM
images, respectively. (f) Schematic illustration of a nanosecond UV laser texturing system (Reprinted
from [123] with permission from Elsevier).

The effect of scan spacing was investigated by Lian et al. [31] where dual- and three-
level structures were fabricated on an aluminum alloy plate by a nanosecond laser process-
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ing system (Figure 19). The nanosecond laser oxidized the Al materials and produced an
oxide film on the surface. The surfaces were then placed in an oven for low-temperature
(100 ◦C) annealing to change the surface chemical composition. After the two-step pro-
cedure, the surfaces were found to be SH, showed anisotropic wetting properties and
corrosion resistance.

Figure 19. SEM images of Al surfaces fabricated by the nanosecond laser with different scan spacing.
(a,b) 10 mm. (c,d) 20 mm. (e,f) 30 mm. (g,h) 50 mm. (i,j) 100 mm. (k,l) 200 mm. (Reprinted from [31]
with permission from Elsevier).

There are various laser sources with different pulse durations, including femtosec-
onds [113,124], picoseconds [118,119], nanoseconds [115,125], and long pulse times [108].
Nanosecond pulse lasers are more cost and time-efficient compared to femtosecond and
picosecond pulse lasers but can cause thermal effects. By using nanosecond pulse lasers,
heat affected zones (HAZs) are created because of thermal energy diffusion to the areas
around the irradiated spot. HAZ can lead to microcrack formation and affect material
integrity. In addition, using longer pulses can result in the formation of re-cast layers,
thereby lowering the resolution of structures. On the other hand, shorter pulse lasers
such as femtosecond lasers provide higher precision and minimal thermal effects around
the ablation spot. The main disadvantage of shorter lasers is that they tend to be more
expensive [120,121,126,127]. Khan et al. [121] investigated the wettability and self-cleaning
performance of three laser ablated metals (aluminum, copper and galvanized steel) with
femtosecond and picosecond pulse durations with different scanning speeds, followed
by storage in air and in a low-pressure environment. At a scanning speed of 1000 mm/s,
femtosecond lasers created more elevated and precise micro/nanostructures compared
to nanosecond laser, because of rapid vaporization and removal of material in the lower
interaction time with the metal. Using a low scanning speed (50 and 250 mm/s), aluminum
showed hydrophilicity after picosecond laser ablation, and hydrophobicity after femtosec-
ond laser ablation. The difference in wettability is related to the electron-phonon relaxation
time which is in the range of picoseconds; therefore, different laser pulses result in different
mechanisms for material ejection. However, copper and galvanized steel showed similar
wettability after being ablated with femtosecond or picosecond laser, at low or high scan-
ning speed, because these laser pulses are considered short compared to electron-phonon
relaxation time of these metals. It was also found that the surfaces transformed to the
hydrophobic state after 30 days under ambient conditions, and to the SH state after only
6 h in a low-pressure environment.

Sun et al. [118] reported a picosecond laser patterning to fabricate micro/nanostructures
on AISI 304 SS, followed by spin coating the surface with a silicone sol (30 wt.% spherical
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silica nanoparticles (NPs)). A heat treatment step was used to initiate a polycondensation
reaction and the formation of Si-CH3 on the NPs, resulting in a lower surface energy and
improved adhesion between the substrate and the NPs. The micro-groove patterned surface
was found to reduce microbe attachment area rate (MAAR) by about 50% after five weeks
immersion in seawater making the textured SH surface also antibiofouling.

Laser processing is an efficient, facile, and non-contact method for fabricating various
complex structures with high precision [123]. Compared to conventional methods (like
spray coating, dip coating and chemical etching), laser processing techniques are faster,
and the fabricated structures are more stable [60]. Generally, sample preparation, harsh
environment, photomasks and hazardous chemicals are not required in laser processing as
opposed to other techniques. Not using chemicals make this technique relatively environ-
mentally friendly. However, this technique can be expensive because of the equipment cost
(especially in the case of femtosecond lasers) and generally, not ideal for large-scale surface
texturing [38,108].

3.8. Electrospraying and Electrospinning

Electrospinning and electrospraying both use applied electric fields between an injector
and a conductive substate to deposit nano/microstructures from polymer solutions, melts,
and viscoelastic liquids [128]. The set-up and operating principle behind these two techniques
are similar, consisting of a feeding system with a container that holds the liquid precursor, a
spinneret and a pump that injects the precursor at a constant speed. A high voltage is applied
to generate a sufficiently strong electric field to overcome the surface tension of the solution
thus allowing the melt to be ejected onto the grounded collector (Figure 20).

A fundamental difference between electrospinning and electrospraying is based on
the concentration of the polymer solution. Low concentrations are used in electrospraying,
while electrospinning processes use high concentration solutions/melts. The concentration
of the solution is critical to the morphology. At low concentrations, spherical particles
are obtained. As the concentration increases, bead-on-string morphologies are typically
obtained. If the concentration is above a critical value, uniform fibers are formed.

Cheng et al. [129] proposed a coaxial electrospinning method to fabricate a SH mem-
brane for ultrafast oil/water separation. The hierarchical and micro/nanoscale morphology
was obtained by using a PVDF solution as the lumen solution and a silica-based solution
as the outer solution under a voltage of 22 V (Figure 20a). Solution A (lumen solution)
contained 10%wt PVDF with dimethylformamide (DMF) and tetrahydrofuran (THF) as
solvents. Solution B (outer solution) contained 10%wt PDMS and THF as the solvent.
As the solutions were ejected from the syringes, phase inversion occurred with PDMS
monomers cross-linking. Owing to the polymeric viscosity differences (PVDF and PDMS)
and cosolvents evaporation (THF and DMF), the final structure consisted of microspheres
attached to nanofibers (Figure 20c). The nanofibrous SH membrane provided a permeance
of 17,331 Lm−2h−1 for separating a water-in-n-octane mixture with an efficiency of 99.6%.

The advantages of electrospinning include the simplicity and efficiency of the process,
low-cost setup, and the ability to control many factors such as fiber diameter, orientation,
and composition. The limited control of pore structures and the use of organic solvents
are some of the disadvantages of this method. It has been suggested that a needleless
electrospinning technique has a higher production rate and can be equipped for large-
scale production of fiber mats [131]. Like electrospinning, electrospraying has advantages
including simplicity and ease in controlling operational parameters. As a disadvantage,
this technique can induce some macromolecular degradation because of the shear stress in
the nozzle and thermal stress during drying [132].
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Figure 20. Schematic representation of (a) the coaxial and (b) conventional electrospinning process
for the fabrication of nanofiber membrane, (c) fabrication steps of the asymmetric PVDF-co-PDMS
nanofiber membranes (PVDF-co-PDMS-AS). The red nanofibers, blue microspheres, and brown sub-
strate represent the PVDF selective layer, PDMS-based nanoparticles, and PVDF substrate, respectively.
(Reprinted with permission from [129]. Copyright {2021} American Chemical Society). (d) A schematic
of an electrospraying process. (Reproduced from [130] with permission from John Wiley and Sons).

3.9. Lithography Patterning Technique

Lithography can be sub-categorized into photolithography, X-ray lithography, electron
beam lithography, colloidal lithography, soft lithography, and nano-imprint lithography [15,34].
Generally, in lithography techniques the pattern is transferred from a master to a replica. In
photolithography, a light sensitive material (photoresist) is spin-coated on the substrate (for
e.g., a silicon wafer). A photomask with a desired pattern is placed on the coated surface
and exposed to UV light. With the use of a negative photoresist (for e.g., SU8), the regions
exposed to the UV light form free radicals which cause cross-linking (polymerization)
upon heating. Using a developer solution, the unexposed regions are washed away
selectively, leaving the desired nano/micro scale structures on the substrate. Similarly,
a positive photoresist (for e.g., diazonaphthoquinone molecules blended into novolac
resin) can be used although the patterns formed in the process are reversed; regions of
the positive photoresist exposed to light weaken and can be washed off with a solvent.
Using photolithography, the shapes and sizes of the fabricated patterns are controllable.
Furthermore, the fabricated template can be used as a mold and is reusable [133], thereby
making the process cost-efficient. However, having a clean and flat starting surface is
essential [134] which may require the need of a cleanroom.

Lithography techniques can be combined with each other or other techniques to
provide SH surfaces. Ji et al. [135] proposed a hybrid technique for fabricating anti-corrosion
epoxy thermoset (ET) coatings on cold rod steel electrodes. They used photolithography
to fabricate micro-scale cylinders on a silicon wafer and colloid lithography to create
nanoscale tips on the structures. The structures were then transferred to the ET coating
using PDMS as the soft template (Figure 21c). The coating provided a WCA of 160◦ and
stable anti-corrosion properties. In another study [136], a 50 µm gold layer was coated on
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the silicon wafer via electron beam evaporation to act as the conductive seed layer for the
electroplating of nickel. Using photolithography, an array of holes was formed. The surface
was then placed in the electroplating bath containing nickel sulfamate, boric acid, and a
fluoride surfactant at constant pH and temperature. With the current density of 0.1 and
0.5 A/dm2, nickel mushroom microstructures were overgrown from the patterned holes.
Acetone and oxygen plasma were used to strip the photoresist layer. PDMS was used as
a soft mold in UV-nanoimprint lithography to replicate the mushroom structures. The
samples were then coated with carbon through hot filament chemical vapor deposition,
making the surface anti-bacterial against E. coli and S. aureus.

Figure 21. Schematic illustration of the fabrication of micro-, nano-, bio-inspired structures on a Si
wafer hard template (Reprinted from [135] with permission from Elsevier).

Durret et al. [137] demonstrated using nanoimprint lithography (NIL) and plasma etch-
ing processes with CF4/Ar on fluorinated ethylene propylene (FEP), polymethyl methacrylate
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(PMMA) and polyethylene terephthalate (PET) polymer films to fabricate hierarchical struc-
tures on surfaces (Figure 22). The plasma treatment step improved the superhydrophobicity
of the surfaces. With a relatively short imprinting process time and a very short plasma
treatment time on FEP and PMMA, a WCA of 160 ± 2◦ and a CAH of 2 ± 2◦ were achieved.

Figure 22. SEM images of (a) a native nanoimprinted film of FEP. Roughened dots were obtained by
plasma treatment at 1000 W (b), 1600 W (c) and 1800 W (d). (Reprinted from [137] with permission
from Elsevier).

Jung et al. [138] reported using photolithography and deep reactive ion etching (DRIE)
processes to fabricate hierarchical structures on a silicon master surface. To prevent the
silicon master surface from damage, ultraviolet (UV) imprinting was applied on the surface
to generate a polymeric master. A nickel seed layer enabled electrochemical deposition.
Pulse-reverse-current (PRC) electrochemical deposition and subsequent metal-to-metal
electrochemical deposition was used to fabricate a SH metal surface with micro-hierarchical
structures. The fabricated SH surface showed a higher WCA (159.35 ± 1.02◦) and higher
anti-icing properties compared to the bare metal surface, a random nanostructured surface,
and an ordered nanostructured metal surface.

3.10. Thermal Techniques

Recently, researchers have developed thermal techniques to create micro/nanostructures
on the surface of various substrates. Hot embossing (also known as hot pressing or lamination
templating) is a simple and common thermal nanoimprint process. A thin polymer film is
heated to a temperature between its softening and melting points. Then the desired pattern is
printed on the surface by a pressure that is significantly less than the molding pressure. After
cooling, the polymer substrate is removed from the mold and the inverse template structure
is transferred to the surface of the polymer (Figure 23) [139,140]. Because this technique relies
on gently melting the desired surface of the substrate onto the template, a polymer is often
used as the substrate. It is also important to note that the material used to make the stencil
typically has a much higher melting point than the polymer.
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Figure 23. Schematic illustration of hot embossing technique [140]. A fluorinated ethylene propylene
(FEP) sheet is pressed on a heated anodic aluminum oxide (AAO) membrane.

Toosi et al. [141] used SS templates produced by femtosecond laser ablation to create
periodic micron/submicron structures onto three polymers—high-density polyethylene
(HDPE), polylactic acid (PLA), and medical-grade polyvinyl chloride (PVC). The choice
of these three materials was based on their potential application as SH biomaterials in
biomedicine and tissue engineering. The polymers were heated to temperatures just above
their melting point and structures were patterned at pressures between 3 and 12 MPa.
The WCA on HDPE and PLA was found to be over 160◦ while the CAH was under 10◦.
They also found that a re-entrant structure with a fibrillar morphology was produced on
the surface of HDPE by applying a directional force during template removal from the
replicated surface at high temperatures. Fibril formation was due to micro adhesion (chain
adsorption) of HDPE chains on the metallic SS surface. This bio-inspired morphology
possesses characteristics of superoleophobicity.

Hot embossing has the advantage of scalability and is therefore well suited for mass
production of pattern surfaces from an original template with high reproducibility. Rather
than allowing the mold to cool before removing the polymer, pulling the substrate while
the mold is hot can produce high aspect ratio nanostructures on an inherently hydrophobic
polymer such as HDPE thereby rendering the surface to be SH. A disadvantage of hot em-
bossing is the need for multiple cycles to produce large quantities and the need for multiple
processing steps. Typically, thermoplastics and elastomers, are used in this technique.

3.11. Perspective on Fabrication Techniques

Generally, a SH surface with effective, uniform, and durable structures fabricated by
a cost-and time efficient, environmentally friendly technique is desirable for large-scale
production. This tangible goal has yet to be achieved. Because of the high capital costs,
some methods including laser processing, CVD, plasma processes, and lithography are
not economically viable for large-scale production. However, the hybrid and modified
versions of coatings, chemical etching, ED, and sol–gel processes are promising and reliable
techniques for the fabrication of durable large-scale SH surfaces. In chemical etching
processes, weaker acid solutions, assisted by surface modification with non-fluorinated
agents are preferred to make this method more sustainable. EPD as a variation over
conventional ED, can be a promising technique due to its potential to fabricate durable SH
surfaces through a single step process. Considering all wet chemical techniques, the sol–gel
method is the most effective, cost-efficient technique with minimal risk to human health and
the environment. In cases where uniformity of the SH surface is not a concern, the sol–gel
technique appears to be the most suitable and applicable for a wide range of materials.

Table 1 summarizes the various merits and limitations of the most common techniques
used to fabricate SH surfaces. In addition, the applicability of the techniques to various
materials are listed. We note that the table is not exhaustive, and exceptions may be present.
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Table 1. Summary of advantages and disadvantages of the various techniques used to create super-
hydrophobic surfaces.

Technique Advantages Disadvantages

Spray, spin, dip coating
Simple, fast, cost-efficient, scalable, damage

easily repairable, solvent reusability, applicable
to wide range of materials

Not environmentally friendly, poor film
stability and uniformity

Chemical etching Simple, fast, cost-efficient, scalable
Use of toxic solutions, poor film
uniformity, applicable to metals

and alloys mainly

Sol–gel

Cost-efficient, high film purity and
homogeneity, tunability of size and

morphology of particles in film, scalable,
applicable to wide range of materials

Slow process, susceptible to
film delamination

Laser processing
Simple, relatively fast, high film uniformity
and precision of structures, environmentally

friendly, applicable to wide range of materials

Costly, not scalable, requires optimization
of several process parameters

Electrodeposition Cost-efficient, tunability of
texture morphology, scalable Applicable to metals mainly

Electrospinning Fiber formation yielding large surface area,
film homogeneity

Limited control of porosity, use of organic
solvents, relatively slow, limited to

polymer fibers

Chemical vapor deposition Residue-free, film homogeneity, applicable to
wide range of materials

Costly, High T and P, not scalable,
requires precise control of

operating parameters

Lithography

Cost-efficient, controllable shape and size of
structures, reusability of templates,

environmentally friendly, applicable to wide
range of materials

May require cleanroom, not scalable,
multi-step process,

requires a flat substrate

Thermal deposition Scalable, high film reproducibility, applicable
to wide range of materials

Multi-step process required for
large-scale production

Plasma etching High aspect ratio structures, applicable to
wide range of materials Costly, potential toxic gas formation

4. Characterization of the Static and Dynamic Wetting Properties of Surfaces

Several parameters are used to characterize the wetting behaviors of surfaces, including
static, receding and advancing contact angles, the sliding (roll-off) angle, and adhesion (pull-
off) and friction (lateral adhesion) forces. Temporal effects can affect these measurements and
therefore the contact time between a water drop and the surface is also a factor to consider.
The wetting properties of surfaces can be tuned by the judicious choice of the material, modi-
fying the surface chemistry and controlling the surface morphology (i.e., surface roughness
and asperities which trap air). The characterization of the surface morphology is typically
done using either a surface optical or mechanical profilometer, scanning electron microscopy
(SEM) [142], and transmission electron microscopy (TEM) [143]. To achieve greater lateral
and vertical resolution, atomic force microscopy (AFM) [144–147] is commonly used with
the added advantage that samples do not need to be conductive. Force measurements, with
high sensitivity (±0.1 nN) [148,149], can also be performed with the AFM.

As demonstrated in the previous section, several studies have focused on exploiting
a wide range of micro- and nanofabrication and surface modification techniques to create
SH surfaces. Precise characterization techniques are needed to effectively differentiate their
wetting properties. Conventional wetting characterization techniques (such as optical imaging
of the drop shape or using a contact angle goniometer) are known to be prone to high
uncertainty, especially in the case of SH surfaces [150,151]. Early generations of contact angle
goniometers relied on the ability of the user to accurately, reproducibly, and reliably locate
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the 3-phase contact line and extract the contact angle using an in-built protractor within an
eyepiece. Therefore, the accuracy and reproducibility of measurements were significantly
impacted by a user’s expertise in taking such measurements, with the accuracy of ±2◦ [152].

Improvements to the technique include the automated axisymmetric drop shape
analysis-profile (ADSA-P)). The analysis creates the best theoretical profile of a drop
to determine the CA, surface area, drop volume and three phase contact radius. The
use of cameras and built-in image processing software allow for an improved accuracy
of ±0.3◦ [152,153]. The inclusion of high-speed cameras has offered detailed views of drop
impacts on surfaces and the accompanied interface deformation, from which researchers
have been able to extract the dependence of several material properties and key parameters
on the wetting process.

However, even with the improved hardware and software for analysis, measurements
are still susceptible to error. For example, the misplacement by just one pixel of the baseline
(which is typically identified by the user) can yield errors greater than 10◦ in WCA on SH
surfaces [154]. Figure 24 illustrates how for WCAs higher than 150◦, if one misses only one
pixel from the correct baseline, the errors can dramatically increase [154].

Figure 24. Plot of error in WCA resulting from just 1-pixel error in identifying the correct baseline
(i.e., solid/liquid interface). The top curve represents the error for a baseline shifted 1 pixel downward.
The bottom curve represents the error for a baseline shifted 1 pixel upward (From [154]. Reprinted
with permission from AAAS).

Direct force measurements of the interaction between a liquid drop and a surface
have been explored as a supporting and/or alternative method to characterize the wetting
properties of surfaces. Depending on the sensitivity of the technique, force-based measure-
ment instruments are able to measure interaction forces between surfaces at the micrometer
down to the nanometer lengthscale [150]. Furthermore, two SH surfaces with almost same
static WCA can have entirely different CAH [155–157], further justifying the need for a
complementary or additional measurement technique with even greater accuracy. In this
section, an overview of the optical characterization of wetting properties of surfaces is
presented followed by an overview of recent efforts in using force-based measurements.
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The measurement sensitivity associated with the force-based techniques along with the
sample (i.e., liquid drop) size is also summarized.

4.1. Optical-Based Characterization

The most common way to evaluate the superhydrophobicity or liquid repellency of sur-
faces is through optical-based characterization, using a contact angle goniometer [158–168].
Hydrophilic and hydrophobic surfaces are defined by having WCAs in the range of
10◦ < θ < 90◦ and 90◦ < θ < 150◦, respectively, and are the most commonly encountered
surfaces in our surroundings [169]. Superhydrophilic and superhydrophobic surfaces have
attracted more attention due to their potential applications in engineering and are charac-
terized by WCAs in the range of 0◦ < θ < 10◦ and 150◦ < θ <180◦, respectively [170–172].
In the case of SH surfaces, the water shedding or sliding angle (SA) is also an important
parameter and typically, low sliding angles are desired for superior self-cleaning proper-
ties [155]. However, SA measurements can be influenced by the drop volume, how a drop is
deposited on a surface, how long it remains on the surface before the measurement (resting
time), and surface defects or imperfections. In addition, in the case that the system exhibits
stick-slip motion, the SA cannot be measured by tilting the sample, thereby limiting the
characterization of SH surfaces [173,174].

T. Nongnual et al. [175] estimated the sliding angle, using a drop shape analyzer
(DSA-30, Kruss Scientific, Hamburg, Germany) with a computational algorithm written
in MATLAB (Figure 25). The image analyzer used the brightness of a grayscale image by
averaging the intensity of all pixels. The sliding (roll-off) angle was measured at the time
that the dark shadow disappeared, corresponding to the displacement of the three-phase
points by 1 mm. A linear relationship was defined between the tilt angle of the surface
(0–90◦) and the acquisition time with an angular speed of the rotor as the slope. Thus,
the sliding angle was calculated precisely with an accuracy of 0.2◦. The tilting rate was
decreased and optimized by 0.1◦ per frame to avoid the overestimation of the SA [175].

Figure 25. Determination of the SA using an image analyzer aided by a computational algorithm [175].

The capillary technique is another precise method [176,177], from which the contact
angles can be obtained with an accuracy of ±0.1◦ [178]. Since the novel work proposed by
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Lucan, Washburn, and Rideal on the capillary rise technique in the 1920s [179–181], contact
angles have been inferred by the Lucas-Washburn-Rideal Equation (LWRE). However, using
this equation leads to the overestimation of CA due to uncertainties in the capillary radius
and the presence of gas bubbles [182]. Through the capillary technique, CA can be measured
directly using an optical microscope [182] or determined from the capillary force and liquid
bridge geometry based on Delaunay’s analytical solution [178]. In a typical experiment,
a solid plate is vertically immersed into a liquid at a slow rate (0.008–0.9 mm/min). The
resulting curvature at the three-phase contact line is monitored simultaneously [152,182].
The restrictions of the technique are errors caused by evaporation of the liquid and the
transparency requirement of the surfaces or coatings [178].

A comprehensive understanding of the drop impact of SH surfaces is essential, espe-
cially for anti-icing [183], dropwise-condensation [184], and self-cleaning properties [185].
Such phenomena are mainly characterized by two dimensionless numbers including the

Weber number (We = ρD0U0
2

γ ) and Reynolds number (Re = ρU0D0
µ ), where ρ, γ, and µ

are the density, the surface tension, and the viscosity of the drop, respectively. D0 is the
initial drop diameter and U0 is the drop impact velocity [186]. We is the ratio of kinetic
energy on impact to the surface energy and Re is the ratio of the inertial force to the vis-
cous force [187]. Depending on We number, different drop impact scenarios can occur.
Changing the We number can result in deposition, rebounding, pinning/sticking, or splash-

ing/fragmentation. In addition, the drop impact phenomenon is dependent on Q =
djump
dmax

and the contact time, where djump is the lateral diameter of the drop at the detachment from
the surface and dmax is the maximum lateral extension diameter of the drop.

In a typical experiment, from a predetermined height (thereby varying the impact
velocity), a drop with a specific diameter is released from a syringe pump needle. The
drop impact behavior is monitored by a high-speed camera (Figure 26) [188]. Post im-
pact dynamics are not only a function of density, impact velocity and viscosity but also
a function of surface roughness, geometry, wettability, and mechanical strength [188].
Y. Shen, et al. [189] achieved the minimum contact time on a complex textured SH surface.
Generally, the contact time of an impact droplet includes spreading and retracting time.
The spreading time is constant and under a certain kinetic condition (initial diameter
D0 = 2 mm and initial impact velocity V0 = 0.1 mm

s ), it is equal to 5.5 ms. Hence, the only
way to reduce the contact time is to shorten the retracting time. Through the fabrication of
a complex surface with three-forked, cross-shaped, and five-forked microstructures, the
retracting time was reduced to almost zero.

Figure 26. Experimental setup to monitor drop impacts on surfaces with various protrusions
(Reprinted from [188] with permission from Elsevier).
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Table 2 summarizes some of the key experimental parameters and speed specifications
of the high-speed cameras used in the studies described above. Drop sizes are typically
in the range from sub-10 µL to ~10 µL. The small size of the drop minimizes the effect of
gravity on the shape of the drop [190]. In other words, when the drop diameter is less than
the capillary length (l = ( γ

ρg )
1
2 )), the drop is not distorted from its spherical shape [191].

Typical contact times are in the order of milliseconds and camera speeds ranged from
3000–20,000 fps [192–195].

Table 2. List of typical experimental parameters used in drop impact studies.

Reference Drop Volume (µL) Contact Angle (◦) Contact Time (ms) Impact Velocity (m/s) Weber Number Camera Speed (fps)

Liu et al. [192] 6 and 13 µL >165 16.5 0.59–1.72 7.1–58.5 10,000
Liu et al. [193] 13 µL 165 ± 2.9 3.8 - 3.9–23.5 10,000

Chen et al. [194] 4 and 7 µL 107 ± 0.8 - 0.4, 0.48 3.2, 3.8 20,000
Liu et al. [195] 13 µL 163.4 ± 2.6 11.8 0.63 7.9 10,000

4.2. Force-Based Characterization

When theories based on van der Waals and colloidal interactions were proposed
to encompass material science, rheology, lubrication, cell interactions, phase transition,
and DNA binding, it was essential to develop surface force measurements to test such
theories [196]. High-resolution force measurements were performed by Tomlinson in
1928 [197]. The motivation for the work was to measure the adhesion force between
fibers or spheres of glass and to establish the index of the decay law [196]. The invention
of techniques such as atomic force microscopy, total internal reflection microscopy, and
colloidal particle scattering allowed for sufficient force sensitivity to study interactions on
microscopic surfaces [196].

Several techniques have been developed or adapted to measure the adhesion, snap-in, pull-
off, and friction forces of liquid drops on surfaces such as the use of tribometers [198–200], the
surface forces apparatus (SFA) [201,202], atomic force microscopy [148,203], the centrifugal
adhesion balance (CAB) [204–206], and microbalances including micro-electromechanical,
micro-electrochemical, and microelectronics [107,207–215]. A Taylor–Couette cell has also
been used to measure drag [216]. Laser defection systems [217,218] have been used for fric-
tion measurements and a force tensiometer [219] has been used to measure adhesion forces
and surface tension. In the next sections, such force-based instruments and accompanying
techniques are discussed.

Sensor-Based Characterization

Sensor-based instruments are defined by an in-built spring/cantilever whereby its
deflection is converted to the force and digitally recorded. In our previous work [174], the
sliding angles of water drops on surfaces were determined from friction force measured
by a nanotribometer (Figure 27). The sensor allowed for force measurements in the range
of ±10 mN with ±1 µN sensitivity, enabling the user to apply and record various lateral
(i.e., friction) and vertical (i.e., adhesion) forces. In a typical measurement, a water drop
of predetermined volume (20 µL) is placed on a copper ring drop holder with an inside
diameter of 1.7 mm. The drop is then contacted with the surface, a preload is applied,
and the drop is allowed to equilibrate for 20 s. The probe is then moved at a constant
speed of 0.1 mm/s while maintaining the applied load. During the sliding step, the
normal and friction forces are measured until the drop is finally retracted from the surface
(Figure 27C). This technique successfully predicts the sliding angle of water drops on
surfaces, using the equation: f|| = mg sin(α) (Figure 27A), where, f|| is the kinetic friction
force measured, m is the mass of the drop, g is the gravitational constant and α is the
sliding angle [174]. The probe that holds the water drop can also be a capillary tube, as
used by Qiao et al. [198], to measure friction forces resulting from a sliding water drop in
a linear reciprocating mode on a microstructured solid surface. This system was able to
record the lateral resistance force due to the liquid–solid interface and lateral displacement
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of the capillary tube simultaneously. As shown in Figure 28, a capillary glass tube was
used to hold and slide a 2 µL drop on the surface. The drop was dispensed on the end of
the tube using a micropipette. The setup included two independent dual-beam cantilever
sensors to obtain friction and normal forces simultaneously.

Figure 27. Side-view optical image of 20 µL water drop: (A) sliding on a hydrophobic surface at a tilt
angle α. When the drop begins to slide, the sliding angle is equal to α; (B) sheared on a hydrophobic
surface at a velocity V and corresponding applied force Fx. F‖ is the friction force at the interface
between the water drop and the surface; and (C) plot of friction data between a 20 µL water drop
and an OTS-modified hydrophobic silicon surface collected using a nanotribometer at various stages
in the measurement; step 1—Approach, step 2—Shear, step 3—Retract and move to start position.
Corresponding optical images of the water drops in contact with the surface during the various steps
are also shown as insets [174].

Figure 28. Schematic illustration of the use of a nanotribometer with a capillary tube to measure the
sliding friction force between a drop and a surface (Reprinted with permission from [198]. Copyright
{2017} American Chemical Society).
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Microbalances are also sensor-based instruments capable of measuring adhesion (pull-
off) forces to characterize the liquid repellency of surfaces. Samuel et al. [212] investigated
the wetting properties of 20 different polymers and SH surfaces. They used an electrome-
chanical system to measure snap-in and pull-off (adhesion) forces. In a typical experiment,
a water drop was placed on a metal ring connected to a cantilever (Figure 29). The stage
holding the surface was then moved upward at a speed of 0.03 mm/s until contact was
made with the water drop. The resulting force measured was referred to as the “snap-in”
force. At this point, the surface was again moved upwards with the speed of 0.01 mm/s
over 0.1 mm. The surface was then retracted at a speed of 0.01 mm/s. The force measured
when the drop detached was referred to as the “pull-off” force or “adhesion force”. It
was found that the adhesion force was not correlated to WCAs. Interestingly, there was
a correlation between the pull-off force and the receding contact angle; as the receding
contact angle increased, the pull-off force decreased.

Figure 29. Optical images of the snap-in and pull-off force measurements by the microelectromechanical
balance system (Reprinted with permission from [212]. Copyright {2011} American Chemical Society).

4.3. Hybrid Characterization

Researchers have also explored hybrid characterization systems in which optical
techniques are used to measure/infer adhesion and friction forces between a water drop
and a surface, for e.g., cantilever sensors, centrifugal adhesion balance (CAB) and capillary
sensors. The most common hybrid-based surface characterization method is the cantilever
sensor technology, including atomic force microscopy (AFM) [220], mass spectroscopy,
and magnetic resonance force microscopy. In order to compare the test results of various
research groups, reliable calibration is required [221].

Microfabricated cantilevers are mostly used to measure the topography of surfaces such
as those used in scanning force microscopy (SFM) or atomic force microscopy (AFM) [222,223].
AFM has been developed into one of the most sensitive and adaptable surface-characterization
apparatus to explore surfaces at the molecular and atomic level. Cantilevers are typically
silicon-based, rectangular-shaped and less than 1 µm thick. The bending of the cantilever, as a
result of interactions forces with a surface, is detected by the deflection of a laser beam. The
advantages of such miniaturized sensors include their small size, fast response time, and high
sensitivity [224]. The adhesion and friction forces between the surface and the liquid interface
can be measured with the sensitivity of 0.1 nN by attaching a liquid drop on a tipless AFM
probe [148,149]. The AFM technique may not be suitable for the characterization of wetting
properties of all surfaces (for e.g., structured surface with feature dimensions larger than or
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comparable to the liquid drop size), however, its sensitivity is considerably higher compared
to all other methods.

R. Tadmor and his group [204] invented the CAB to measure lateral adhesion forces
of liquid drops and investigated the effects of load and resting time on the friction force.
Such experiments cannot be run on conventional tilt stages since loads and lateral forces
are coupled and the range of an applied lateral force is limited between 0 and the weight
of the drop (corresponding to a tilt angle of 0◦ and 90◦, respectively). They proposed
that a higher normal load can lead to lateral force reduction even though the contact area
increases. Additionally, as the resting time between a hexadecane drop and the octadecyl
trimethylammonium treated mica surface increased, friction forces increased due to time-
dependent molecular reorientation and hydrophobic recovery of the surface [225].

In another study [205] they used a customized CAB to predict sliding angles of water
drops on surfaces accurately (Figure 30 [205,206]). The instrument has a centrifugal arm
rotating in the horizontal plane. At the end of the centrifugal arm, a chamber is attached in
which a camera is mounted to monitor the drop’s motion. As the shaft rotates, the lateral
adhesion force increases due to the increasing acceleration. Once the drop detaches from
the surface, the acceleration is recorded and used to calculate the SA [205]. It is worth
mentioning that this measured lateral adhesion force corresponds to the static friction force.

Figure 30. Optical images of the (a) centrifugal Adhesion Balance (CAB); and (b) individual compo-
nents inside the instrument including the (1) camera lens, (2) mirrors (45◦ tilted), (3) sample stage,
(4) light source, (5) satellite drops, and (6) central drop (Reprinted with permission from [206].
Copyright {2019} American Chemical Society).

The capillary force sensor technique which includes the micropipette force sensor
(MFS) [226–228] and the droplet force apparatus (DFA) [229] is another method for force
measurements which can provide the sliding forces of a water drop with high sensitivity.
The static force, SF, is defined as the force applied to a stationary drop until it overcomes
the threshold force, FTHRD, at which point the drop starts sliding. A lower kinetic force, KF,
is sufficient to maintain the sliding of the drop [217]. Such forces can be differentiated with
high resolution because of the high sensitivity of capillary sensors. In a typical capillary
sensor force measurement, a solid substrate is moved by a linear stage driven by a step
motor as shown in Figure 31a,b [227]. A camera is used to record and measure the deflection
of the capillary tube. The basic principle behind these techniques [230–232] is the use of a
capillary tube to connect a liquid drop to a spring (or the capillary tube itself can serve as
the spring) with a known spring constant, k. The force exerted on the drop can be calculated
using Hooke’s law, i.e., F = k∆x where ∆x is the deflection of the capillary tube or spring
(Figure 31b) [227].

Kui Shi et al. [173] utilized a capillary sensor to measure the friction force between
a water drop and solid surface. By recording the position of the capillary tube while the
drop is sliding, the capillary deflection was converted to the friction force. Generally, when
the droplet does not slide on a surface at tilt angle of 90◦, meaning its weight is too small
to overcome the threshold force, SA measurements with conventional methods cannot
differentiate the wetting properties of surfaces. Capillary sensors not only differentiate the
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hydrophobicity of such surfaces but also provide static, transition, and kinetic regimes with
the sensitivity of 0.7–2 µN.

Figure 31. (a) Optical image of an MFS setup with a droplet deposited on a SH surface. A water drop
is suspended from a force-calibrated micropipette cantilever; (b) high magnification image of a water
drop attached to a capillary tube. While the stage moves, the drop experiences a friction force thereby
deflecting the capillary tube [227]; and (c) friction force versus time on three microstriped surfaces
with different fractional areas. A capillary force sensor is able to differentiate the different phases of
the friction including the static friction (SF), transition zone (TZ), and kinetic friction (KF). (Reprinted
from [173] with permission from Elsevier).

4.4. Perspectives on Surface Wetting Characterization Techniques

Table 3 summarizes the techniques, corresponding sensitivities, and typical drop
volumes used in the references discussed in this section. Drop sizes are typically less than
10 µL in such measurements (comparable to drop sizes used in optical characterization
techniques) which minimizes the effect of gravity on the spherical shape of the drop.

Table 3. List of techniques, reported sensitivities, and typical drop volumes used in the cited
references.

Reference Instrument Sensitivity Drop Volume (µL)

Liimatainen et al. [209] Microforce sensing probe ±0.1 nN 1.5

Wang et al. [149] AFM ±0.1 nN 1

Qiao et al. [198] Nanotribometer ±3 nN 2

Sun et al. [213] Micro-electromechanical
balance ±1 µN/m 4

Backholm et al. [226] Micropipette force sensor ±4 nN ~1

Daniel et al. [229] Droplet force apparatus ±10 nN ~4.2–6.4

Zhang et al. [214] Micro-electronic balance ±0.03 µN 3

Samuel et al. [212] Micro-electromechanical
balance ±0.1 µN ~5

Cheng et al. [207] Micro-electromechanical
balance ±0.1 µN 4

Gao et al. [217] Laser deflection system ±1 µN 1.5–8

Ning et al. [211] Micro-electromechanical
balance ±1 µN 5

Daniel et al. [230,231] Cantilever force sensor ±0.1 µN 1

Optical-based techniques have the advantages of being convenient, fast, and cost-
efficient. However, because of their uncertainties in the characterization of SH surfaces,
force-based techniques are recommended. The instruments measuring adhesion forces
including microelectromechanical balances and micropipette force sensors have the advan-
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tage of providing high sensitivity, whereas the dependency of the drop shape on ring size
and drop volume can cause irreproducibility [186]. The centrifugal adhesion balance is
an accurate characterization method being able to measure static friction force with the
sensitivity of ±1 µN. It is worth noting that surfaces may contain imperfections, resulting
in nonhomogeneous wetting properties. As a result, measurement techniques which rely
on collecting data under static conditions or at the onset of motion are only considering
the wetting properties of drop at that particular location. Due to the stochastic nature
of coatings on SH surfaces [228], measuring the dynamic friction force is recommended
to average out the influence of imperfections on surfaces. Capillary force sensors and
tribometers have the advantage of resolving the various stages in friction processes (static,
kinetic and stick-slip behaviors), snap-in and adhesion forces of a water drop. Such sensors
measure the aforementioned forces directly with sufficient sensitivity (0.7–2 µN) making
them, in our opinion, the most promising techniques among all characterization methods.

5. Conclusions

The field of biomimetics is increasingly gaining popularity as scientists continually dis-
cover how nature has evolved organisms to overcome challenges. However, challenges still
exist in mimicking the desired properties. In the case of the lotus leaf, numerous fabrication
techniques have been proposed to create SH surfaces on metals, polymers, fabrics, glasses,
and ceramics. As researchers continue to explore novel fabrication techniques to create
SH surfaces, special consideration should be given to: (i) the scalability of the technique;
(ii) the durability of the resulting SH surfaces; (iii) the potential environmental impact of
the chemicals used in the process; and (iv) the cost of the instruments and materials used
in the process to make the technique commercially viable. As for the characterization of the
wetting properties of SH surfaces, optical-based techniques will likely remain relevant in
future studies because of the simplicity, availability, and ease of operation of the technique.
However, force-based techniques provide higher sensitivities and may be required to truly
differentiate the wetting properties of SH surfaces with similar WCAs, SAs, and CAH.
Although the fundamental science behind superhydrophobicity and the roles that surface
chemistry and surface morphology play in tuning superhydrophobic properties are well
understood, further research is still needed to fully understand their origins and their
relative contributions to CAH.
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