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Abstract

The interactions between avian obligate interspecific brood parasites and
their hosts provide tractable systems for studying coevolutionary processes
in nature. This review highlights recent advances in understanding coevo-
lution in these systems. First, we discuss the evolution and phylogenetic
history of avian brood parasitism. Next, we examine coevolved adaptations
and counteradaptations in brood parasites and hosts at all stages of the host
nesting cycle: those that precede laying of the parasitic egg and those at the
egg, chick, and fledgling stages. We then consider the factors that affect the
evolution of offense and defense portfolios (the suites of adaptations and
counteradaptations across the nesting cycle), and the outcomes of coevolu-
tionary interactions between brood parasites and hosts. Ongoing efforts to
document the diversity of host defenses and parasite offenses will facilitate
understanding of coevolutionary processes and the ecological and evolution-
ary consequences of species interactions in the natural world.
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1. INTRODUCTION

The importance of species interactions as drivers of natural selection was recognized by Charles
Darwin in On the Origin of Species: “As natural selection acts by competition, it adapts the inhabitants
of each country only in relation to the degree of perfection of their associates” (Darwin 1859,
p. 472). Consequently, the intimate nature of coevolutionary relationships, in which two or more
species undergo reciprocal heritable change through their interactions with one another, led to
their use as tractable models for studying the evolutionary process itself (Thompson 1994).

Coevolution can be studied from a theoretical perspective, in experimental laboratory condi-
tions, or in the natural world (Thompson 1994). In the natural world, the interactions between
brood parasitic birds and their hosts have been the subject of enduring fascination and study, span-
ning from Aristotle (fourth century BC; Hett 1936, Davies & Brooke 1988) and Charles Darwin
(1859) to the present (Rothstein 1990, Davies 2000).

Brood parasitism is a breeding strategy in which a parasite manipulates a host to raise its
offspring. It is phylogenetically widespread and has been identified in arthropods, fishes, and birds
(Feeney et al. 2012). Brood parasites may exploit their own species (intraspecific brood parasitism)
or a different species (interspecific brood parasitism), and parasitism may be a facultative or obligate
strategy (Davies 2000). Interactions between interspecific brood parasites and their hosts may lead
to coevolutionary arms races in which host species evolve defenses against parasitism, which select
counteradaptations in parasites, further counteradaptations in hosts, and so on (Rothstein 1990,
Davies 2000, Soler 2014).

In recent years, the complexity of coevolutionary arms races between brood parasitic birds
and their hosts has become apparent. Evidence of coevolved adaptations and counteradaptations
has been found at all stages of the host nesting cycle, from nest building through the egg, chick,
and fledgling stages (Brooke & Davies 1988, Langmore et al. 2003, Welbergen & Davies 2009,
De Mársico et al. 2012). Theory predicts that adaptations at one stage of the nesting cycle can
influence evolution at other stages and lead to different coevolutionary trajectories in different
host-parasite systems (Britton et al. 2007, Kilner & Langmore 2011). Coevolutionary arms races
may even account for global patterns of morphology and life history, such as high incidences of
hawk mimicry (Gluckman & Mundy 2013) and polymorphisms (Thorogood & Davies 2013a)
in cuckoos, and clutch sizes (Hauber 2003b) and social systems (Feeney et al. 2013) in hosts.
Methodological advances, such as the use of light spectrophotometry and the development of bird
visual perception models and pattern analysis techniques, are allowing more biologically accurate
assessments of the proximate cues underlying coevolutionary processes (e.g., Cherry & Bennett
2001, Stoddard & Stevens 2011, Stoddard et al. 2014), and genetic techniques are unveiling the
evolutionary histories of the interactions between the species (Gibbs et al. 2000, Sorenson & Payne
2002, Fossøy et al. 2011, Spottiswoode et al. 2011).

This review synthesizes the recent key advances in understanding the depth of coevolution
between avian obligate interspecific brood parasitic birds and their hosts. First, we discuss
the evolution of obligate interspecific brood parasitism (henceforth “brood parasitism” or
“parasitism,” unless otherwise stated) as a breeding strategy and the phylogenetic history of
brood parasite–host interactions (Sections 2.1 and 2.2). Next, we consider reciprocal adaptations
and counteradaptations in brood parasites and their hosts at each stage of the host nesting
cycle: before deposition of the parasitic egg in the host nest (the “frontline” of the arms race)
(Section 3.1), during egg laying and incubation by the host (egg stage) (Section 3.2), following
hatching, but while the chick(s) still resides within the nest (chick stage) (Section 3.3), and while
the fledged chick(s) is still dependent on the parents (fledgling stage) (Section 3.4). Finally, we
discuss the evolution of adaptive portfolios (cumulative suites of defensive adaptations in hosts
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and offensive adaptations in brood parasites) (Section 4.1) and the possible long-term outcomes
of the coevolutionary interactions between brood parasites and hosts (Section 4.2). Promising
future research prospects are highlighted throughout.

2. THE EVOLUTION OF OBLIGATE INTERSPECIFIC BROOD
PARASITISM IN BIRDS

Obligate interspecific brood parasitism is the breeding strategy of approximately 1% of bird species
(Davies 2000). It has evolved independently seven times in four orders: twice in the old-world cuck-
oos (Cuculiformes: Cuculinae) and once each in the new-world cuckoos (Cuculiformes: Neomor-
phininae), blackbirds (cowbirds: Passeriformes: Icteridae), old-world finches (Passeriformes: Plo-
ceidae), honeyguides (Piciformes: Indicatoridae), and ducks (Anseriformes: Anatidae) (Sorenson &
Payne 2002).

2.1. The Evolution of Interspecific Brood Parasitism as a Breeding Strategy

With the exception of the black-headed duck, Heteronetta atricapilla, all avian obligate interspe-
cific brood parasites are altricial (Davies 2000). This bias may be due to the considerable benefits
that brood parasitism confers to altricial species, which produce relatively cheap hatchlings that
require substantial attention posthatching, relative to their precocial counterparts, which are com-
paratively costly to produce but require less attention following hatching (Lyon & Eadie 1991,
Yom-Tov 2001).

Interspecific brood parasitism is considered to have arisen from intraspecific brood parasitism
(Hamilton & Orians 1965, Lyon & Eadie 1991, Robert & Sorci 2001), although this remains a
contentious issue (e.g., Yom-Tov & Geffen 2006). The majority of facultative interspecific brood
parasites are also intraspecific parasites, and among altricial birds facultative interspecific para-
sitism is found in the same families as obligate interspecific brood parasitism (Lyon & Eadie 1991,
Yom-Tov 2001, Lyon & Eadie 2008). In the precocial black-headed duck, there is mounting
evidence that interspecific brood parasitism evolved from intraspecific brood parasitic ancestors
(Lyon & Eadie 2008). Among the other interspecific brood parasite lineages, disagreement will
likely endure until a more comprehensive understanding of the breeding ecologies of the relevant
species exists (Lyon & Eadie 1991, Sorenson & Payne 2002, Yom-Tov & Geffen 2006). For exam-
ple, there is limited to no information on the breeding ecologies of a large number of nonparasitic
cuckoos (Payne 2005b) and a need for baseline natural history research.

Regardless of the ancestral parental mode, it is likely that obligate brood parasitism arose from
facultative brood parasitism (Hamilton & Orians 1965). The idea that nest predation can lead to
opportunistic brood parasitism has received experimental support in both an intraspecific (Shaw
& Hauber 2009) and interspecific (Shaw et al. 2014) context. The idea that unusually favorable
environmental conditions can result in an overproduction of viable eggs and promote facultative
interspecific brood parasitism is supported by field studies (Lyon & Eadie 1991) and theoretical
models (Robert & Sorci 2001) but awaits experimental confirmation. A variety of estrildid finches
(close relatives of the parasitic finches) and the baywing, Agelaioides badius (a close relative of the
cowbirds), use the old nests of other species as their own, and this has spurred ideas that brood
parasitism can arise from nest usurpation (Davies 2000, Sorenson & Payne 2002).

There are several life-history attributes that appear to predispose species to make the transition
from intraspecific brood parasitism to obligate interspecific brood parasitism. Among cuckoos, it
has been suggested that the evolution of brood parasitism was preceded by increased migratory
behavior, increased breeding size range, and consumption of smaller prey items (Krüger & Davies
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2002). Each of these changes in ecology may have favored breeding strategies that reduce the costs
of reproduction (Krüger & Davies 2002). It seems likely that the ancestors of the cuckoos, cowbirds,
and honeyguides had shorter incubation periods than their primary hosts before the evolution of
brood parasitism, which is an attribute that would increase the likelihood of successful competition
with nest mates (Hamilton & Orians 1965, Payne 2005b). Internal incubation is exhibited by at
least some cuckoos (Cuculus sp.) and the greater honeyguide, Indicator indicator, but not in the
cuckoo finch, Anomalospiza imberbis (Birkhead et al. 2011). In the cuckoos, internal incubation has
not arisen as an adaptation to brood parasitism but may have facilitated its evolution, whereas in
the greater honeyguide internal incubation may have arisen as an adaptation to brood parasitism
(Birkhead et al. 2011).

2.2. The Phylogenetic History of Interspecific Brood Parasitism

Of the seven currently recognized independent evolutionary origins of brood parasitism, five
(cuckoos, finches, and honeyguides) are relatively old (>5 Myr), whereas two (the cowbirds and
ducks) are relatively young (<5 Myr) (Sorenson & Payne 2002). Speciation events among brood
parasite lineages can be ancient, such as the split between the cuckoo finch and the other parasitic
finches (Viduidae) (in the vicinity of 13 Myr; Sorenson et al. 2004), and others are relatively
recent, as in some indigobird species (Sorenson et al. 2003). Additionally, avian brood parasites
exhibit higher rates of speciation, extinction, and molecular evolution than their nonparasitic
counterparts (Sorenson & Payne 2002, Krüger et al. 2009). Although rarely estimated (Gibbs
et al. 2000, Spottiswoode et al. 2011), the duration of relationships between brood parasites and
hosts shows much variation: approximately 3 Myr for some races of the greater honeyguide and
its hosts (Spottiswoode et al. 2011); 65,000–80,000 years for some races of the common cuckoo,
Cuculus canorus, and its hosts (Gibbs et al. 2000); and recent colonization of new host species by
some indigobird species (Sorenson et al. 2003).

The rich and dynamic phylogenetic history of avian interspecific brood parasitism implicates
coevolution with hosts as a strong driver of biological diversity (Sorenson & Payne 2002, Krüger
et al. 2009, Krüger & Kolss 2013). This has similarly been suggested in studies of experimental
coevolution in the laboratory (Brockhurst & Koskella 2013). However, evidence of higher rates of
molecular evolution in hosts, and evidence of speciation or extinction in brood parasites or hosts
because of coevolutionary interactions, is still lacking and is an important prospect for future work.

3. COEVOLUTIONARY DYNAMICS BETWEEN BROOD
PARASITES AND HOSTS

Interspecific brood parasitism provides an interesting model for studying a variety of ecological
phenomena, such as how species interactions are affected by a changing environment (Møller et al.
2011); however, the coevolutionary arms races between brood parasites and their hosts continue
to attract the most attention. Below we consider the adaptations and counteradaptations that have
evolved in brood parasites and hosts at all stages of the host nesting cycle.

3.1. Frontline Adaptations

Successful brood parasitism hinges on the ability of the parasite to deposit its egg in the host nest.
Correspondingly, deterring laying by the parasite is of utmost importance to the hosts, because
at this stage they can avoid most of the costs associated with being parasitized. This frontline of
the arms race is defined as the adaptations and counteradaptations that operate before insertion
of the parasite egg in the host nest (Welbergen & Davies 2009, Feeney et al. 2012).
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Frontline defenses often depend on hosts recognizing adult brood parasites (but not always;
see, e.g., Canestrari et al. 2009). This appears to be a learned attribute (Langmore et al. 2012,
Feeney & Langmore 2013) that is associated with specific morphological cues of the parasite, such
as conspicuous eye rings or barred underparts (e.g., Trnka et al. 2012). Recognition and mobbing
of brood parasites can be acquired through social learning from conspecifics (Davies & Welbergen
2009, Feeney & Langmore 2013), and social learning may be even more important than personal
experience in this context (Campobello & Sealy 2011). Hosts may assess the risk of parasitism
before laying by using information acquired directly from a parasite (Davies & Brooke 1988, Hosoi
& Rothstein 2000, Forsman & Martin 2009, Kleindorfer et al. 2013), from environmental cues
that correlate with parasitism (Welbergen & Davies 2009, Patten et al. 2011), or both (Welbergen
& Davies 2012). Assessments of parasitism risk can be used to determine where to nest (Forsman
& Martin 2009), the appropriate level of nest vigilance (Davies et al. 2003), or whether defenses
should be deployed, at either the frontline (Welbergen & Davies 2012) or later stages of the
nesting cycle (Davies & Brooke 1988, Hosoi & Rothstein 2000, Langmore et al. 2009a). Some
host species have alarm calls that specifically denote a parasite (Gill & Sealy 2004, Feeney et al.
2013). Others produce a more urgent version of a generalized alarm response (Neudorf & Sealy
1992, Welbergen & Davies 2008) or do not appear to react to brood parasites as unique from
other nest threats (Neudorf & Sealy 1992).

Many host species physically attack or mob brood parasites with potentially lethal aggression
(Gloag et al. 2013). This behavior can be beneficial to hosts as it can successfully deter laying by
a brood parasite (Davies & Welbergen 2009, Feeney et al. 2013, Gloag et al. 2013, but see Smith
et al. 1984) or reduce the degree of destruction done by the parasite to the host clutch during the
laying visit (Gloag et al. 2013). Alternatively, some hosts are more passive-aggressive, and may
decrease the opportunity for parasitism by spending more time on the nest, physically blocking
the parasite from laying (Gill & Sealy 2004, Canestrari et al. 2009). Empirical studies suggest that
there is strength in numbers, as hosts in large colonies or cooperative groups are less likely to be
parasitized (Brown & Lawes 2007, Canestrari et al. 2009, Feeney et al. 2013), and the protection
conferred by larger groups may favor cooperative breeding in host species (Feeney et al. 2013).

Hosts may defend against parasitism through inhibitory (Davies 2000, Grim et al. 2011) or
deceptive (Soler et al. 1999) nest structures or by nesting in locations that deter parasitism (e.g.,
Patten et al. 2011). Alternatively, some hosts may dilute the risk of parasitism by aggregating nests
in space and synchronizing breeding to swamp the parasite or facilitate group nest defense (e.g.,
Clark & Robertson 1979), and it is suspected that some may also avoid parasitism by shifting their
breeding phenology relative to that of the parasite (e.g., Brooker & Brooker 1989).

As hosts have evolved defenses that help deter deposition of the parasite egg in their nests,
brood parasites have evolved counteroffenses. Adult parasites whose progeny eliminate the host
brood following hatching appear to rely heavily on deceptive or cryptic adaptations to circumvent
host defensive adaptations. This may be because these hosts have a greater incentive to abandon
their nests as parasitism generally results in the destruction of their entire breeding attempt and
carries the additional costs of raising the alien chick(s), time that could otherwise be used to initiate
a new breeding attempt. Brood parasites can decrease the likelihood of being identified by evolving
cryptic plumages (Krüger et al. 2007), plumages that mimic dangerous heterospecifics (Davies &
Welbergen 2008, Gluckman & Mundy 2013), or plumage polymorphisms (Honza et al. 2006,
Thorogood & Davies 2012, Thorogood & Davies 2013a, Trnka & Grim 2013). Some evolve
cryptic behaviors, such as observing host nests from hidden or distant perches (Honza et al. 2002),
approaching host nests at times of day when hosts are absent (Davies 2000), or targeting specific
host breeding pairs or groups to minimize the likelihood of being detected (Soler et al. 1999, but
see Antonov et al. 2012).
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A recent series of studies demonstrated a particularly intricate suite of adaptations and counter-
adaptations between cuckoos and their hosts at the frontline of the arms race. Common cuckoos
appear to have evolved hawk, Accipiter sp., mimicry to reduce the likelihood of being mobbed by
their hosts (Welbergen & Davies 2011). However, at least some host individuals can discriminate
cuckoos from sparrowhawks in some situations (Davies & Welbergen 2008, Trnka & Prokop
2012), and such discrimination can be rapidly transmitted through host populations through so-
cial learning (Davies & Welbergen 2009, Thorogood & Davies 2012). In response, common
cuckoos have evolved plumage polymorphisms that can reduce host mobbing of the rare morph
(Honza et al. 2006, Thorogood & Davies 2012). Moreover, a recent study by Thorogood &
Davies (2013a) suggests that this process may explain the high global incidence of polymorphisms
in hawk-mimicking cuckoo species.

Brood parasites whose progeny do not annihilate the entire host brood may also exhibit decep-
tive adaptations that facilitate parasitism; however, they also use more direct and forceful means
of gaining access to host nests. There is evidence that some of these parasites damage host eggs
before laying to provide a competitive edge to their offspring and possibly assess nest suitability
(Massoni & Reboreda 1999, Gloag et al. 2013), locate potential host nests by “flushing” the host
from the nest, exhibit male-female cooperation, or simply push the defending hosts off their nest
to allow parasitism (reviewed by Davies 2000, Feeney et al. 2012). Such adaptations are less likely
to evolve in parasites that eliminate the host brood upon hatching, as the host receives no fit-
ness by accepting the parasitic offspring and can abandon the nest to renest. Interestingly, Gloag
et al. (2013) found that mobbing of shiny cowbirds, Molothrus bonariensis, by mockingbirds, Mimus
saturninus, during laying was extremely common (∼80%) and brutal, but was endured by the
cowbirds until they had successfully laid their egg. These results may suggest that these parasites
have evolved the ability to withstand mobbing, possibly through a thicker skin or a denser skull.
Although this has not yet been demonstrated in avian brood parasites, analogous adaptations exist
in brood parasitic insects (reviewed by Kilner & Langmore 2011).

3.2. Egg-Stage Adaptations

If the parasite successfully deposits its egg in the host nest, the egg stage of the arms race ensues.
Adaptations at this stage of the host nesting cycle comprise the best-studied examples of brood
parasite–host coevolution (Rothstein 1990, Davies 2000, Soler 2014).

A parasitic egg in the nest may result in partial or complete destruction of the host brood
upon hatching, as well as the redirection of resources to the parasite. Consequently, hosts have
evolved defenses against parasitic eggs that minimize the costs of brood parasitism. Host defenses
generally rely on discrimination of the parasitic egg(s) in a clutch, which appears to be mediated
by two cognitive mechanisms: comparing the eggs in the nest to an internal template of the
appearance of the host’s own eggs (true recognition; Rothstein 1975, Lotem et al. 1995, Lahti &
Lahti 2002) or identifying the odd egg, or eggs, in its clutch (discordancy hypothesis; Rothstein
1975, Marchetti 2000). Recent work by Moskát et al. (2010) and Bán et al. (2013) investigating
the great reed warbler, Acrocephalus arundinaceus (a host of the common cuckoo), and Stevens et al.
(2013) investigating the tawny-flanked prinia, Prinia subflava (a host of the cuckoo finch), found
that both mechanisms contribute to identification of the parasitic egg(s), presumably mitigating
the weaknesses inherent in either mechanism.

Recognition of an odd egg in the nest is achieved by perceiving differences in the phenotypes
between the parasite and host eggs, and the response to these differences can be affected by
the perceived risk of parasitism (see above). Hosts are known to identify a parasitic egg(s) in
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their nest according to differences in egg color (Rothstein 1982, Brooke & Davies 1988, Avilés
et al. 2010, Spottiswoode & Stevens 2010, Stoddard & Stevens 2011, Bán et al. 2013), pattern
(Spottiswoode & Stevens 2010, Stoddard & Stevens 2010, Stoddard et al. 2014), size (Marchetti
2000, Langmore et al. 2003), and shape (Mason & Rothstein 1986) and by the arrangement of
the eggs in the nest (Polačiková et al. 2013) or a combination of these attributes (Rothstein 1982,
Lahti & Lahti 2002, Spottiswoode & Stevens 2010, Stevens et al. 2013). Recent techniques allow
quantitative measurements of color (Cherry & Bennett 2001, Starling et al. 2006) and pattern
(Stoddard & Stevens 2010, Stoddard et al. 2014), which can be used to calibrate models to account
for bird visual systems (Cassey et al. 2008, Avilés et al. 2010, Spottiswoode & Stevens 2010,
Stoddard & Stevens 2011). Notably, Cherry & Bennett (2001) found that human subjects were
unable to identify hidden aspects of egg mimicry by red-chested cuckoos, Cuculus solitarius, that
could be determined using reflectance spectrophotometry, highlighting the importance of using
more objective measurement techniques (also see Starling et al. 2006). However, no studies have
investigated whether discrimination occurs according to the olfactory profiles of host and parasite
eggs (but see Soler et al. 2014).

Once the odd egg(s) has been recognized, hosts can either accept or reject it. Egg rejection
comprises either physical ejection of the odd egg from the nest (Brooke & Davies 1988, Davies
& Brooke 1989a, Moksnes et al. 1991, Spottiswoode & Stevens 2010), burying the parasitic egg
in the nest lining (Davies & Brooke 1988, Langmore et al. 2003), building a new nest on top
of the clutch containing the parasitic egg (Davies & Brooke 1988), or deserting the parasitized
nest (Davies & Brooke 1989a, Hosoi & Rothstein 2000, Welbergen et al. 2001, Langmore et al.
2005). Hosts can physically remove a parasitic egg by grasping the entire egg with their bill (grasp
ejection) (Moksnes et al. 1991), puncturing the egg and ejecting it from the nest by grasping it
by the shell with their bill (puncture ejection) (Rohwer & Spaw 1988, Moksnes et al. 1991), or
grasping and removing the egg with their feet (De Mársico et al. 2013).

Whether a species accepts or rejects a parasitic egg typically depends on the duration of ex-
ploitation by brood parasites (Hosoi & Rothstein 2000), physical capabilities of the species, the
costs and benefits of the various defensive behaviors, and external pressures. Visibility within the
nest appears to affect the rejection rate of parasitic eggs by hosts, who may have difficulty detecting
foreign eggs in dark nests (Langmore et al. 2009b, Antonov et al. 2011). Rejection may also depend
on bill size relative to the size and thickness of the parasite egg (Rohwer & Spaw 1988, Moksnes
et al. 1991, but see Underwood & Sealy 2006). Acceptance of the parasite egg is more likely if the
costs or perceived risk of parasitism are low, such as when parasitism occurs late after egg laying
(Welbergen et al. 2001, Langmore et al. 2003), or when the cost of defenses is high, such as when
parasitism does not result in the complete destruction of the host brood or the likelihood of nest
predation is high (Krüger 2011).

One study on egg rejection suggests that hosts can acquire defenses against brood parasites more
rapidly than would be possible through genetic adaptation. In azure-winged magpies, Cyanopica
cyana, egg rejection defenses were expressed less than 20 years after parasitism by the common
cuckoo commenced (Nakamura et al. 1998). This is considered too brief a time period to be
the outcome of genetic change, and learning has been proposed as an alternative mechanism
underlying egg rejection (Nakamura et al. 1998, Soler 2011).

Brood parasites have evolved a suite of adaptations to counteract the defenses of their hosts at
the egg stage. As mentioned above, some have evolved eggs that mimic the color (Rothstein 1982,
Brooke & Davies 1988, Avilés et al. 2010, Spottiswoode & Stevens 2010, Stoddard & Stevens
2011, Bán et al. 2013, Feeney et al. 2014), pattern (Spottiswoode & Stevens 2010, Stoddard &
Stevens 2010, Stoddard et al. 2014), size (Marchetti 2000, Krüger & Davies 2002) and shape
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(Mason & Rothstein 1986) of the host eggs, as more mimetic eggs are rejected less (Cassey et al.
2008, Spottiswoode & Stevens 2010). Defenses by multiple host species have driven the evolu-
tion of genetically distinct races (gentes) in brood parasites, each possessing an egg phenotype that
matches that of their favored host(s) (Gibbs et al. 2000, Fossøy et al. 2011, Spottiswoode et al. 2011;
for a list of brood parasite and host species that possess races see Langmore & Spottiswoode 2012).
Alternatively, defenses by multiple host species may drive generalist mimicry in the eggs of brood
parasites (Edvardsen et al. 2001, Stoddard & Stevens 2010, Feeney et al. 2014). Recently, Spottis-
woode & Stevens (2012) presented elegant correlational evidence from an extensive egg collection
that showed that cuckoo finch and tawny-flanked prinia egg phenotypes have undergone rapid but
closely tracked changes in their appearance over a 40-year period, suggestive of coevolutionary
processes that may underpin race formation in both parasites and hosts (also see Lahti 2005).

The mode of inheritance and evolutionary stability of host-specific egg phenotypes are not well
understood, and research is currently limited to two brood parasite systems: the greater honeyguide
and the common cuckoo (Gibbs et al. 2000, Fossøy et al. 2011, Spottiswoode et al. 2011). In the
greater honeyguide, there is evidence that host-specific egg phenotypes are maternally inherited
and that host-specific races have been stable for millions of years (Spottiswoode et al. 2011). By
contrast, race formation in the common cuckoo evolved relatively recently (Gibbs et al. 2000). In
this species there is evidence of assortative mating in some populations (Fossøy et al. 2011) but
not in others (Gibbs et al. 2000). Whether stable host-specific races evolve or speciation occurs
depends on the frequency of assortative mating (Krüger & Kolss 2013), which may differ between
populations because of the relative density, extent of sympatry, and breeding synchrony of host
species (Fossøy et al. 2011). Additionally, though it seems likely that host specific phenotypes
in brood parasite races are determined by genes on the W chromosome, and therefore passed
from mother to daughter, this has not been demonstrated directly. An important future line of
research is to establish directly that host races are maintained maternally through the following:
captive breeding experiments, identifying genetic offspring by using ancient DNA techniques from
philopatric brood parasites through generations from egg collections (Spottiswoode et al. 2011),
or following and sampling females and their offspring of different philopatric brood parasite races
in the field.

Mimicry of host eggs is not the only adaptation of brood parasites to prevent egg rejection
by hosts. Several Australasian bronze-cuckoo species that parasitize dome-nesting hosts lay dark-
colored eggs that appear to be invisible to hosts inside their dark nests (Langmore et al. 2009b).
Visual modeling analyses reveal that this egg phenotype is cryptic in the host nest when seen
through a bird’s eye and may be an adaptation that decreases the likelihood of detection of the
egg by the host or a competing brood parasite (Langmore et al. 2009b, Gloag et al. 2014, and also
see Spottiswoode 2013). There is also some evidence that brood parasites may dupe their host(s)
into accepting their eggs by producing nonmimetic, but attractive, egg phenotypes (Alvarez 1999).
Some brood parasites produce eggs with thick shells, which may make puncturing more difficult for
hosts (Rohwer & Spaw 1988, Moksnes et al. 1991, Mermoz & Ornelas 2004) and other competing
brood parasites (Brooker & Brooker 1991, Moksnes et al. 1991, Spottiswoode 2013), and some
have also evolved a shorter-than-expected incubation time to give their chick a competitive edge
over their nest mates (Briskie & Sealy 1990). Finally, some brood parasites “farm” host nests,
which involves depredation of host nests that are too far advanced for parasitism (Arcese et al.
1996), or employ “mafia” behaviors, which involves destruction of host nests that reject parasitic
eggs (Zahavi 1979, Soler et al. 1995, Hoover & Robinson 2007), as both behaviors force renesting
by the host.

As parasites have evolved strategies that manipulate their host(s) into accepting their eggs, hosts
have responded with further counteradaptations. Some hosts of the greater honeyguide possess
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thicker eggshells to help protect their eggs against egg puncturing by the parasite (Spottiswoode &
Colebrook-Robjent 2007). Others have evolved decreased intraclutch variation in egg appearance
(reviewed by Langmore & Spottiswoode 2012) and increased between-clutch variation (Stokke
et al. 2002, Honza et al. 2004, Spottiswoode & Stevens 2011). Both of these increase the likelihood
of detection of parasitic eggs by hosts (e.g., Stokke et al. 1999, 2002) and decrease the potential
for egg phenotype-matching by the parasite (e.g., Cherry et al. 2007, but see Antonov et al. 2012).
Finally, the disruptive selection on host egg phenotypes imposed by brood parasites can escalate
to the evolution of egg “signatures” (Spottiswoode & Stevens 2010, Stoddard et al. 2014).

Following other exploiter-victim systems, defensive adaptations have recently been placed into
one of two categories: resistance, in which the host evolves adaptations to reduce the parasite
load directly, or tolerance, in which the host endures parasitism but evolves adaptations that limit
its harm (Kilner & Langmore 2011, Soler et al. 2011). So far we have discussed strategies of
resistance against parasites by hosts; however, strategies of tolerance, though comparatively little
studied, have been demonstrated at the egg stage of the nesting cycle for a number of species.
For example, the great spotted cuckoo, Clamator glandarius, usually damages host eggs during
laying (Soler & Soler 2000). The magpie, Pica pica, which hosts this cuckoo, has evolved large
clutch sizes that counteract the impact of parasitism. The cuckoo is reared alongside the host
young, so parasitized magpies with larger clutches can produce more of their own young than
those with smaller clutches (Soler & Soler 2000, Soler et al. 2011). Conversely, if survival of host
young is low in parasitized nests, hosts might benefit from producing more small clutches rather
than few large clutches to avoid “putting all their eggs in one basket” (Hauber 2003b). This has
been demonstrated in brown-headed cowbird, Molothrus ater, hosts, in which hosts with a longer
evolutionary history with the parasite produce smaller clutches and make more breeding attempts
than the more recent hosts (Hauber 2003b).

3.3. Chick-Stage Adaptations

The past decade or so has seen a paradigm shift, from doubts that hosts of brood parasites dis-
criminate and retaliate against parasite nestlings (Rothstein 1990, Lotem 1993, Davies 2000) to
discoveries of parasite nestling discrimination in some systems and corresponding adaptations by
parasites. This shift has consequentially led to incorporation of this stage of the nesting cycle in
the understanding of coevolution between these species (Langmore et al. 2003, Grim 2011).

Many host species fail to discriminate against enormous parasitic chicks in their nests. An
explanation for this observation was presented in an influential model by Lotem (1993), who
demonstrated that if discrimination of parasitic nestlings occurs through imprinting on own young,
then nestling discrimination should not evolve in brood parasite hosts owing to high costs of
misimprinting. Subsequent discoveries of cuckoo chick rejection by hosts provide indirect support
for this theory because hosts appear to rely at least in part on “recognition-free” mechanisms for
discrimination, thereby avoiding the misimprinting costs inherent in recognition-based systems
(Langmore et al. 2003, Grim 2007). Langmore et al. (2003) found that the primary cue for chick
abandonment in the superb fairy-wren, Malurus cyaneus, is the presence of a lone chick in the
nest, and Grim (2007) found that reed warblers abandon chicks that take an atypically long time
to fledge. The use of these cues alleviates the need for an imprinting-based mechanism and is
highly reliable because, unlike host broods, cuckoo chicks in these systems are always alone in the
nest (Langmore et al. 2003) and take longer to fledge than host young (Grim 2007). Subsequent
work has shown that superb fairy-wrens further reduce the likelihood of mistakenly rejecting a
fairy-wren chick by relying on visual and acoustic cues from nestlings (Langmore et al. 2003, 2008)
as well as their perceived risk of parasitism (Langmore et al. 2009a).
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Rejection of parasite nestlings may take the form of abandonment (Langmore et al. 2003,
Grim 2007), allocation of lower quality or quantity of food (reviewed by Grim et al. 2011),
pecking the parasitic chick (reviewed by Grim et al. 2011), or physically evicting the newly
hatched parasite (Sato et al. 2010b, Tokue & Ueda 2010). Unlike other forms of chick rejection,
eviction of the parasite chick can salvage at least some of the host’s own brood if it is performed
before the parasite evicts the host progeny. Sato et al. (2010b) demonstrated that this is possible
in gerygone (Gerygone spp.) hosts of little bronze-cuckoos, Chalcites minutillus, which evict the
parasite chick within hours of hatching. Other suspected cases of nestling discrimination exist in
a range of systems (reviewed by Grim et al. 2011), which all require confirmation.

Following hatching, nestling parasites adopt one of two broad strategies in the host nest: some
usurp the entire parental effort of their foster parents by eliminating the host brood, whereas
others are raised alongside their foster siblings (Davies 2000, Kilner & Langmore 2011). Which
of these alternatives is adopted depends on which maximizes provisioning to the parasitic chick
(Kilner et al. 2004, Gloag et al. 2011). Elimination of the host brood by the newly hatched parasite
is generally achieved by heaving the remaining eggs and chicks from the nest, as seen among
the majority of Old World cuckoos (with the exception of the Clamator, Scythrops and Eudynamys
species) or by using sharp bill hooks to actively swipe at and kill the host brood, as seen in the New
World cuckoos and honeyguides (Davies 2000, Spottiswoode & Koorevaar 2011). Eviction of the
host eggs is costly for a young cuckoo (e.g., Anderson et al. 2009a), but it appears an important
strategy for at least common cuckoos that are not competitive in a mixed brood and experience
higher growth and survival rates when reared alone (e.g., Geltsch et al. 2012). The costs of evicting
or competing with nest mates can be recovered if the cuckoo survives in some cases (Anderson
et al. 2009a, Geltsch et al. 2012). To date, the importance of monopolization of parental provi-
sioning effort in parasitic species has attracted little study outside cuckoo-host and cowbird-host
systems.

Alternatively, some parasites do not require elimination of the host brood to achieve adequate
provisioning. These species include the cowbirds, finches, and some parasitic cuckoos. Nest co-
habitation seems to be associated with the relative size between parasite and host, as relatively
large parasites are better able to gain sufficient food while sharing their nest with their smaller
nest mates (Soler & Soler 1991, Hauber 2003a, Gloag et al. 2011). Among brown-headed and
shiny cowbirds, the presence of host chicks is actually beneficial to the parasite chick because a
larger brood size increases the rate of provisioning by host parents, and the parasite is able to
monopolize most parental feeds (Kilner et al. 2004, Gloag et al. 2011). In some cases, these par-
asites can compete so effectively for food that their foster siblings starve to death (Soler & Soler
1991, Hauber 2003a, Kilner et al. 2004). The competitiveness of cowbird chicks seems to be an
adaptation to brood parasitism (Hauber 2003a).

Brood parasitic chicks that reject their host nest mates or cohabit with the host chicks exhibit
counteradaptations that help circumvent host defenses and ensure adequate provisioning. In re-
sponse to rejection of parasite chicks by hosts, some nestling cuckoos have evolved mimicry of host
nestling morphology (Langmore et al. 2011), and a variety of parasitic chicks produce begging
calls that resemble those of host young (Langmore et al. 2008, Anderson et al. 2009b, De Mársico
et al. 2012). Here, cuckoo chicks may learn to reproduce the begging calls of their host species
through fine-tuning an initially variable call to the structure that elicits the greatest provisioning
response from the host parent (Madden & Davies 2006, Langmore et al. 2008) or helps them evade
detection and rejection (Langmore et al. 2003) or both (Langmore et al. 2003, 2008). Parasitic
chicks can also exploit the sensory biases of their hosts to elicit increased provisioning rates with
exaggerated visual or vocal displays (Briskie et al. 1994, Kilner et al. 1999). A remarkable example
of this is demonstrated by the Horsfield’s hawk-cuckoo, Cuculus fugax. Nestlings of this species
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possess a gape-colored skin patch on each wing that is presented to the host, alongside its actual
gape, to simulate multiple gaping mouths and elicit increased provisioning from its hosts (Tanaka
& Ueda 2005, Tanaka et al. 2011).

Although relatively little studied, competition with brood parasites appears to have selected for
further counteradaptations in host nestlings. Nestlings of cowbird hosts, which are reared along-
side the parasite chick, generally experience accelerated growth rates, shorter nesting periods, and
lower mass at fledging compared with those not parasitized by cowbirds (Remeŝ 2006), represent-
ing additional possible examples of tolerance to parasitism (Kilner & Langmore 2011, Soler et al.
2011). Furthermore, evidence is accumulating that parasitism can also select exaggerated begging
calls in cowbird hosts (Briskie et al. 1994, Pagnucco et al. 2008). However, Anderson et al. (2009b)
found no evidence of divergence in gray warbler, Gerygone igata, nestling begging calls because of
begging call mimicry by cuckoos, suggesting that these types of host responses to brood parasitism
may only occur in some situations.

An intriguing possibility is that coevolution at the chick stage has selected for host nestling
mimicry of parasite nestlings (Hauber & Kilner 2007). Nestlings of the estrildid finches of Africa
exhibit highly varied and elaborate mouth markings that are mimicked by parasitic Vidua finches.
Payne (2005a) demonstrated that host species have more colorful nestling mouths than unpara-
sitized estrildid species, suggesting that nestling morphology has evolved away from that of the
parasite, facilitating discrimination of parasite chicks by host parents. Hauber & Kilner (2007)
proposed an alternative mechanism. They suggested that parasite chicks are under stronger selec-
tion for such exaggerated signals than host young because brood parasites have no genetic stake in
the survival of host parents or nest mates. This may give rise to the paradoxical situation in which
nestling parasites evolve exaggerated mouth markings that extract more food from host parents,
causing selection for mimicry in host nestlings (Hauber & Kilner 2007). Either way, this system
suggests the existence of counteradaptations in host nestlings in response to mimicry by nestling
parasites.

3.4. Fledgling-Stage Adaptations

Fledglings of altricial species require care following emergence from the nest, and evidence sug-
gests that coevolutionary interactions between brood parasites and their hosts also occur during
this period. Most notably, De Mársico et al. (2012) found that visual and vocal mimicry of baywing
fledglings by fledgling screaming cowbirds, Molothrus rufoaxillaris, their primary parasite, main-
tains host provisioning and increases parasite survival compared with the less mimetic fledglings
of their secondary parasite, the shiny cowbird. This is the only experimental evidence of brood
parasite–host coevolution at this stage of the breeding cycle.

Allusions to potential coevolved adaptations in fledgling brood parasites and their hosts exist
in the literature. Sanjeeva Raj (1964) noted an observation of a fledgling Jacobin cuckoo, Clamator
jacobinus, that was ignored by its yellow-billed babbler, Turdoides affinis, foster group after fledging,
possibly suggesting fledgling discrimination. Hoskin (1989) compiled a series of anecdotal obser-
vations on interactions between fledgling black-eared cuckoos, Chalcites osculans, and a variety of
species that also suggested fledgling cuckoo abandonment. Hoskin also noted that, on occasion,
fledgling black-eared cuckoos received provisioning from a variety of species in addition to their
host parents (Hoskin 1989). Although these notes are anecdotal, they suggest that host defenses
against fledgling brood parasites may exist and that fledgling brood parasites may exploit the sen-
sory predispositions of their foster parents (as well as other individuals and species), providing
the means for further escalation of the coevolutionary arms race at the fledgling stage of the host
nesting cycle.

www.annualreviews.org • Advances in the Study of Coevolution 237

A
nn

u.
 R

ev
. E

co
l. 

E
vo

l. 
Sy

st
. 2

01
4.

45
:2

27
-2

46
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

A
us

tr
al

ia
n 

N
at

io
na

l U
ni

ve
rs

ity
 o

n 
11

/3
0/

14
. F

or
 p

er
so

na
l u

se
 o

nl
y.



ES45CH11-Feeney ARI 15 October 2014 11:25

4. COEVOLUTIONARY PROCESSES AND OUTCOMES

4.1. The Evolution of Adaptive Portfolios and Interactions
Between Levels of the Arms Race

One of the greatest puzzles of brood parasitism is that many birds are able to recognize and
reject a parasitic egg that is a nearly perfect mimic of their own, but are unable to recognize
and retaliate against an often dissimilar-looking parasitic chick (Davies 2011). Why are some
adaptations and counteradaptations present at some stages of the nesting cycle but absent in
others? Recent attention to this question has returned theoretical explanations mostly revolving
around ideas known as strategy blocking (Britton et al. 2007) and strategy facilitation (Kilner &
Langmore 2011). Strategy blocking refers to adaptations at one stage of the arms race (e.g., egg
rejection) that relax selection for defenses at another stage (e.g., at the frontline, chick, or fledgling
stages). The corollary, strategy facilitation, refers to selection for adaptations at one stage of the
nesting cycle (e.g., recognition of adult brood parasites) that may in turn facilitate the evolution
of adaptations at other stages (e.g., recognition of egg, chick, or fledgling parasites). These ideas
are theoretically plausible but difficult to demonstrate.

In theory, strategy blocking occurs when effective host defenses at one stage of the arms race
relax selection defenses at another. This process would be predicted to operate when one defense is
highly effective and defenses at other stages carry substantial costs. Strategy blocking may explain
why some populations of reed warblers, Acrocephalus scirpaceus, reject common cuckoo eggs but not
chicks or fledglings and why superb fairy-wrens reject cuckoo chicks but not eggs (Britton et al.
2007, Kilner & Langmore 2011). This process may similarly provide a plausible explanation for
the lack of these defenses in many other host species; however, this will be difficult to determine
until better evidence of the presence or lack of defenses at later stages of the nesting cycle becomes
available (Grim 2011).

Hosts may also lack defenses at some stages of the nesting cycle for reasons other than, or
in addition to, strategy blocking. The lack of egg rejection by many hosts may be explained by
benefits of retaining parasite eggs to prevent damage (Gloag et al. 2012), costs of removal of host
eggs during subsequent parasitism events (Sato et al. 2010a), suppression of rejection behavior by
vindictive parasites (Zahavi 1979, Soler et al. 1995, Hoover & Robinson 2007), physical constraints
on egg recognition (Langmore et al. 2005, Antonov et al. 2011) or rejection (Moksnes et al. 1991,
Underwood & Sealy 2006, Krüger 2011), or evolutionary lag following recent range expansions
or low parasitism rates by brood parasites (Davies 2000).

There are also possible examples of strategy facilitation in the literature (Kilner & Langmore
2011). The ability of hosts to recognize adult brood parasites as unique from other species may have
predisposed hosts to evolve discrimination against parasitic eggs or chicks (Kilner & Langmore
2011). However, as with strategy blocking, strategy facilitation appears intrinsically difficult to
demonstrate in practice. In the future, a comprehensive understanding of host defenses at all
stages of the nestling cycle for multiple host species will allow broadscale comparative analyses
investigating whether those hosts with effective defenses at one stage of the arms race are more
or less likely to evolve defenses at other stages.

4.2. The Outcomes of Coevolutionary Interactions Between
Brood Parasites and Hosts

What are the long-term outcomes of the coevolutionary interactions between brood parasites
and their hosts? Theory suggests that parasites and hosts may remain in ongoing interactions or
one party will defeat the other (Davies & Brooke 1989b, Rothstein 1990, Soler 2014). Ongoing
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interactions can take the form of a coevolutionary arms race or an evolutionary equilibrium
between parasite and host that is determined by the relative costs and benefits of host defenses
(Davies & Brooke 1989b, Rothstein 1990, Lotem et al. 1995) and brood parasitism to the host
(Canestrari et al. 2014). Defeat can take the form of host switching in parasites or extinction of
either party (Krüger et al. 2009, Soler 2014).

In recent years, discoveries of adaptations and counteradaptations outside the egg stage (e.g.,
Langmore et al. 2003, Welbergen & Davies 2009, De Mársico et al. 2012) have provided convinc-
ing evidence of coevolution at the other stages of the nesting cycle. In addition, the realization
that coevolution can be expressed both within and between all stages (Welbergen & Davies 2009)
provides scope for arms races to continue beyond the constraints of a single stage. Directional
arms races, in which host defenses and parasite offenses improve incrementally, may become con-
strained by insufficient genetic variation or physiological limitations at one stage but continue to
escalate at other stages. Arms races may theoretically continue indefinitely if they become cyclical,
that is, if trait frequencies in the parasite and the host are in a state of constant oscillation owing
to frequency-dependent selection (e.g., Spottiswoode & Stevens 2012), both within and between
stages of the nesting cycle.

Soler (2014) suggested that host switching by parasites or extinction of either party may be
more common than previously appreciated and that ongoing interactions may exist only as unsta-
ble transitional states. However, recent empirical evidence suggests that, in some circumstances,
hosting a parasite can be beneficial and may provide an evolutionary pathway to long-term mu-
tualistic interactions between host and brood parasite (Canestrari et al. 2014). The retention of
egg rejection abilities by many currently nonparasitized host species was interpreted by Soler
(2014) as suggesting that through evolutionary time, brood parasites are continually switching
from initially more appropriate (but subsequently better defended) to initially less appropriate
(but less well-defended) host species (Davies & Brooke 1989b, Soler 2014, also see Thorogood &
Davies 2013b). If host switching by parasites or extinction of either party are common outcomes
(Krüger et al. 2009, Soler 2014), this could provide an alternative explanation for why many host
species exhibit defenses at the frontline and the egg stage while few appear to exhibit chick- or
fledgling-stage defenses. Because the costs of brood parasitism accumulate throughout the nesting
cycle (Davies 2011), this should slow the evolution of later-stage defenses relative to earlier-stage
defenses, subject to evolutionary constraints (e.g., Rohwer & Spaw 1988, Langmore et al. 2009b,
Grim et al. 2011). Therefore, later-stage defenses are less likely to be observed, especially when
ongoing evolutionary interactions are rare, and should be found predominantly in those brood
parasite–host systems that have a long coevolutionary history. This prediction for the phylogenetic
distribution of defenses awaits investigation.

It is clear that more research is needed into the presence and effectiveness of antibrood parasite
defenses in both parasitized and unparasitized species at all stages of their nesting cycles. This will
refine insights into how, and how often, brood parasite–host arms races are won or lost or how
they escalate into ongoing interactions through evolutionary time.

5. CONCLUSIONS

The interactions between avian obligate interspecific brood parasites and their hosts provide
informative models for the study of coevolutionary processes in the natural world. The ecological
and evolutionary consequences of these relationships are profound; coevolved adaptations in brood
parasites and their hosts are now evident at all stages of the host nesting cycle, and it is clear that
these relationships can even predict global patterns in brood parasite morphology (Gluckman
& Mundy 2013, Thorogood & Davies 2013a), and host clutch sizes (Hauber 2003b) and social
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systems (Feeney et al. 2013). These coevolutionary relationships also affect the rates of evolution
of brood parasites (Sorenson & Payne 2002), and future work may reveal that they are driving the
evolution of species.

Despite the benefits of using avian brood parasite–host interactions to understand coevolu-
tionary processes in the natural world, they also have inherent weaknesses. Notably, laboratory
studies have the distinct advantage of enabling unequivocal identification of adaptations that have
evolved in response to reciprocal selection; this provides an opportunity to observe coevolution
in action (for a recent review of experimental coevolution in the laboratory see Brockhurst &
Koskella 2013). Surely, among the most fruitful paths to continue to probe the fundamental na-
ture of coevolutionary interactions is to converse with other fields that share similar ambitions but
comprise different model systems with inherently different attributes.

A robust framework now exists to integrate the diversity of host defense and parasite offense
portfolios across the different stages of the nesting cycle to generate a more holistic understanding
of brood parasite–host coevolution. The future is exciting, and further advances in the study of
these fascinating systems will continue to unveil the ecological and evolutionary consequences of
species interactions in the natural world.
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