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Abstract. Getting three-dimensional pose and orientation of parts of
the body observed by one or more cameras is of great theoretical in-
terest and widely applicable. Usually, computing devices interaction is
accomplished by means of a mouse and a keyboard or by touching the
screen, but otherwise, human beings relate to their surrounding world
using hands, body, and voice in most of their daily activities, therefore,
development of more natural and intuitive techniques for interacting with
a variety of user interfaces is critical. In this paper, a review of recent
research efforts in Human Computer Interaction (HCI), specifically in
hand gesture recognition, is performed, analyzing the state-of-the-art
methodology and discussing some important issues about.
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1 Introduction

Analyzing the different techniques used in literature to achieve location, tracking,
description, and object recognition, has led to the development of tools that
tend to improve robustness and naturalness in handling HCI devices to be fully
functional in real world. Taking hands, face, body, voice, or even the eyesight
as objects of study, research evolves allowing Douglas Engelbart’s augmenta-
tion dream to increasingly become tangible, and disciplines such as Artificial
Intelligence (AI) whose philosophy since its beginning has been considered as
opposed to HCI’s vision, devote part of its efforts to study and try to simulate
human communication processes with the same purpose: interact in a friendlier
way with machines. Among main achievements of these disciplines, Automatic
-visual, speech, gesture, etc.- Recognition Systems designed to recognize and
translate what they hear and/or see (voice, lips or body movements, facial
gestures, hand signs or other objects movements) via microphones, video cameras
or other sensors, could be mentioned.

Recently, new technologies such as RGB-D cameras, which have sensors to
capture RGB images along with depth information of each pixel, have been taken
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into account. These high precision cameras are capable of delivering high-quality
three-dimensional information (color and depth) to understand the whole shape
of an object [1]. For example, Microsoft R© Kinect R© technology allows players to
enjoy video games simply by moving their bodies in front of a screen, the data
taken as input from the device are the tracked body skeleton. The extension
of this technology to individual finger 3D tracking is an active research area,
having more complete information on user’s hand pose would lead to grasping,
pointing, and manipulation capable richer applications [2]. However, despite the
growing amount of research in the area, there are still existing problems having
a variety of theoretical and practical challenges.

The following section describes some actual marketed devices features, re-
garding their interaction drawbacks. The major current challenges in image-
based gesture recognition are cited and later the resolution methods generally
reported in literature are defined along with a description of some of the most
representative recent projects. Finally, a future contribution and discussion to
the described state-of-the-art is submitted.

2 Existing Devices, their Drawbacks and Health Impact

Nowadays, there are several devices with the adjective “smart” on them: digital
still and/or video cameras with facial/smile recognition and tracking, automatic
washing machines capable of weighing clothes and dosing optimum amount of
water and detergent together with the estimation of washing time, computers
and smartphones which light-up when passing the hand over them or with a
voice command, or the new smart TVs, very trendy by additionally providing a
web browser, access to several services, and likewise have the ability to perform
all typical orders of their modern remote control by gestures or voices.

Even with such technological advances, these devices are far from being even
slightly smart at least for now, because although they averagely meet what they
promise, there are more than a few shortcomings in their performance, causing
most of the time user prefers to disable smart features, and use traditional
interaction ways (it might also be the case of the Leap Motion Controller,
described as “rather limited” in [3]). For some smart TVs, for example, keeping
alive gesture detection feature implies the stress of its continuous unwanted
activation simply by raising arms or doing a hand sign to someone else in the
room. Voice detection behaves similarly, activating itself even by the loudness of
a movie dialog. As if this were not enough, when someone does want to use these
features, orders hardly execute at first attempt, having the user to desperately
repeat the gesture or key word once and again.

Clearly, at the moment of this study, there are still many challenges related to
accuracy, speed, naturalness, and even usefulness of these devices, since although
occasional user might be pleased or amazed, for regular user the continuous use
of features such as gesture recognition, for example, could harm his health and
comfort due to a phenomenon known as “gorilla arm syndrome”, a problem that
arises from continued use of the arms in the air, that is, without a place to
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stand, causing a feeling of heaviness, fatigue, or discomfort (imagine a designer
working eight hours on a gesture based software). On the other hand, it is true
that this is a less significant problem if a similar disease suffered for decades
due to extensive use of the mouse, known as “carpal tunnel syndrome”, comes
to mind (a hand and arm condition caused by the inflammation of a tendon in
the wrist and triggering chronic pain), yet, it still remains one of the most used
interaction device.

3 Current Challenges in Hand Gesture Recognition Area

Leaving aside negative issues on the development of image-based gesture recog-
nition devices, there have been challenging factors since the beginning, such as
the high dimensionality and speed of hand motion, while image capturing is per-
formed through low resolution cameras, besides the diversity of existing cameras
that hinder calibration or standard lighting conditions, the ambiguity of image
elements identification due to its color uniformity, the similarity of fingers, the
large number of degrees of freedom (DOF), or the absence of observations when
parts of hands (or other object) obstruct each other. Searching for solutions,
special hardware for motion capture has been used, such as magnetic tracking
devices, bracelets with optical [4] or electromyographic [5] sensors, and visual
markers placed on gloves [6] or the bare hands. Unfortunately, such methods
require complex and expensive hardware, interfere with the observed scene,
or add restrictions to user’s pose, preventing their use in real world [7], not
to mention their use for people with disabilities. Moreover, emerging projects
addressing hand tracking interacting with objects, have increased the challenge,
since although they can help to reduce the number of potential poses, there
are limitations still being solved, such as the desirability of the hardiness and
non-similar to skin color of the object.

4 Classification of Hand Gesture Recognition
Methodology

From a historical perspective, starting with the development of articulated hands
to explore issues related to grip and object manipulation at early 80s, a growing
attention from a variety of disciplines to modeling, 3D simulation, tracking,
and interpretation of hands and other body parts motion has been found (it
is accepted that the study of hand tracking began with the Zimmerman et al
“VPL Dataglove” [8]). Several applications have emerged from these studies,
which have been useful to many science and technology areas, to name a few:
medicine and biotechnology, robotics, computer animation, movies, e-commerce,
and virtual reality.

At first systems, selection of key points (articular joints) was performed
manually on the computer screen. Obviously those had serious restrictions,
the most significant: selection subjectivity, process slowness, and calibration
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system sensitivity. Such systems, typical of the 90s, are deprecated, and from
the first decade of 21st century, finding semi-automatic methods with reflective,
magnetic or infrared light sensitive optical markers is usual, allowing, when
scanned, determine joint connections. Currently, research is mainly oriented to
the development of processes that avoid the use of invasive elements.

Depending on the type of input, gesture translation approaches may vary.
However, most techniques are based on key clues represented in a 3D coordinate
system, by tracking their relative motion a gesture can be detected with high
precision. Several methods have been used in the literature to estimate the hands
pose, and have been classified by some researchers according to certain common
properties; regarding the output completeness, Erol et al [9] describe them as
“Partial hand pose estimation methods” which can be viewed as extensions of
“Appearance-based methods” to provide information on continuous motion in
navigation, handling or pointing; and “Full DOF hand pose estimation meth-
ods”, which get all the kinematic parameters of the skeleton of the hand, such
as joint angles and hand position or orientation for a full reconstruction of hand
motion. The latter class is divided into: “Model-based tracking”, which can
be subdivided into methods using a single hypothesis and those who manage
multiple hypotheses, and “Single frame pose estimation”, that is, they are not
committed to time coherence. Both full DOF hand pose estimation classes are
addressed in [10].

4.1 Appearance-based Methods

This approach, also known as “Discriminative”, uses classification or regression
techniques directly into the image data. An offline training process is used to
establish a nonlinear mapping (due to the different hand views) from the image
feature space to a finite set of hand poses, depending on specific parts of the
hand, such as palm or fingertips and their orientation. These methods process
each image independently, but may be used with image sequences; they work
well when recognition of a small well-known and distinct hand configuration
set is required and are not recommended when there is free hand motion and
high recognition accuracy is required. Velocity, offline training, computationally
efficient online execution, low computational cost and hardware complexity, the
requirement of a single camera, and generalization if training is suitable are
some of their advantages. Their inherent disadvantages lie in the need for very
large training data sets and that their accuracy and reduced number of hand
recognition poses rely on those data, therefore requiring high degree of user
intervention.

Recent research involving two-hand recognition introduce a new challenge if
this approach is used, due to the fact that the offline training must include the
combinatorial space of both hands configuration and the changes that different
points of view cause in their appearance.
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4.2 Model-based Methods

These methods are called “Generative” because they generate hypothetical 2D
or 3D hand models and compare model projection to the observed images. This
is done through an optimization problem whose objective function measures the
discrepancy between the model key indicators and the observations, however,
the optimization method should be able to evaluate the objective function at
arbitrary points in the multidimensional space of model parameters, so the
search must be carried online, causing a high computational cost, which is
their major drawback, besides relying entirely on visual information available,
usually provided by a multi-camera system. On the other hand, these aspects
also imply their major strengths: there is no training need and they can easily
be extended to any gesture recognition problem. If researcher decides to use this
approach, dimensional reduction of the configuration space, efficient construction
of realistic three-dimensional hand models, and development of quick and reliable
estimating techniques would be interesting contributions [11].

The usual visual features to match are silhouettes, edges, shades, color, opti-
cal flow, and recently depth. Among the optimization techniques that have been
proposed are, to name a few, belief propagation, particle swarm optimization,
and local optimization, one of the first and still used because of its efficiency.
Similarly, stochastic optimization techniques such as Kalman filter and particle
filter have been used, the latter together with local optimization in [12]. In [13]
and [14] linear subspaces are used to reduce the hand pose space.

In short, appearance-based methods allow fast processing with a loss of
generality, whereas model-based ones give generality at a high computational
cost.

Another classification is based on how partial evidence of individual rigid
parts of an articulated object contributes to the final solution [15]:“Disjoint
evidence methods” consider individual parts in isolation before evaluating them
against observations, usually requiring less computational power but needing
to handle explicitly part interactions (such as collisions and occlusions); in
contrast, “Joint evidence methods”, consider all parts in the context of full object
hypotheses, their computational requirements are high, but part interactions do
not represent much of a problem.

5 Current Research in Literature

Oikonomidis et al [11] introduce a model based multiple-view method to recover
3D position of the hand given by 27 geometric primitives that redundantly
encode a 26 DOF 3D hand model. Observations are acquired from a static,
pre-calibrated camera network, computing reference features for each acquired
view based on skin color and edge detection. Mapping of these features is ren-
dered and compared directly with the respective view. Discrepancy between a
3D hand pose and the actual observation is quantified by an error function
minimized through particle swarm optimization. The pose for which this error
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function is minimal constitutes the output of the proposed method at a given
moment in time. As a temporal continuity in hand motion is assumed, initial
hypotheses for current time instance are restricted in the vicinity of the pre-
vious time instant solution. Being computationally expensive, the method is
implemented in a GPU, resulting in near real-time performance. Their study is
improved in [15] using Kinect R© and a single hypothesis, where observation is
the RGB-D image segmented to locate the hand through skin color and depth of
the scene; therefore, error function is different, computational requirements are
lower, camera array is simplified, and resulting system works even under variable
lighting conditions.

On systems that do not handle occlusions or interactions with other objects,
certainty in estimating hand positions is seriously affected, so the role of con-
text in object recognition is very significant [16]. Several researchers have tried
to exploit the contextual constraints on Computer Vision problems, in [17] a
brief count of researching work considering the context in the classification of
human-object interaction activities can be found, differentiating between those
who have focused on the human body or hands and those who provide a detailed
3D model of them and the object. This project is an extension of that presented
in [11] by considering jointly the hand and the manipulated object. It is an
optimization problem whose solution is the 26 DOF hand pose along with the
pose and parameters of the manipulated object model using a multi-camera
system. In each of the acquired observations, skin color maps and edges of the
hand are extracted; depending on the point of view, the presence of an object
can obstruct the presence of the hand, their incomplete observation provides
evidence of the type and pose of the manipulated object and at the same time the
object improves the estimation of hand pose. The process seeks the hand-object
model that best explains the incompleteness of the resulting observations of the
occlusions derived from their interaction and also be physically plausible (that
the hand does not share the same physical space with the object) by penalty
the objective function. Regarding methodology, the authors use Canny edge
detection to build an edge map, compute a distance transform for each one,
and use a previous own method to generate the color map. Thus, the image
observations are given by the skin color maps and the transform. The authors
claim that this is the first model-based work that efficiently solves the continuous
full-DOF, joint hand-object tracking problem based solely on markerless multi-
camera input, further demonstrating that hand-object interaction can be seen
as a context that facilitates hand pose estimation, instead of being a problem
factor.

Ren et al [18] propose a distance metric called “Finger-earth mover’s dis-
tance” to measure the dissimilarity of the noisy hand shape provided by a
Kinect R© sensor, as method just matches fingers and not the whole hand shape,
it can better distinguish hand gesture subtle movements. This metric sees each
finger as a “cluster”, penalizing unmatched fingers. The method is proposed to
address the problem that, due to the low resolution of the depth map delivered
by the Kinect R© sensor (640x480), it is hard to detect and segment a small object
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like the hand and all its joints.

Oikonomidis et al [19] extend again their work with a model-based, joint-
evidence method, where a two-hand tracking is performed as an optimization
problem whose objective function quantifies the discrepancy between the struc-
ture and 3D appearance of hypothetical configurations of both hands and the
corresponding Kinect R© observations. Optimization is performed by a variant of
a particle swarm optimization method, adapted to the needs of the specific prob-
lem. The methodology combines the steps performed in their previous studies [15]
and [17], especially in the latter idea to model the hand-object relations and to
treat occlusions as a source of information rather than see them as a complicating
factor. Furthermore, in this work the problem is more complex since it focuses
on both hands with only one Kinect R© sensor instead of a multi-camera system.
An update of this work can be found likewise in [7].

In [20], a method to capture the articulated motion of two hands while
interacting with each other and with an object is proposed. Salient points such
as finger tips are scanned through a multi-camera system, however, since these
points cannot be tracked continuously due to excessive occlusions and similarity
in their features and color appearance, avoiding a fixed association between the
salient points and the respective fingers, an approach that solves the salient point
association jointly with the hand pose estimation problem is proposed. Also, a
quite differentiable objective function for pose estimation is implemented, taking
into account edges, optical flow, salient points, and collisions. Thus, authors may
use simple local optimization instead of a sampling based one as in [19]; in fact,
they say their approach achieves significantly lower pose estimation errors than
the sampling optimization. In conclusion, they suggest the possible desirability
of researching the combination of both optimization techniques.

In [2], a new approach for tracking 3D articulated skeletal models using an
augmented rigid body simulation is presented, being able to follow a human hand
from a depth sensor. The method allows robust, real-time results using only an
x86 processor. The system generates constraints that limit motion orthogonal
to the rigid body model’s surface, these constraints, along with prior motion,
collision constraints, and joint mechanics, are solved by a Gauss-Seidel solver.
To improve tracking accuracy, multiple simulations are generated at each frame
and fed some heuristics, constraints, and poses.

Kulshreshth et al [21] present preliminary results of a real-time, markerless
finger tracking technique using a Kinect R© sensor as an input device. The tech-
nique calculates feature vectors based on Fourier descriptors of equidistant points
chosen on the silhouette of the detected hand and matches templates to find the
best fit.

Karnan et al [22] propose a method to control the movement of a mouse
pointer using simple hand gesture 2D images and a webcam. An algorithm
for real-time tracking based on adaptive skin detection and motion analysis is
implemented. Using the history of motion, the trajectory of movement of the
hand is drawn and used to identify a gesture. The image database consists of
four different gestures. In order to scale the motion when user is far away from
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the point of capture, an algorithm is used to define the region of interest, motion
of the mouse pointer is scaled accordingly. The system is fully automatic, real
time, and does not need a uniform background.

In [23] a method for real-time continuous pose recovery of markerless complex
articulated objects from a single depth image is described. In order to generate
the training data, the system can use multiple depth cameras, however, only
a single depth camera for real-time tracking is required. The method can be
generalized to track any articulated object that (a) can be modeled as a 3D
boned mesh, (b) can be fed to a binary classifier to label pixels belonging to the
object, and (c) that the projection from bones pose space to a 2D depth image
be approximately one to one. Four stages are distinguished:

1. a randomized decision forest classifier for image segmentation,
2. a robust method for labeled dataset generation,
3. a convolutional network for dense feature extraction, and
4. an inverse kinematics stage for stable real-time pose recovery.

6 Main Expected Contribution

Oikonomidis et al [11] suggest that there is great interest in the development
of markerless, computer vision based solutions, since they are not invasive and
maybe less expensive. Furthermore, by fully understand hands configuration
thanks to their 3D pose estimation, systems that understand human activities
and interaction with their physical and social environment could be built. The
economic benefit that areas such as ludic get globally, and all the advantages that
could bring the development of these new ways of communication to the daily life
of every human being, encourage scientific community to further research and
improve or develop new methods looking for a higher efficiency and accuracy.
But above all, this study was conducted to provide background on the research
area as a basis for developing a set of tools that can be applied in the handling
of HCI devices by people with motor disabilities, whose condition has not been
actually addressed by the current hand gesture recognition methods.

7 Discussion of the Results and their Validity

In this paper, a brief review of recent research efforts in hand gesture recognition
has been performed. Table 1 is a comparative summary of the tools, features,
techniques, and objectives reviewed. As shown, several areas of opportunity can
be derived from these data, regarding current research in the literature. The
following are of particular interest for the purpose of this study, therefore will
be addressed in the development of the project.

1. The use of two or maybe more RGB-D cameras (whether Kinect R© or other
brands), and/or other technology such as optical flow or infrared light sen-
sors, could mean a significant advantage mainly to avoid occlusions in scanned
objects.
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2. A combination of techniques concerning feature extraction and optimiza-
tion methodology to check if there is an improvement (or optimization) on
recognition.

3. The application of these approaches to people with motor or speech disabili-
ties, which has not been addressed in the state-of-the-art, and besides being
a relevant research topic, becomes an increasing needing for them to interact
with various technological devices.

Table 1. Abbr: DT=Distance Transform, PSO=Particle Swarm Optimiza-
tion, AD=Adaptive detection, RDFC=Randomized Decision Forest Classifier,
CN=Convolution Network, IK=Inverse Kinematics, HFC=Hough Forest Classifier,
FEMD=Finger-Earth Mover’s Distance, FD=Fourier Descriptors

Research Camera Features Technique Optimization Objective

[11] Multiple Skin color, Edges DT, Canny PSO One hand
[15] Kinect R© Skin color, Depth - PSO One hand
[22] Webcam Skin color AD - One hand
[23] Depth Depth RDFC, CN IK One hand
[2] Depth

(2 sensors)
Depth - Gauss-Seidel One hand to two

hand
[17] Multiple Skin color, Edges DT, Canny PSO One hand-object

interaction
[19] Kinect R© Skin color, Depth - PSO Two hand inter-

action
[20] Multiple Edges, Optical

flow, Collisions,
Salient points

HFC Local Two hand-object
interaction

[18] Kinect R© Skin color, Depth FEMD - Fingers
[21] Kinect R© Depth, Silhouette FD - Fingers
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