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Abstract 

 

A major goal of systems biology is to build predictive computational models of 

cellular metabolism. Availability of complete genome sequences and wealth of 

legacy biochemical information has led to the reconstruction of genome-scale 

metabolic networks in the last 15 years for several organisms across the three 

domains of life. Due to paucity of information on kinetic parameters associated with 

metabolic reactions, the constraint-based modelling approach, flux balance analysis 

(FBA), has proved to be a vital alternative to investigate the capabilities of 

reconstructed metabolic networks. In parallel, advent of high-throughput 

technologies has led to the generation of massive amounts of omics data on 

transcriptional regulation comprising mRNA transcript levels and genome-wide 

binding profile of transcriptional regulators. A frontier area in metabolic systems 

biology has been the development of methods to integrate the available 

transcriptional regulatory information into constraint-based models of reconstructed 

metabolic networks in order to increase the predictive capabilities of computational 

models and understand the regulation of cellular metabolism. Here, we review the 

existing methods to integrate transcriptional regulatory information into constraint-

based models of metabolic networks.  

 

 
1. Introduction 

 Extensive research by biochemists in the last century has resulted in the chemical 

characterization of thousands of biochemical reactions (Kanehisa and Goto, 2000; Chang 

et al., 2009). Towards the end of 20th century, complete genome sequences became 
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available for the first time (Fleischmann et al., 1995; Tomb et al., 1997). In the post-

genomic era, a focus in systems biology has been the reconstruction of genome-scale 

metabolic networks using the annotated sequences along with available biochemical, 

genetic and phenotypic information for organisms (Edwards et al., 2001; Forster et al., 

2003; Duarte et al., 2007; Feist et al., 2009; Thiele and Palsson, 2010; Thiele et al., 2013). 

In the last 15 years, considerable effort has led to the reconstruction of manually curated 

and high quality genome-scale metabolic networks for more than 50 organisms including 

humans (Durot et al., 2009; Feist et al., 2009; Thiele and Palsson, 2010). However, the 

current pace of manual reconstruction of high quality genome-scale metabolic networks 

lags far behind the sequencing effort, and thus, automated methods have also been 

developed to aid and accelerate the speed of metabolic network reconstruction process 

(Henry et al., 2010; Schellenberger et al., 2011; Agren et al., 2013). Several studies have 

demonstrated the utility of these genome-scale metabolic reconstructions for biological 

discovery and hypothesis generation (Feist and Palsson, 2008; Oberhardt et al., 2009).   

 Current paucity of information on relevant parameters such as rate constants, 

enzyme concentrations and metabolite concentrations for most reactions renders kinetic 

modelling of genome-scale metabolic networks infeasible. In the face of inadequate 

kinetic information, the constraint-based modelling method, flux balance analysis (FBA), 

has proved to be a vital alternative to study the capabilities of genome-scale metabolic 

networks (Varma and Palsson, 1994; Kauffman et al., 2003; Price et al., 2004; Orth et al., 

2010; Lewis et al., 2012). In contrast to kinetic models, constraint-based FBA primarily 

uses stoichiometric information (Heinrich and Schuster, 1996; Schilling et al., 1999; 

Palsson, 2006) of reactions in a metabolic network to predict the flux of reactions in 

steady state and biomass synthesis rate in a given environmental condition. Due to its 

simplicity, constraint-based FBA has become a popular framework to study genotype-

phenotype relationships and predict the metabolic response to environmental and genetic 

perturbations using genome-scale metabolic reconstructions (Feist and Palsson, 2008; 

Papp et al., 2009; Lewis et al., 2012). 

  Concurrently, advances in post-genomic high-throughput data collection 

techniques has led to the generation of vast amounts of omics data. High-dimensional 

multi-omics data provides quantitative information on multitude of cellular components 

across diverse scales of organization. A major goal of systems biology is to turn the recent 

explosion of omics data into predictive holistic models of biological systems (Kitano, 2002; 

Joyce and Palsson, 2006). In this direction, contextualization of omics data within 
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constraint-based FBA models of genome-scale metabolic reconstructions can lead to 

more accurate models. However, there are several challenges in integration of omics data 

stemming from the inherent experimental and biological noise in such datasets 

(Quackenbush, 2004). Nonetheless, several constraint-based methods have been 

developed to integrate experimental data, especially on transcriptional regulation and 

gene expression, within the FBA framework to build improved models (Åkesson et al., 

2004; Covert et al., 2004; Becker and Palsson, 2008; Blazier and Papin, 2012; Hyduke et 

al., 2013). In this review, we discuss the existing methods to integrate regulatory 

information into constraint-based FBA models by broadly classifying them into three 

different approaches (Covert et al., 2001; Åkesson et al., 2004; Covert et al., 2004; Becker 

and Palsson, 2008; Chandrasekaran and Price, 2010; Blazier and Papin, 2012; Hyduke et 

al., 2013; Kim and Reed, 2014). Such methods have already proven successful in building 

context-specific metabolic models for human tissues and predicting novel drug targets in 

pathogens (Becker and Palsson, 2008; Folger et al., 2011; Bordbar et al., 2012; Collins et 

al., 2012). 

 The review is organized as follows. In the second section, we describe the 

constraint-based FBA framework. In the third section, we discuss existing methods to 

integrate omics data within the FBA framework as additional flux constraints to build 

context-specific metabolic models. In the fourth section, we describe the reconstruction 

and analysis of integrated regulatory-metabolic models where Boolean transcriptional 

regulatory networks (TRNs) are incorporated within the FBA framework. In the fifth 

section, we discuss the need for automated methods to integrate information on 

regulatory network architecture and expression measurements within metabolic networks 

to reconstruct integrated regulatory-metabolic models. Note that previous reviews in this 

area only emphasize on methods that are descriptive in nature which are presented in 

section 3 of this review.  In comparison to previous reviews, we here provide a much more 

comprehensive overview of the area by also describing in detail the methods which are 

predictive rather than just descriptive in nature in sections 4 and 5 of this review.  

 

2. Flux balance analysis 

 Flux balance analysis (FBA) is a constraint-based modelling approach that is 

widely used to investigate the capabilities of available genome-scale metabolic networks 

(Varma and Palsson, 1994; Kauffman et al., 2003; Price et al., 2004; Orth et al., 2010; 
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Lewis et al., 2012). FBA primarily uses the information on the list of biochemical reactions 

in an organism along with the stoichiometric coefficients of involved metabolites to predict 

the fluxes of all reactions in the metabolic network. Such biochemical information is 

contained within available organism-specific genome-scale metabolic reconstructions. For 

any organism, the genome-scale metabolic reconstruction contains information on all 

known metabolic reactions and genes encoding enzymes catalysing different reactions in 

the network (Palsson, 2006) (Fig. 1A). Notably, genome-scale metabolic reconstructions 

for most organisms also include reactions for transport of metabolites across the cell 

boundary, and a pseudo-reaction capturing the production of biomass in terms of their 

precursor metabolites (Fig. 1A).   

   In the FBA framework, the list of reactions along with the stoichiometric coefficients 

of involved metabolites in a network reconstruction is mathematically represented in the 

form of a stoichiometric matrix � of dimensions � � �, where � denotes the number of 

metabolites and � denotes the number of reactions in the network (Fig. 1B). Entries in 

each column of the matrix � give the stoichiometric coefficients of metabolites participating 

in a particular reaction, where negative coefficients signify consumption of a metabolite, 

positive coefficients signify production of a metabolite, and zero coefficients signify no 

participation of a metabolite in the reaction (Fig. 1B). These stoichiometric coefficients of 

metabolites in various reactions impose constraints on the flow of metabolites in the 

network (Heinrich and Schuster, 1996; Schilling et al., 1999; Palsson, 2006). 

Subsequently, the method capitalizes on these stoichiometric constraints and assumes 

steady state to predict the fluxes of all reactions in the network.  

 In any metabolic steady state, different metabolites attain a mass balance wherein 

the rate of production of each metabolite is equal to its rate of consumption, and this leads 

to the system of mass balance equations given by: 

�. � � 0    (1) 

where � is the vector of fluxes through all reactions in the network  (Fig. 1B). For each 

metabolite in the network, Eq. 1 gives a linear equation relating fluxes of various reactions 

in which the metabolite participates (Fig. 1B). Since, the number of metabolites is much 

less than the number of reactions in genome-scale metabolic networks of most 

organisms, the number of linear equations is much less than the number of reaction fluxes 

(unknowns) to be determined. Thus, Eq. 1 typically leads to an under-determined system 
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of linear equations, and a large solution space of allowable fluxes for genome-scale 

metabolic networks (Fig. 1B,C).  

 The size of the allowable space can also be reduced by incorporating additional 

constraints on reaction fluxes. Firstly, certain reactions in the metabolic network are 

irreversible under physiological conditions, and such thermodynamic constraints (Beard et 

al., 2002; Orth et al., 2010) can be used to constrain the flux of irreversible reactions. 

Secondly, the activity of specific enzymes may limit the flux through certain reactions. 

Thirdly, the availability of nutrients in the growth medium can be used to constrain the 

fluxes of transport reactions. Note that unlike stoichiometric or mass-balance constraints, 

these additional constraints represent bounds on reaction fluxes in the metabolic network 

(Fig. 1B). 

 Since stoichiometric and additional constraints lead to an under-determined system 

with a large space of possible solutions, FBA uses linear programming (LP) to find a 

particular solution within the allowable solution space that either maximizes or minimizes a 

certain biologically relevant linear objective function 	 (Watson, 1984; Fell and Small, 

1986; Varma and Palsson, 1994) (Fig. 1C). Some examples of biologically relevant 

objective functions that have been explored using FBA include maximization of biomass 

production, maximization of ATP production and minimization of redox potential (Schuetz 

et al., 2007). However, maximization of biomass production (Feist and Palsson, 2010) is 

usually chosen as the objective function in FBA. The LP formulation of FBA can be written 

as: 

Maximize 	 � v�������  

subject to  

�. � � 0  

�� � � � ��    (2) 

where ���	
��� is the objective function corresponding to the biomass growth flux, and 

vectors �� and �� contain the lower and upper bounds on different reaction fluxes 

contained in �. The solution of the FBA problem in Eq. 2 is a flux distribution � that 

maximizes the biomass objective function subject to the stoichiometric and additional 

constraints. FBA has found wide applications which include microbial strain improvement 

for producing industrially important metabolites, understanding molecular pathways 
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involved in microbial pathogenesis, identification of drug targets, understanding reductive 

evolution in microbes and generating tissue-specific metabolic models for normal and 

cancerous tissues (Burgard et al., 2003; Pal et al., 2006; Becker and Palsson, 2008; 

Gianchandani et al., 2010; Folger et al., 2011; Bordbar et al., 2012; Collins et al., 2012).  

3. Integration of transcriptomic profiles to build context-specific metabolic models  

 FBA predicts the fluxes of reactions and the biomass production rate without 

accounting for the regulatory constraints that are crucial in determining the presence and 

activity of enzymes in an environmental condition (Orth et al., 2010). This omission of 

regulatory constraints is an important limitation of FBA (Covert and Palsson, 2002, 2003; 

Åkesson et al., 2004) and can partly explain incorrect predictions by this method on gene 

essentiality (Covert et al., 2004) and gene interactions (Szappanos et al., 2011). The 

metabolic state of a cell in a given condition is governed by the expression of metabolic 

genes encoding enzymes. Thus, gene expression measurements obtained from 

microarrays or RNA-sequencing (RNA-seq) provide vital information on the state of the 

regulatory network and its influence on the metabolic network. With drastic reduction in 

cost of microarrays and RNA-seq, these high-throughput technologies are being 

increasingly used to generate abundant information on the expression of genes for 

several organisms under varied environmental conditions.   Such data can be readily 

exploited to understand the condition-specific activity and regulation of metabolism. 

Towards this goal, several constraint-based methods have been developed in the last few 

years to integrate gene expression data within the FBA framework to generate context-

specific metabolic models (Blazier and Papin, 2012; Lewis et al., 2012; Hyduke et al., 

2013; Kim and Reed, 2014; Machado and Herrgård, 2014; Saha et al., 2014; Imam et al., 

2015). The available methods can be broadly classified into three categories (Estévez and 

Nikoloski, 2014), namely, switch- and valve-based methods that use omics data to 

determine active and inactive set of genes in a given condition, methods that generate 

context-specific metabolic models without the need for a predefined biological objective 

function, and methods based on iterative removal of inferrred non-functional reactions to 

build tissue-specific metabolic models. 

  In the first category of methods, transcriptomic data is used to determine the set of 

active and inactive (absent) genes in a given condition (Fig. 2). Next, the information on 

active and inactive genes is used to set bounds on reaction fluxes catalysed by 

associated gene products (enzymes) within the FBA framework before computing the flux 
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distribution and biomass rate. The treatment of bounds on reaction fluxes catalysed by 

active and inactive enzymes varies between different methods in this category, and this 

leads to a further classification into two sub-categories (Hyduke et al., 2013) (Fig. 2). In 

the sub-category of switch-based methods, the upper bound for the maximum flux through 

reactions catalysed by active enzymes is left unconstrained while those for reactions 

catalysed by inactive enzymes is set to zero before computing the flux distribution using 

FBA (Fig. 2). In the sub-category of valve-based methods, the upper bound for the 

maximum flux through reactions catalysed by enzymes is set proportional to the 

normalized expression of the associated genes before computing the flux distribution 

using FBA (Fig. 2). Basically, these methods are all based on the assumption that gene 

expression is correlated with reaction fluxes which may not necessarily hold (Gygi et al., 

1999; ter Kuile and Westerhoff, 2001; Yang et al., 2002). Moreover, omics measurements 

suffer from a lack of sensitivity leading to false negatives in the identification of active and 

inactive genes. Notably, switching off flux through reactions catalysed by inactive genes 

which are false negatives due to experimental noise, may render the FBA predictions 

inconsistent with the biological objective or required metabolic function. Thus, the first 

category of methods also have the option to selectively re-enable flux through some 

reactions catalysed by inactive enzymes, to overcome any potential inconsistent FBA 

predictions with the required metabolic function (Becker and Palsson, 2008). 

 Akesson et al. (Åkesson et al., 2004) developed the first switch-based method to 

integrate gene expression data within the FBA framework. In this method, inactive genes 

were determined based on their non-detection across the microarray replicates for a given 

condition, and the maximum flux through reactions associated with such inactive genes is 

set to zero. To overcome pitfalls due to experimental noise, Akesson et al. performed a 

manual assessment of the inactive gene set for false negatives, and re-enabled any 

reaction flux associated with such manually identified false negatives. Subsequent to the 

work of Akesson et al., Becker et al. (Becker and Palsson, 2008) have developed a 

switch-based method, Gene inactivity moderated by metabolism and expression 

(GIMME), which is widely used to build context-specific metabolic models. Unlike Akesson 

et al, GIMME semi-automatically assesses the inactive gene set for potential false 

negatives, and re-enables any reaction flux associated with such false negatives. In 

addition, GIMME has the advantage of reporting an inconsistency score between the gene 

expression data and the predicted flux distribution. Although the methods in this category 

were initially developed to integrate transcriptomic data, overtime these methods (Becker 
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and Palsson, 2008; Schmidt et al., 2013) have also been utilized to incorporate other 

types of omics data, such as proteomics and metabolomics, within the FBA framework.   

 In contrast to the switch-based methods, Colijn et al. (Colijn et al., 2009) developed 

a valve-based method, E-flux, to integrate gene expression data within the FBA 

framework. In E-flux, bounds are set such that the maximum allowable flux through each 

reaction is a function of the normalized expression of the associated genes (Fig. 2). 

Chandrasekaran et al. (Chandrasekaran and Price, 2010) developed another valve-based 

method probabilistic regulation of metabolism (PROM) which integrates both gene 

expression data and transcriptional regulatory networks (TRNs) within the FBA 

framework, and thus, this method is discussed in the penultimate section. In summary, 

switch-based methods lead to a binary classification of flux constraints while valve-based 

methods (Colijn et al., 2009; Chandrasekaran and Price, 2010; Fang et al., 2012) impose 

a continuum of flux constraints (Fig. 2). Note that all methods in the first category make 

use of LP and a biologically relevant objective function to predict flux distribution and 

generate context-specific metabolic models.  

 The second category includes methods that integrate gene expression data to build 

context-specific metabolic models without imposing a biologically relevant objective 

function. Shlomi et al. (Shlomi et al., 2008; Zur et al., 2010) developed the first method in 

this category, integrated metabolic analysis tool (iMAT), which can integrate 

transcriptomics and proteomics data to build tissue-specific metabolic models in 

multicellular organisms. iMAT uses omics data to classify genes as highly, moderately or 

lowly expressed in a given condition, and subsequently, resorts to mixed integer linear 

programming (MILP) to generate a context-specific metabolic model where the presence 

of reactions associated with highly expressed genes is maximized while the presence of 

reactions associated with lowly expressed genes is minimized. Agren et al. (Agren et al., 

2012) developed a similar MILP based method, integrative network inference for tissues 

(INIT), which can also integrate diverse omics data to generate context-specific metabolic 

models. In contrast to iMAT, INIT enforces the additional constraint of positive production 

of experimentally determined metabolites based on metabolomics data while building the 

tissue-specific metabolic models. For normal tissues in mammalian systems (unlike 

cancerous tumours), it is inappropriate to use growth or proliferation as the relevant 

objective function. Thus, iMAT and INIT are better suited to generate context-specific 

metabolic models for normal tissues in comparison to methods in the first category. An 

extension of INIT, task‐driven integrative network inference for tissues (tINIT), has been 
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recently proposed which unlike INIT and iMAT enables the user to also specify a set of 

required metabolic functions to be satisfied by final context-specific metabolic model 

(Agren et al., 2014). Thus, tINIT is a MILP based method which also shares principles with 

the first category of LP based methods.  

 The third category includes methods that were envisaged to build mammalian 

tissue-specific metabolic models. These methods integrate diverse omics data and 

literature based annotations to define two sets of reactions, core and non-core, for a 

specific tissue type. Reactions in the core set are highly likely to be functional while those 

in the non-core set are unlikely to be functional in the tissue under consideration. After 

defining the core and non-core set of reactions for a given tissue, these methods attempt 

to iteratively remove each non-core reaction subject to preserving the functionality of the 

core reaction set, and this leads to a tissue-specific metabolic model from a generic 

metabolic model. Some of the methods which fall into this third category include the model 

building algorithm (MBA) (Jerby et al., 2010), the metabolic context-specificity assessed 

by deterministic reaction evaluation (mCADRE) (Wang et al., 2012), fast reconstruction of 

compact context-specific metabolic network model (FASTCORE) (Vlassis et al., 2014) 

and cost optimization reaction dependency assessment (CORDA) (Schultz and Qutub, 

2016).  

 We emphasize that some of the proposed methods to integrate omics data within 

the FBA framework, such as metabolic adjustment by differential expression (MADE) 

(Jensen and Papin, 2011) and temporal expression-based analysis of metabolites (TEAM) 

(Collins et al., 2012), cannot be clearly assigned to any of the above mentioned three 

categories. MADE requires expression data from two or more successive conditions, such 

as a temporal expression profile, to determine differential expression of genes. Based on 

statistically significant changes in expression of genes between successive conditions, 

MADE infers highly and lowly expressed reactions for a sequence of conditions without 

the need for a predefined threshold. Finally, MADE solves a single MILP problem to 

generate context-specific metabolic model that best recapitulates the expression 

dynamics across successive conditions. On the other hand, TEAM is a fusion method 

based on dynamic FBA (Mahadevan et al., 2002) and GIMME to integrate temporal gene 

expression data within the FBA framework to predict time course flux distributions. In 

Supplementary Table 1, we list all the different methods developed so far to integrate 

omics data within the FBA framework. 
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4. Incorporation of Boolean transcriptional regulatory networks to build integrated 

regulatory-metabolic models  

 In the previous section, we discussed several existing methods to integrate multi-

omics data as additional flux constraints within the FBA framework to understand the 

condition-specific regulation of metabolism. Note that such methods are inherently 

descriptive rather than predictive in nature (Covert et al., 2004; Chandrasekaran and 

Price, 2010). That is, such methods are only able to describe the regulation of metabolism 

in conditions with available omics data but cannot predict in conditions lacking omics data. 

Moreover, such methods do not explicitly incorporate available information on 

transcriptional regulatory interactions within the FBA framework, and thus, their 

predictions are restricted to metabolic genes and associated reactions (Covert et al., 

2001; Covert and Palsson, 2002; Covert et al., 2004; Herrgard et al., 2006; Shlomi et al., 

2007; Goelzer et al., 2008; Samal and Jain, 2008; Chandrasekaran and Price, 2010).  

 Large-scale transcriptional regulatory networks (TRNs) have been reconstructed 

for several organisms including Escherichia coli (Gama-Castro et al., 2016), Bacillus 

subtilis (Sierro et al., 2008; Nicolas et al., 2012; Kumar et al., 2015), Saccharomyces 

cerevisiae (Teixeira et al., 2014) and humans (Gerstein et al., 2012) based on diverse 

biological datasets. Our current knowledge of these TRNs is mostly limited to the set of 

interactions and information on the nature of interactions (activating or repressing) 

between transcriptional factors (TFs) and their regulated genes. But inadequate 

information on parameters characterizing most interactions render detailed modelling of 

large-scale TRNs based on differential equations infeasible (Bornholdt, 2005). Boolean 

networks (Kauffman, 1969a; Kauffman, 1969b; Thomas, 1973; Kauffman, 1993), an 

alternate approach first proposed by Stuart Kauffman, has been widely used to study the 

qualitative dynamics of large-scale TRNs (de Jong, 2002). In the Boolean framework, 

each gene in the network is in one of two states, active or inactive. The state of each gene 

at a given time is determined by the state of its regulating gene(s) at the previous time 

based on a Boolean input function. The state of genes’ in a Boolean network are either 

updated synchronously or asynchronously in a discrete time setting. Thus, Boolean 

networks provide a qualitative description of the dynamics of large-scale TRNs (Bornholdt, 

2005).  
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 Integrated regulatory-metabolic models (Covert et al., 2004; Herrgard et al., 2006; 

Goelzer et al., 2008) have been manually reconstructed for some model organisms by 

unifying Boolean models of TRNs with FBA models of metabolic networks (Fig. 3). Covert 

et al. (Covert et al., 2004) were the first to reconstruct such a genome-scale integrated 

regulatory-metabolic model iMC1010 for E. coli, which was obtained by fusing a Boolean 

model of the TRN with the genome-scale metabolic network iJR904. iMC1010 accounts 

for 1010 genes in E. coli of which 104 genes code for 103 TFs and 906 genes code for 

different enzymes in the metabolic network iJR904. Moreover, the activity of genes in 

iMC1010 is determined by Boolean logical functions that depend on the state of its 

regulating TFs in the TRN. In addition, the Boolean logical functions that determine the 

activity of genes in iMC1010 also depend on the presence or absence of certain 

metabolites in the environment, flux of metabolic reactions and certain stimuli such as 

heat shock, stress, etc. Since, constraint-based FBA framework assumes steady state to 

predict the flux distribution in a metabolic network, the method cannot predict internal 

metabolite concentrations. Thus, in iMC1010, the authors use the flux of internal reactions 

as surrogate to model the allosteric regulation of proteins which is dependent on internal 

metabolite concentrations. Similar integrated regulatory-metabolic models have also been 

manually reconstructed for B. subtilis (Goelzer et al., 2008) and S. cerevisiae (Herrgard et 

al., 2006). Note that these integrated regulatory-metabolic models can also predict the 

metabolic phenotype of TF perturbations. 

 Regulatory flux balance analysis (rFBA) (Covert et al., 2001; Covert et al., 2004) is 

a method that has been developed to simulate these integrated regulatory-metabolic 

models incorporating TRNs as Boolean networks. rFBA simulates the growth of an 

organism in batch cultures to predict a series of steady state flux distributions 

corresponding to changes in the growth environment in successive time intervals. For 

each time interval, rFBA determines the state of the regulatory network or activity of genes 

in the integrated model based on logical functions in the Boolean regulatory network 

where the present regulatory state is also influenced by the metabolic state in the previous 

time interval. Next, rFBA uses the predicted activity of genes in the current time interval to 

constrain the flux of associated reactions within the FBA framework and compute the 

steady state flux distribution or metabolic state for the current interval (Fig. 3). Note that 

rFBA also predicts the temporal dynamics of concentration of external substrates 

available for uptake, concentration of secreted by-products and cell growth. It has been 

shown that the application of rFBA to the integrated regulatory-metabolic model iMC1010 
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for E. coli can significantly increase the ability to predict knockout phenotypes across 

diverse environmental conditions (Covert et al., 2004).  

 One limitation of rFBA is that it arbitrarily chooses one optimal flux distribution as 

the metabolic state of the integrated model from a space of alternate optimal flux 

distributions at each time interval, and steady-state regulatory flux balance analysis (SR-

FBA) (Shlomi et al., 2007) is a MILP based method which tries to overcome this limitation. 

Another limitation of using rFBA is that constraint-based methods do not predict the 

kinetics of internal metabolite concentrations which is important to understand the 

allosteric regulation of metabolism. On the other hand, detailed kinetic models 

(Chassagnole et al., 2002; Bettenbrock et al., 2007) can properly account for allosteric 

regulation but such models are limited to specific metabolic pathways due to paucity of 

kinetic data. For example, such a detailed kinetic model (Bettenbrock et al., 2007) with 

less than 50 reactions has been built to study carbon catabolite repression in E. coli. 

Covert et al. (Covert et al., 2008) have developed a hybrid framework, integrated FBA 

(iFBA), which combines rFBA for genome-scale networks and kinetic models for smaller 

well characterized pathways to improve the predictive ability of integrated models.  

 

5. Automated reconstruction of integrated regulatory-metabolic models  

 In the previous section, we reviewed manually reconstructed integrated regulatory-

metabolic models where transcriptional regulatory interactions is represented as Boolean 

rules. However, manual reconstruction of Boolean models of TRNs from available 

information on interactions between TFs and their regulated genes can be a slow and 

tedious process. Firstly, it is extremely difficult to infer a single well-defined set of Boolean 

logical functions for genes in the TRN based on experimentally determined expression 

states in different conditions (Henry et al., 2013). Secondly, the Boolean approximation 

where each gene can have only two states, active or inactive, is an over-simplified view of 

the system that is inadequate to capture the complex regulation of enzymes in many 

situations. Thus, Boolean network based integrated regulatory-metabolic models have 

been manually reconstructed for only three organisms (Covert et al., 2004; Herrgard et al., 

2006; Goelzer et al., 2008) to date.  

 On the other hand, large-scale sequencing projects such as ENCODE and 

modENCODE (Gerstein et al., 2010; mod et al., 2010; Gerstein et al., 2012) have 
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generated vast amounts of regulatory information for humans and model organisms, 

mainly, in the form of RNA-seq and ChIP-seq data in diverse biological contexts. 

Moreover, with the rapid fall in the cost of sequencing, experimental biologists are 

routinely generating RNA-seq and ChIP-seq data for their pet organisms. RNA-seq data 

gives information on mRNA abundances or gene expression in a given condition and 

ChIP-seq data on genome-wide binding profile for TFs or transcriptional regulatory 

interactions. Combination of ChIP-seq and RNA-seq data can be used to reconstruct the 

TRN of an organism, and thus, such information can be incorporated within genome-scale 

metabolic reconstructions to build integrated regulatory-metabolic models (Fig. 4). Given 

the slow pace of manual reconstruction process, automated approaches combining 

information on regulatory network architecture and gene expression data are best suited 

to address the challenge of turning the deluge of high-throughput data into predictive 

systems biology models. 

 In this direction, probabilistic regulation of metabolism (PROM) (Chandrasekaran 

and Price, 2010), is the only automated method to date. PROM combines information on 

TRN architecture and gene expression data within the FBA framework to build an 

integrated model. In PROM, the set of interactions between TFs and target genes in the 

TRN is used along with gene expression data across multiple conditions to predict the 

likelihood of the expression of a target gene given the expression state of the controlling 

TF. In PROM, such probabilities are then used to constrain the maximum allowable flux 

through reactions associated with the target genes before computing the flux distribution 

using FBA. Thus, PROM can predict the consequences of TF perturbations unlike 

methods in the first approach. Also, the prediction accuracy achieved by PROM was 

similar to the manually reconstructed integrated regulatory-metabolic model of E. coli.  

 Nevertheless, the existing methods including PROM have limitations that provide 

scope for future improvements. Firstly, the existing automated method does not make use 

of information on environment-dependent or condition-specific regulation. Secondly, the 

existing methods are designed to integrate high-confidence regulatory interactions from 

manually reconstructed TRNs. In contrast, regulatory interactions inferred from ChIP-seq 

data are likely to be very noisy, and future methods should address this challenge. Thirdly, 

existing methods do not account for available information on feedback regulation of 

enzymes by intracellular metabolites. Addressing this challenge may require transition to 

hybrid models where a combination of constraint-based and kinetic approaches will be 

necessary to simulate metabolic networks (Covert et al., 2008). Finally, the existing 
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automated method to build integrated regulatory-metabolic model is static in time and not 

designed to incorporate temporal expression data. We expect future automated methods 

will overcome some of the above-mentioned limitations. 

 

6. Conclusion  

 In this review, we have presented an overview of three different approaches for 

integrating available regulatory information within constraint-based FBA models of 

genome-scale metabolic reconstructions. Previous reviews (Blazier and Papin, 2012; 

Hyduke et al., 2013; Estévez and Nikoloski, 2014) in this area have largely focused on the 

first approach where considerable research has led to several methods where omics data 

is directly integrated within the FBA framework as additional flux constraints 

(Supplementary Table 1). Such methods including GIMME (Becker and Palsson, 2008), 

iMAT (Shlomi et al., 2008), INIT (Agren et al., 2012) and MBA (Jerby et al., 2010) have 

been successful in building context- and tissue-specific metabolic models. Notably, the 

methods in the first approach are rather descriptive than predictive as they do not 

explicitly incorporate the available information on regulatory interactions in the TRN 

(Chandrasekaran and Price, 2010). In this review, we also focus on two other approaches 

to build integrated regulatory-metabolic models. First such approach involves manual 

reconstruction of integrated regulatory-metabolic models where transcriptional regulatory 

information is represented as Boolean networks (Covert et al., 2004; Herrgard et al., 2006; 

Goelzer et al., 2008). Such Boolean based integrated regulatory-metabolic models can be 

studied using rFBA and allied approaches (Shlomi et al., 2007; Samal and Jain, 2008). 

Since manual reconstruction of integrated models is a painstaking and time consuming 

process, the need of the hour is to develop automated methods to incorporate the flood of 

next generation sequencing data such as RNA-seq and ChIP-seq within genome-scale 

metabolic reconstructions to build integrated regulatory-metabolic models. Such 

automated methods will eventually enable the systems biology community to reconstruct 

whole-scale models (Karr et al., 2012) for several organisms.  
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Figure Captions 

Figure 1: Overview of the FBA framework. (a) Genome-scale metabolic network 

reconstruction contains the list of metabolic reactions in an organism including the 

transport reactions and the biomass reaction. Gene-Protein-Reaction (GPR) associations 

link genes to encoded enzymes catalysing various reactions in the network. (b) The list of 

reactions along with the stoichiometric coefficients is mathematically represented in the 

form a matrix � where rows correspond to metabolites and columns to reactions in the 

network. In any metabolic steady state, the stoichiometric constraints lead to a system of 

mass-balance equations relating various reaction fluxes in the network. Additional 

constraints based on thermodynamic and other considerations bound the possible range 

of fluxes through specific reactions. (c) The stoichiometric and additional constraints lead 

to an under-determined system of equations with a large space of allowable solutions. 

FBA uses LP to find a particular solution within the allowable solution space that 

maximizes the biomass production. Here, the schematic figure shown in (c) is inspired 

from various sources including Orth et al. (Orth et al., 2010). 

Figure 2: Integration of gene expression data within FBA framework using switch- 

and valve-based methods. Switch-based methods classify genes as active and inactive 

based on a threshold on expression value, and this leads to a binary classification of 

upper bounds on associated reaction fluxes. In the example network on the left, genes Gc 

and Gd are inactive, and thus, the upper bound on flux through their associated reactions 

R3 and R4 are set to zero (or, in other words, reactions R3 and R4 are switched off). In 

contrast, valve-based methods use normalized gene expression to set upper bounds on 

maximum allowable reaction fluxes. In the example network on the right, the magnitude of 

upper bounds on different reaction fluxes is represented via blue boxes with varying 

widths. Note that unlike in the switch-case, the upper bound on flux through reactions R3 

and R4 are not set to zero in the valve-case. 
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Figure 3. Incorporation of Boolean transcriptional regulatory networks within FBA 

framework to build integrated regulatory-metabolic models. In this approach, the 

known TRN of an organism is captured in a Boolean model where the activity of each 

gene is determined by the state of its regulating genes coding for TFs. For example, gene 

Gc coding for enzyme Pc associated with reaction R3 is controlled by transcription factors 

TF2 and TF3, where TF3 represses the transcription of Gc while TF2 activates it. Thus, the 

Boolean rule for gene Gc captures this combinatorial regulation by TF2 and TF3. The figure 

also shows a representative metabolic network where constituent reactions are directly 

controlled by the state of genes coding for enzymes and indirectly controlled by genes 

coding for TFs. Such an integrated regulatory-metabolic model can be investigated using 

the rFBA (Covert et al., 2001; Covert et al., 2004) approach. 

Figure 4. Automated reconstruction of integrated regulatory-metabolic models. 

Integrated regulatory-metabolic models are holistic and predictive models that capture the 

complex interactions between transcriptional regulatory network (TRN) and metabolic 

network of an organism. Such integrated regulatory-metabolic models can be 

reconstructed based on information on the TRN derived from genome-wide ChiP-seq 

experiments and gene expression profile from microarray or RNA-seq experiments. 

Efficient automated algorithms are then employed to integrate diverse regulatory 

information into the genome-scale metabolic network to generate high quality integrated 

regulatory-metabolic models.  

 

Supplementary Material  

Supplementary Table 1: Comprehensive list of methods proposed so far to integrate 

omics data within constraint-based metabolic models. Note that some of the methods 

listed here cannot be clearly assigned to any of the three categories discussed in section 

3 of the main text. 
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