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Abstract. Starting from an existing advanced motorcycle dynamics model, which allows simulation

of reasonably general motions and stability, modal and response computations for small perturbations

from any trim condition, improvements are described. These concern (a) tyre/road contact geometry,

(b) tyre shear force and moment descriptions, as functions of load, slip and camber, (c) tyre relax-

ation properties, (d) a new analytic treatment of the monoshock rear suspension mechanism with

sample results, (e) parameter values describing a contemporary high performance machine and rider,

(f) steady-state equilibrium and power checking and (g) steering control. In particular, the “Magic

Formula” motorcycle tyre model is utilised and complete sets of parameter values for contemporary

tyres are derived by identification methods. The new model is used for steady turning, stability, design

parameter sensitivity and response to road forcing calculations. The results show the predictions of the

model to be in general agreement with observations of motorcycle behaviour from the field and they

suggest that frame flexibility remains an important design and analysis area, despite improvements

in frame designs over recent years. Motorcycle rider parameters have significant influences on the

behaviour, with results consistent with a commonly held view, that lightweight riders are more likely

to suffer oscillation problems than heavyweight ones.
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1. Introduction

The handling qualities of motorcycles are often of great importance. They affect

the pleasure to be gained from the rider–machine interactions and the safety of

the rider. Self-steering action is crucial with single track vehicles and rider control

is primarily by steering torque, so-called free-control [1]. A consequence of the

free steering system is that motorcycles are oscillatory. Several modes of motion

potentially have small damping factors. Therefore much attention must be directed

towards controlling the oscillatory tendencies, throughout the operating range. Also,

it is desirable that motorcycles are responsive to the rider’s commands and stability

should not be pursued without reference to other qualities.

In straight running, motorcycles are substantially symmetric and in-plane and

out-of-plane motions are decoupled at first order level [1, 2]. In cornering, in-

plane and out-of-plane cross-coupling makes any effective analysis of the dynamics

complicated. Automated multibody dynamics analysis software [3–7] has opened

up the topic significantly in recent years. The steady turning problem can be solved,
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possibly with the aid of a stabilising steering controller, and modal analysis can be

completed for small perturbations from any equilibrium “trim” state.

Accuracy of predicted behaviour depends, not only on effective conceptual mod-

elling and multibody analysis, but also on good parameter values. Central issues

in modelling include the representations of frame flexibilities, tyre–road contact

geometry and tyre shear forces. Many previous findings relate to motorcycle and

tyre descriptions which are now somewhat dated and to tyre models which have

a limited domain of applicability. It is therefore of interest (i) to obtain a para-

metric description of a modern machine, (ii) to utilise a more comprehensive tyre

force model, with parameter values to correspond to a modern set of tyres, (iii)

to determine steady turning, stability, response and parameter sensitivity data for

comparison with older information, to determine to what extent it remains valid,

and (iv) to better understand the design of modern machines. The paper is subse-

quently an account of such work. Novel analysis of a “monoshock” rear suspension

system is also included.

2. Parametric Description of a Modern Motorcycle

The authors are currently engaged in a measurement campaign to obtain the rele-

vant parameters of a Suzuki GSX-R1000K1 machine. Such a motorcycle has been

disassembled and many of its parts have been measured, starting with the lighter

ones. At this stage, the campaign is incomplete. In particular, the frame stiffness

and damping parameters used and the location of the elastic centre are currently

only estimates.

2.1. GEOMETRY AND MASSES

The workshop manual for the motorcycle includes pictures to scale and key dimen-

sions, like the wheelbase and the steering head angle. Joints between components

at the steering head and the swing arm pivot can be identified there and many key

points, including those related to the monoshock rear suspension, can be located

with reasonable precision from these pictures. A scaled diagrammatic representa-

tion of the motorcycle is shown in Figure 1, the corresponding parameter values

being included in an Appendix. The front frame has been measured separately to

give the points p3 and p5. The point p4 is along the line of the lower front fork

translation relative to the upper forks. The estimated location p2 is the elastic centre

of the rear frame with respect to a moment perpendicular to the steer axis.

The rider’s total mass is taken as 72 kg, 62% of which is associated with the

upper body. The masses of the hands and half of the lower arms may be considered

to be part of the steering system. The rider parameters derive from bio-mechanical

data [8], accounting for his posture on the machine.

Circles representing the body mass centres are in proportion to the masses

concerned, which are known through straightforward weighing.
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Figure 1. Scaled diagrammatic motorcycle in side view.

2.2. INERTIAS AND MASS CENTRES

Wheel and tyre inertias have been obtained by timing oscillations of bi-filar and

tri-filar suspension arrangements, utilising axial symmetry in each set-up. Similar

bi-filar suspension systems have been used separately for the front and rear frames

(Figure 2). Each of these is assumed to have a plane of symmetry and it is clear that

the front frame principal axes, in the plane of symmetry, are along and perpendicular

to the line of the forks. Oscillation periods, geometric dimensions and the mass of

the suspended body lead simply to the moment of inertia about the rotation axis

and standard transformations allow the determination of principal inertias and axes

for the more complex rear frame [9].

Recent measurements on a driving simulator [10] provide estimates of the

contributions to the front frame inertia, steering stiffness and steering damping

that arise from the rider’s arms and hands, corresponding to relaxed and tense

riding. These can be added to the measured values if it is considered appropri-

ate [11]. The swing arm inertias are small enough to be obtained by estimation

based on the mass centre location and the dimensions. The wheels have their mass

centres at their geometric centres. Other mass centre locations were found using

plumb lines and taking photographs (Figure 2). Relevant values are given in the

appendix.

2.3. STIFFNESS AND DAMPING PROPERTIES

Springs and dampers were tested in a standard dynamic materials testing machine

[12]. The maximum actuator velocity available was about 0.25 m/s, which con-

strained the damper characteristic measurements. Uni-directional forcing of the

steering damper up to the maximum rate of the actuator yielded a substantially

linear force/velocity relationship with slope 4340 N/(m/s). Using the effective
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Figure 2. Bifilar suspended motorcycle rear frame for inertia measurement.

moment arm of the damper (0.04 m) to convert this value to an equivalent rotational

coefficient gives a value, 6.944 Nm/(rad/s).

The dimensions of the single rear steel spring, from the monoshock suspension

were measured and the standard helical spring formula, k = Gd4/(64R3n), was

applied to calculating the rate, k, as 55 kN/m. The gas filled damper contributes

some suspension preload and a small rate, determined from the test machine via

static measurements as 3.57 kN/m. The damper unit was stroked at full actuator
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performance first in compression and then in extension, achieving velocities up to

about 0.13 m/s. Allowing for the gas pressure forces in the processing, the damping

coefficient in compression was 9.6 kN/(m/s) and in rebound 13.7 kN/(m/s). Front

spring and damper coefficients are estimates, at this stage. Suspension limit stops are

included at each end, modelled as fifth powers of displacement from stop contact.

The relevant displacements are known from examination of the parts and from

information given in the workshop manual.

The torsional stiffness of the main frame, between the steering head and the

power unit, remains to be measured. It is clear from the structural design and

materials used that the frame is considerably stiffer than was the norm for tubular

framed motorcycles of some years ago. In those cases, it was established that the

frame flexibility was an essential contributor to the stability of the wobble mode,

in particular [13, 14]. It remains to be seen how significant this area is for modern

machines. The torsional stiffness assumed, at 105 Nm/rad, is 3.5 times that measured

statically for a Yamaha 650S [15] and 2.9 times that measured at about the same

time by Koenen [2]. Tyre radial stiffnesses come directly from [7].

The rider’s upper body has roll freedom relative to the main frame, while the

lower body is part of the main frame. The upper body is restrained by a parallel

spring damper system. Stiffness and damping parameters are chosen in alignment

with the experimental results of Nishimi et al [16], obtained by identifying “rider”

parameters in forced vibration on a mock motorcycle frame. The decoupled natural

frequency of the rider upper body in roll is 1.27 Hz and the corresponding damping

factor is 0.489. According to this model, rider resonance will not be apparent due to

the high damping factor and it will not be tuned to the machine oscillations, where

these are at all vigorous.

2.4. AERODYNAMICS

Aerodynamic drag, lift and pitching moment data come from a Triumph motorcycle

of similar style and dimensions to the GSX-R1000 [1]. This is steady-state drag

force, lift force and pitching moment data from full scale wind tunnel testing, with

a prone rider.

3. Tyre–Road Contact Modelling

The geometry of the contact between the front tyre and the ground is a relatively

complex part of the motorcycle modelling. It is also important to the behaviour of

the machine. It has been common to represent the tyre as a thin disc, with the contact

point migrating circumferentially for larger camber and steer angles, but Cossalter

et al have pioneered the inclusion of tyre width in their descriptions [7, 17–19].

If a disc model is used, it needs to be augmented with an overturning moment

description [2, 5]. This is not necessary with a thick tyre model, since the lateral

migration of the contact point then occurs automatically and the overturning mo-

ment is a consequence of that movement. A wide tyre with a circular cross-section
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Figure 3. Diagrammatic three-dimensional front wheel contact geometry.

crown is now modelled. In addition to making the overturning moment automatic,

longitudinal forces applied to the cambered tyre will lead to realistic aligning

moments appearing automatically. A necessary test for the wide tyre model is

that it gives the same results as the thin tyre model, when physically equivalent

systems are being represented. This test has been applied, with some significant

consequences.

To define each tyre/ground contact point (Figures 3 and 4) the vertical and the

wheel spindle directions are used in a vector (cross) product to describe the longitu-

dinal direction, with respect to the wheel. Similarly, the wheel radial direction, OC

in Figure 3, comes from combining the longitudinal and wheel spindle directions.

The vector OC is of fixed length and so is completely specified. G is vertically below

C and the difference between the tyre crown radius and the distance CG defines

the change in the tyre carcass compression from the nominal state and hence the

change of the wheel load from the nominal, via the tyre radial stiffness. If the road

is profiled, the road height is accounted for in working out the wheel load. The

vector OG = OC + CG defines the contact point, which belongs to the wheel but

moves within it. G remains at road surface height but the tyre load cannot become

negative. If the tyre leaves the ground, the shear forces are zero, whatever the other

conditions are. Tyre forces are applied to the point G, in each case.

The longitudinal slip is the rearward component of the material contact point

velocity divided by the absolute value of the rolling velocity, the latter being the

forward velocity of the contact point (or the crown centre point, since these are

the same). The contact point is defined by its coordinates in the parent body of the

wheel and it is de-spun relative to the material contact point. Thus the longitudinal
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Figure 4. Diagrammatic two-dimensional front wheel contact geometry.

slip is given by an expression of the form:

κ = −(rolling velocity + spin component of longitudinal velocity)

/abs(rolling velocity)

The slip angle is the arctangent of the ratio of the (negative) lateral velocity of the

tyre contact centre point to the absolute value of the rolling velocity.

In developing this new model from the former one [5], in which the wheels

were represented as thin discs, subtle differences between the root locus predic-

tions of the old and new versions were observed in circumstances which were at that

stage thought physically equivalent. Such differences were found to be associated

with the former description of the slip angles as deriving from the lateral veloc-

ity components of the disc tyre contact points. When the wheel camber angle is

changing, these points have a small lateral velocity component not connected with

sideslipping, since with the real tyre, the contact point moves around the circular

section sidewall of the tyre. The former model would have provided a more accurate

description if it had used the crown centre point velocities to derive the slip angles.

4. Tyre Forces and Moments

The basis for the new tyre modelling is the “Magic Formula” [20–22]. The original

development was for car tyres [23], in which context, it has become dominant. The
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extension for motorcycle tyres is relatively recent, with substantial changes being

necessary to accommodate the completely different roles of sideslip and camber

forces in the two cases. In each case, the “Magic Formula” is a set of equations

relating load, slip ratio (longitudinal slip), slip angle and camber angle to longitudi-

nal force, sideforce and aligning moment (and possibly overturning moment), with

constraints on the parameters to prevent the behaviour from becoming unreasonable

in any operating conditions. Only very limited parameter values can be found in

the literature, but a certain amount of relevant experimental data is available. Such

data can be used for parameter identification.

A complete set of parameter values for a given tyre will allow the calculation of

the steady-state force and moment system for any realistic operating condition. It

is required here to determine such a full set of parameters for modern front and rear

high performance motorcycle tyres, imposing the condition that the modelled tyres

have left/right symmetry. Test data used shows bias and it is necessary to ignore

such bias and to omit certain offset terms from the “Magic Formula” relations, in

order to model the generic, rather than the particular. Significant published data

can be found in [2, 20–25]. Naturally, the older data refers to older tyres, while the

newer data relates to contemporary ones. The main sources relied upon here are

[20, 23]. The other sources are used for checking purposes, as appropriate.

4.1. LONGITUDINAL FORCES IN PURE LONGITUDINAL SLIP

From Pacejka [23], with the simplifications explained above, the “Magic Formula”

expressions for the pure longitudinal slip case are:

d fz = (Fz − Fz0)/Fz0 (1)

Fx0 = Dx sin[Cx arctan{Bxκ − Ex (Bxκ − arctan(Bxκ))}] (2)

Dx = (pDx1 + pDx2d fz)Fz (3)

Ex =
(

pEx1 + pEx2d fz + pEx3d f 2
z

)

· (1 − pEx4sgn(κ)) (4)

Kxκ = Fz(pK x1 + pK x2d fz) · exp(pK x3d fz) (5)

Bx = Kxκ/(Cx Dx ) (6)

which must satisfy the constraints Dx > 0 and Ex < 1.

Corresponding test results for a 160/70 ZR17 tyre are shown in [23]. The se-

quential quadratic programming constrained optimisation routine “fmincon” was

employed1 to iteratively improve the elements of a starting vector of parameters

1 Alternatively, for unconstrained optimization, the Nelder Mead Simplex routine “fminsearch”

was employed. Also occasionally, it was necessary to “invent” data, outside the range of experimental

results available, to force the identified parameters to give sensible predictions over a wide range of

operating circumstances, a problem also referred to in [26]. Often, reasonably accurate starting values

for the parameters were needed to ensure convergence to the optimal solution. The methods need to

be judged by the results obtained.
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Table I. Best-fit parameter values for longitudinal force from 160/70 tyre.

Cx pDx1 pDx2 pEx1 pEx2 pEx3 pEx4 pK x1 pK x2 pK x3

1.6064 1.2017 −0.0922 0.0263 0.27056 −0.0769 1.1268 25.94 −4.233 0.3369

Figure 5. Tyre longitudinal force results for a 160/70 tyre from [23] (thick lines) with best-fit

reconstructions (thin lines).

appearing in Equations (1)–(5). The nominal normal load Fz0 was chosen to be

1600 N based on typical usage of such a tyre. That choice is far from critical,

in fact, a change leading to compensatory changes in other parameters. Optimal

parameters are given in Table I and the fits are illustrated in Figure 5. The two

constraints are satisfied for loads less than 20890 N, which includes all practical

circumstances.

Longitudinal force results are not available for any other tyres, so lateral forces

are considered next.

4.2. LATERAL FORCES IN PURE SIDESLIP AND CAMBER

In exactly the same way, the relevant equations for the lateral force are:

Fy0 = Dy sin[Cy arctan{Byβ − Ey(Byβ − arctan(Byβ))}

+ Cγ arctan{Bγ γ − Eγ (Bγ γ − arctan(Bγ γ ))}] (7)
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Figure 6. Tyre lateral force results for a 160/70 tyre from [23] (thick lines) with best-fit

reconstructions (thin lines). Camber angles 5, 0, −5, −10, −20, −30◦.

Dy = Fz pDy1 exp(pDy2d fz)/(1 + pDy3γ
2) (8)

Ey = pEy1 + pEy2γ
2 + pEy4γ sgn(β) (9)

K yα = pK y1 Fz0 sin[pK y2 arctan{Fz/((pK y3 + pK y4γ
2)Fz0)}]

/(1 + pK y5γ
2) (10)

By = K yα/(Cy Dy) (11)

K yγ = (pK y6 + pK y7d fz)Fz (12)

Bγ = K yγ /(Cγ Dy) (13)

with the constraints Cy + Cγ < 2, Cy > 0, Dy > 0, Ey < 1, Cg > 0, Eg < 1.

For the same tyre as before, the parameter optimisation process, with the effective

friction coefficient limited to values no greater than 1.3, gives the results illustrated

in Figure 6 with parameter values given below in Table II. For this particular tyre,

pK y7 in Equation (12) was set to zero, because experimental results are only available

Table II. Best-fit parameter values for lateral force from 160/70 (top), 120/70 (middle) and

180/55 (bottom) tyres

Cy pDy1 pDy2 pDy3 pEy1 pEy2 pEy4 pK y1

0.93921 1.1524 −0.01794 −0.06531 −0.94635 −0.09845 −1.6416 26.601

0.8327 1.3 0 0 −1.2556 −3.2068 −3.998 22.841

0.9 1.3 0 0 −2.2227 −1.669 −4.288 15.791

pK y2 pK y3 pK y4 pK y5 Cγ pK y6 pK y7 Eγ

1.0167 1.4989 0.52567 −0.24064 0.50732 0.7667 0 −4.7481

2.1578 2.5058 −0.08088 −0.22882 0.86765 0.69677 −0.03077 −15.815

1.6935 1.4604 0.669 0.18708 0.61397 0.45512 0.013293 −19.99
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Figure 7. Tyre lateral force results for 120/70 tyre from [20] (thick lines) with best-fit recon-

structions (thin lines). Camber angles 0, 10, 20, 30, 40, 45◦.

at non-zero camber angle for one load. This is consistent with results obtained for

120/70 and 180/55 tyres (see below), for which pK y7 is relatively small, being

positive in one case and negative in the other. All the constraints are satisfied for

camber angles less than 70◦ in magnitude.

Next, the lateral force fitting is repeated for the experimental results included

in [20] for a 120/70 front tyre and a 180/55 rear tyre, first recognising that the

former results suffer from an unreasonable positive force offset, especially for the

smaller loads, which would imply a friction coefficient greater than 2, if they were

true. To avoid responding too strongly to these apparently spurious features, Dy is

allowed to be no greater than 1.3 times Fz . Also, the measurements for slip angles

greater than +5◦ are ignored. The previous rear tyre value of Fz0 as 1600 N is

retained while the non-critical value for the front tyre was chosen as 1100 N. Best-

fit parameters are shown in Table II, with Figures 7 and 8 showing the quality of the

fits for the front and rear tyres respectively. All the constraints are satisfied by these

parameters.
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Figure 8. Tyre lateral force results for 180/55 tyre from [20] (thick lines) with best-fit recon-

structions (thin lines). Camber angles 0, 10, 20, 30, 40, 45◦.

4.3. ALIGNING MOMENTS IN LATERAL SLIP AND CAMBER

Aligning moment results are included in [23] for the 160/70 tyre and in [20] for

120/70 and 180/55 tyres. Three loads are covered in the former but only two in

the latter, which makes the model very heavy in parameters for the amount of

experimental data available. In setting the parameters for the 160/70 tyre of [23]

assuming the full quadratic dependency of Bt on load, the fitting is good within the

load range used for the measurements but the extrapolation is poor, with constraint

violations at low and high loads. With linear dependency, the fitting is almost as good

and the extrapolation problem can be eliminated. Consequently, Bt is considered

linear with load. Even so, there are many parameter combinations which give

almost equally good fits to the limited data. It is advantageous to use some physical

reasoning to guide the choice between the alternatives. The product of Bt , Ct and

Dt is the aligning moment stiffness of the tyre. According to the “Brush Model”

[23], the aligning moment stiffness is proportional to load to the power 1.5, so that

feature is used to aid the choice of the secondary parameters qBz1 and qBz2, see (18).

It turns out to be quite feasible to match that characteristic closely. Also, as before,
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Table III. Best-fit parameter values for aligning moment from 160/70 (top), 120/70 (middle)

and 180/55 tyre (bottom)

Ct qBz1 qBz2 qBz5 qBz6 qBz9 qBz10

1.3115 10.354 4.3004 −0.34033 −0.13202 10.118 −1.0508

1.0917 10.486 −0.001154 −0.68973 1.0411 27.445 −1.0792

1.3153 10.041 −1.61e-8 −0.76784 0.73422 16.39 −0.35549

qDz1 qDz2 qDz3 qDz4 qDz8 qDz9 qDz10

0.20059 0.05282 −0.21116 −0.15941 0.30941 0 0.10037

0.19796 0.06563 0.2199 0.21866 0.3682 0.1218 0.25439

0.26331 0.030987 −0.62013 0.98524 0.50453 0.36312 −0.19168

qDz11 qEz1 qEz2 qEz5 qH z3 qH z4

0 −3.9247 10.809 0.9836 −0.04908 0

−0.17873 −0.91586 0.11625 1.4387 −0.003789 −0.01557

−0.40709 −0.19924 −0.017638 3.6511 −0.028448 −0.009862

right/left symmetry and zero offsets are assumed, making qEz4, qH z1 and qH z2 zero.

The relevant “Magic Formula” Equations [23] are:

Mz0 = Mzt0 + Mzr0 (14)

Mzt0 = −Dt cos[Ct arctan{Btβ − Et (Btβ − arctan(Btβ))}]

/
√

1 + β2 · Fy0,γ=0 (15)

Mzr0 = Dr cos[arctan(Br (β + SHr )] (16)

SHr = (qH z3 + qH z4d fz)γ (17)

Bt = (qBz1 + qBz2d fz)(1 + qBz5|γ | + qBz6γ
2) (18)

Dt = Fz(R0/Fz0)(qDz1 + qDz2d fz)(1 + qDz3|γ | + qDz4γ
2) (19)

Et = (qEz1 + qEz2d fz){1 + qEz5γ (2/π ) arctan(BtCtβ)} (20)

Br = qBz9 + qBz10 ByCy (21)

Dr = Fz R0{(qDz8 + qDz9d fz)γ + (qDz10 + qDz11d fz)γ |γ |}

/
√

1 + β2 (22)

with the constraints: Bt > 0, Ct > 0 and Et < 1. For the 160/70 tyre, qH z4

in Equation (17) and qDz9 and qDz11 in Equation (22) are set to zero, because

experimental results are only provided at non-zero camber angle for one load.

The tyre crown radius, R0, for each tyre derives from the cross-sectional geome-

try as 0.08 m for 160/70, 0.06 m for 120/70 and 0.09 m for 180/55 [7]. Identification

of the remaining parameters using “fmincon” as before gives the values in Table

III. Constraint violations occur only for loads greater than 11 kN, sideslip angle

greater than 45◦ or camber angle greater than 60◦. These violations are outside the

practical running range. The fit qualities are shown in Figures 9–11.
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Figure 9. Tyre aligning moment results for 160/70 tyre from [23] (thick lines) with best-fit

reconstructions (thin lines). Camber angles 5, 0, −5, −10, −20, −30◦.

Figure 10. Tyre aligning moment results for 120/70 tyre from [20] (thick lines) with best-fit

reconstructions (thin lines). Camber angles 0, 10, 20, 30, 40, 45◦.

Figure 11. Tyre aligning moment results for 180/55 tyre from [20] (thick lines) with best-fit

reconstructions (thin lines). Camber angles 0, 10, 20, 30, 40 and 45◦.
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4.4. COMBINED SLIP RESULTS

4.4.1. Longitudinal Forces

In the “Magic Formula” scheme, the loss of longitudinal force due to sideslipping is

described by a “loss function” to be applied to the pure slip force described above.

Presuming as before that the generic tyres of interest will be symmetric (SH xα = 0)

and, in the absence of any indication to the contrary, assuming that wheel camber

will not affect the loss of longitudinal force due to sideslipping (rBx 3 = 0), the

equations describing the loss are:

Fx = cos[Cxα arctan(Bxαβ)]Fx0 (23)

Bxα = rBx1 cos[arctan(rBx2κ)] (24)

with the constraints that Fx > 0 and Bxα > 0.

The only relevant combined slip data available is from [23] for the 160/70 tyre

for 3 kN load and zero camber angle. The same parameter identification process

as before yielded the best values as rBx 1 = 13.476; rBx 2 = 11.354; Cxα = 1.1231,

with the fit quality shown in Figure 12. The constraint on Bxα is always satisfied

while that on Fx is satisfied for slip angles less than 23◦, which is considered to

provide an adequate operating range.

4.4.2. Lateral Forces

In the same way (with SV yκ = SH yκ = rBy4 = 0), the equations describing the loss

of lateral force due to longitudinal slip are:

Fy = cos[Cyκ arctan(Byκκ)]Fy0 (25)

Byκ = rBy1 cos[arctan{rBy2(β − rBy3)}] (26)

with constraints Fy > 0 and Byk > 0.

Data again comes from Pacejka [23] and is for the 160/70 tyre at 3 kN and zero

camber. It yields the best-fit parameters as rBy1 = 7.7856, rBy2 = 8.1697, rBy3 =

−0.05914 and Cyκ = 1.0533. The fit quality is shown in Figures 13 and 14.

4.4.3. Aligning Moments

The relevant equations (with s = SV yκ = SH yκ = 0) are:

Mz = −Dt cos[Ct arctan{Btλt − Et (Btλt − arctan(Btλt ))}]

/
√

1 + β2 · Fy,γ=0 + Mzr (27)

Fy,γ=0 = cos[Cyκ arctan(Byκκ)] · Fy0,γ=0 (28)

Mzr = Dr cos[arctan(Brλr )] (29)

λt =

√

β2 + (Kxκκ/K yα,γ=0)2sgn(β) (30)

λr =

√

(β + SHr )2 + (Kxκκ/K yα,γ=0)2sgn(β + SHr ) (31)
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Figure 12. Influence of sideslip on longitudinal force for 160/70 tyre at 3kN load and zero

camber from [23] (thick lines) with best-fit reconstructions (thin lines). Theoretical curves for

+2 and −2◦ camber are indistinguishable.

The term s · Fx in the original [23] is omitted, since s here is zero, by virtue of

the reference point for moments being the actual contact point.

Expressions for Kxκ , Fy0, Kyα, Bt , Et , Dr , Cyk and Byκ are given by (5), (7), (10),

(18), (20), (21), (22), (25) and (26) respectively, and Ct is given in Table III. Thus

further parameter identification is unnecessary and the combined slip moments can

be predicted from what is known already. The aligning moment for the 160/70 tyre

at 3 kN load, as a function of longitudinal slip, for several slip angles, is shown in

Figure 15.

4.5. LONGITUDINAL FORCE MODELS FOR 120/70 AND 180/55 TYRES

Longitudinal forces for 120/70 and 180/55 tyres were not measured in [20]. In

order to complete a general description of those tyres, it is necessary to make up,

using the best evidence available, appropriate parameter values to describe their

properties. The strategy for doing this is to use the 160/70 tyre as a model and

to scale its data to obtain those for the other tyres. Longitudinal pure slip param-

eters for the 160/70 tyre are given above in Table I, while those for pure lateral

slip appear in Table II. In particular, the ratio of peak forces Dx /Dy is evaluated
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Figure 13. Influence of sideslip on lateral force for 160/70 tyre at 3 kN load and zero camber

from [23] (thick lines) with best-fit reconstructions (thin lines).

Figure 14. Influence of sideslip on longitudinal and lateral forces for 160/70 tyre at 3 kN load

and zero camber from [23] (thick lines) with best-fit reconstructions (thin lines).
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Figure 15. Aligning moment for 160/70 tyre at 3 kN load and zero camber as a function of

longitudinal slip for each of four sideslip cases.

for 1, 2 and 3 kN load as 1.066, 1.028 and 0.989 respectively. The same ratios

are assumed to apply to the 120/70 and 180/55 tyres, with their shapes assumed

to be the same as those for the 160/70 tyre. The only new parameters needed are

pDx 1 and pDx 2, with values 1.381 for 120/70 and 1.355 for 180/55 and −0.04143

for 120/70 and −0.0603 for 180/55 respectively. Longitudinal force peaks are

about 1.33 times the tyre load in the usual operating range of loads, which is

compatible with acceleration and braking performances obtainable from a contem-

porary motorcycle. Parameters apart from pDx 1 and pDx 2 in Table I apply to this

case.

4.6. COMBINED SLIP FORCE MODELS FOR 120/70 AND 180/55 TYRES

In the same way, the combined slip parameters given for the 160/70 tyre in Sections

4.4.1 and 4.4.2 are regarded as describing the behaviour of the 120/70 and 180/55

tyres also. Combination of longitudinal force under pure longitudinal slip with the

loss function data from Section 4.4.1 and of lateral force under pure lateral slip

with the loss function data of Section 4.4.2 allows the prediction of combined slip

forces generally.
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4.7. CHECKING AGAINST OTHER DATA

The complete tyre model has been used to calculate the force and moment system

corresponding to running conditions for which data has been published [2, 7, 24, 25,

27, 28]. In each case, the results compare reasonably with the originals, providing

reassurance that the generic model with its parameter values can be employed with

confidence.

4.8. RELAXATION LENGTH DESCRIPTION AND DATA

To replicate the properties of the higher frequency modes in particular, it is essential

to model motorcycle tyres with relaxation lags included [1]. Conventionally, a

constant relaxation length for each tyre is employed but it was found in [20] that

the tyre relaxation length typically varies with load roughly as the cornering stiffness

does and that it grows with speed. Using the data from [20] for 120/70 front and

180/55 rear tyres and fitting a quadratic function of speed to the results in each case,

we obtain the descriptions:

σ f = K yα f (8.633e − 6 + 3.725e − 8.V + 8.389e − 10.V 2)

and

σr = K yαr (9.694e − 6 − 1.333e − 8V + 1.898e − 9V 2)

The cornering stiffnesses come out of the “Magic Formula” computations, Equa-

tion (11). Relaxation is applied to the sideslip rather than the sideforces, through

equations of the form: σ β̇1/V + β1 = β. This implies that forces and moments

arising from wheel camber are treated as occurring without delay, while those aris-

ing from sideslip are lagged. This is considered to be the most physically accurate

representation, since camber leads to forces geometrically while sideslip leads to

forces via distortion of the tyre carcass, which distortion requires time (or distance

rolled) to establish.

5. “Monoshock” Rear Suspension

The motorcycle rear suspension arrangement is shown diagrammatically in Figure

16. It uses a single spring/damper unit with a mechanical linkage connection to

the swinging arm. Many modern rear suspensions are of this type, although several

variants of it exist. It involves a closed kinematic loop. Such a suspension can be

modelled on-line literally, link by link and joint by joint, or off-line, via a separate

geometric pre-analysis. Such a pre-analysis yields an analytic relationship between

the swing arm angle change and the moment of the spring force about the swing arm

pivot, which is used directly in the multibody model building. Alternatively, if the

pre-analysis were too complex to give an analytic result, a numerical relationship
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Figure 16. Geometry of monoshock suspension arrangement on GSX-R1000 motorcycle. Dis-

tances between various points are also defined in the diagram.

between the angle and the moment could be found. This could be replaced by an

approximate functional relationship covering the practical range of the swing arm

movement. A low order polynomial will usually suffice [29]. The literal modelling

is the simpler, but it will provide equations of motion which integrate relatively

slowly, since the simulation has to solve the kinematic loop equations at each

integration step. The analysis follows.

Points p11, p13 and p19 are fixed to the main frame. l1, l4 and ϕ0 are dimensions

of the swinging link and l2 the length of the pull rod. The length l3 in the swing arm

is fixed. The spring/damper unit is of variable length l. θ is the angle of the swing

arm to the horizontal x-axis, while δ is the corresponding angle for the swinging

link. Traversing the loop p11-p22-p20-p19-p11, both x and z displacements are nil,

since we end where we begin. Therefore:

x11 − x19 − l3 cos θ + l2 cos ζ + l1 cos δ = 0

and z11 − z19 + l3 sin θ + l2 sin ζ − l1 sin δ = 0

Forming l2
2 as (l2

2 sin2 ζ + l2
2 cos2 ζ ) and substituting:

c1 = −x11 + x19 + l3 cos θ and c2 = −z11 + z19 − l3 sin θ

we obtain: l2
2 = (c1 − l1 cos δ)2 + (c2 − l1 sin δ)2 from which it can be shown that:

δ = arcsin

(

l2
2 − l2

1 − c2
1 − c2

2

2l1

√

c2
1 + c2

2

)

+ arctan

(

c1

c2

)

,

which is a function of θ only. Also:

x21 = x19 − l1 cos δ + l4 cos(φ0 + δ)

and z21 = z19 + l1 sin δ − l4 sin(φ0 + δ)
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Figure 17. Spring / damper unit length to wheel displacement relationship for GSX-R1000

motorcycle.

with

l =
√

(x13 − x21)2 + (z13 − z21)2

so that l can be found as a function of θ , l = f1(θ ) say, by substitution for x21 and

z21 in this expression. Figure 17 illustrates the outcome. If a small change δθ in θ

occurs, in which the corresponding change in l is δl, the moment M corresponding

to a spring/damper force f2(l, l̇) is f2(l, l̇) · dl/dθ by virtual work. The properties

of the spring/damper unit can thus be expressed in terms of an equivalent moment

M(θ, θ̇ ) about the swing-arm pivot, as:

M = f2

{

f1(θ ),
d f1(θ )

dθ
θ̇

}

d f1(θ )

dθ
,

which can be fully automated.

6. Speed and Steer Controllers

To maintain a desired forward speed profile, driving torque is applied to the

rear wheel and reacted on the main frame. The torque is produced by a propor-

tional/integral control on the speed error with fixed gains. Although the reference

machine has a chain drive to the rear wheel, this representation is of a shaft drive

system and it needs updating to deal with issues like the prediction of suspension

movements and body attitudes under heavy acceleration. For milder longitudinal

manoeuvring, there will be little difference between shaft drive and chain drive.

The target speed is provided as data in a table function, with time as the independent

variable.

A steering feedback controller is also necessary to stabilise the machine in ma-

noeuvres in which it is not self-stable. In particular, stabilising control allows the

solution of the steady turning equilibrium state problem by simply running a sim-

ulation to steady state. The controller devised is a proportional/integral/derivative
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(PID) feedback of motorcycle lean angle error to steering torque, with the lean

angle target being set by an initial value and a constant rate of change. The target

lean angle must therefore be a ramp function of time. This would be easy to alter

if it were considered restrictive.

The steering control gains need to be speed adaptive and they need choosing

with considerable care to achieve effective stabilisation. Especially difficult are

cases involving very low or very high speed and high lean angles. Each of the three

PID gains is linearly related to speed, as indicated by the relations:

G p = spg0 + spg1 · u; G i = sig0 + sig1 · u; Gd = sdg0 + sdg1 · u;

corresponding to the control law:

τ = G p(φ − φref) + G i

∫ t

0

(φ − φref)dt + Gd φ̇;

where u is the forward speed, τ is the steering control torque, φ is the lean angle

and φref is the target lean angle.

7. Equilibrium State Checking and Power Balancing

With suitable stabilisation, the motorcycle can be run to equilibrium at any feasible

speed and lean angle. To describe such an equilibrium state, force and moment

balance equations can be set up, as was done in [5, 30]. As described in [30], the

checking process includes a power balance, whereby the engine power is shown to

account precisely for the aerodynamic and tyre losses. In steady turning, the force

balance check is to ensure that the sum of the external forces is equal to the sum of

the inertial and gravitational forces. The force error calculated is:

Ferror =
∑

i

F i +
∑

j

m j (g − ω j × v j ),

the first sum containing all the external forces, while the second deals with grav-

itational and centripetal effects. The external forces include: (i) aerodynamic lift

and drag forces, (ii) the front and rear wheel normal loads, (iii) the tyre side forces

and (iv) the tyre longitudinal forces, including the driving force at the rear tyre

sufficient to maintain the steady speed. In the second term, m j represents the mass

of the jth body, ν j is the velocity of the body’s mass centre, w j is the body’s angular

velocity vector and g is the gravitational acceleration vector. Invariably, in a fully

established steady turn, |Ferror|〈0.02 N.

In much the same way, the following moment error should be zero:

Merror =
∑

i

l i × F i +
∑

j

{l j × m j (g − v j × ω j ) − ω j × H j } +
∑

k

Mk,
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where l i and l j are moment arm vectors referred to the rear wheel contact point

and H j is the moment of momentum of body j about its mass centre. The first

sum accounts for the moments generated by the external forces listed above, while

the second contains a part treating gravitational moments and moments of inertial

forces on the body mass centres and a part accounting for the rate of change of

moment of momentum of each body, with respect to its mass centre. The third

summation deals with aerodynamic pitching and tyre aligning moments.

Each of the terms w × H is calculated as w × (Hx i + Hy j + Hzk), with H

having components Hx , Hy and Hz in directions denoted by the unit vectors i , j

and k, which must be chosen so that the moment of momentum components are

invariant, when the motorcycle is in a steady turn. For all the non-spinning bodies,

the body reference axes satisfy this requirement. For the wheels, the parent body’s

reference system needs to be used and a moment of momentum term for the spin

added on. For the most general case applicable here in which Ixy and Iyz are zero

but Ixz is non-zero [9], noting a change of sign of products of inertia, as compared

with the reference, because [9] and Autosim use opposite definitions:

Hx = Ixxωx + Ixzωz; Hy = Iyyωy; and Hz = Ixzωx + Izzωz,

in which ωx , ωy and ωz are the components of ω in the i , j and k directions.

Thus, for the main body, this second component of rate of change of moment

of momentum, that about the mass centre, is of the form:

ωmain × {(Imainxωx + Imainxzωz) · imain + Imainyωy · j
main

+(Imainxzωx + Imainzωz) · kmain}.

Here, imain, j
main

and kmain denote the unit vectors i , j and k for the main body.

To deal with the rear wheel, its diametral inertia is added to the corresponding terms

belonging to the swing arm, its parent body, as if it were part of the swing arm.

The spin is accounted for by a term: ωswingarm × Irwyωy · [rwy] and similarly for

the front wheel, for which the lower fork body is the parent. For any steady turn,

|Merror|〈0.02 Nm.

The power error is given by:

Perror = τ · ωspin +
∑

i

F i · vi +
∑

k

Mk · ωk,

in which τ is the rear wheel driving torque and ωspin is its spin velocity relative

to the swing arm. vi is the velocity of the point of application of force, F i , and

ωk is the absolute angular velocity of the body to which moment, Mk , is applied.

Describing the power associated with tyre forces requires care also. The velocity

involved is that of the tyre tread base material [30], already calculated in connection

with finding the slip ratio and the slip angle. For any steady turn, indicating amazing

precision, Perror〈0.3 mW.
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These checks on any equilibrium state are substantially independent of the full

equations of motion on which the simulation model depends and it is reassuring

that they are satisfied.

8. Typical Results

The main uses of a model such as that described are (a) general simulation of re-

sponses to defined steering control inputs, possibly involving hardware in the loop

(b) determination of steady-state equilibrium cornering “trim” states (c) lineariza-

tion of the equations to represent small motions in the neighbourhood of a trim

state (d) root locus calculations for constant lean angle and varying speed or vice-

versa and (e) frequency response calculations to find gains and phases in sustained

motion involving sinusoidal forcing from the steering system or from road undu-

lations [30]. The power computations also allow determination in detail of where

the engine power is dissipated in steady turning.

Trim state determination is a necessary forerunner to stability and frequency

response computations, to enable the linearisation to be done correctly. Also, as

described in Section 6, speed and lean angle controllers are likely to be needed to

allow the trim states to be found, over a reasonably full range of feasible speeds and

lean angles. Some of these uses and some behavioural properties of the machine in

focus are illustrated next.

The model was first used to simulate a straight line run from 1 to 75 m/s with a

very small constant acceleration of 0.05 m/s2. This gives the trim state, changing

with the speed, from which small perturbations are considered to occur and for

which a linearised model is appropriate. The linearised model, having a free steering

system with the feedback steering controller disabled, was then used to obtain the

root locus plot shown in Figure 18. The machine, as represented, is stable for straight

running throughout the speed range above about 6 m/s. Also shown in Figure 18

are the loci for the nominal motorcycle but with the rear frame torsional stiffness

divided by 2 and then 4 with the frame twist damping coefficient reduced by factors

of 0.7071 and 0.5 respectively.

The high speed weave stability is compromised significantly by the reduction in

stiffness and the wobble problem is transferred from high speed to medium speed

by these changes. This aligns with earlier findings, that flexible frames promote

medium speed wobble, while very stiff frames give more of a potential prob-

lem at high speeds, implying the need for a steering damper to ensure adequate

margins.

The damping coefficient associated with the rider upper body lean freedom is

now varied, with root loci being shown in Figure 19. Rider damping can be seen

to influence the weave mode only where the damping is plentiful but it contributes

usefully to the stability of the wobble mode at high speed. The results are consistent

with the idea that lighter riders are more likely to suffer wobble oscillations than

heavier ones, in accord with anecdotal evidence.
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Figure 18. Root locus plot for straight running through speed range 1.1 (squares) to 75 (dia-

monds) m/s. Nominal machine, points; frame stiffness halved, circles; frame stiffness quartered,

crosses (with damping adjustments).

Figure 19. Root locus plot for straight running through 1.1 (squares) to 75 (diamonds) m/s

speed for nominal machine (points) and with the rider lean damping coefficient factored by 0.5

(circles) and 0.25 (crosses).

The behaviour of the motorcycle in quasi-steady turning at a sustained lean angle

of 30◦ with a small forward acceleration of 0.05 m/s2 is illustrated in Figure 20. The

steer angle is small, except at low speeds, for which it rises markedly. It changes sign

at just over 20 m/s, where the fixed control motorcycle becomes self-stabilising [1].
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Figure 20. (a) State variables (b) tyre forces (c) steering torque and tyre aligning moments in

a sustained 30◦ lean angle turn accelerating at 0.05 m/s2 from 3.7 to 75 m/s.
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The frame twist is imperceptibly small, despite its importance to the dynamics. The

rider leans into the turn to a moderate degree. The tyre loads and shear forces are

shown, indicating that the rear tyre will be near to its friction limits at the top end

of the speed range covered. The steer torque required can be seen to be somewhat

less than the front tyre aligning moment, all through the speed range. Predicting the

steering torque accurately apparently depends on modelling the front tyre aligning

moment well. Close inspection of the motorcycle lean angle record shows that there

is some interaction between the lean angle controller and the acceleration. The lean

angle is not maintained precisely on target and the greater the lean angle and the

acceleration are, the larger the errors become. The simplest solution is to use very

low acceleration levels but the simulation runs then take a long time to complete.

If an unstable condition occurs during a run, that run is lost, so that long runs are

potentially problematic.

An alternative procedure has been developed. This involves describing the speed

target by a saturating ramp, so that true equilibrium is established at the finish of a

run. A typical run will increment the speed by 5 m/s only (less at low speed) and the

final state of one run is used as the initial state for the following one. A whole series

of runs constitutes the equilibrium data for one lean angle. From such a series for

45◦ lean, contributions to the power dissipated, as functions of speed, are shown

in Figure 21. It will be no surprise to see that most of the engine power is used to

overcome aerodynamic drag, especially at high speeds, but it is not at all obvious

that each tyre’s aligning moment may dissipate 4 kW at high speed. Also, at high

speed, the rear tyre driving force accounts for a relatively high power dissipation

through longitudinal slipping.

Using a quasi-steady run at 15◦ lean, then the results above for 30◦ and again

corresponding results for 45◦ for the trim state data used in the linearization, the root

loci for the nominal machine are shown in Figures 22–24. Each figure also contains

similar results, similarly obtained, for the motorcycle with half the frame torsional

stiffness and 0.7071 times the frame damping coefficient. Damping of the oscillatory

modes improves with cornering except that the medium speed wobble damping

at 45◦ lean becomes quite small. In each case, it is clear that halving the frame

stiffness is detrimental to the stability properties. The more elaborate procedure for

establishing steady-state equilibria yields root loci which are indistinguishable from

those shown; that is, the influence of the small acceleration employed is negligible

in these cases.

If the cornering motorcycle is excited by regular road undulations, the response

is potentially dangerous if resonance in connection with a lightly damped mode

of oscillation occurs [30]. It was found in earlier work that about 15◦ lean is

likely to represent a worst case, since, for smaller angles, the road forcing cou-

ples only weakly to the lateral oscillatory responses, while for larger angles, the

modal damping is likely to increase. Such a 15◦ lean case is illustrated, for a

constant speed of 65 m/s, in Figure 25. The plot shows the steer angle to road dis-

placement forcing frequency response gain relative to 1 rad/m, accounting properly
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Figure 21. Power contributions as functions of speed in steady turning with 45◦ lean angle.

Figure 22. Motorcycle root locus plot for 15◦ lean angle through speed range 3.3 (squares) to

75 (diamonds) m/s. Nominal case – points; frame stiffness halved – circles.

for the time delay between the forcing acting on the front wheel and on the rear

wheel, the so-called wheelbase filtering effect. Resonance of the cornering weave

is evident at 26 rad/s forcing frequency, while the wobble is most responsive at

50 rad/s.
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Figure 23. Motorcycle root locus plot for 30◦ lean angle through speed range 3.8 (squares) to

75 (diamonds) m/s. Nominal case – points; frame stiffness halved – circles.

Figure 24. Motorcycle root locus plot for 45◦ lean angle through speed range 5.8 (squares) to

75 (diamonds) m/s. Nominal case – points; frame stiffness halved – circles.

9. Conclusions

Substantial improvements to an advanced motorcycle dynamics model have been

made, relating to (a) tyre/road contact geometry; (b) the tyre shear force and mo-

ment system; (c) tyre relaxation properties and (d) the monoshock rear suspension
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Figure 25. Steer angle response to road undulation forcing of nominal motorcycle at 15◦ lean

angle and 65 m/s speed.

mechanism. In particular, parameters for the powerful Magic Formula method,

representing the shear forces developed by modern, high performance motorcycle

tyres have been derived. This provides a readily usable generic description of the

steady-state force and moment system of such tyres, with a very wide range of

validity. Also, the geometric treatment of the monoshock suspension system is new

and it contributes to computational efficiency. Steady-turning equilibrium force,

moment and power checks have been refined and results of high precision shown

testify to the model’s accuracy of construction.

Significant progress towards a complete parametric description of a contempo-

rary, high performance motorcycle has been made, although a little further work

is needed to finish the measurement campaign. The rider upper body structure has

been represented as relatively compliant, in sympathy with the rig measurements of

Nishimi et al [16]. Results obtained on this basis suggest that the rider upper body

damping is significantly stabilising to the wobble mode, accounting potentially for

the observation that light riders are more at risk from oscillations than heavier ones.

Steady turning equilibrium states, tyre forces and steer torque requirements have

been illustrated and the power dissipation through the speed range for steady turning

at 45◦ lean angle has been shown for the first time.

Straight running root locus plots, from a linearised version of the model, have

suggested that, despite the relatively high torsional stiffness of many modern frames,

it is still important to the stability and control and it needs including in analysis and

design discussions. Use of the model for the calculation of stability in cornering has

been illustrated. Stability margins in cornering typically increase as compared with

straight running, although complex patterns of behaviour are possible. Current work
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concerns the nonlinear phenomena, sub-harmonic and super-harmonic oscillations,

special operating conditions yielding commensurate relationships between natural

frequencies and the consequent possibility of internal and combination resonances,

and advantageous alternatives to the conventional steering damper for restraining

the steering system.

Appendix: Motorcycle Parameter Values (SI Units)

Table A.I. Masses.

Mff str Mff sus Mmain Mrw Mfw Mubr Mswg arm

9.99 7.25 165.13 14.7 11.9 33.68 8

Table A.II. Inertias.

Iff strx Iff stry Iff strz Iff strxz Imnx Imny Imnz Imnxz Iubrx Iubry

1.341 1.584 0.4125 0 11.085 22.013 14.982 −3.691 1.428 1.347

Iubrz Iubrxz Ifwx Ifwy Irwx Irwy Is ax Is ay Is az

0.916 0.443 0.270 0.484 0.383 0.638 0.02 0.259 0.259

Table A.III. Dimensions (Figures 1, 3, 4 and 16).

x2 z2 x3 z3 x4 z4 x5 z5 x6

1.173 −0.749 1.164 −0.77 1.342 −0.426 1.365 −0.324 1.410

z6 z7 x8 z8 x9 z9 x10 z10 x11

−0.282 −0.297 0.6779 −0.4724 0.364 −0.8438 0.415 −1.14 0.549

z11 x13 z13 x14 z14 x19 z19 x20 z20

−0.3608 0.487 −0.4888 0.196 −0.3113 0.539 −0.1878 0.4946 −0.1522

x21 z21 x22 z22 ε r R0 f R0 l free

0.4443 −0.1782 0.3722 −0.2748 0.4189 0.095 0.06 0.3435

Table A.IV. Limit stop geometry.

r lmax r lmin f dmax f dmin str lim

0.3385 0.2735 0.03 0.07 0.5061

Table A.V. Stiffnesses.

r k f k r kt f kt r krbd f krbd

58570 25000 141000 130000 1e15 1e15

r kcom f kcom kp ubr kp twst kp str k strstop

1e11 1e11 380 100000 0 3e9
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Table A.VI. Damping coefficients.

r c f c Cp ubr Cp twst Cp str

11650 2134 34.0 100 6.944

Table A.VII. Aerodynamic parameters.

CD CL CP f Area ρ, density

0.48 0.078 0.189 0.65 1.225

Table A.VIII. Speed and steering control gain coefficients.

drvp drvi spg0 spg1 sig0 sig1 sdg0 sdg1

−500 −1000 −60 −0.6875 −250 1.875 −50 0.6
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