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Overview (Steven B. Heymsfield)

The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Research 

Workshop, “Advances in the Science and Application of Body Composition Measurement,” 

was held on January 29, 2011, in Vancouver, British Columbia. The conference brought 

together experts across the spectrum of the rapidly advancing field of body composition and 

human metabolism research. The 1-day meeting was organized to cover developments in the 

3 key areas of body composition research, methodology, models, and clinical observations/ 

applications.1,2 Each speaker highlighted the respective field's current status, limitations, 

and future research directions. This report provides a summary of each speaker's 

presentation with selected references.
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Advances in Methodology

Air Displacement Plethysmography (David Fields)

Air displacement plethysmography (ADP) measures body volume using Boyle's law, which 

describes the inverse relationship between volume and pressure under isothermal conditions. 

In 1995, seminal work by Dempster and Aitkens3 described the physical structure and basic 

operating principles of the first commercially available ADP device (ie, Bod Pod; COSMED 

USA, Inc, Concord, CA). ADP was first validated in an adult population in 1995,4 and in 

2000, the device was validated in children (aged ≈10–12 years).5 In the late 1990s and early 

2000s, numerous studies began to appear in the literature reporting on the validity, 

reliability, and feasibility of ADP in a wide spectrum of populations (eg, obese, pediatric, 

athletic, and elderly) against more commonly used techniques (eg, hydrostatic weighing, 

total body water, dual energy X-ray absorptiometry [DXA], and multicompartment models). 

To date, 4 reviews have been written on ADP, and in each case, the consensus is that ADP is 

a valid tool for the determination of body composition. ADP is a reliable and valid technique 

for many populations, including children, the elderly, obese subjects, and athletes. More 

studies using multicompartment models as a reference standard are needed. Sources of 

variation between ADP and other methods remain unknown and should be studied further.

In 2003, a new and potentially exciting development occurred in the field. COSMED USA, 

Inc developed an ADP (ie, Pea Pod) device that can measure body composition in infants 

starting at birth going up to 8 kg.6 The Pea Pod is still relatively new, but it holds promise as 

a viable tool in measuring whole-body composition in infants. More studies using 

multicompartment models as a reference standard are needed. Potential sources of variation 

(eg, movement and crying) at this time remain unknown.

ADP is an attractive tool in the assessment of body composition for the following 3 reasons: 

(1) accommodates both obese (≈159 kg) and very tall subjects (≈2 m), (2) technology 

covers the life span (birth to adulthood), and (3) compliance is generally high, even in 

pediatric populations. In conclusion, ADP is a valuable technique in the evaluation of body 

composition in a wide spectrum of populations.

Dual-Energy X-Ray Absorptiometry (John A. Shepherd)

DXA is primarily used to derive the mass of one material in the presence of another through 

knowledge of their unique X-ray attenuation at different energies. Two images are made 

from the attenuation of low and high average X-ray energy. DXA is a special imaging 

modality that is not typically available in general-use X-ray systems because of the need for 

special beam filtering and near-perfect spatial registration of the 2 attenuations.7 DXA's 

primary commercial application has been to measure bone mineral density as an assessment 

of fracture risk and to diagnose osteoporosis, and the X-ray energies used are optimized for 

bone density assessment. However, the whole body can also be scanned to measure whole-

body bone mass and soft tissue body composition.8,9 Reference populations have been 

scanned and defined by sex, ethnicity, and age. The largest study for body composition in 

the United States was the National Health and Nutrition Survey (NHANES) that scanned 
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22,000 participants from 8–85 years old.10 Currently, there are estimated to be >50,000 

whole-body DXA systems in use worldwide.

Current state of the art—DXA systems are currently capable of scanning a very broad 

range of weights, from neonates (approximately 1 kg) to morbidly obese (205 kg). The 

repeatability is also very high for all reported total body measures. The repeatability for 

percent fat measures is typically better than 1% (standard deviation) and 2% (coefficient of 

variation) for total fat and lean mass measures.11 In addition, whole-body DXA scans can be 

subdivided into arms, legs, trunk, head, android, and gynoid soft tissue regions to report all 

bone and soft tissue measures within the region. The dose of a DXA whole-body scan is 

very low in comparison to other X-ray imaging models. One whole-body DXA is <10 μSv 

(8 μSv = 1 day's background radiation). However, DXA systems do not currently provide 

accurate tissue compartmental measures. For example, in the abdomen, DXA can only 

report abdominal fat and cannot distinguish between visceral and subcutaneous fat because 

they overlay and have the same X-ray attenuation properties.12

Another unresolved issue is the soft tissue calibration standard for DXA. Currently, there 

isn't a phantom that can be used to cross-calibrate DXA systems between manufacturers or a 

standard of accuracy of percent fat. There has been some success at representing muscle 

mass as appendicular lean mass in just the legs and arms.13 However, it has yet to be shown 

as a reasonable surrogate of muscle strength or function. Another area of keen interest is the 

low-dose measure of breast composition in young girls and women to study breast cancer 

risk.14 With the ease of use, availability, and safety of DXA, there is much interest in using 

the technology for studies of catabolic diseases, obesity, and bone density. Future directions 

for DXA may be to develop more sophisticated models of visceral and muscle fat.

In summary:

• Provides direct measure of fat and lean mass through X-ray attenuation

• Is in broad clinical use worldwide in a variety of settings from radiology 

departments to exercise/physiology labs

• Is clinically useful in a variety of patient body sizes, including neonates to the 

morbidly obese up to 450 lbs

• Is one of the few methods with a large amount of reference population data, 

including a 22,000-person random sampling of the entire U.S. population by zip 

code in the NHANES

• Has a very high test-retest precision of approximately 1% for most body 

composition measures

Future directions for DXA may include the development of more sophisticated models of 

visceral and muscle fat. Currently, the image profile of muscle and subcutaneous fat is not 

used for modeling the 3-dimensional nature of these compartments. With 3-dimensional 

modeling, separation between overlapping compartments, such as visceral and subcutaneous 

fat, may be possible.
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Bioimpedance Spectroscopy (Carrie P. Earthman)

Bioimpedance spectroscopy (BIS) and multifrequency bio-electrical impedance analysis 

(MF-BIA) can theoretically provide estimates of fluid compartments (extracellular [ECW], 

intracellular [ICW], and total body water [TBW]) and body cell mass (derived from ICW), 

which may be used by clinicians as part of nutrition assessment.15

BIS and MF-BIA devices measure impedance to the flow of a weak current applied to the 

body.16 At low frequencies, impedance is purely resistive, reflecting ECW. At higher 

frequencies, the current can completely penetrate cells, and the impedance measured reflects 

TBW.15 BIS devices apply the current over a spectrum of frequencies. Impedance data are 

then fit to the Cole model, and extracellular and intracellular resistance (Re and Ri) may be 

applied to prediction equations (BIS Cole), or they can be applied to equations derived from 

Hanai mixture theory (BIS Cole/Hanai) to generate ECW and ICW estimates.17,18 MF-BIA 

applies impedance data from 2–7 frequencies to equations originally derived through 

statistical regression of impedance and other variables against multiple-dilution reference 

data. Both BIS and MF-BIA methods involve assumptions that may be violated under 

certain clinical conditions, and thus they must be validated against reference methods. A 

number of studies have evaluated BIS Cole/Hanai, BIS Cole, and various MF-BIA methods 

against reference methods for measuring fluid volumes in clinical populations.19-21 Errors 

have been observed to correlate with body mass index (BMI); thus, a modification of the 

BIS Cole/Hanai method that adjusts for BMI, termed body composition spectroscopy, was 

developed and evaluated in healthy individuals and individuals on dialysis, with subsequent 

evaluation and development.19 Although some studies have demonstrated that BIS and MF-

BIA methods can produce estimates of fluid volumes that are in reasonable agreement with 

reference estimates in healthy individuals and some clinical populations, more variable 

results have been observed in studies of individuals with alterations in fluid distribution and 

body geometry. Some have observed that the BIS Cole/Hanai method can detect changes in 

fluid volumes in HIV-infected individuals and in critically ill patients, but it was unable to 

accurately detect fluid changes in obese individuals undergoing weight loss.

Although variability at the individual level observed in most studies makes these methods 

seem less useful in the clinic for measurement of absolute volumes, they continue to hold 

promise. Development and cross-validation of population-specific constants and equations 

may improve individual estimates by BIS and MF-BIA. Novel applications of these 

techniques include the use of the ratio of impedance at 200 KHz to 5 KHz for the prediction 

of disease severity, clinical outcomes, and the evaluation of dry weight, as well as the use of 

segmental measurements to evaluate fluid volume changes after dialysis and to evaluate 

lymphedema. It is certainly possible that the use of these bioimpedance techniques can 

contribute useful information to the total clinical picture, thus facilitating patient 

management. BIS and MF-BIA methods remain of significant interest to clinicians and 

researchers for the assessment of body composition parameters that may reflect nutrition 

status or clinical outcomes, and ongoing research and development of these methods are 

warranted.

In summary:
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• Although MF-BIA (with an appropriate equation) and BIS techniques can provide 

reasonably accurate whole-body fluid measures in healthy normal-weight people, 

there have been mixed results in clinical populations (variability at individual level 

particularly problematic for clinic use).

• BIS Cole/Hanai method:

– Has best potential but needs refinement particularly for populations with 

abnormal body geometry (eg, obesity)

– May be better for measuring changes (>2 kg) in patients with stable fluid 

and electrolyte balance (eg, HIV)

– Improved results with BMI correction (body composition spectroscopy20)

• Both MF-BIA and BIS are being used by some to monitor fluid status and dry 

weight

• Both MF-BIA and BIS are being used by some fluid status and dry weight

Future directions:

• Further refinement of the BIS Cole/Hanai method is needed.

• Population-specific resistivity constants and other adjustments may improve the 

accuracy of the BIS Cole/Hanai method.

• Segmental approach may improve estimates in patients with abnormal body 

geometry or hydration status.

• Additional research is needed to evaluate use of the impedance ratio Z200/Z5 for 

assessing dry weight and for predicting disease severity.

• Development and validation of algorithms for using MF-BIA or BIS data are 

needed to identify malnourished patients.21

• With refinement, these methods can provide information that may be used to 

enhance nutrition assessment.

Quantitative Magnetic Resonance (Antonella Napolitano)

Quantitative magnetic resonance (QMR) is a technique that has been validated in rodents to 

measure body composition precisely and accurately.22 Differences in the nuclear magnetic 

resonance properties of hydrogen atoms in organic and nonorganic environments allow the 

fractionation of signals originating from fat and lean tissue and free water. In 2006, this 

technology was scaled for adult human application (QMR Echo-MRI; Echo Medical, 

Houston, TX).23 It has been shown that fat mass measurements are highly correlated with 

those estimated by the 4-compartment (4C) model, and QMR measurements underestimated 

fat mass in all subjects. The discrepancies were higher for male subjects with higher BMI. 

This reduced accuracy, however, is balanced by the high precision of the repeated 

measurement of fat mass that is possible with this technology (coefficient of variation [CV] 

<0.5%24; SD ±0.13 kg24), surpassing all the other available methodologies. Recently, QMR 

has been validated also for pediatric use.25
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An important open question relates to the performance of this novel methodology when 

measuring TBW. Several experimental paradigms were investigated: (1) comparison to D2O 

dilution, (2) ability to detect a volume of infused saline, and (3) ability to detect water 

removal by hemodialysis. When TBW was compared against D2O dilution measurements in 

healthy volunteers, QMR measurements underestimated absolute values, and this bias 

appeared to be related to fat mass (greater bias for subjects with greater fat mass). In 

addition, the current version of the instrument cannot detect fluid shifts ≤1 L. Thus, QMR is 

a valuable method for quantifying small changes of fat mass in longitudinal interventions,26 

but it is yet not capable of detecting modest changes in TBW.

In summary:

• QMR has been validated in adults and children as a precise methodology to assess 

body fat mass changes, and the system's precision is better than other body 

composition methodologies.

• The QMR is a simple method for measuring body composition, is convenient for 

subjects, and can be performed very rapidly (<3 minutes).

• The high precision can be exploited to reduce substantially the cohort numbers and 

duration of clinical trials.

• TBW and lean mass measurements, however, do not show the same degree of 

precision (and accuracy) and appear to be biased; more studies of these relations 

are needed.

On the base of the data acquired so far, it is still uncertain whether fat and water mass 

measurements are completely independent of each other.

Magnetic Resonance Imaging/Spectroscopy (Wei Shen)

Magnetic resonance imaging and spectroscopy (MRI and MRS) has been increasingly used 

to study human body composition and related physiological and pathological conditions. 

MRI can measure the volume of body components, including adipose tissue, skeletal 

muscle, organs, and bone. Recent advances suggest that adipose tissue is not a homogeneous 

depot but rather contains distinct adipose tissue components with different metabolic 

activities. Advances in MRI technology have made it possible to quantify subregions of 

adipose tissue depots such as visceral adipose tissue (ie, omental, mesenteric adipose tissue, 

and extra-peritoneal adipose tissue), intermuscular adipose tissue, and bone marrow adipose 

tissue.27 Standardizing the protocols and testing the reproducibility of each MRI 

measurement method is important to develop reliable MRI quantification methods.28,29

Because whole-body MRI scans are time-consuming to analyze, it is advantageous to 

optimize single-slice protocols, especially for clinical studies.30,31 Recent studies have 

shown that a single slice in the upper abdomen not only provides the best representation of 

total volume of visceral adipose tissue but also correlates with health risks even more 

closely than the traditionally used slice located at the L4–L5 level.

MRI measured body composition has been used to answer a wide spectrum of clinical and 

research questions, including those related to obesity, osteoporosis, resting energy 
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expenditure, and sarcopenia. Both water-fat imaging and 1H MRS methods can measure 

organ fat, including fat content in muscle, liver, and pancreas. When there is elevated 

adipose tissue infiltration, MRS imaging provides a more accurate measurement of 

intramyocellular lipid than single-voxel MRS. The advantage of multinuclei MRS is its 

ability to measure many chemical compounds and metabolites in brain, skeletal muscle, or 

liver concurrently and therefore may possess the potential to answer unique questions.

Short-Term Changes: Balance Methods (Leanne M. Redman)

Energy balance or weight maintenance occurs when energy intake is equal to energy 

expenditure. Therefore, in energy balance, body energy stores (fat mass and fat-free mass 

[FFM]) are not changing. The macronutrient balance theory proposed by Flatt,32 however, 

suggests that energy balance or long-term weight maintenance is achieved when protein, 

carbohydrate, and fat balances are all close to zero. This corresponds to a situation not only 

where energy intake equals energy expenditure but also when the composition of the fuel 

mix oxidized (ie, the respiratory quotient) is equal to the composition of the fuel mix 

consumed in the diet (ie, the food quotient). Because protein balance is achieved on a daily 

basis (except during severe protein restriction or high protein intake in addition to strength 

training) and carbohydrate and fat provide the majority of energy intake, weight 

maintenance is primarily a function of carbohydrate and fat metabolism. Short- and long-

term studies of carbohydrate and fat balance measured in a respiratory chamber show that 

consumption of dietary carbohydrates induces a proportionate increase in carbohydrate 

oxidation,33 whereas consumption of dietary fat does not promote an analogous increase in 

fat oxidation.34,35 Therefore, the presence of even a small amount of carbohydrate in a high-

fat meal spares the oxidation of fat, leading to deposition of the excess dietary fat intake in 

fat stores. Twenty-four energy balance studies in normal-weight men and women thus reveal 

that energy balance is positively correlated with fat balance even though energy balance is 

not related to either carbohydrate or protein balances.36 Therefore, the inability of the body 

to oxidize excess dietary fat over time (a positive fat balance) can lead to increased body fat 

stores and body weight.37 Studies in Pima Indians show that independent of energy 

expenditure, a low ratio of fat to carbohydrate oxidation (leading to a positive fat balance) is 

associated with subsequent weight gain.38 Furthermore, physical activity can attenuate the 

positive fat balance observed in response to increased dietary fat intake.39 Given the tight 

association between fat balance and energy balance, short-term changes in body 

composition can therefore be measured with indirect calorimetry with assessments of fat and 

carbohydrate balances from precise measures of dietary macronutrient intake, carbohydrate 

and fat oxidation rates, and protein balance from urinary nitrogen production.

Short-Term Changes: Balance Techniques (Manfred J. Müller)

A major challenge for current in vivo body composition analysis (BCA) techniques is the 

valid assessment of small body composition changes in response to changes in energy 

balance. Acute changes in energy balance are associated with an unstable (ie, a nonsteady 

state) condition of body composition that is mainly attributed to shifts in fluid or glycogen 

balance as shown by water, sodium, and carbohydrate balance. However, 2-compartment or 

criterion methods such as densitometry or DXA require a constant density and hydration of 

lean mass. The measurement of energy balance from energy/macro-nutrient intake, together 
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with energy expenditure and macronutrient oxidation, combined with urinary nitrogen 

excretion, aims at assessing small and short-term changes in body composition and may 

serve as a “gold standard” for in vivo BCA techniques.

The validation of in vivo BCA techniques against energy and nitrogen balance has been 

attempted in only a few studies.40-43 When used to estimate body composition changes, 

balance techniques had high accuracy; errors in estimates of fat oxidation assessed within a 

respiration chamber were around 9.5 g/d.43 Balance techniques were most sensitive to 

changes in fat mass, with a precision of about 0.030 kg,41,43 0.26 kg,42 and 0.71 kg.40 

Estimates of fat loss in response to diet in obese women were similar— that is, 2.77 kg 

(from calorimetry with correction for nitrogen loss), 2.83 kg (based on densitometry), 2.37 

kg (from determination of total body water by deuterium oxide), and 2.90 kg (based on 

measurements of total body potassium).40 When comparing balance data against in vivo 

BCA,43 the bias in estimates of fat mass was similar in magnitude with differences in the 

direction (eg, –0.275 kg for densitometry, +0.330 kg for total body water, –1.00 kg for total 

body potassium), whereas the bias of 2 different 3-compartment models was 0.008 or 0.045 

kg, suggesting the value of multicomponent models.

More recently, we performed controlled feeding studies in a group of 10 healthy, normal-

weight men (aged 24.9 years) participating in 2 cycles of controlled 7-day periods of caloric 

restriction and refeeding and overfeeding, as well as caloric restriction at ±60% energy 

requirement.44 During caloric restriction, mean cumulative body weight changes over the 7-

day periods were –3.0 kg, with subjects returning to their baseline body weight at the end of 

subsequent refeeding (+3.1 kg). These changes were accompanied by a mean 2.2-kg 

decrease in fat mass (as assessed by densitometry), with values approximating baseline 

values following refeeding (+1.4 kg). During overfeeding, weight gain of 1.6 kg (P < .01) 

was followed by a 3.4-kg decrease in body weight. Fat mass trended toward similar changes. 

Cumulative 7-day energy balance was similarly negative during both underfeeding periods 

(–38.6 MJ vs –40.2 MJ) and positive during both over-feeding periods (54.1 MJ vs 52.5 

MJ), respectively. Nitrogen balance was –28 and –143 g/7 days during caloric restriction 

and +140 and +108 g/7 days during refeeding and overfeeding, respectively. Changes in 

energy balance correlated with changes in fat mass (r = 0.70, P < .001). In addition, changes 

in FFM correlated with changes in nitrogen balance (r = 0.59, P < .001).

However, during undernutrition, densitometry-derived estimates of fat mass exceeded 

changes in fat mass predicted from energy balance (assuming that 100%, 75%, or 50% of 

body energy content lost or gained is lost or gained as body fat). By contrast, changes during 

overfeeding were underestimated. The minimal detectable change in fat mass was 1.8 kg 

using densitometry. The exceptionally high precision of QMR technology provides a great 

potential for quantifying small changes in body composition in protocols following over- 

and underfeeding. Although the decrease in fat mass with underfeeding correlated with the 

change in energy balance (r = 0.97, P < .001), the absolute changes in fat mass were 

unsound, suggesting that further validation studies are needed. Following the individual 

courses of energy balance and estimates of fat mass (either by densitometry or QMR), there 

was high inter- and intraindividual variance in the data.
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In summary, balance studies seem to be more accurate when measuring small changes in 

body composition but are also cumbersome and limited by labor intensity. These studies can 

be used to assess short-term changes in body composition, but current in vivo BCA 

techniques should be referred to the steady-state situation only (ie, in a weight-stable or 

weight-stabilized situation).

Advances in Models

Energy Expenditure (Dympna Gallagher)

The use of FFM as a single and homogeneous tissue, or compartment, ignores the fact that 

the multiple organs and tissues that comprise FFM each have a different metabolic rate. 

Compared to the resting metabolic rate of skeletal muscle (14.5 kcal/kg/d), the metabolic 

rate of heart and kidneys is 33-fold higher (440 kcal/kg/d), brain is 18-fold higher (240 

kcal/kg/d), and liver is 15-fold higher (200 kcal/kg/d). The presented data highlight the 

important contributions that these high metabolic rate organs have on resting energy 

expenditure (REE) and support the notion that although they comprise a minor portion of 

total FFM, much of the variation in REE commonly thought attributable to sex, race, and 

even age can be explained by variation in the components of FFM, specifically these select 

high metabolic rate organs.

REE prediction equations are typically modeled based on the energy requirements of 2 

distinct body composition compartments: fat or adipose tissue and FFM or adipose tissue–

free mass, which have markedly different specific energy requirements. In brief, FFM is the 

principal contributor to energy requirements and is commonly used as a surrogate for 

metabolically active tissue. However, this practice is inherently flawed as it pools together 

numerous organs and tissues that differ significantly in metabolic rate. The brain, liver, 

heart, and kidneys alone account for approximately 60% of REE in adults, but their 

combined weight is <6% of total body weight or 7% of FFM.45-48 The skeletal muscle 

component of FFM comprises 40%–50% of total body weight (or 51% of FFM) and 

accounts for only 18%–25% of REE.45,47,48 REE varies in relation to body size across 

mammalian species.49,50 Within humans, REE/kg of body weight or FFM is highest in 

newborns (~56 kcal/kg weight/d51) and declines sharply until 4 years and slowly thereafter, 

reaching adult values (~25 kcal/kg weight/d51). Among adults, REE is lower in the later 

adult years, to an extent beyond that explained by changes in body composition.52,53 That is, 

the loss of FFM cannot fully explain the decrease (5%–25%) in REE in healthy elderly.

Elucidating the extent of organ and tissue atrophy has important implications for 

understanding REE changes with age and REE-related diseases such as obesity.54,55 

Autopsy data have shown a linear decline in organ weight with increasing age for the brain, 

liver, and kidneys, whereas weight for the heart increased with age.56 We confirmed these 

findings in healthy African American and white adults (aged 19–88 years) using in vivo 

MRI-derived organ measures (ie, older people have a smaller mass of brain, kidneys, liver, 

and spleen but not the heart compared to younger subjects).57 Our findings demonstrate that 

age has a significant effect on these organs, and the effect of age is consistent across sex and 

across the race groups studied.
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A question of importance to understanding the determinants of REE is how much additional 

variability in REE can be accounted for by distinguishing between high (brain, heart, liver, 

kidneys, spleen, or skeletal muscle) and low metabolic rate tissue components vs a measure 

of undifferentiated FFM as a single component. In a study of healthy adults, we found that 

5% of the 30% variability in REE that remains unexplained by models using 

undifferentiated FFM as a single component can be accounted for by distinguishing between 

select high and low metabolic rate tissue components.58 Moreover, these data showed that 

the significant race and age effects present in the undifferentiated FFM model become 

statistically nonsignificant when the mass of high metabolic rate organs (HMRO) is taken 

into consideration. The latter demonstrates that differences in the mass of these HMRO with 

increasing age and across race groups are important independent determinants of REE. A 

novel finding of this study was that adding brain mass to the prediction of REE explained an 

additional 2% of the variance and rendered the age effect statistically nonsignificant.

A perplexing and implausible finding from published FFM-derived REE prediction 

equations has been the positive intercept that exists, thereby inferring that a component of 

REE remains when FFM or body mass is extrapolated to zero. Specifically, the positive 

intercept can vary from 186–662 kcal/d with slopes varying from 19.7–24.5 kcal/kg FFM/d 

as previously summarized.59 We investigated whether the prediction of REE with specific 

tissue/organ measures included in the REE prediction models rendered the intercept not 

different to zero.58 Only with the inclusion of brain mass was the REE prediction equation 

not different from zero, implying that when body mass is zero, REE is zero. The addition of 

brain mass reduced the intercept from 560 kcal/kg/d (REE = Age + Sex + Race + Fat + FFM 

+ HMRO – trunk) to 69 kcal/kg/d (REE = Age + Sex + Race + Fat + FFM + HMRO – trunk 

+ brain), thereby highlighting the importance of this single organ to the prediction of REE. 

The brain has one of the highest specific metabolic rates (240 kcal/kg/d) and is thus a good 

representation of a high metabolic rate organ.60

Specific to changes in REE with weight loss, evidence suggests that weight loss leads to a 

reduction in REE beyond that explainable by losses in fat and FFM.61,62 Bosy-Westphal and 

colleagues (2009)63 found that a 10% weight loss in young overweight and obese women 

was associated with changes in high metabolic activity organ weights (liver, heart, and 

kidneys) of between 4% and 6%, which exceeded the loss in total FFM (2.6%). In contrast, 

no change was observed for brain mass. With respect to changes observed in REE, this 10% 

weight loss in overweight and obese women resulted in a significant decrease in REE 

(7.7%), of which 47% was explained by losses in FFM and FM and an additional 13% to 

changes in individual organ and tissue mass (60% total explained by body composition). 

The authors ascribed the remaining 40% decrease in REE to be due to adaptive 

thermogenesis.

There is also a growing interest in understanding the REE of overweight and obese 

individuals because the overweight and obese groups constitute an increasing proportion of 

the population. Even though adipose tissue has a low rate of energy expenditure (4.5 

kcal/kg/d), its mass varies more than all other major tissues in the body.64 Despite the low 

metabolic rate of adipose tissue, it is notable that fat mass remained a significant contributor 

to REE in all REE prediction models, including those with all organs.58 In studies 
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examining changes in REE for subjects undergoing significant weight or fat loss, the relative 

variance induced by this tissue component alone needs to be considered.

Dynamic Energy Balance Models: Health (Diana Thomas)

This report analyzes the impact of various FFM–fat mass models on the resulting half-life 

and steady state yielded by an energy balance model. Although the significance of body 

composition influence on weight loss has been experimentally observed and examined 

quantitatively by considering static amounts of weight change,65,66 this is the first attempt to 

analyze the combined effects of body composition on time-varying weight loss. Through 

this analysis, we establish that the half-life is highly sensitive to baseline body composition.

Current state of the art—Four different FFM–fat mass models have been employed 

within an energy balance equation67—specifically, constant, linear, the Forbes relationship, 

and a model derived from the 1999–2004 NHANES data. It was found that half-life was 

sensitive to the choice of model used to determine baseline body composition (Table 1, 

Figure 1). The weight loss curves in Figure 1 are generated for the average NHANES 

woman (Figure 1A) and man (Figure 1B) using different body composition formulas within 

the core energy balance equation.

Unresolved questions and future directions—The 2 advanced models, Forbes and 

the NHANES-based models, are developed from relatively sedentary subject data. FFM– fat 

mass models in highly active individuals should be compared to longitudinal data where 

physical activity is increased or decreased. It should be determined whether longitudinal 

data travel along a cross-sectional relationship, and if not, the reasons should be 

investigated.

Dynamic Models of Macronutrient Metabolism and Body Composition Change (Kevin D. 
Hall)

We know a great deal about how diet and physical activity affect various aspects of energy 

metabolism, body weight, and body composition. But integrating this knowledge to make 

quantitative predictions is a formidable task given the complex interactions between the 

metabolism of fat, carbohydrate, and protein, as well as adaptations of energy expenditure 

and nonlinear changes of body composition.

Current state of the art—Several mathematical models have recently been developed by 

my research group to integrate whole-body metabolism data with body composition data in 

an attempt to better understand these complex interactions and make quantitative predictions 

about how diet modifications result in adaptations of fuel selection and energy 

expenditure.68-71 These models accurately predict changes of body weight and body 

composition in both obese and nonobese men and women and provide several useful 

insights regarding human metabolism and body weight regulation.

Unresolved questions and future directions—Although mathematical models of 

metabolism and body composition change are becoming increasingly realistic, several 

aspects of these models remain phenomenological rather than mechanistic. For example, the 
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mechanisms underlying the metabolic adaptation to reduced energy diets require elucidation. 

Furthermore, although cross- sectional data exist describing the relationship between organ 

size and FFM, longitudinal relationships are required to quantify the impact of changes in 

organ size on resting metabolic rate during weight gain and loss.

Advances in Clinical Observations/ Applications

Aging (Paolo Caserotti)

Aging is associated with profound changes in body composition, including loss of skeletal 

muscle mass (sarcopenia), progressive increase in total body fat during adulthood followed 

by a loss later in life, and remodeling of fat distribution.72 The latter includes an increase in 

intermuscular fat, lipid content in the muscles identified by lower Hounsfield units during 

computed tomography (CT) imaging (ie, muscle attenuation), visceral fat, and a progressive 

loss of subcutaneous fat.72,73 In addition, weight gain and weight loss over time have 

recently been associated with preserved muscle mass and accelerated muscle atrophy, 

respectively; however, both weight gain and loss are associated with the increase in fatty 

infiltration of muscle.73 Overall, these changes seem to be jointly or independently 

associated with negative health and functional outcomes such as insulin resistance and 

impaired mechanical muscle function.74

Since the work of Baumgartner et al in 199872 that demonstrated the association of low 

muscle mass and functional impairment, the role of sarcopenia in understanding the pathway 

to physical disability has been critical and has received considerable attention. Nevertheless, 

recent evidence suggests that the correlation between muscle “quantity” and “muscle 

function” (eg, muscle strength) is relatively weak, and in contrast to muscle strength, muscle 

mass has been demonstrated to be a poor predictor of functional limitation, gait speed, and 

even mortality.74,75

It is becoming increasingly clear that muscle quality (force per unit of muscle mass) and 

neural function play an essential role in the disabling pathway and that a new end point 

incorporating these aspects in addition to muscle mass is needed.76,77

Chronic Disease/Cancer (Vickie Baracos)

Noting the acquisition of some 30,000 CT images per year in a typical cancer center, we 

proposed the opportunistic use of these high-quality images that are readily available to 

provide accurate and practical studies of body composition across the cancer trajectory. 

Recent work by our group exploiting CT images for body composition analysis has revealed 

the natural history of cancer cachexia, including progressive alterations in skeletal muscle, 

adipose tissue, organs, and tumor mass.78,79 Our research group has undertaken a 

prospective cohort study of body composition in patients with advanced cancers of the lung 

and gastrointestinal tract at a cancer center that serves northern Alberta, Canada.80,81 

Consecutive patients (n = 1473) have been assessed by CT at a standardized vertebral 

landmark (third lumbar vertebra). This cross-sectional analysis provides population 

demographics of body composition at referral for cancer treatment. At referral, mean BMI 

was surprisingly high when framed against conventional notions of cachexia in advanced 

cancer: 25.6 kg/m2 with 52% of patients over-weight or obese. Only 7.5% overall were 
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underweight as conventionally understood (BMI <18.5 kg/m2). Analysis of CT images 

revealed extremely high heterogeneity of muscle mass within all strata of BMI. The overall 

prevalence of severe muscle depletion (sarcopenia) was 41% and was present in patients in 

all BMI categories. Wasting of skeletal muscle is a prominent feature of lung cancer 

patients, despite normal or heavy body weights. The significance of muscle wasting in 

normal-weight, overweight, and obese patients as a nutrition risk factor, as a prognostic 

factor, and as a predictor of cancer treatment toxicity is discussed.82

Analysis of repeated images over time in 388 patients (a total of 1279 CT images) provides 

information on the natural history of the changes in muscle and adipose tissue over time. 

Overall, both muscle and adipose tissues were lost, and this increased in magnitude overtime 

until death, in an exponential fashion. Although muscle loss was common, the overall 

frequency of muscle gain was 15.4%, and muscle was stable in 45.6% of intervals between 

any 2 scans. Multinomial logistic regression revealed that being within 90 days (vs >90 

days) from death was the principal risk factor for muscle loss (odds ratio [OR] = 2.68; P < .

002), and muscle gain was correspondingly less likely (OR = 0.49; P < .009) at this time. 

Sex, age, BMI, and tumor group were not significant predictors of muscle loss or gain.

We conclude that cancer patients in contemporary populations are likely to simultaneously 

have high body weight and skeletal muscle wasting. Studies of the progression over time 

suggest a clear possibility of anabolic potential, but that anabolic potential wanes 

dramatically during the last 90 days of life, a period dominated by intense catabolism. This 

is consistent with the idea of refractory cachexia, which evolves during the terminal stages 

of cancer, which is no longer responsive to antineoplastic therapies.83

Catabolic Diseases (Claude Pichard)

Acute illnesses often result in a catabolic state because of metabolic stress and reduced 

physical activity, leading to major muscle and adipose tissue wasting and organ dys-

functions.84-88 These alterations, which are characteristic of protein calorie malnutrition, 

increase morbidity and duration of hospital stay, as well as delay and prolong the recovery 

phase.

Lean tissues, also named FFM, and adipose tissues (ie, fat mass) are altered by catabolic 

conditions. Variations in fluid status during acute illness and related changes in body weight 

are difficult to evaluate and interpret during treatment. Body weight poorly reflects the size 

and the evolution of FFM and fat mass during catabolic diseases. Therefore, an optimal 

nutrition assessment should include the evaluation of FFM and fat mass changes during 

metabolic stress and catabolism.

Significant progress has been made in the past decade in measuring body composition, 

allowing the quantification of body compartments at different levels of definition: from 

simple 2-compartment (FFM vs fat mass) to sophisticated multiple-compartment models 

(molecular quantification such as body nitrogen, potassium, etc). Despite these advances, the 

clinical measurement of body composition remains limited to the determination of TBW, 

FFM, fat mass, and bone mass by bioelectrical impedance analysis, DXA, and CT, mainly 

because other technologies are still either too complex and expensive or too imprecise.
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In conclusion, we believe that a systematic evaluation of body composition parameters (ie, 

TBW, FFM, and fat mass) could significantly contribute to determining patients’ overall 

status, improve the tailoring of diet intake or nutrition support to patients’ specific needs, 

and thereby significantly improve the global quality of care and the cost-effectiveness ratio.
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Figure 1. 
Weight loss curves generated for the average National Health and Nutrition Examination 

Survey (NHANES). (A) woman and (B) man using different body composition formulas 

within the core energy balance equation. The Forbes curves apply baseline body 

composition (BC) estimates from the Jackson89 and NHANES formulas.90,91 The NHANES 

fat-free mass (FFM)-fat mass (FM) formula,90,91 the linear FFM-FM formula, and the 

constant FFM formula curves are from Thomas et a1..90,91 Weight (kg) appears on the y-

axis, and day of weight loss is on the x-axis.
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Table 1

Eigenvalues, Half-Life, and Steady States Resulting From Different Choices of FFM-FM Model Within a 

Core Energy Balance Equation67

Eigenvalue Half-Life, d Steady State, kg

FFM-FM Model M F M F M F Characteristics

Constant FFM –0.00126 –0.00126 551 551 74.8 65.3 Constant eigenvalue

Linear FFM –0.00323 –0.00323 215 215 75.1 65.5 Constant eigenvalue

Forbes curve66 with baseline body 
composition90

–0.00328 –0.00245 211 283 75.2 65.5 Eigenvalues dependent on gender

Forbes curve66 with baseline body 
composition89

–0.00344 –0.00254 202 273 77.6 67.9 Eigenvalues dependent on gender

NHANES curve90 –0.00334 –0.00287 208 242 74.9 64.7 Eigenvalues dependent on age, height, 
and gender

F, female; FFM, fat-free mass; FM, fat mass; M, male; NHANES, National Health and Nutrition Examination Survey.
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