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“Stretching the interface of life” was the motto of the
international Rhizosphere 4 Conference in Maastricht in
June 2015. This motto reflects the key position that the
rhizosphere has in each terrestrial ecosystem. Below-
ground interactions between plant roots, soil microbes
and the abiotic soil environment drive important eco-
system processes such as productivity (Reinhart et al.
2010; Schnitzer et al. 2011), biogeochemical cycling (de
Vries et al. 2013), and tolerance to biotic and abiotic
stresses (Berendsen et al. 2012; Visioli et al. 2015). At
the same time, this motto reflects the highly dynamic
nature of the rhizosphere (Hinsinger et al. 2009;
Philippot et al. 2013). The rhizosphere is a multifaceted,
complex ‘melting pot’ of components and processes
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affecting plant growth and development, and thus eco-
system functioning. One main component of the rhizo-
sphere is the root microbiome, which are all microor-
ganisms inhabiting the root or rhizosphere (Lundberg
et al. 2012; Mendes et al. 2013). Root exudates, i.e., a
variety of small molecules excreted by plant roots are
another important component in the rhizosphere (Bais
et al. 2006; Hinsinger et al. 2009; Li et al. 2007;
Suriyagoda et al. 2012). Plant roots are able to regulate
these exudates and influence their root microbiome
accordingly (Haichar et al. 2008). However, this is not
a unidirectional path as the root microbiome also pro-
duces many metabolites and thus also able to affect the
composition of the chemical cocktail in the rhizosphere..
These mutual interactions ultimately affect nutrient
availability for all partners (Lambers et al. 2008), plant
health (Berendsen et al. 2012) and root-root interactions
(Semchenko et al. 2014), cascading into ecosystem
functions such as productivity (Latz et al. 2012; Li
et al. 2016) and soil formation (Lambers et al. 2009;
Keiluweit et al. 2015; Lange et al. 2015). The challenge
now is to reveal the functionality of these multifacetted
interactions between plant roots, root exudates, micro-
bial metabolites, the root microbiome and the
soil..Management of this multicomponent complexity
of the rhizosphere and its relationship to soil fertility
will become crucial in order to maintain food production
with reduced fertiliser and pesticide inputs (Bakker et al.
2012).

The rhizosphere, initially formulated by Hiltner as
the ‘soil influenced by roots’ (Hiltner 1904; Hartmann
et al. 2008) developed into a booming research field
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where scientists approach this specific zone around the
plant root from different angles. The fourth international
Rhizosphere Conference, following earlier successful
meetings in this series (Hinsinger and Marschner
2006; Jones and Hinsinger 2008; Jones 2009; Tibbett
etal. 2012), clearly reflected this multi-disciplinarity: 18
sessions covering molecular biology, agronomy, micro-
biology, genomics, ecology, soil science, chemistry, etc.,
attracted more than 550 scientists from 46 countries to
advance our understanding of the rhizosphere. This
multi-disciplinarity is also reflected in this Special Issue
of Plant and Soil, highlighting the state-of-the-art of
rhizosphere research as presented at the Rhizosphere 4
Conference. The resulting set of papers comprises a
wide range of topics that include root traits and the root
microbiome, nutrient acquisition and nutrient cycling,
water uptake, and rhizosphere signaling. This special
issue not only covers experimental studies, but also
provides an update of the state-of-art in modelling
(Ahmed et al. 2016; Roose et al. 2016; Vetterlein and
Doussan 2016), with as highlight the Marschner Review
on imaging and modelling of rhizosphere processes
(Roose et al. 2016). This Marschner Review summa-
rizes cutting-edge knowledge of structural and chemical
imaging of rhizosphere processes in the framework of
multiscale mathematical image-based modelling. Roose
et al. (2016) emphasize the need to integrate structural
and chemical images through modelling explicitly root
and microbe mediated processes occurring at the pore-
scale, to fully understand the intimate functioning of the
highly dynamic and heterogeneous micro-environments
that make up the rhizosphere, at the heart of root-soil
interactions.

Linking root traits to function

Roots have long been ‘the hidden half’ of plants.
Consequently, the true functionality of root charac-
teristics (i.e., traits) for important processes such as
nutrient or water uptake, plant performance, plant-
plant interactions and ecosystem functioning re-
mains to be unravelled. For example, ecologists
have focused on the ability of roots to selectively
forage for nutrients as a key trait determining plant
performance and competitive ability (Fransen and de
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Kroon 2001; Hodge et al. 1999; Kembel and Cahill
2005), but these efforts have not yielded unequivo-
cal evidence for selective root placement being a
crucial trait. Instead, plant performance, and partic-
ularly plant competitive ability, appear to be linked
to a range of root traits, which probably also depend
on the biotic and abiotic environment (Mommer
et al. 2011a; Rajaniemi 2007; Schréder-Georgi
et al 2015; Siebenkds and Roscher 2016). Recently,
the research on root traits has widened by focussing
on a larger variety of traits, such as root length
density, mean rooting depth, specific root length,
and carbon to nitrogenratio. This broadened view
allowed root traits to be placed in ecological frame-
works, determining their role in plant performance
and competitive interactions (Fort et al. 2013;
Roumet et al. 2006; Schroder-Georgi et al 2015),
ecosystem functioning (Bardgett et al. 2014; Cong
et al. 2014) and the resource economics spectrum
(Roumet et al. 2016; Weemstra et al. 2016). The
study of (Ravenck et al. 2016) in this issue reflects
this new direction, as it links root traits to pairwise
interactions in eight grassland species, in
homogeneous and heterogeneous nutrient
conditions. In the short term, competitive success
of a species was related to fast growth and a high
root length density, irrespective of nutrient
distribution. The work of Wang et al. (2016) also
focusses on the role of root traits in competitive
interactions, by exploring belowground interactions
of graminoids and shrubs in the Siberian tundra.
Differentiation in phenology (timing of root growth)
and vertical distribution between the two functional
groups are likely key determinants of the competi-
tive outcome. Two other papers on root traits in this
special issue investigate the relationship between
root traits and phosphorus (P) acquisition. Haling
et al. (2016) compare root growth and allocation to
P efficiency of several legume species, using the
grass Dactylis glomerata as a baseline. Species that
had a lower external critical P requirement allocated
fewer roots to fertilized patches than those with a
higher critical P requirement. The first (e.g.,
Ornithopus spp.), however, gained their P share by
having a higher P uptake per unit root mass than the
latter. Such findings suggests that root allocation and
selective placement in nutrient hotspots may be one
way to compete for nutrients, but, alternatively, pro-
ducing efficient roots at little biomass costs can be
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similarly (or even more) functional (Kembel et al.
2008; Mommer et al. 2011b).

Nutrient acquisition and nutrient cycling

Plant roots are primarily designed to access below-
ground resources, on top of providing anchorage, and
thereby play a key role in nutrient acquisition and nutri-
ent cycling (Hinsinger et al. 2009; Lambers et al. 2009;
Bardgett et al. 2014). A great deal of research has been
conducted and published in this domain in the past
decades, and a section of the present special issue is
dedicated to it. Root traits, such as root length and
rooting depth, play a critical role in the uptake of rather
mobile resources such as water and nutrients like nitro-
gen by plants. Higher nitrogen uptake is often linked to
increased herbage yield of pastures, as well as to re-
duced nitrate leaching (Kristensen and Thorup-
Kristensen 2004). Strategic (i.e., delayed) timing of
nitrogen application after a harvest of Lolium perenne
could thus affect root biomass and herbage yield. De
Boer et al. (2016), however, did not find evidence that
delayed nitrogen fertilization improves root biomass.
Like Lolium perenne, Trifolium repens is also an impor-
tant species in pastures. Czaban et al. (2016) demon-
strates that this species can take up forms of organic
nitrogen in hydroponics systems, which indicates that
on top of inorganic nitrogen, this species might not only
rely on its symbiosis with Rhizobium.

The research field of nutrient acquisition also benefits
from current advances in molecular biology. Tanaka
et al. (2016) took a mutagenesis approach of a rice
cultivar to investigate heritability for micronutrient up-
take, such as manganese and zinc, but also for the uptake
of hazardous trace metals such as cadmium.

While much of the accumulated knowledge on plant
nutrition and on the fate of nutrients in the rhizosphere
has been obtained in hydroponics or microcosm exper-
iments with a single crop or cultivar, there is a need to
move towards more biodiversity-based agriculture for
achieving sustainable intensification of agroecosystem,
and thus to embrace the complexity of rhizosphere
processes occurring in these systems, e.g. intercropping
systems (Li et al. 2007, 2014). Positive plant-plant in-
teractions, such as root-root facilitation, have been
shown to play a significant role for P acquisition (Li
et al. 2007; Brooker et al. 2015; Li et al. 2016; Zhang
et al. 2016). Tang et al. (2016) further demonstrated the

greater performance of such intercropping systems com-
pared to single crop systems under field conditions
along a P fertility gradient. They showed that the
overyielding of the intercrops occurred at all levels of
P fertility, discounting the stress gradient theory
predicting more positive plant-plant interactions to oc-
cur under low P conditions. Their study showed, how-
ever, that, when considering the properties of the rhizo-
sphere, P fertility had a major effect on rhizosphere
microbial communities. A rhizosphere effect, namely
the increase of microbial biomass C in the rhizosphere,
occurred only at high P, as rhizosphere microbial com-
munities were too much P-limited at the lower end of the
fertility gradient. They also showed that intercropping
had a significant effect on microbial properties of the
rhizosphere only at the upper end of the fertility gradi-
ent. Soil fertility thus has a significant impact on the
outcome of root-root and root-soil interactions, which
needs to be further investigated in various types of
ecosystems.

Soil fertility is linked to carbon sequestration via soil
organic matter, and the most dynamic portion of soil
organic matter, namely dissolved organic matter
circulating in soils. Changes in nutrient availability
and uptake may affect dissolved organic matter, for
example via changes in decomposition rate. Robroek
et al. (2016) studied the effect of the functional types of
vascular plants on microbial enzymatic activity and the
composition of dissolved organic matter. They conclud-
ed that global change affects the abundance of vascular
plants in peat ecosystems, which in turn increases soil
microbial activity and, hence, may affect C losses from
such ecosystems.

Water relationships in the rhizosphere

Rhizosphere is more than interactions between roots and
nutrients, since water is also an essential driver. This
special issue focusses on two aspects of water relation-
ships in the rhizosphere: the impact of the root age and
function (Iversen 2010; 2014) on root water uptake and
rhizosphere biophysics, and the need for functional
structural modelling to integrate all these aspects in
order to understand the fate of water in the root envi-
ronment (Vetterlein and Doussan 2016). Currently, the
theoretical developments and increase in computational
power allow experimental quantification of properties
such as hydraulic conductance variation, which is still
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ahead of experimental evidence backing up the models.
There is indeed surprising scarcity of data on root age
distribution with depth, and on the fate of roots and root
functioning, especially in annual crops. The functional
properties possibly impacting water relationships in the
rhizosphere that are affected by root age are however
numerous: from axial hydraulic conductance, occur-
rence of apoplastic barriers, secondary growth or distri-
bution of aquaporin expression to decay of root cortical
cells and mucilage production (Vetterlein and Doussan
2016). Ahmed et al. (2016) start filling this gap by
measuring the water repellency of root-exuded mucilage
(i.e., plant specific polysaccharides) on maize plants
under different soil conditions. This work, based on a
combination of measurements and modelling, shows
that, beyond a threshold concentration that decreased
with increasing particle size and decreasing matric po-
tential, root mucilage can turn the rhizosphere hydro-
phobic, ultimately resulting in a dramatic reduction of
water flow at the root-soil interface. The work by
Ahmed et al. (2016) is pledging for more work in this
field of rhizosphere biophysics, given its major impact
on the fate of water, and thus nutrients and other solutes
in the root environment, at various scales from local up
to the whole root system scale.

Communication in the rhizosphere

Signaling in the rhizosphere can be divided into four
categories: among plants, among microbes, from plants
to microbes, and from microbes to plants (van Dam and
Bouwmeester 2016; Venturi and Keel 2016). The Rhi-
zosphere 4 conference points out the huge diversity of
signal molecules involved and summarized here briefly.
In this special issue, we more particularly focus on the
modulation of plant metabolism by microbes, with a
specific highlight on the impact of bacterial inoculation
on plant volatiles (including ethylene) and as a conse-
quence plant stress alleviation.

One main mechanism of communication between
bacteria at both intraspecies and interspecies levels is
known as quorum-sensing. It allows bacterial popula-
tions to synchronize their behaviour to cell density,
through the exchange of a huge range of signal mole-
cules (Boyer and Wisniewski-Dy¢é 2009; Venturi and
Keel 2016). Quorum-sensing is involved in the regula-
tion of several bacterial processes, such as biofilm for-
mation, virulence in pathogenic bacteria, production of
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antimicrobial compounds by biocontrol plant growth-
promoting rhizobacteria (PGPR) (Boyer and
Wisniewski-Dyé 2009; Hartmann and Schikora 2012).
Direct effects of bacterial quorum-sensing signals on
plants also exist (Ortiz-Castro et al. 2009; Kakkar et al.
2015). When present at low concentrations, some anti-
biotics can also be involved in communication between
microbial populations, triggering gene expression regu-
lation in the exposed bacterial cells (Combes-Meynet
et al. 2011). By being able to affect gene expression
even across interkingdom domains, microbial emitted
signals have thus crucial roles in shaping rhizosphere
microbial communities and controlling their
functioning.

Interactions between microbes are regulated by root
exudates, having a high diversity of primary and sec-
ondary metabolites (sugars, organic acids, amino-acids,
phenolic or terpenoid compounds) (van Dam and
Bouwmeester 2016). With the progress in metabolomics
methods coupled to multivariate analyses (van Dam and
Bouwmeester 2016) and metabolic networks identifica-
tion, major advances were recently made regarding the
characterization of plant root exudate composition and
their differences among plant genotypes, environmental
conditions or even experimental conditions at harvest
(as discussed in a Rhizosphere 4 round table meeting).
Exudate molecules can affect the rhizosphere bacterial
populations by acting as nutrient or signal molecules.
Through their nutritive effects, exudates will affect the
structure of soil microbial communities, favoring cell
division of bacteria able to catabolize them. Though
microbe-plant chemical dialogues are well-known in
the case of symbiotic interactions between legumes
and nitrogen-fixing rhizobia (Limpens et al. 2015; Li
et al. 2016) or in plant mycorrhiza (Parniske 2008),
these are less well characterized in plant-PGPR
interactions.

Plant-microbe communication involves also a wide
range of signaling molecules produced by the microbe
partner, some being involved in the direct control of
plant growth and development; these include phytohor-
mones like auxin, cytokinin, and gibberellin (Vacheron
et al 2013). Other bacterial molecules can trigger in-
duced systemic resistance and improve plant defence
against pathogens (Venturi and Keel 2016). Two studies
from this special issue focused on the place of ethylene
signaling during plant-PGPR cooperation. Ethylene is a
plant volatile hormone, which is produced in greater
amounts when plants face adverse conditions, and may
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inhibit the growth of plant roots. Ethylene is synthesized
from l-aminocyclopropane-1-carboxylate (ACC) by
ACC oxidase. Bacteria that harbor ACC deaminase
hydrolyze ACC, leading to a decrease of plant ethylene
content and thus to enhanced root growth (Glick et al.
2007). In addition, by lowering the level of ethylene,
AcdS* bacteria (AcdS being the gene encoding for ACC
deaminase synthesis) can protect the plant against cer-
tain damage. Matsuoka et al. (2016) show that ACC
deaminase-producing endophytes, isolated from fruits
and vegetables (including carrots), are able to modify
stress-induced volatile metabolic profiles of carrots, and
thereby can modify the flavour of carrots. Volatiles were
decreased in the carrot leaves in response to bacterial
inoculation and increased in the roots. In particular,
green leaf volatiles that derived from linoleic and
linolenic acids were reduced in plants inoculated with
AcdS” strains. This study suggests that AcdS* bacteria
can fine tune the plant defense pathway as well as affects
the quality of agricultural products. As the expression of
the ACC deaminase synthesis-encoding acdS gene is
activated in presence of ACC, the contribution of this
bacterial enzymatic activity to stimulation of plant
growth depends on the levels of exuded ACC in the
rhizosphere. Vacheron et al. (2016) provide evidence
that maize genotypes differ in their ability to enhance
the expression of the acdS gene of an inoculated PGPR.
When the ethylene pathway is strongly activated by
stress conditions, the maize genotype that strongest
induced acdS was the one benefiting from the PGPR
inoculation.

Root microbiome

The description of the root microbiota has received a
boost by the development of high-throughput sequenc-
ing techniques (Mendes et al. 2013; Pieterse et al. 2016).
Initially, the field focussed on Arabidopsis in controlled
conditions (Badri et al. 2009; Bulgarelli et al. 2012;
Lundberg et al. 2012; Sugiyama et al. 2013) but nowa-
days the rhizobiome of crop species are also determined,
under filed conditions (Bulgarelli et al. 2015; Peiffer
etal. 2013). It will now be the challenge to move beyond
the ‘collection of stamps’, i.e. to move from the descrip-
tion of root microbiomes towards the understanding of
the functionality for plant performance. Such knowl-
edge is relevant in order to understand belowground
plant competitive interactions (Mommer et al. 2016) as

well as plant responses under abiotic or biotic stress, in
soils with different limiting nutrients (Thomson et al.
2015), or in response to a changing climate.
Gschwendtner et al. (2016) described the effect of ni-
trogen fertilisation on the diversity of bacterial commu-
nities. Fertilised soil reduced the incorporation of la-
belled carbon (**C) into microbial biomass, specifically
in the Proteobacteria and Actinobacteria, suggesting
altered composition of rhizodeposits as a function of
nitrogen availability (Gschwendtner et al. 2016).
Knowledge of the root microbiota will be important
for optimization of plant-microbe interactions, which is
of interest to breeders and farmers (Bakker et al. 2012;
Philippot et al. 2013). An example of this is the selection
of the optimal PGPR strain of Bacillus subtilis, a bene-
ficial growth promoting rhizobacterium involved in salt
tolerance in the halophyte grass Puccinellia tenuiflora.
This study provides physiological and molecular evi-
dence that application of selected bacteria to salt tolerant
monocots can ameliorate deleterious effects of high soil
saline toxicity (Niu et al. 2016). Stroheker et al. (2016)
determined the development of the community structure
of dark septate endophytes of the Phialocephala fortinii-
Acephala applanata species, being root colonisers in
forests. An earlier study had showed that this commu-
nity was very stable, but an assessment after 10 years
showed significant turnover within this species
complex.

Outlook

The Rhizosphere 5 Conference will be held in Saska-
toon, Canada, in 2019. The field of the rhizosphere will
have further developed by then, with high-throughput
sequencing techniques and meta-omics approaches be-
coming cheaper and more advanced; bioinformatics
pipelines developed and made accessible to non-
bioinformaticians. Moreover, imaging techniques im-
prove rapidly, and complex functional-structural model-
ling as well. We expect future studies to make major
leaps forward in revealing the functionality of the com-
plex interactions between plant roots, root exudates,
microbial metabolites, and root microbiomewithin the
context of ‘true’ soil environments, i.e., in field condi-
tions. The focus of the research will shift to understand-
ing the rhizosphere ‘melting pot’ in the real world:
managing the rhizosphere will be crucial to advance
agricultural practices and move towards a more
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biodiversity-based agriculture. The increasing demand
for food with reduced inputs of fertilisers and pesticides
is pressing. Similarly, the sustainability of natural eco-
systems is of great importance, where rhizosphere man-
agement will be crucial in mitigating climate change and
maintaining ecosystem functioning.
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